一、INSTITUTE OF GEOMECHANICS——ACHIEVEMENTS OF RESEARCH(论文文献综述)
JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu[1](2021)在《New innovations in pavement materials and engineering:A review on pavement engineering research 2021》文中研究指明Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges. In the past 10 years, the pavement infrastructure strongly supports the rapid development of the global social economy. New theories, new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem. Because of actual coupled behaviors of traffic and environmental conditions, predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis. In order to summarize the current and determine the future research of pavement engineering, Journal of Traffic and Transportation Engineering(English Edition) has launched a review paper on the topic of "New innovations in pavement materials and engineering: A review on pavement engineering research 2021". Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering, this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world. The content includes asphalt binder performance and modeling, mixture performance and modeling of pavement materials,multi-scale mechanics, green and sustainable pavement, and intelligent pavement.Overall, this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.
赵阳升[2](2021)在《岩体力学发展的一些回顾与若干未解之百年问题》文中研究说明在讨论若干岩体力学概念的基础上,较全面地回顾与分析了全世界岩体力学发展中科学与应用2个方面的重要成就及不足,其中,在岩石力学试验机与试验方法方面,介绍了围压三轴试验机、刚性试验机、真三轴试验机、流变试验机、动力试验机、高温高压试验机、多场耦合作用试验机、CT-岩石试验机、现场原位岩体试验及试验标准等;本构规律方面介绍了岩石全程应力-应变曲线、围压三轴与真三轴力学特性、时效与尺寸效应特性、动力特性、渗流特性、多场耦合特性、结构面力学特性、岩体变形破坏的声光电磁热效应等;岩体力学理论方面介绍了岩体力学介质分类、块裂介质岩体力学、强度准则、本构规律、断裂与损伤力学、多场耦合模型与裂缝分布模型;数值计算方面介绍了数值方法与软件、位移反分析与智能分析方法。清晰地论述了工程岩体力学与灾害岩体力学分类、概念及其应用领域划分,分析、梳理了大坝工程、隧道工程、采矿工程、石油与非常规资源开发工程等重大工程的岩体力学原理,以及各个历史阶段工程技术变迁与发展的工程岩体力学的重要成就,分析、梳理了滑坡、瓦斯突出、岩爆与地震等自然与工程灾害发生及发展的岩体力学原理,以及各个历史阶段的预测防治技术的灾害岩体力学重要成就。详细分析、讨论了8个岩体力学未解之百年问题,包括岩体力学介质分类理论、缺陷层次对岩体变形破坏的控制作用和各向异性岩体力学理论与分析方法 3个岩体力学理论问题,岩体尺度效应、时间效应、岩体系统失稳破坏的灾变-混沌-逾渗统一理论、完整岩石试件与岩体系统失稳破坏的时间-位置与能量三要素预测预报5个非线性岩体力学问题。
Wei Zhang,Weijie Zhao,Liang Zhao[3](2021)在《Institute of Geology and Geophysics, Chinese Academy of Sciences——The time-space exploration from Earth core to galaxies》文中研究指明The Institute of Geology and Geophysics, Chinese Academy of Sciences(IGGCAS) is located in the ancient city of Beijing, with the 700-yearold ancient city wall of the Yuan dynasty to the south and the prosperous Olympic Avenue to the east. Just as its location connects past and present, IGGCAS enjoys a long history as well as a brilliant future.
Kaleem Ullah Jan Khan[4](2021)在《降雨入渗触发非饱和煤矸石堆积边坡失稳的机理研究》文中认为土坡的稳定性与降雨渗透过程有关,其特点是剪切强度降低以及吸力损失,从而最终导致了失稳。土坡失稳主要发生在降雨期间或降雨后,虽然已经被证明为降雨渗透导致土体强度降低以及孔隙水压力迅速增加而造成,但引发斜坡失稳的重要影响机理还没有得到充分的讨论。降雨强度和降雨持续时间对边坡稳定性的影响,但降雨渗透过程对煤矸石堆积边坡稳定性的影响尚需深入研究。为此研究降雨入渗过程对土坡稳定性的影响,尤其对世界范围内广泛分布的矿渣堆积体稳定性及环境安全具有重要意义。降雨特征(降雨强度和持续时间)和土体的导水性影响着边坡的稳定状态及失效类型。一般来说,土坡破坏的机理有两种,即降雨湿润锋的传播导致垫层吸力的丧失以及地下水位的上升。到目前为止,仍然没有明确的指标来确定导致矿渣型边坡失效的主导参数。因此,本研究在开展东北阜新地区一煤矸石堆积边坡失稳机制研究中考虑了降雨渗透过程。通过收集已有资料、现场调查、实验室试验和数值模拟方法,较深入研究了煤矸石堆积边坡降雨诱发的失稳过程及其机理。采用渗流-应力耦合和非耦合有限元分析方法,对煤矸石堆积边坡的失效机理进行评价。采用物理模型测试分析了不同降雨条件下土坡中孔隙水压力的分布特征,采用有限元法数值方法按照渗流-应力耦合和非耦合两张方式研究了不同降雨持续时间(1天、2天、3天、4天和5天)和降雨强度对边坡变形破坏的影响。通过在坡面不同位置(坡顶、坡中、坡尖)设置监测点,观察并比较每次降雨后孔隙水压力的变化、变形规律和稳定性。煤矸石的高渗透性与在坡趾附近观察到的因水流而产生的最大变形进一步解释了坡体向下运动的原因,与现场观测和物理模型的观测结果有较好的一致性。研究结果还表明,渗透率的增加导致孔隙水压力的滞后性增加,土坡稳定系数下降。耦合分析中的安全系数(应力和孔隙水压力的耦合效应)与未耦合分析(水力反应效应)相比显着降低。为防止边坡进一步破坏,防止其对道路交通的影响,采用锚固与水平排水相结合的设计。建议在边坡顶部采用混凝土梁锚杆加固路基,在坡脚附近设置桩排。引入水平排水系统,分流雨水,保护边坡和道路的顶部和底部。采用极限平衡Bishop法分析了桩锚加固的效果,评价了加固方案对边坡安全系数的影响。结果表明:桩锚加固土边坡的安全系数由0.9提高到1.14;利用工程价值研究,在滑坡区设计水平排水系统,控制滑坡体内过量降雨入渗,保护坡顶和坡底道路,分流雨水。
Chango Ishola Valere Loic[5](2021)在《高速列车行驶下软土场地桩承式加筋路基动力性能评价》文中研究表明对铁路路基结构的深入研究,有助于我们清楚地了解其力学特性,从而在满足舒适性和安全性标准的同时,使路基设计更为经济。如今,为了方便人民的出行,中国已经建成了连接所有重要地区的高速铁路网,包括在一些地质条件不良的地区。为确保铁路运输的安全以及乘客的舒适度,工程师们提出了适用于这些特殊地质条件场地的铁路结构设计方法。对于软土场地,桩承式加筋路基是一种经济实用的结构形式,但对这种路基结构形式的动力性能和作用机理仍缺乏了解。在高速列车运行过程中,铁路路基会发生结构振动和性能退化的现象,从而影响铁路运输的安全。桩承式加筋路基是提高铁路结构性能,确保稳定性的有效结构形式。但是对这种类型的结构所做的许多研究都集中在静载荷作用下的性能分析,对于结构在动载荷的作用下的响应仍缺乏研究。本文致力于研究三角形布置的水泥粉煤灰碎石桩与土工格栅加固的路基在高速列车行驶过程中,受不同因素影响下的动力响应及优化措施。一个可靠的高速列车行驶下桩网路基体系模型的建立是进行分析和设计的第一步。为此,本文依托以哈大铁路,建立了三维非线性有限元模型,对软弱地基上的桩网路基进行了数值模拟,通过Dload用户自定义子程序施加移动的瞬时动荷载模拟每节车厢对路基的作用。最后,通过与现场实测动力响应的对比,验证了模型的有效性。路基动力响应研究表明,土工格栅和桩对系统的减振效果显着。振动随路基深度的增加衰减较快,即使在超载情况下也是如此。另外,桩网结构还避免了列车达到一定速度后可能出现的共振现象。由于土工格栅的存在,路基中形成了土拱,大部分动力荷载通过土拱转移到了桩上,土工格栅与地基土的距离越近,桩上格栅的拉应力越大。通过对不同强度的土工格栅与桩的研究表明,高强桩与土工格栅组合大大减小了由于列车速度变化引起的不均匀变形,在高铁运行期间,轨道的振动几乎是恒定的,从而保证了乘客的舒适性,降低了脱轨的风险。为了优化高铁路基动力响应,提高路基承载能力和减少列车通过引起的振动,本文探讨了将一种铁路工程中的新材料,沥青混凝土(AC),引入铁路路基设计中的可行性。在三维桩网路基有限元模型中,通过引入Prony级数有效地再现了AC材料在高速列车移动荷载作用下的粘弹力学特性。结果表明,在路基建造过程中使用AC材料能够明显降低结构的振动,并保证即使列车行驶速度发生变化,路基振动依然能够维持在较低的水平。冬季气温较低,AC层变形减小,与夏季相比将承受更多的由高速列车行驶产生的动荷载。此外,采用大直径、小间距刚性桩作为支撑,可以限制动应力向地基的传递、减少体系振动,进而提升桩网路基体系在软弱地基上的动力性能。最后,本文基于BS8006方法和锥形模型理论,建立了一种能够估算等边三角形布桩形式的桩网路基体系静、动应力分布的分析方法,并通过与有限元模拟结果和现场数据的对比验证了该方法的可靠性。
Jun Wang,Derek B.Apel,Yuanyuan Pu,Robert Hall,Chong Wei,Mohammadali Sepehri[6](2021)在《Numerical modeling for rockbursts: A state-of-the-art review》文中指出As the depth of excavation increases, rockburst becomes one of the most serious geological hazards damaging equipment and facilities and even causing fatalities in mining and civil engineering. This has forced researchers worldwide to identify different methods to investigate rockburst-related problems.However, some problems, such as the mechanisms and the prediction of rockbursts, continue to be studied because rockburst is a very complicated phenomenon influenced by the uncertainty and complexity in geological conditions, in situ stresses, induced stresses, etc. Numerical modeling is a widely used method for investigating rockbursts. To date, great achievements have been made owing to the rapid development of information technology(IT) and computer equipment. Hence, it is necessary and meaningful to conduct a review of the current state of the studies for rockburst numerical modeling.In this paper, the categories and the origin of different numerical approaches employed in modeling rockbursts are reviewed and the current usage of various numerical modeling approaches is investigated by a literature research. Later, a state-of-the-art review is implemented to investigate the application of numerical modeling in the mechanism study, and prediction and prevention of rockbursts. The main achievements and problems are highlighted. Finally, this paper discusses the limitations and the future research of numerical modeling for rockbursts. An approach is proposed to provide researchers with a systematic and reasonable numerical modeling framework.
MURWANASHYAKAEVARISTE[7](2020)在《深部金属矿山岩爆卸压爆破控制技术研究》文中研究说明本文研究的是深部金属矿山岩爆卸压爆破控制技术研究。正如前研究证明了,矿床是加强一个国家经济发展的重要有价值的材料。人类对矿藏的无限需求导致地下矿山的开采深度不断增加。随着深部矿产资源的开采和地应力的高度集中,岩爆的频繁发生,严重阻碍了深部矿产资源的安全经济开采。由于开采深度越大,可能伴随着岩爆问题的发生,因此,作为一种深部矿山安全工具,卸压爆破的应用越来越广泛。其他研究员发现,在预测了岩爆倾向性后,可以对高应力集中区的卸压做出正确的决策。在这方面,应力传递原理可以通过使用卸压爆破技术来实现。为了实现高峰矿山深部资源的安全高效开采,本研究对岩爆和卸压爆破进行了初步的回顾,然后采用岩爆倾向性评价判据对岩爆倾向性进行评价,作为选择合适的采矿方法和卸压方案提供决策依据。对于岩爆灾害,为了彻底理解岩爆问题回顾进行了,引起了作者对深部矿井岩爆灾害进行详细研究的兴趣。通过对卸压爆破技术的深回顾,为进一步提高其现场应用水平提供了一定的理解和想法。对于矿山案例研究,本硕士论文以高峰矿山105号深部矿体为研究对象。主要根据矿区已初步掌握的地质条件,地应力和岩石力学参数来评价岩爆倾向。随着矿区实测地应力和岩石力学参数,采用5个岩爆倾向性评估判据,如Barton判据(σt/σ1),Barton判据(σc/σ1),Brittleness判据(σc/σt),Maximum stored elastic strain energy指数(σvc2/2E),Elastic energy指数(Wet),Impact energy指数。根据高峰矿山105号锡矿体岩爆倾向性评价结果,决定该矿体满足岩爆倾向性条件。为了限制开采技术难题,实现该矿体的安全高效开采,本文对105号矿体进行了卸压开采技术(卸压爆破技术)研究,以防止开采过程中可能出现的岩爆问题。为了分析和选择有效的卸压爆破方案,本文采用ABAQUS,Pro/E,和Hypermesh14.0数值模拟软件对所提出的卸压爆破方案进行了模拟分析。根据采矿技术条件、地应力、矿体总体趋势和岩石力学参数,首先分析的不同卸压炮孔深度条件下卸压爆破效果。模拟炮孔深度分别为6米,8米和10米时,在回采作业面前方进行爆破卸压。这三种条件中,装药深度均为1m,填塞长度分别为5m,7m,9m。模拟结果发现:在这3个爆破孔深度中,当爆破孔深度为6米时,卸压效果明显。这主要是由于以下事实:卸压爆破后,工作面前墙围岩中的高应力被转移到远离工作面围岩的位置(工作面的前方)。得出最优卸压炮孔深度为6m的情况下,提出了4种卸压爆破方案,并与1种无卸压爆破工作面进行了对比分析。提出的4种卸压爆破方案为:工作面的两帮墙卸压爆破(DBSⅠ),工作面的前墙卸压爆破(DBSⅡ)、工作面的覆盖层卸压爆破(DBSⅢ)和工作面的三帮(两帮和前墙)卸压爆破(DBSⅣ)。根据数值模拟结果,得出以下结论:1.工作面的覆盖层卸压爆破(DBSⅢ):在这个方案,卸压应力主要在竖直方向转移,但是在沿矿体走向方向,高应力集中没有转移,卸压效果不明显。2.工作面的两帮墙卸压爆破(DBSⅠ):在这个方案,高应力集中转移到远离工作面侧壁围岩的位置,而作用在工作面的前墙围岩的应力不被转移。说明工作面全围岩的高应力集中没有得到有效的位移,因此,卸压效果不是很明显。3.工作面的前墙卸压爆破(DBSⅡ):在这个方案中,卸压爆破后,工作面前墙围岩中的高应力被转移到远离工作面围岩的位置(工作面的前方),而作用在工作面侧壁围岩上的应力可能诱发工作面岩爆。因此,这个方案对工作面具有一点卸压效果。4.和工作面的三帮(两帮和前墙)卸压爆破(DBS Ⅳ):这个方案是方案Ⅰ(DBS Ⅰ)和方案Ⅱ(DBS Ⅱ)的组合。对工作面具有明显的卸压效果。卸压爆破后,一方面,高应力被DBS Ⅱ转移到深处(工作面的前方),另一方面,高应力被DBS Ⅰ转移到远离工作面侧壁围岩的位置。DBS Ⅳ(DBS Ⅰ和DBS Ⅱ)将高应力转移到远离工作面所有围岩(侧壁和前墙围岩)的地方,降低了工作面发生岩爆的可能性,然后创造安全开采的条件。因此,方案Ⅳ(DBS Ⅳ)是推荐采用的最佳方案。
DING Xiaozhong,ZHANG Kexin,GAO Linzhi,LU Songnian,PAN Guitang,XIAO Qinghui,LIU Yong,PANG Jianfeng[8](2020)在《Research Progress and the Main Achievements of The Regional Geology of China Preface》文中研究说明Introduction to The Regional Geology of China In 2008, a new project concerning the recompilation of The Regional Geology of China (RGC) was assigned by the Chinese Geological Survey (CGS) and undertaken by the Institute of Geology, Chinese Academy of Geological Sciences (CAGS). Li Tingdong, an academician of the Chinese Academy of Sciences (CAS), is the chief leader and chief scientist of the project. The last time The Regional Geology of China was compiled was in the 1980s (Cheng, 1994).
刘泗斐[9](2020)在《深部煤层低能耗截割原理及开采工艺研究》文中指出为解决我国能源缺口,提高能源安全稳定性,需加快深部能源开发利用。为适应深部复杂的“五高两扰动”地质条件,解决深部煤层截割效率和可靠性低等问题,打破单纯以增加功率提高截割能力为思路的机械设计瓶颈,在不增加功率和几何尺寸的条件下,解决深部煤层截割效率和可靠性低等问题,为实现深部采掘机械自动化和智能化水平打下基础。本文基于采矿工程和机械设计学科交叉,综合采用理论分析与计算、实验研究、以及数值计算相结合的研究方法,从煤岩性质出发,开展了煤岩单截齿截割实验,建立了煤岩截割力模型与截割能耗模型,探讨了截割诱导煤壁动态损伤机理,提出了局部卸载诱导煤岩自裂方法,形成了以诱导煤岩损伤为核心的低能耗截割原理和开采工艺,并提出了煤岩截割的自适应调控策略。主要成果如下:(1)开展了全尺寸单截齿煤岩截割实验,研究了截割深度和截割速度对截割力和截割能耗的影响规律,分析了截割声发射的特征。煤岩截割力受截割深度影响显着,随截割深度的增大而增大。煤岩截割能耗随截割深度和截割速度的增加而减小。声发射能反映截割过程的三个阶段,峰值截割力处的声发射波形具有相同主频、相同功率谱密度(PSD)面积等,可利用声发射特征预测峰值截割力的出现。(2)建立了基于格里菲斯强度理论的煤岩截割峰值截割力模型和截割能耗模型,揭示了煤岩截割破坏机理。采用3D扫描技术研究了密实核深度,探讨了密实核的作用,得到了破坏深度的计算公式。建立了考虑密实核韧性破坏的峰值截割力模型,实验值与理论值的平均误差为12.14%。建立了考虑裂纹扩展破坏的煤岩截割比能耗模型,实验值与理论值的平均误差为11.35%。截割力和截割比能耗模型均比较符合实际。(3)分析了采煤机械扰动信号特征,提出了煤壁动态损伤机理,研究了煤岩损伤对截割的影响,揭示了低能量扰动对煤岩诱导截割的机理。采煤机械对煤壁的扰动属于低频扰动,能量主要集中在7-12Hz。根据振动波的传播与作用,提出了深井工作面煤壁的动态损伤理论,煤壁呈分区分层破坏。随着损伤因子增大,岩石破坏逐渐向脆性破坏模式转化,煤岩破碎块度增大,截割力和能耗降低。(4)分析了深部煤层储能特征,研究了局部卸载对煤岩的扰动作用,探讨了中部切槽对煤岩截割的影响,揭示了局部卸载对煤岩诱导截割的机理。深部煤层储存了大量的弹性能,可采用相关扰动实现煤层储能的激发、释放和利用。建立了深部煤层在局部卸载作用下的波动方程,模拟了煤岩自裂过程,卸载处煤岩以剪切破坏为主。研究了深部煤层中部切槽诱导截割。中部切槽诱导截割能显着降低煤岩截割的峰值截割力和截割能耗,同时提高煤岩截割的块煤率。(5)提出以煤岩损伤为核心的深部煤层低能耗截割原理,探讨了三滚筒采煤机的低能耗截割工艺,并进行了验证与评价。以煤岩损伤为核心的深部煤层低能耗截割原理包括四个部分,分别为高地应力致使煤岩损伤、采掘机械扰动诱导煤岩动态损伤、局部卸载诱导煤岩波动损伤和中部切槽解除应力边界。三滚筒采煤机适用于深部煤层的低能耗诱导开采技术,应采用不留三角煤的采煤工艺。深部煤层低能耗诱导开采能有效降低深部煤层的截割力和截割能耗,具有显着的技术经济和社会环境效益。(6)研制了新型测温截齿,实现了煤岩截割模式识别,提出了煤岩自适应截割策略。研制了矿用测温截齿,实现了温度信号感知、温度信号采集、防振动和密封与防爆。煤岩截割温度随截割深度、截割速度和岩石强度的增加而增大。建立了截割温度的面板数据模型,得到了煤岩截割温度特征向量,实现对煤岩截割模式的识别。根据煤岩截割模式的不同,提出了“先调速再调高”的自适应调控策略。论文有图123幅,表19个,参考文献208篇。
Usama Khalid[10](2020)在《人造结构性软粘土的制备方法、宏微观特性与本构模拟》文中认为海相软粘土具有抗剪强度低(su<50 k Pa)、压缩性高、孔隙比大、天然含水率高于液限等特征。这些粘土广泛分布在中国及世界各国的沿海地区。海相软粘土表现出复杂的结构特性,对其进行定量的力学特性试验需要大量的相同的原状土样,而采取高质量的原状土样是一项昂贵并且充满挑战的任务,因此用人工的方法制造具有结构性的土样是一种经济又有效的选择。本文以上海结构性最强的第四层海相软粘土为研究对象,提出了一种利用重塑土样制备结构性软粘土的方法,其优点是可以以较低的成本获得满足实验室要求的大量性质一样的土样,进而可以通过室内试验获得结构性软土的力学特性。本研究的主要内容和成果如下:(1)提出了用低温搅拌控制颗粒间水泥胶结的结构性土样制备方法,并通过与原状土对比验证制备方法的适用性。粘土颗粒间的胶结(键)是天然软土中不稳定的组成部分,比组构更容易破坏。和天然软粘土类似,利用水泥和固结的共同作用产生胶结。通常重塑粘土的孔隙比小于天然粘土,在泥浆中添加低含量的水泥,以增加絮凝产生的孔隙比,并产生胶结。重塑过程中的固结压力可以增加土结构的强度。在约0±2°C的低温下,在上海第四层软土的重塑土样中添加少量水泥,并充分搅拌;低温的目的是将水合反应延缓到固结之后才开始。第一批试验是在固结应力为98 k Pa的条件下,用1-6%的水泥含量制备结构性土样,为探测性试验。第二批试验是在50 k Pa固结压力下,用1-3%水泥含量制备土样,并开展了详细研究。基于上述试验结果,归纳总结水泥含量对无侧限抗剪强度、破坏应变等指标的影响规律,以扩大研究成果的应用范围。(2)开展无侧限抗压试验和常规固结试验,获得了人工制备土样的无侧限抗压强度、抗剪强度、变形模量、屈服应力、压缩指数、膨胀指数等力学特性,并与天然土样进行比较。此外,开展不同应力路径和排水条件下的力学试验,比较天然土样和人造土样的力学特性异同。固结不排水三轴试验结果表明,随着水泥含量的增加,偏应力、超孔隙水压力和临界状态强度比均有所增加;但在水泥含量低的情况下,养护时间对这些参量的影响不显着。开展洛德角为0°至60°的固结排水真三轴试验,比较了天然土样和人造土样的抗剪强度、体积应变和主应变等力学特性的异同,两种土样的剪切强度、体积应变均随洛德角的增大而减小。分析上述试验结果可得,总体上用2%水泥含量的土样的宏观力学特性与上海天然软粘土接近,而1%水泥含量的土样只有变形模量和初始孔隙比与天然土样接近。(3)采用电镜扫描(SEM)和压汞法(MIP)分析人工制备土样的微观结构特征。电镜扫描结果表明,天然和人造结构试样均为开放型分散结构,粉粒含量较高,内部孔隙大小不一。1%水泥含量的土样中未观察到明显的结构性,但在水泥含量为2%和3%的试件中观察到网状组构和颗粒间胶结。此外,人工土样的总孔隙体积随着水泥含量的增加而增加,水泥主要影响小于10μm的孔隙。但是,随着养护时间的增加,大于10μm的孔隙数量也会随之增加。天然土样的孔径分布与水泥含量为2%的土样相同。另外,通过SEM、MIP和固结试验,研究了不同固结压力下的人工制备土样的结构性。固结压力的增大对土体结构有显着影响:土体的压缩指数和孔隙比均减小,但屈服应力增大。(4)用课题组开发的统一弹塑性本构模型模拟了人工制备软土的固结试验、不排水三轴试验和排水真三轴试验结果。该模型仅用一组材料参数就可以模拟不同加载条件和排水条件的试验结果。对初始结构性、初始超固结比开展参数分析,探讨这些初始状态对力学特性的影响。天然土样和水泥含量为2%的人工土样的模拟结果与试验结果吻合较好。综上所述,所提出的人工制备方法可以得到宏微观性能都接近天然软土的人工土样。今后有望基于该方法,批量制造性状一样的结构性土样用于各种室内土工试验研究,为揭示结构性软土的物理化学力学特性、建立相关本构模型奠定基础。
二、INSTITUTE OF GEOMECHANICS——ACHIEVEMENTS OF RESEARCH(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、INSTITUTE OF GEOMECHANICS——ACHIEVEMENTS OF RESEARCH(论文提纲范文)
(1)New innovations in pavement materials and engineering:A review on pavement engineering research 2021(论文提纲范文)
1. Introduction |
(1) With the society development pavement engineering facing unprecedented opportunities and challenges |
(2) With the modern education development pavement engineering facing unprecedented accumulation of scientific manpower and literature |
2. Asphalt binder performance and modeling |
2.1. Binder damage,healing and aging behaviors |
2.1.1. Binder healing characterization and performance |
2.1.1. 1. Characterizing approaches for binder healing behavior. |
2.1.1. 2. Various factors influencing binder healing performance. |
2.1.2. Asphalt aging:mechanism,evaluation and control strategy |
2.1.2. 1. Phenomena and mechanisms of asphalt aging. |
2.1.2. 2. Simulation methods of asphalt aging. |
2.1.2. 3. Characterizing approaches for asphalt aging behavior. |
2.1.2. 4. Anti-aging additives used for controlling asphalt aging. |
2.1.3. Damage in the characterization of binder cracking performance |
2.1.3. 1. Damage characterization based on rheological properties. |
2.1.3. 2. Damage characterization based on fracture properties. |
2.1.4. Summary and outlook |
2.2. Mechanism of asphalt modification |
2.2.1. Development of polymer modified asphalt |
2.2.1. 1. Strength formation of modified asphalt. |
2.2.1. 2. Modification mechanism by molecular dynamics simulation. |
2.2.1. 3. The relationship between microstructure and properties of asphalt. |
2.2.2. Application of the MD simulation |
2.2.2. 1. Molecular model of asphalt. |
2.2.2. 2. Molecular configuration of asphalt. |
2.2.2. 3. Self-healing behaviour. |
2.2.2. 4. Aging mechanism. |
2.2.2. 5. Adhesion mechanism. |
2.2.2. 6. Diffusion behaviour. |
2.2.3. Summary and outlook |
2.3. Modeling and application of crumb rubber modified asphalt |
2.3.1. Modeling and mechanism of rubberized asphalt |
2.3.1. 1. Rheology of bituminous binders. |
2.3.1. 2. Rheological property prediction of CRMA. |
2.3.2. Micromechanics-based modeling of rheological properties of CRMA |
2.3.2. 1. Composite system of CRMA based on homogenization theory. |
2.3.2. 2. Input parameters for micromechanical models of CRMA. |
2.3.2. 3. Analytical form of micromechanical models of CRMA. |
2.3.2. 4. Future recommendations for improving micro-mechanical prediction performance. |
2.3.3. Design and performance of rubberized asphalt |
2.3.3. 1. The interaction between rubber and asphalt fractions. |
2.3.3. 2. Engineering performance of rubberized asphalt. |
2.3.3. 3. Mixture design. |
2.3.3. 4. Warm mix rubberized asphalt. |
2.3.3. 5. Reclaiming potential of rubberized asphalt pavement. |
2.3.4. Economic and Environmental Effects |
2.3.5. Summary and outlook |
3. Mixture performance and modeling of pavement materials |
3.1. The low temperature performance and freeze-thaw damage of asphalt mixture |
3.1.1. Low temperature performance of asphalt mixture |
3.1.1. 1. Low temperature cracking mechanisms. |
3.1.1. 2. Experimental methods to evaluate the low temperature performance of asphalt binders. |
3.1.1. 3. Experimental methods to evaluate the low temperature performance of asphalt mixtures. |
3.1.1. 4. Low temperature behavior of asphalt materials. |
3.1.1.5.Effect factors of low temperature performance of asphalt mixture. |
3.1.1. 6. Improvement of low temperature performance of asphalt mixture. |
3.1.2. Freeze-thaw damage of asphalt mixtures |
3.1.2. 1. F-T damage mechanisms. |
3.1.2. 2. Evaluation method of F-T damage. |
3.1.2. 3. F-T damage behavior of asphalt mixture. |
(1) Evolution of F-T damage of asphalt mixture |
(2) F-T damage evolution model of asphalt mixture |
(3) Distribution and development of asphalt mixture F-T damage |
3.1.2. 4. Effect factors of freeze thaw performance of asphalt mixture. |
3.1.2. 5. Improvement of freeze thaw resistance of asphalt mixture. |
3.1.3. Summary and outlook |
3.2. Long-life rigid pavement and concrete durability |
3.2.1. Long-life cement concrete pavement |
3.2.1. 1. Continuous reinforced concrete pavement. |
3.2.1. 2. Fiber reinforced concrete pavement. |
3.2.1. 3. Two-lift concrete pavement. |
3.2.2. Design,construction and performance of CRCP |
3.2.2. 1. CRCP distress and its mechanism. |
3.2.2. 2. The importance of crack pattern on CRCP performance. |
3.2.2. 3. Corrosion of longitudinal steel. |
3.2.2. 4. AC+CRCP composite pavement. |
3.2.2. 5. CRCP maintenance and rehabilitation. |
3.2.3. Durability of the cementitious materials in concrete pavement |
3.2.3. 1. Deterioration mechanism of sulfate attack and its in-fluence on concrete pavement. |
3.2.3. 2. Development of alkali-aggregate reaction in concrete pavement. |
3.2.3. 3. Influence of freeze-thaw cycles on concrete pavement. |
3.2.4. Summary and outlook |
3.3. Novel polymer pavement materials |
3.3.1. Designable PU material |
3.3.1. 1. PU binder. |
3.3.1.2.PU mixture. |
3.3.1. 3. Material genome design. |
3.3.2. Novel polymer bridge deck pavement material |
3.3.2. 1. Requirements for the bridge deck pavement material. |
3.3.2.2.Polyurethane bridge deck pavement material(PUBDPM). |
3.3.3. PU permeable pavement |
3.3.3. 1. Permeable pavement. |
3.3.3. 2. PU porous pavement materials. |
3.3.3. 3. Hydraulic properties of PU permeable pavement materials. |
3.3.3. 4. Mechanical properties of PU permeable pavement ma-terials. |
3.3.3. 5. Environmental advantages of PU permeable pavement materials. |
3.3.4. Polyurethane-based asphalt modifier |
3.3.4. 1. Chemical and genetic characteristics of bitumen and polyurethane-based modifier. |
3.3.4. 2. The performance and modification mechanism of polyurethane modified bitumen. |
3.3.4. 3. The performance of polyurethane modified asphalt mixture. |
3.3.4. 4. Environmental and economic assessment of poly-urethane modified asphalt. |
3.3.5. Summary and outlook |
3.4. Reinforcement materials for road base/subrgrade |
3.4.1. Flowable solidified fill |
3.4.1. 1. Material composition design. |
3.4.1. 2. Performance control. |
3.4.1. 3. Curing mechanism. |
3.4.1. 4. Construction applications. |
3.4.1.5.Environmental impact assessment. |
3.4.1. 6. Development prospects and challenges. |
3.4.2. Stabilization materials for problematic soil subgrades |
3.4.2.1.Stabilization materials for loess. |
3.4.2. 2. Stabilization materials for expansive soil. |
3.4.2. 3. Stabilization materials for saline soils. |
3.4.2. 4. Stabilization materials for soft soils. |
3.4.3. Geogrids in base course reinforcement |
3.4.3. 1. Assessment methods for evaluating geogrid reinforce-ment in flexible pavements. |
(1) Reinforced granular material |
(2) Reinforced granular base course |
3.4.3. 2. Summary. |
3.4.4. Summary and outlook |
4. Multi-scale mechanics |
4.1. Interface |
4.1.1. Multi-scale evaluation method of interfacial interaction between asphalt binder and mineral aggregate |
4.1.1. 1. Molecular dynamics simulation of asphalt adsorption behavior on mineral aggregate surface. |
4.1.1. 2. Experimental study on absorption behavior of asphalt on aggregate surface. |
4.1.1. 3. Research on evaluation method of interaction between asphalt and mineral powder. |
(1) Rheological mechanical method |
(2) Microscopic test |
4.1.1. 4. Study on evaluation method of interaction between asphalt and aggregate. |
4.1.2. Multi-scale numerical simulation method considering interface effect |
4.1.2. 1. Multi-scale effect of interface. |
4.1.2. 2. Study on performance of asphalt mixture based on micro nano scale testing technology. |
4.1.2. 3. Study on the interface between asphalt and aggregate based on molecular dynamics. |
4.1.2. 4. Study on performance of asphalt mixture based on meso-mechanics. |
4.1.2. 5. Mesoscopic numerical simulation test of asphalt mixture. |
4.1.3. Multi-scale investigation on interface deterioration |
4.1.4. Summary and outlook |
4.2. Multi-scales and numerical methods in pavement engineering |
4.2.1. Asphalt pavement multi-scale system |
4.2.1. 1. Multi-scale definitions from literatures. |
4.2.1. 2. A newly-proposed Asphalt Pavement Multi-scale System. |
(1) Structure-scale |
(2) Mixture-scale |
(3) Material-scale |
4.2.1. 3. Research Ideas in the newly-proposed multi-scale sys- |
4.2.2. Multi-scale modeling methods |
4.2.2. 1. Density functional theory (DFT) calculations. |
4.2.2. 2. Molecular dynamics (MD) simulations. |
4.2.2. 3. Composite micromechanics methods. |
4.2.2. 4. Finite element method (FEM) simulations. |
4.2.2. 5. Discrete element method (DEM) simulations. |
4.2.3. Cross-scale modeling methods |
4.2.3. 1. Mechanism of cross-scale calculation. |
4.2.3. 2. Multi-scale FEM method. |
4.2.3. 3. FEM-DEM coupling method. |
4.2.3. 4. NMM family methods. |
4.2.4. Summary and outlook |
4.3. Pavement mechanics and analysis |
4.3.1. Constructive methods to pavement response analysis |
4.3.1. 1. Viscoelastic constructive models. |
4.3.1. 2. Anisotropy and its characterization. |
4.3.1. 3. Mathematical methods to asphalt pavement response. |
4.3.2. Finite element modeling for analyses of pavement mechanics |
4.3.2. 1. Geometrical dimension of the FE models. |
4.3.2. 2. Constitutive models of pavement materials. |
4.3.2. 3. Variability of material property along with different directions. |
4.3.2. 4. Loading patterns of FE models. |
4.3.2. 5. Interaction between adjacent pavement layers. |
4.3.3. Pavement mechanics test and parameter inversion |
4.3.3. 1. Nondestructive pavement modulus test. |
4.3.3. 2. Pavement structural parameters inversion method. |
4.3.4. Summary and outlook |
5. Green and sustainable pavement |
5.1. Functional pavement |
5.1.1. Energy harvesting function |
5.1.1. 1. Piezoelectric pavement. |
5.1.1. 2. Thermoelectric pavement. |
5.1.1. 3. Solar pavement. |
5.1.2. Pavement sensing function |
5.1.2. 1. Contact sensing device. |
5.1.2.2.Lidar based sensing technology. |
5.1.2. 3. Perception technology based on image/video stream. |
5.1.2. 4. Temperature sensing. |
5.1.2. 5. Traffic detection based on ontology perception. |
5.1.2. 6. Structural health monitoring based on ontology perception. |
5.1.3. Road adaptation and adjustment function |
5.1.3. 1. Radiation reflective pavement.Urban heat island effect refers to an increased temperature in urban areas compared to its surrounding rural areas (Fig.68). |
5.1.3. 2. Catalytical degradation of vehicle exhaust gases on pavement surface. |
5.1.3. 3. Self-healing pavement. |
5.1.4. Summary and outlook |
5.2. Renewable and sustainable pavement materials |
5.2.1. Reclaimed asphalt pavement |
5.2.1. 1. Hot recycled mixture technology. |
5.2.1. 2. Warm recycled mix asphalt technology. |
5.2.1. 3. Cold recycled mixture technology. |
(1) Strength and performance of cold recycled mixture with asphalt emulsion |
(2) Variability analysis of asphalt emulsion |
(3) Future prospect of cold recycled mixture with asphalt emulsion |
5.2.2. Solid waste recycling in pavement |
5.2.2. 1. Construction and demolition waste. |
(1) Recycled concrete aggregate |
(2) Recycled mineral filler |
5.2.2. 2. Steel slag. |
5.2.2. 3. Waste tire rubber. |
5.2.3. Environment impact of pavement material |
5.2.3. 1. GHG emission and energy consumption of pavement material. |
(1) Estimation of GHG emission and energy consumption |
(2) Challenge and prospect of environment burden estimation |
5.2.3. 2. VOC emission of pavement material. |
(1) Characterization and sources of VOC emission |
(2) Health injury of VOC emission |
(3) Inhibition of VOC emission |
(4) Prospect of VOC emission study |
5.2.4. Summary and outlook |
6. Intelligent pavement |
6.1. Automated pavement defect detection using deep learning |
6.1.1. Automated data collection method |
6.1.1. 1. Digital camera. |
6.1.1.2.3D laser camera. |
6.1.1. 3. Structure from motion. |
6.1.2. Automated road surface distress detection |
6.1.2. 1. Image processing-based method. |
6.1.2. 2. Machine learning and deep learning-based methods. |
6.1.3. Pavement internal defect detection |
6.1.4. Summary and outlook |
6.2. Intelligent pavement construction and maintenance |
6.2.1. Intelligent pavement construction management |
6.2.1. 1. Standardized integration of BIM information resources. |
6.2.1. 2. Construction field capturing technologies. |
6.2.1. 3. Multi-source spatial data fusion. |
6.2.1. 4. Research on schedule management based on BIM. |
6.2.1. 5. Application of BIM information management system. |
6.2.2. Intelligent compaction technology for asphalt pavement |
6.2.2. 1. Weakened IntelliSense of ICT. |
6.2.2. 2. Poor adaptability of asphalt pavement compaction index. |
(1) The construction process of asphalt pavement is affected by many complex factors |
(2) Difficulty in model calculation caused by jumping vibration of vibrating drum |
(3) There are challenges to the numerical stability and computational efficiency of the theoretical model |
6.2.2. 3. Insufficient research on asphalt mixture in vibratory rolling. |
6.2.3. Intelligent pavement maintenance decision-making |
6.2.3. 1. Basic functional framework. |
6.2.3. 2. Expert experience-based methods. |
6.2.3. 3. Priority-based methods. |
6.2.3. 4. Mathematical programming-based methods. |
6.2.3. 5. New-gen machine learning-based methods. |
6.2.4. Summary and outlook |
(1) Pavement construction management |
(2) Pavement compaction technology |
(3) Pavement maintenance decision-making |
7. Conclusions |
Conflict of interest |
(4)降雨入渗触发非饱和煤矸石堆积边坡失稳的机理研究(论文提纲范文)
摘要 |
Abstract |
LIST OF ABBREVIATIONS |
CHAPTER 1 Introduction |
1.1 Concept of slope failure |
1.2 Mechanism of slope instability and types of failures |
1.3 Factors affecting slope failure |
1.4 Background of study |
1.5 Problem statement and content of research |
1.6 Research route model |
CHAPTER 2 Concepts and methods in soil slope failure analysis |
2.1 Unsaturated soil mechanics |
2.2 Stability of Slope |
2.3 Permeability |
2.3.1 Applications of permeability in slope engineering |
2.3.2 Permeability usage |
2.4 Hydraulic conductivity (K) |
2.4.1 Darcy’s Law |
2.4.2 Permeability test (Constant-Head) |
2.4.3 Permeability test (Falling-Head) |
2.5 LEM for analyzing slope stability |
2.6 Finite element method (FEM) |
2.7 Slope reinforcement techniques |
CHAPTER 3 Engineering Geological conditions of coal gangue accumulated landslide |
3.1 Geography |
3.2 Hydrometeorological conditions |
3.3 Geology |
3.3.1 Stratigraphic distribution |
3.4 Characteristics of Landslide |
CHAPTER 4 Numerical simulations of landslide by considering rainfall infiltration as atriggering factor |
4.1 Methodology |
4.1.1 Testing of soil properties |
4.1.2 Numerical simulations by finite element method (FEM) |
4.1.3 Governing equations |
4.2 Results |
4.2.1 Pore-water pressure |
4.2.2 Strain generation |
4.2.3 Response of deformation |
4.2.4 Safety factor |
4.3 Discussion |
4.3.1 Influence of rainfall infiltration in the change of pore-water pressure |
4.3.2 Mechanism in the distribution of strain |
4.3.3 Effect of rainfall infiltration process on deformation response |
4.3.4 Influence of rainfall infiltration process on safety factor |
CHAPTER 5 Control scheme and stabilization of landslide |
5.1 Introduction |
5.2 Control scheme for Landslide |
5.2.1 Horizontal drainage in landslide |
5.2.2 Main components of drainage design |
5.3 Stabilization of Landslide |
5.3.1 Ground Anchorages |
5.3.2 Piles |
5.3.3 Anchorages and beam coupled with piles stabilization |
CHAPTER 6 Conclusions and Recommendations |
6.1 Conclusions |
6.2 Recommendations |
LITERATURE CITED |
Self Introduction and Scientific Research Achievements During Master Degree |
ACKNOWLEDGEMENTS |
(5)高速列车行驶下软土场地桩承式加筋路基动力性能评价(论文提纲范文)
摘要 |
Abstract |
Chapter 1 Introduction |
1.1. Background, objective, and significance of the subject |
1.1.1. Background |
1.1.2. Objective and significance of the subject |
1.2. Embankment reinforced by geogrid and supported by pile behavior |
1.2.1. Description |
1.2.2. Load transfer mechanism in embankment reinforced by geogrid and supported by piles |
1.2.3. Embankment built over weak soil deformation |
1.2.4. The system resistance |
1.3. Railroad structure vibration |
1.3.1. The mechanism of vibration generation and propagation |
1.3.2. Railway system dynamic behavior |
1.3.3. Prediction of the system vibration due to moving wheel load |
1.3.4. Analytic method Equations |
1.3.5. Track receptance of the railroad system |
1.3.6. Numerical model method for dynamic analysis of a railway system |
1.4. The establishment of a numerical model using a finite element method |
1.5. Methodology and dissertation organization |
Chapitre 2 Implementation of a 3D-FE model of a railway GRSP system in Abaqus |
2.1. Introduction |
2.2. Key assumption |
2.3. Numerical modeling of geogrid reinforced and pile-supported embankment railway |
2.3.1. Model description |
2.3.2. Material characterization |
2.3.3. Mesh definition for the numerical model |
2.3.4. Boundaries conditions |
2.3.5. Materials damping in the system |
2.3.6. Dynamic train moving load |
2.4. Model validation with field measurement at train speed of 200km/h |
2.4.1. Rail track section instrumentation and field testing |
2.4.2. Comparative analysis between FE result and field measured data |
2.4.3. Correlation analysis between field data test and numerical results |
2.5. Conclusion |
Chapitre 3 Dynamic response analysis of the GRSP system and AC impact assessment during an HST operation |
3.1. Introduction |
3.2. Finite element strain method calculation |
3.3. Dynamic response analysis of GRSP system |
3.3.1. Estimation of the inclusion effect of pile and geogrid in the railroad system subjected to train load moving |
3.3.2. Effect of HST speed during operation |
3.3.3. Effect of HST wheel overload |
3.3.4. Distribution of Dynamic Stress |
3.3.5. Soil arching in a GRSP system subjected to dynamic loading and static loading comparison |
3.4. Impact assessment of asphalt concrete material in railroad dynamic response |
3.4.1. Viscoelastic Asphalt concrete layer |
3.4.2. Dynamic displacement analysis |
3.4.3. Impact of the asphalt concrete layer and the reinforcement on the environmental area |
3.4.4. Influence of speed variation and overload on a GRSP system dynamicbehavior |
3.4.5. Weather conditions effect on the dynamic behavior of a GRSP system with AC layer |
3.5. Conclusion |
Chapitre 4 Investigating factor influencing the dynamic behavior of the GRSP system |
4.1. Introduction |
4.2. Overview of factor influencing the embankment reinforced by geogrid and supported by pile behavior |
4.3. Effect of the spacing of different diameters piles on the railroad dynamic response |
4.3.1. Dynamic analysis of the system behavior |
4.3.2. Pile diameter effect on dynamic arching |
4.3.3. Pile diameter efficiency with speed |
4.4. Effect of pile rigidity on the railroad dynamic response |
4.4.1. Dynamic analysis of the system behavior |
4.4.2. Pile rigidity effect on dynamic arching |
4.4.3. Pile rigidity efficiency with speed |
4.4.4. Pile rigidity effect on rail top vibration during train variation speed |
4.5. Embankment height effect on GRSP railroad behavior |
4.5.1. Embankment effect on dynamic arching |
4.5.2. Pile efficiency with speed for various embankment height |
4.6. Effect of geogrid tensile strength |
4.7. Conclusion |
Chapitre 5 Static and dynamic stress estimation in the GRSP system using numerical and analytical methods |
5.1. Introduction |
5.2. Finite element modeling |
5.3. Verification of the numerical data |
5.4. Adaptation of an analytical method to a GRSP with piles arranged in a triangular pattern subjected to the self embankment load |
5.4.1. Valuation of the load transferred to each pile using BS8006 |
5.4.2. Determination of load parts R and S based on BS8006 laws |
5.4.3. Partial arching state in the system |
5.4.4. Full arching state in the system |
5.4.5. Verification of the analytical method established using BS8006 |
5.4.6. Effect number of geogrids on the soil arching |
5.5. Calculation of dynamic stress distribution in a GRSP subject to a moving load through analytical method |
5.5.1. Analytical method establishment |
5.5.2. Comparison of the Analytical method with the 3D-FEM |
5.6. Conclusion |
Conclusions |
Summary and Main Conclusions |
Main results and contributions |
Recommendation for future work |
References |
攻读博士学位期间取得创新性成果 |
Acknowledgements |
Resume |
(7)深部金属矿山岩爆卸压爆破控制技术研究(论文提纲范文)
ABSTRACT |
摘要 |
LIST OF ABBREVIATIONS AND NOTATIONS |
CHAPTER 1 GENERAL INTRODUCTION |
1.1 Research Background |
1.1.1 The main source of research problem |
1.2 Research Significances |
1.3 Research Status in China and Abroad |
1.3.1 Research status on rock burst in Chinese mines |
1.3.2 Research status on rock burst in abroad |
1.3.2.1 Rock burst in Australian mines |
1.3.2.2 Rock burst in South African mines |
1.3.2.3 Rock burst in American mines |
1.3.2.4 Rock burst in European mines |
1.3.2.5 Rock burst in Indian mines |
1.4 Research Status on Rock burst Mechanism and Evaluation Approaches |
1.4.1 Rock burst mechanism |
1.4.2 Classification of rock burst mechanism |
1.4.3 Evaluation approaches for rock burst tendency |
1.5 Main Characteristics of Rock burst |
1.6 Rock burst Control Methods |
1.7.Research Methods,Objectives,Main Contents,and Framework |
1.7.1 Research methods |
1.7.2 Research objectives |
1.7.3 Main research contents |
1.7.4 Research framework |
CHAPTER 2 DESTRESS BLASTING AS ESSENTIAL TECHNIQUE TO CONTROL ROCKBURST IN DEEP MINES |
2.1 Introduction |
2.2 Literatures on Destress Blasting Technique |
2.2.1 Meaning of destress blasting |
2.2.2 Brief historical development of destress blasting |
2.2.3 Specific application of destress blasting |
2.3 Classification of Destress Blasting Based on the Application Manners |
2.4 Mechanism of Destress Blasting(MDB) |
2.4.1 Destress blasting in mining face and mine roadway |
2.4.2 Rock fracture mechanism under the action of destress blasting |
2.4.3 Influencing factors of destress blasting |
2.5 Suitable Areas for the Application of Destress Blasting |
2.5.1 Tunneling |
2.5.2 Underground mine roadways |
2.5.3 Underground mine pillars |
2.5.4 Underground mining method |
2.6 Some Challenges in Field Application of Destress Blasting Technique |
2.7 Summary |
CHAPTER 3 MAIN CASE STUDY:GAOFENG MINE |
3.1 Location and Transportation Network of Mining Area |
3.2 Physical Geography and Economic Survey of Mining Area |
3.3 Geological Profile of Mining Area |
3.3.1 Regional geology |
3.3.2 Mining area’s strata |
3.3.3 Structure |
3.3.4 Igneous rock |
3.4 Ore Setting |
3.5 Mining Technical Conditions in Mining Area |
3.5.1 Hydrogeological conditions |
3.5.2 Engineering geological conditions |
3.5.3 Environmental geological conditions |
3.6 Mining Method |
3.7 Application of Rock Mechanics Methods to Evaluate Rock burst Tendency |
3.7.1 Determination of in-situ stresses |
3.7.1.1 Methods of in situ stress determination |
3.7.1.2 Determination of in-situ stresses in mining area |
3.7.2 Measurements of Rock Mechanical Parameters |
3.7.2.1 Rock mechanical parameters of deep orebody in the mining area |
3.8 Selected Evaluation Methods for Rock burst Tendency |
3.8.1 Indices used to evaluate rock burst tendency |
3.8.1.1 Barton criterion |
3.8.1.2 Maximum stored elastic strain energy index |
3.8.1.3 Elastic energy index |
3.8.1.4 Brittleness criterion |
3.8.1.5 Impact energy index |
3.8.2 Evaluation results of rock burst tendency in mining area |
3.8.3 Analysis and discussion of the evaluation results |
3.9 Summary |
CHAPTER4 DESTRESS BLASTING SCHEMES FOR MINING OREBODY No.105 IN GAOFENG MINE |
4.1 Introduction |
4.2 Stress Around the Stope |
4.3 Stress Transfer Principle by Destress Blasting(brief review) |
4.4 Analysis of the Influences of Different Blasthole Depths for Destress Blasting Effect on Front wall Rocks |
4.4.1 Three-dimensional numerical simulation |
4.4.2 Finite element model assumptions |
4.4.3 Finite element software and the construction of finite element models |
4.4.4 Model material parameters |
4.4.5 Models for different blasthole depths |
4.4.5.1 Equivalent stress contours of face’s front wall under the different depths of destress blastholes |
4.4.5.2 Shear stress contours of face’s front wall under the different depths of destress blastholes |
4.4.5.3 Stress contours in different directions under the different depths of destress blastholes |
4.4.5.4 Blasthole depth and the thickness of destressed zone |
4.5 Suggested Processes Followed to Propose the Destress Blasting Schemes |
4.6 Proposed Destress Blasting Schemes |
4.6.1 Non destress blasting face(NDBF) |
4.6.2 Face destress blasting |
4.6.2.1 Face destress blasting in two sidewalls rocks(DBS Ⅰ) |
4.6.2.2 Face destress blasting in front wall rocks(DBS Ⅱ) |
4.6.2.3 Face destress blasting in overburden strata(DBS Ⅲ) |
4.6.2.4 Face destress blasting in3 walls(2 sidewalls and front wall rocks) (DBS Ⅳ) |
4.7 Analysis of the Effects of Proposed Destressing Schemes by Numerical Simulation |
4.7.1 Analysis of the numerical simulation results for non-destress blasting face |
4.7.2 Analysis of the numerical simulation results for face destress blasting |
4.7.2 1.Equivalent stress(Mises) contours of ore body under4 destressing schemes |
4.7.2.2 Shear stress contours(Tresca) of ore body under4 destressing schemes |
4.7.2.3 Influence of4 destressing schemes on rock isotropic stresses |
4. 8 Summary |
CHAPTER5 GENERAL CONCLUSION AND FUTURE RESEARCH FOCUS |
5.1 General Conclusion |
5.2 Limitations and Future Focus |
REFERRENCES |
ACKNOWLEDGEMENTS |
RESEARCH ACHIEVEMENTS DURING THE PERIOD OF MASTER STUDIES |
(8)Research Progress and the Main Achievements of The Regional Geology of China Preface(论文提纲范文)
Introduction to The Regional Geology of China |
Research Progress of the Project |
Main Achievements of the Project |
Congratulations and Acknowledgements |
(9)深部煤层低能耗截割原理及开采工艺研究(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 研究背景 |
1.2 研究意义 |
1.3 国内外研究现状 |
1.4 研究内容与技术路线图 |
2 煤岩单截齿截割实验研究 |
2.1 煤岩试样及力学性质 |
2.2 实验设备与过程 |
2.3 截割力特征研究 |
2.4 截割能耗特征研究 |
2.5 截割声发射特征研究 |
2.6 本章小结 |
3 煤岩截割破碎机理研究 |
3.1 格里菲斯强度理论 |
3.2 煤岩截割破碎过程 |
3.3 煤岩截割峰值截割力模型 |
3.4 煤岩截割比能耗模型 |
3.5 本章小结 |
4 低能量扰动诱导高能位煤岩致裂研究 |
4.1 工作面煤壁振动信号特点分析 |
4.2 低能量扰动诱导煤岩损伤实验 |
4.3 工作面煤壁动态损伤理论 |
4.4 煤岩损伤对煤岩截割的影响 |
4.5 本章小结 |
5 局部卸载扰动诱导煤岩截割研究 |
5.1 深部煤层赋存特点 |
5.2 局部卸载诱导深部煤岩自裂研究 |
5.3 深部煤层中部切槽诱导截割研究 |
5.4 本章小结 |
6 深部煤层低能耗诱导开采工艺 |
6.1 深部煤层低能耗截割原理 |
6.2 深部煤层诱导开采设备 |
6.3 深部煤层低能耗采煤工艺 |
6.4 深部煤层低能耗诱导开采工艺效果 |
6.5 深部煤层诱导开采评价 |
6.6 本章小结 |
7 基于截割温度的煤岩自适应截割 |
7.1 新型测温截齿研制 |
7.2 煤岩单截齿截割测温实验 |
7.3 煤岩截割模式识别 |
7.4 煤岩截割自适应调控 |
7.5 本章小结 |
8 结论与展望 |
8.1 结论 |
8.2 论文创新点 |
8.3 不足与展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(10)人造结构性软粘土的制备方法、宏微观特性与本构模拟(论文提纲范文)
Abstract |
摘要 |
List of Symbols |
Chapter1 Introduction |
1.1 Background and significance |
1.2 Literature review |
1.2.1 Soft,natural,artificial structured and destructured clays |
1.2.2 Structuration of natural soft clays |
1.2.2.1 Formation of soil structure |
1.2.2.2 Natural Cementation |
1.2.2.3 Quantification of soil structure |
1.2.3 Stability of soil structure |
1.2.4 Destructuration of soft clays |
1.2.5 Disturbance of natural soil structure |
1.2.6 Artificial structuration of soft clays |
1.2.7 Previous studies on development of artificial structured clays |
1.3 Motivation of work |
1.4 Key research contents and objectives |
1.5 Novelties of current study |
1.6 Dissertation organization |
Chapter 2 Artificial structuration of soft clays:Reconstitution method and initial evaluation |
2.1 Introduction |
2.2 General assumptions about soil structure |
2.3 Artificial soil structure development |
2.3.1 Effect of cement on soil structure |
2.3.2 Effect of consolidation pressure on soil structure |
2.4 Materials selection |
2.4.1 Shanghai soft clay |
2.4.2 Cement |
2.5 Reconstitution of artificial structured soft clay |
2.5.1 Reconstitution method |
2.5.2 Cement content determination |
2.5.3 Correlation to determine the minimum cement content |
2.6 Experimental program |
2.7 Initial evaluation of artificial structured soft clay |
2.7.1 Unconfined compression test |
2.7.1.1 Test purpose |
2.7.1.2 Test method and apparatus |
2.7.1.3 Results and discussion |
2.7.2 Compression characteristics |
2.7.2.1 Test method |
2.7.2.2 Results and discussion |
2.8 Difference in mechanical behavior of low to high cemented soft clays |
2.9 Further evaluation |
2.10 Summary |
Chapter3 Soil structure assessment using microstructure tests |
3.1 Introduction |
3.2 Specimens preparation for the MIP and SEM tests |
3.3 Mercury intrusion porosimetry analysis |
3.3.1 Objectives of MIP analysis |
3.3.2 Test method |
3.3.3 Results and discussion |
3.4 Scanning electron microscope analysis |
3.4.1 Objectives of SEM analysis |
3.4.2 Test procedure and equipment |
3.4.3 Results and discussion |
3.5 Soil structure transformation due to Consolidation pressure |
3.5.1 Pore size distribution analysis |
3.5.2 Scanning electron microscope analysis |
3.5.3 Macrostructure transformation due to consolidation pressure |
3.6 Summary |
Chapter4 Macrostructure evaluation under different loading and drainage conditions |
4.1 Introduction |
4.2 Conventional consolidated undrained triaxial test |
4.2.1 Significance of CU triaxial test |
4.2.2 Test apparatus |
4.2.3 Test method |
4.2.4 Results and discussion |
4.2.4.1 Stress-strain and excess pore pressure behaviors |
4.2.4.2 Stress paths and critical state lines |
4.3 Drained true triaxial test |
4.3.1 Significance of drained true triaxial test |
4.3.2 True triaxial apparatus |
4.3.3 Test method and calculations |
4.3.4 Results and discussion |
4.3.4.1 Influence of lode angle on shear strength and volumetric strain |
4.3.4.2 Shear strength and volumetric strain comparison |
4.3.4.3 Principle strains comparison |
4.3.4.4 Mean effective stress consequence on true triaxial results |
4.4 Steps and validation of reconstitution method |
4.5 Summary |
Chapter5 Application of unified elastoplastic constitutive model on artificial structured clays |
5.1 Introduction |
5.2 Elastoplastic constitutive model |
5.3 Material parameters,initial conditions,and simulation procedure |
5.4 Simulations of tests results and discussion |
5.4.1 Oedometer and CU triaxial tests |
5.4.2 Drained true triaxial results simulations |
5.5 Validation of constitutive model |
5.6 Initial soil structure and its behavior under different loadings |
5.7 Initial over-consolidation and its behavior under different loadings |
5.8 Summary |
Chapter6 Conclusions and recommendations |
6.1 Conclusions |
6.2 Recommendations for future work |
References |
Appendix |
Acknowledgement |
Publications during Ph.D.study |
四、INSTITUTE OF GEOMECHANICS——ACHIEVEMENTS OF RESEARCH(论文参考文献)
- [1]New innovations in pavement materials and engineering:A review on pavement engineering research 2021[J]. JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu. Journal of Traffic and Transportation Engineering(English Edition), 2021
- [2]岩体力学发展的一些回顾与若干未解之百年问题[J]. 赵阳升. 岩石力学与工程学报, 2021(07)
- [3]Institute of Geology and Geophysics, Chinese Academy of Sciences——The time-space exploration from Earth core to galaxies[J]. Wei Zhang,Weijie Zhao,Liang Zhao. National Science Review, 2021(06)
- [4]降雨入渗触发非饱和煤矸石堆积边坡失稳的机理研究[D]. Kaleem Ullah Jan Khan. 吉林大学, 2021(01)
- [5]高速列车行驶下软土场地桩承式加筋路基动力性能评价[D]. Chango Ishola Valere Loic. 哈尔滨工业大学, 2021
- [6]Numerical modeling for rockbursts: A state-of-the-art review[J]. Jun Wang,Derek B.Apel,Yuanyuan Pu,Robert Hall,Chong Wei,Mohammadali Sepehri. Journal of Rock Mechanics and Geotechnical Engineering, 2021(02)
- [7]深部金属矿山岩爆卸压爆破控制技术研究[D]. MURWANASHYAKAEVARISTE. 广西大学, 2020(07)
- [8]Research Progress and the Main Achievements of The Regional Geology of China Preface[J]. DING Xiaozhong,ZHANG Kexin,GAO Linzhi,LU Songnian,PAN Guitang,XIAO Qinghui,LIU Yong,PANG Jianfeng. Acta Geologica Sinica(English Edition), 2020(04)
- [9]深部煤层低能耗截割原理及开采工艺研究[D]. 刘泗斐. 中国矿业大学, 2020
- [10]人造结构性软粘土的制备方法、宏微观特性与本构模拟[D]. Usama Khalid. 上海交通大学, 2020(01)