一、讨论——原始熔岩的成因(论文文献综述)
汪晓伟[1](2016)在《东天山博格达东段晚古生代火山岩岩石学、地球化学及其构造属性》文中研究指明天山造山带是中亚复合造山系的重要组成部分,是研究和理解中亚造山系构造演化的关键地区之一。博格达造山带隶属天山造山带的分支之一,区内广泛分布着晚古生代火山沉积岩系,是研究天山造山带构造演化的关键地区。迄今为止,关于博格达造山带晚古生代构造属性的认识一直存在较大争议,主要有裂谷、岛弧和弧后盆地之争。所有这些观点产生分歧的原因是对博格达地区晚古生代火山岩地层的充填序列以及火山岩岩石地球化学精细研究不足。本次研究以东天山博格达东段晚古生代火山岩为研究对象,重点对其火山—沉积序列、年代学、岩石学、地球化学、岩石成因和构造属性等方面进行研究,并结合近年来新疆北部区域地质调查的最新进展和前人研究成果,恢复与完善了博格达东段晚古生代沉积构造格局与构造演化过程。东天山博格达东段晚古生代火山—沉积序列总体表现:海相(D1D2)→海陆相(D3)→海相(C1C2)→海陆相(C2末P1)→陆相(P2-3)。火山作用具有明显阶段性:泥盆纪(400 Ma360 Ma)和石炭—二叠纪(350 Ma270 Ma)两大期次,且后者可细化为早石炭世中期(345 Ma330 Ma)、早石炭世末晚石炭世中期(320 Ma305 Ma)、晚石炭世末早二叠世初期(300 Ma290 Ma)三个主要活动期。博格达东段晚古生代火山岩地球化学分析结果显示:(1)早、晚泥盆世火山岩岩石组合差异:前者主体为一套钙碱性—高钾钙碱性安山岩,具有明显的活动大陆边缘火山岩的特点;而后者主体为一套受到地壳物质强烈混染的大陆拉斑玄武岩,形成于板内伸展环境。(2)石炭纪—早二叠世火山岩双峰式分布特征:基性熔岩属低Ti/Y岩浆类型,主体属拉斑系列,具有近于平坦的稀土配分模式,大离子亲石元素普遍富集,高场强元素略富集到未富集的特点,具有明显的Nb、Ta负异常,微弱的Ti负异常,是遭受大陆地壳和岩石圈强烈混染的地幔柱源玄武岩,且在其母岩浆演化过程中同时发生过同化混染与结晶分离作用的调整。其原始母岩浆可能与OJP源、BSE源或N-MORB三种源区的熔体在经受AFC作用影响之后所形成的岩浆成分相似,为幔源较浅部位(6080 km深处)尖晶石—石榴石过渡带岩浆源区较低程度部分熔融(小于20%)的产物;酸性熔岩具有与基性熔岩相似的地球化学特征,揭示其可能为基性岩浆结晶分异的产物。结合新疆北部蛇绿岩类型和时代、晚泥盆世之下不整合面的普遍存在以及晚泥盆—早石炭世连续性沉积充填序列,认为东天山博格达东段古生代洋盆闭合于晚泥盆世,其后出现的大规模火山岩浆活动形成于碰撞后板内伸展(裂谷)环境。并进一步将该区晚古生代构造演化划分为三个阶段:晚泥盆世前洋陆演化阶段、晚泥盆世—早二叠世海陆演化(碰撞后板内伸展)阶段和中—晚二叠世陆内演化阶段。
夏林圻,李向民,余吉远,王国强[2](2016)在《祁连山新元古代中—晚期至早古生代火山作用与构造演化》文中认为祁连山地区的新元古代中—晚期至早古生代火山作用显示系统地时、空变化,其乃是祁连山构造演化的火山响应。随着祁连山构造演化从Rodinia超大陆裂谷化—裂解,经早古生代大洋打开、扩张、洋壳俯冲和弧后伸展,直至洋盆闭合、弧-陆碰撞和陆-陆碰撞,火山作用也逐渐从裂谷和大陆溢流玄武质喷发,经大洋中脊型、岛弧和弧后盆地火山活动,转变为碰撞后裂谷式喷发。850604 Ma的大陆裂谷和大陆溢流熔岩主要分布于祁连和柴达木陆块。从大约550 Ma至446 Ma,在北祁连和南祁连洋-沟-弧-盆系中广泛发育大洋中脊型、岛弧和弧后盆地型熔岩。与此同时,在祁连陆块中部,发育约522442 Ma的陆内裂谷火山作用。早古生代洋盆于奥陶纪末(约446 Ma)闭合。随后,从约445 Ma至约428 Ma,于祁连陆块北缘发育碰撞后火山活动。此种时-空变异对形成祁连山的深部地球动力学过程提供了重要约束。该过程包括:(1)地幔柱或超级地幔柱上涌,导致Rodinia超大陆发生裂谷化、裂解、早古生代大洋打开、扩张、俯冲,并伴随岛弧形成;(2)俯冲的大洋板片回转,致使弧后伸展,进而形成弧后盆地;(3)洋盆闭合、板片断离,继而发生软流圈上涌,诱发碰撞后火山活动。晚志留世至早泥盆世(420400 Ma),先期俯冲的地壳物质折返,发生强烈的造山活动。400 Ma后,山体垮塌、岩石圈伸展,相应发生碰撞后花岗质侵入活动。
夏林圻,夏祖春,徐学义,李向民,马中平[3](2008)在《天山及邻区石炭纪—早二叠世裂谷火山岩岩石成因》文中研究表明中国西北部天山石炭纪—早二叠世裂谷火山作用代表了一个新近被认可的大火成岩省,其分布范围至少有170万km2。该火山岩系主要由玄武质熔岩组成,其次有中性和酸性熔岩及火山碎屑岩。它们是地幔柱活动的产物,该地幔柱的组分为:εNd(t)≈+5,87Sr/86Sr(t)≈0.704和La/Nb≈0.9。根据岩石地球化学数据,石炭纪—早二叠世基性熔岩可以划分为高Ti/Y(HT,Ti/Y>500)和低Ti/Y(LT,Ti/Y<500)两个岩浆类型。LT熔岩又可进一步划分为LT1、LT2、LT3和LT4等4个亚类。LT1、LT2(天山中段和甘肃北山)、LT4(天山西段、新疆北山和准噶尔)和LT3、HT(塔里木)熔岩的化学演化系受控于橄榄石(ol)+单斜辉石(cpx)结晶分离作用;而天山东段的的LT4熔岩的化学变异则是经受了辉长岩质结晶分离作用。元素和同位素数据表明,天山及邻区石炭纪早二叠世裂谷基性熔岩并不是单一母岩浆结晶分离的产物。遭受地壳混染的LT3和LT4熔岩的Sr-Nd同位素变化特点与其地幔柱源熔体上升喷发所通过的岩石圈的性质有关。古老(前寒武纪)岩石圈的卷入,导致天山西段的石炭纪LT4熔岩和柯坪裂谷的早二叠世LT3熔岩具有低-负εNd(t)值(-2.91~+6.1)和中等—高87Sr/86Sr(t)值(0.7036~0.7081);相反,天山东段和准噶尔的石炭纪LT4熔岩是以高εNd(t)值(+4.2~+9.7)和低87Sr/86Sr(t)值(0.7035~0.7044)为特征,这乃是与其遭受了含有早古生代—泥盆纪弧-盆系火山岩的上地壳的混染有关,或者是与其岩石圈地幔源区遭受前石炭纪消减富集有关。天山及邻区石炭纪—早二叠世裂谷基性熔岩中观察到的地球化学变异与AFC作用一致。天山及邻区石炭纪—早二叠世裂谷火山岩显示时间上和空间上的岩石地球化学变化。石炭纪时,未遭受混染的石炭纪LT1熔岩和受到轻微混染的石炭纪LT2熔岩喷发于天山中段裂谷,而遭受强烈混染的石炭纪LT4熔岩则喷发于天山中段裂谷四周的区域之中。石炭纪LT1和LT2熔岩是地幔柱的石榴子石稳定区较高程度部分熔融(10%~30%)产物;而石炭纪LT4熔岩则是温度较低的地幔柱的尖晶石-石榴子石过渡带较低程度部分熔融(<10%)产物。早二叠世时,未遭受混染的早二叠世HT、LT1熔岩和受到轻微混染的早二叠世LT3熔岩喷发于塔里木裂谷和北山裂谷,而遭受强烈混染的早二叠世LT4熔岩则喷发于北部博格达-哈尔里克裂谷区。
荆德龙[4](2016)在《西天山阿吾拉勒成矿带铁矿成矿作用与成矿规律研究》文中研究表明由于火山岩型铁矿资源量巨大,并且常常形成富铁矿床,长期以来一直是国内外矿床学研究的热点。我国对火山岩型铁矿床的研究多集中于长江中下游等地区的陆相火山岩型铁矿床,而海相火山岩型铁矿床研究相对较少。近年来随着一系列勘查、研究工作的开展,西天山阿吾拉勒成矿带相继发现和重新评价了包括智博、查岗诺尔、松湖等一系列大-中型海相火山岩型富铁矿床,使该带成为新疆乃至全国重要的大型富铁成矿带之一。同时,该带也成为研究海相火山岩型铁矿床的理想研究对象,针对这些铁矿床的深入研究不仅对于提高我国海相火山岩型铁矿床的理论研究水平具有重要的实践意义,同时对该成矿带乃至整个西天山地区火山岩型铁矿的找矿工作都具有一定的指导意义。然而,迄今为止,研究区铁矿床成因机制的研究程度较低,成矿动力学背景仍存在争议,整个成矿带成作用与成矿规律亟待总结。据此,本文选取成矿带内松湖、尼新塔格和敦德三个典型铁矿床作为研究对象,通过对铁矿床系统的矿物学、岩石学、地地球化学、同位素地球化学以及同位素年代学研究,总结了矿床地质特征、讨论了赋矿火山岩岩石成因,探讨了铁矿床成矿作用与成矿物质来源。在此基础上尝试探索俯冲带岩浆作用与铁成矿物质的富集机制,探讨西天山大陆动力学过程与成矿作用的耦合关系,总结海相火山岩型铁矿控矿因素及成矿规律,建立典型矿床成矿模型,为该类型铁矿床的找矿勘查提供理论依据。阿吾拉勒成矿带位于伊犁地块东北缘,成矿带内自西向东依次分布有预须开普台、松湖、尼新塔格、查岗诺尔、智博、敦德和备战7个大-中型铁矿床,以及若干小型铁矿床(点)。结合遥感地质解译与地球物理资料,在成矿带内圈定多个破火山口构造,各矿区均见火山集块岩出露,确定成矿带内各铁矿床除预须开普台(式可布台)铁矿外均赋存于破火山口内,铁矿化受火山机构的控制。预须开普台赤铁矿床亦受火山斜坡及火山机构旁沉积洼地控制。成矿带内7个典型铁矿床中,除预须开普台铁矿赋存于上石炭统伊什基里克组外,其余6个铁矿床均赋存于下石炭统大哈拉军山组火山岩地层中。智博铁矿区矿体顶板紫红色安山岩的年龄为321.6±2.4Ma,敦德铁矿区Fe12号矿体顶部的灰绿色安山岩年龄为320.6±2.4Ma,备战铁矿区采坑内玄武安山岩的年龄为尼新塔格铁矿区顶板灰绿色安山岩年龄为340.3±7Ma,松湖铁矿区矿体底板灰绿色安山岩年龄为343.2±2Ma。结合前人研究成果可知,阿吾拉勒成矿带东段成岩、成矿时代集中于320Ma左右,热液成矿作用稍晚,集中于310 Ma316Ma。而成矿带西段,大规模磁铁矿化作用伴随火山作用发生,其时代集中于343 Ma340Ma左右。石炭纪期间北天山洋向伊犁地块之下俯冲,阿吾拉勒成矿带所处的伊犁地块东北缘即为活动大陆边缘环境,强烈的构造-岩浆活动为该区铁矿床形成提供了重要的物质基础和有利的成矿条件。岩石学及矿床地球化学特征表明,矿区内矿石与围岩具有同源性,成矿物质来源于深源岩浆。松湖和查岗诺尔铁矿床成矿母岩浆为安山质岩浆,其源区为岛弧型地壳(岩浆弧地壳)根部。智博、敦德、备战以及尼新塔格4个铁矿床成矿母岩浆则为玄武质岩浆,其源区为俯冲板片之上受流体交代的地幔楔。随着北天山洋不断向南俯冲,岩浆源区遭受流体交代程度增强而更加富铁,晚期地幔楔部分熔融形成的玄武质岩浆更具有形成大型铁矿床的潜力。各矿区磁铁矿明显分为两类:一类磁铁矿包裹体爆裂温度较高,介于424℃520℃,与攀枝花地区岩浆结晶成因钒钛磁铁矿相似(410℃560℃),指示其为岩(矿)浆成因;另一类磁铁矿包裹体爆裂温度较低,介于343℃480℃,与平川地区次火山热液充填-交代成因磁铁矿相似(365℃438℃),指示其具有岩浆热液成因特征。磁铁矿LA-ICP-MS微量元素分析结果表明,早期成矿作用以矿(岩)浆成矿作用为主(富Ti、V、Ga,低Mg、Mn),晚期热液成矿作用逐渐增强而使得部分磁铁矿具有热液成因特征(富Al、Mg、Mn,低Ti、V)。磁铁矿的形成受到岩浆作用的控制。阿吾拉勒成矿带内铁矿床的形成与海相火山作用关系密切,均经历了富铁矿(岩)浆成矿和岩浆热液成矿作用,成矿过程可划分为富铁母岩浆喷溢成矿、矿浆熔离成矿、隐爆热液成矿和热液充填-交代成矿四个阶段。其中尼新塔格铁矿以矿浆成矿作用为主,而敦德与松湖铁矿晚期岩浆热液成矿作用叠加改造作用明显。三个铁矿床在成因类型上均属于海相火山岩型矿浆-热液复合成因磁铁矿床。阿吾拉勒成矿带海相火山岩型铁矿床受石炭系中基性火山岩地层及破火山口构造双重控制,成矿母岩浆的强烈分异演化是导致氧化物熔离的基本因素,而火山机构既为矿床的形成提供了综合性成矿条件也是矿床赋存的场所。西天山地区,石炭纪火山岩地层广泛分布,且火山机构发育,具有巨大的火山岩型铁矿找矿潜力。在今后应注意综合利用地、物、化、遥多种勘查手段,围绕火山机构开展深部及外围找矿工作。此外,本区亦具有与中酸性侵入岩有关的热液矿床以及玢岩型铁矿找矿潜力。
许伟[5](2019)在《北山南部晚古生代构造格局与演化:来自古地磁与岩浆作用的制约》文中指出北山南部是探索中亚造山带中段南部构造演化的绝佳载体,但现今对该区晚古生代大地构造背景、演化历史以及构造归属等重大地质问题存在较大争议。基于北山南部晚古生代岩浆期次不明,地球动力学背景不清;古地磁数据尚且难以为晚古生代构造格局及演化过程提供可靠依据,本文着重从北山南部晚古生代古地磁与岩浆作用两方面入手,理清北山南部晚古生代岩浆作用期次及其产生的大地构造环境,获得可靠的北山南部地区晚古生代古地磁数据,结合层序地层学、沉积学、生物古地理、蛇绿岩、大陆基底属性等相关研究成果,探讨北山南部晚古生代构造格局与演化历史问题,探索古亚洲洋的闭合时限,最终为北山及邻区找矿预测、油气勘探提供理论和技术基础,具有重要的理论意义和实际意义。本文对北山南部晚古生代地层中的火山岩以及部分侵入岩进行了岩相学、锆石U-Pb同位素测年、元素地球化学、锆石Hf同位素、及全岩Sr-Nd同位素等研究,结合区域上已发表的岩浆岩年龄与地球化学数据,并综合其他地质资料,将北山南部晚古生代岩浆作用划分为三个期次:早中泥盆世(420390Ma),晚泥盆世(375360Ma),晚石炭世—中二叠世(305260Ma)。早中泥盆世岩浆作用以中酸性火成岩居多,且伴有少量碱性玄武岩产出;玄武岩具有板内岩浆的特征;酸性火成岩部分为A型花岗质岩石,具有后碰撞花岗质岩石的特征;推断该期岩浆的产生与辉铜山洋盆闭合后洋壳板片的断离有关。晚泥盆世岩浆作用以酸性火成岩为主,呈亚碱性;早期有埃达克岩产出,晚期多为A型花岗质岩石;与加厚下地壳引起的岩石圈拆沉相关。晚石炭世—中二叠世火成岩构成双峰式火成岩组合,火成岩多为亚碱性,伴有少量碱性玄武岩;亚碱性中基性火山岩多为拉斑玄武岩系列;玄武岩由受俯冲物质混染的软流圈地幔熔融所形成,兼具有板内与洋中脊玄武岩的双重特征;A型花岗质岩石在全区普遍发育,酸性火成岩亦具有后碰撞花岗质岩石的特征;该期岩浆形成于后碰撞伸展的构造环境。对北山南部石炭系与二叠系进行了系统的古地磁研究,揭示了部分稳定高温特征剩磁。借助岩石磁学实验分析了古地磁样品的携磁矿物及稳定性,明确了特征剩磁获取的时间。最终获得北山南部地块早石炭世古地磁极为-33.8°N,115.3°E,A95=18.6°;对应古纬度为13.1°N±23.6°;晚石炭世(300Ma)古地磁极为-0.2°N,168.4°E,A95=2.9°,古纬度为11.7°N±3.1°;早二叠世(284281Ma)古地磁极为74.5°N,268.5°E,A95=1.6°,古纬度为25.1°N±1.2°(古纬度计算参考点均为:40.55°N,94.08°E)。在详细的野外剖面测量基础上,利用同位素年代学与古生物资料对各地层剖面的时代进行了精确厘定,以大型区域不整合和沉积间断为界面,将北山南部上古生界划分为五个地层层序。层序一(MS1)由下中泥盆统三个井组构成,时代介于420390Ma,研究区西段沉积以陆相为主,东段出露局限;层序二(MS2)由上泥盆统墩墩山群构成,时代介于371367Ma;出露范围非常局限,主要由一套陆相酸性火山岩构成;层序三(MS3)由石炭系红柳园组、石板山组以及芨芨台子组构成,时代介于早石炭世维宪期—晚石炭世莫斯科期(346310Ma),该期岩浆活动微弱,地层整体呈现海退序列;层序四(MS4)从下至上由干泉组、双堡塘组、菊石滩组以及金塔组构成,该层序的时代延限为晚石炭世末—中二叠世(302259Ma),整体为一套海相沉积体系,呈现海进序列;层序五(Ms5)为上二叠统方山口组,主要由一套陆相粗碎屑岩构成,火山岩并不发育,区域上不整合于晚二叠世之前的地层之上。利用Hf-Nd同位素,首次绘制了北山地区的基底年龄结构图。显示红石山—百合山—蓬勃山蛇绿混杂岩带南北两侧是陆壳增生最显著的区域,而且蛇绿混杂岩带南北两侧的基底构成存在显著差异,可能代表了古亚洲洋的主缝合线;古生代期间洋盆可能存在南北双向俯冲作用,北侧为大规模新生岛弧与增生楔地质体,南侧为旱山地块北部陆缘弧系统;再往南的区域主体由中下元古界地壳基底构成,原本可能是哥伦比亚超大陆与罗迪尼亚超大陆的组成部分。综合多种地质资料,将北山南部地区奥陶纪—二叠纪构造演化划分为5个阶段:(1)O-S(485420Ma)板片俯冲阶段;(2)D1-D3(420360Ma)后碰撞阶段;(3)D3-C2(360305Ma)陆内稳定阶段;(4)C2-P2(305260Ma)后碰撞伸展阶段;(5)P3(260250Ma)区域洋盆闭合阶段。利用可靠古地磁数据,并结合古生物资料,恢复了古亚洲洋构造域晚石炭世(300Ma)与早二叠世(280Ma)的构造古地理格局。北山南部地块晚石炭世—早二叠世可能与华北—阿拉善地块连为一体;与塔里木地块间以且末—星星峡洋盆相隔;与北部蒙古图瓦地块间以宽泛的古亚洲洋相隔。古亚洲洋东西段闭合的时间存在一定差异性,北疆地区的古洋盆最终在北天山或南天山缝合带于早晚石炭世之交闭合,北山及以东地区沿红石山—恩格尔乌苏—索伦—西拉木伦一线于晚二叠世闭合。
黄从俊[6](2019)在《扬子地块西南缘拉拉IOCG矿床地质地球化学研究》文中认为拉拉铁氧化物-铜-金(IOCG)矿床位于扬子地块西南缘康滇地轴中段,矿体赋存于古元古界河口群落凼组变质火山-沉积岩系中,呈似层状、透镜状、脉状大致顺层产出;矿石类型以网脉—角砾状、脉状矿石为主,次为浸染状-块状、条带状-似层状矿石;已探明矿床中矿石储量约200Mt,平均品位:铁15.28%,铜0.83%,钼0.03%,钴0.02%,金0.16g/t,银1.87 g/t,稀土0.14%。本文通过野外地质调查和室内综合整理分析,运用镜下显微岩/矿相学观察、稀土元素地球化学、稳定同位素地球化学、放射性同位素地球化学及流体包裹体地球化学等手段对扬子地块西南缘拉拉IOCG矿床的地质地球化学特征进行了系统全面的研究,取得了如下成果与认识:(1)系统查明了该矿床的矿物组成及矿物生成顺序,重新划分了该矿床的成矿期次与成矿阶段,认为矿床先后经历了火山喷发-沉积成矿作用,变质成矿作用,气成-热液成矿作用和热液成矿作用,其中气成-热液成矿期和热液成矿期为矿床的主要成矿期;并新发现了该矿床的热液成矿期存在磷灰石、独居石及辉钼矿等重要矿物。(2)利用稀土元素(REE)地球化学研究,提出河口群地层是由海底热水沉积岩和长英质岩浆岩经变质作用而成;火山喷发-沉积成矿期成矿流体中的REE来源于裂谷环境中碱性-钙碱性岩浆的演化;变质成矿期成矿流体中的REE来自于围岩,继承了火山喷发-沉积成矿期流体中REE地球化学特征;气成-热液成矿期成矿流体中的REE来源于同期中酸性岩浆的演化;热液成矿期成矿流体中REE来源于基性岩浆分异演化形成的中高温热液和/或河口群围岩。(3)借助于H-O、C、S等稳定同位素,揭示了拉拉IOCG矿床的成矿流体性质和矿化剂(C、S)的来源,认为变质成矿期以变质水为主,气成-热液成矿期主要为岩浆水,热液成矿期以岩浆水为主,但有大气降水参与;矿化剂C和S主要来自幔源。(4)利用Pb、Sr、Nd和Os等放射成因同位素示踪了成矿物质来源,提出拉拉IOCG矿床的成矿物质较复杂,具有壳、幔混合源特征,且不同成矿期,成矿物质的来源存在差异,同一时期不同成矿金属(Cu和Mo)的来源也有所不同。(5)采用独居石U-Pb、黑云母Ar-Ar、硫化物Re-Os、硫化物Pb-Pb定年等多种测年手段,精确测定了拉拉IOCG矿床的4期成矿作用时限,(1)古元古代末期的火山喷发-沉积成矿作用,成矿时限1725Ma-1647Ma,持续100Ma,主要为Fe-Cu-(L)REE矿化,发生成矿预富集或形成含Fe和Cu的矿源层;(2)中元古代中期的变质热液成矿作用,成矿时限1235Ma-1218Ma,持续约20Ma,矿源层中成矿元素重新分布、改造富集,主要为Fe-Cu-REE矿化,形成条带状、片理化矿石;(3)中元古代末期的大规模气成-热液成矿作用,成矿时限1097Ma-907Ma,持续200Ma,主要为Fe-Cu-Mo-REE矿化,形成角砾状、网脉状、脉状、浸染状和块状富矿石;(4)新元古代早-中期的热液成矿作用,成矿时限860Ma-816Ma,持续45Ma,主要为Fe-Cu-Mo-U-REE矿化,发生碱交代成矿作用,形成碱交代岩体和脉状矿石。认为拉拉IOCG矿床具有多期、长期持续成矿作用特征。(6)借助于流体包裹体研究,提出气成-热液成矿期成矿流体为高温高盐度中酸性岩浆出溶流体与低温低盐度盆地卤水/变质水的混合,流体混合及相分离-流体超压作用是该期成矿作用矿质沉淀的主要机制;热液成矿期成矿流体为岩浆出溶流体与大气降水的混合,流体混合作用是导致该期矿质沉淀的主要机制。(7)发现拉拉IOCG矿床的4期成矿事件与康滇地区元古宙时期的构造-岩浆-热事件时限一致,其中火山喷发-沉积成矿期对应于古元古代康滇大陆裂谷作用,变质成矿期和气成-热液成矿期与中元古末期板块俯冲作用相关构造-岩浆活动时限一致,热液成矿期则与新元古代康滇大陆裂谷作用时限一致,提出拉拉IOCG矿床的成矿作用是扬子地块西南缘元古宙时期壳幔相互作用的响应,认为拉拉IOCG矿床是狭义的IOCG矿床。
李向民[7](2007)在《天山及邻区地质演化过程中的大陆裂谷火山作用》文中认为中国天山造山带是中亚巨型复合造山带的中国境内部分,其基本构造格局是夹持于北部西北利亚板块和南部塔里木板块、中朝板块之间古亚洲洋形成、演化和消亡过程中诸多陆块拼合增生—俯冲、碰撞造山的产物。在天山造山带形成演化历史过程中经历过两次大规模的裂谷火山作用,其一为新元古代—早寒武世大陆裂谷火山作用,它们是Rodinia裂解的产物,是天山古生代洋盆开启的标志;其二为石炭—二迭纪大陆裂谷火山作用,这一阶段天山及其邻区经历了极为强烈的大规模岩浆活动,形成天山石炭—二迭纪大火成岩省,并伴随晚古生代大规模的成矿作用,此后,天山造山带开始了真正意义的陆内演化过程。本文选择分布于天山及其两侧的诸多微陆块上新元古代—早寒武世火山岩和天山地区广泛发育的石炭纪—早二叠世火山岩为研究对象,以恢复重建天山造山带古生代洋陆格局和洋陆转换过程为主线,在详细的野外工作基础上,综合运用区域岩石学、地球化学、构造地质学、火山沉积学、同位素地质年代学、区域地球物理资料综合分析研究等多学科手段,重点研究天山及其邻区新元代—早寒武世和石炭—二迭纪火山岩系的形成演化及其动力学,查明天山石炭纪火山岩系的性质、喷发序列、时空分布特点,恢复重建其形成演化过程,探索天山地区晚古生代洋陆转换过程中火山岩浆作用与岩石圈拉伸作用的关系。主要研究进展如下:(1)建立了天山造山带古生代构造—岩浆演化格架。(2)提出新元古代中-晚期(南华纪-震旦纪)—早寒武世早期大陆裂谷火山活动是古亚洲洋开启的前兆。(3)研究认为天山及其相邻地区广泛分布的石炭纪—早二叠世火山岩系为大陆裂谷火山岩系,它们与同时代产出的层状基性-超基性侵入体和花岗岩构成了一个大火成岩省—“天山(中亚)大火成岩省”。(4)研究提出巴音沟蛇绿岩是天山早石炭世“红海型”洋盆的地质记录。(5)研究查明天山及其相邻地区广泛分布的石炭纪—早二叠世火山岩系为大陆裂谷火山岩系,其源区起源于地幔柱,它们可能是古特提斯拉伸裂解作用的深部地球动力学在中亚地区的地表响应。
刘秀[8](2020)在《天山东段晚古生代火山岩南北对比及其大地构造意义》文中指出天山东段位于准噶尔-哈萨克斯坦板块、塔里木板块和西伯利亚板块的交汇位置,是中亚增生造山的关键部位。晚古生代是天山造山带洋-陆格局转换的重要时期,在大规模洋-陆俯冲、陆-陆碰撞作用共同导致的复杂构造背景下,天山东段遍布该时期的火山岩。天山东段吐哈盆地南缘地区泥盆纪-石炭纪火山岩表现出富集K、Ru、Ba等部分大离子亲石元素(LILE)、亏损Nb、Ta、P、Th、HREE(重稀土元素)、Ce、Ti等部分高场强元素(HFSE)的特点。主微量、稀土元素特征表明其为岛弧火山岩。早二叠世酸性火山岩稀土元素蛛网图为海鸥型,存在明显的Eu亏损,主微量、稀土元素表现出大陆裂谷流纹岩的特征。早二叠世基火山岩轻重稀土元素之间几乎无分馏,主微量、稀土元素表现出大陆拉斑玄武岩和大陆裂谷型玄武岩的特征。天山东段吐哈盆地南缘地区在晚古生代初期的大地构造位置为北天山洋东段和吐哈地块南缘。晚古生代该地区构造演化可以概括为两个阶段:泥盆纪-石炭纪的洋壳北向俯冲演化阶段和二叠纪洋盆闭合和碰撞后板内伸展阶段。天山东段吐哈盆地北缘地区早泥盆世火山岩稀土蛛网图为右倾型,富集K、Rb、Ba等大离子亲石元素,明显亏损Nb、Ta等高场强元素,微弱亏损Ti,这些与俯冲带火山岩的地球化学特征相似。晚泥盆世火山岩稀土元素蛛网图近于平坦,富集Ba和U大离子亲石元素、亏损Nb、Ta、Sr等高场强元素,微弱的Ti负异常,与岛弧火山岩有一定的差异。石炭纪-早二叠世酸性火山岩稀土元素富集LREE,亏损Eu,稀土元素总含量明显升高,富集Rb、Th、Ba、U等大离子亲石元素、亏损Nb、Ta、Ti、P、Sr等高场强元素,主微量、稀土元素与岛弧酸性火山岩有较大的差别,与大陆裂谷流纹岩的特征相似。石炭纪-早二叠世基性火山岩稀土元LREE轻度富集,微量元素显示富集大离子亲石元素(LILE)、略微富集高场强元素(HFSE)。主微量、稀土元素总体与大陆拉斑玄武岩和大陆裂谷型玄武岩相似。天山东段吐哈盆地北缘地区在晚古生代初期的大地构造位置为准噶尔分支洋盆(卡拉麦里洋盆)的东南侧。该地区在晚古生代主要经历了三个构造演化阶段:晚泥盆世之前的洋陆俯冲阶段,晚泥盆世-早二叠世形成博格达裂谷的碰撞后板内伸展阶段和中-晚二叠世的陆内演化阶段。
陈剑[9](2020)在《月海玄武岩陨石、遥感与岩浆演化研究》文中认为月海玄武岩代表月幔部分熔融并喷发到月球表面的玄武质岩浆,尽管在月壳中所占的比例极小(<1%),其成岩过程与时空分布间接记录了月幔储库的地球化学特征及其相关的玄武质岩浆演化过程。目前对于月球玄武质岩浆演化历史的约束主要来自月海玄武岩样品的岩石学研究成果,但由于返回样品来自月球正面的小范围区域,其中所收集的玄武岩难以代表全月表面的玄武质岩浆作用类型,喷出式的月海火山活动与侵入式的玄武质深成岩浆活动之间的内在联系也缺乏样品的支持。玄武质月球陨石作为月海玄武岩样品的重要补充,其矿物学、地球化学与年代学等特性不仅可以完善我们从返回样品中获得的对月球玄武质岩浆演化的认知,其对月球表面的随机取样也有助于我们将月球玄武质样品中的信息与全月遥感联系起来。玄武质月岩样品与陨石作为月面真值能让遥感数据得到适当的校正,并拓展到尚未获得样品的月表区域,使我们能够通过轨道遥感数据解译全月表面的玄武质岩浆作用。遥感研究中揭示的月海玄武岩岩浆演化规律存在多样性与复杂性,有待系统的遥感分析与样品/陨石岩石学机制的解译。因此,对月球玄武质岩浆演化的最佳认识,应是来自样品/陨石和遥感数据的综合研究。玄武质样品/陨石的实验室精细研究成果与轨道遥感的大尺度月海单元观测结果之间仍存在分歧,这种分歧可能与现有月球样品采集范围的局限性以及玄武质月球陨石的缺乏有关,而近年来越来越多新发现的玄武质月球陨石与新发布的月球轨道遥感数据产品为通过陨石分析与遥感探测联合研究月球玄武质岩浆演化提供了契机。本文对4块玄武质月球陨石(NWA4734、NWA10597、NWA10985与Swayyah 001)开展了矿物学、地球化学与岩石学分析,通过结构、矿物模式、矿物成分、主量与微量元素成分的对比研究了它们之间以及与其他玄武质月球陨石之间可能的成对关系。NWA4734、NWA 10597与LAP月海玄武岩陨石具有相似的结晶年龄,可能起源于同一期次的火山喷发事件,但冷却结晶的速率有所差异,进而形成不同的矿物粒径分布特征与多种石英相。NWA4734与NWA10597具有相似的冲击变质程度,它们对应的熔岩流可能来源于月表同一个区域并且在固化之后经历了相同的撞击事件。NWA10985中大部分岩屑的类型(橄榄辉长岩、斜长辉长岩、辉长岩等)、矿物模式以及矿物成分与NWA 773族陨石极为相似,其中主体岩屑(辉长岩岩屑)的矿物成分也与NWA 773族陨石的矿物成分演化趋势相符,但其全岩成分与NWA 773族陨石的全岩成分演化趋势不符,代表着特殊的岩浆演化过程。这些陨石代表了月球玄武质岩浆演化的不同阶段。NWA 10985与NWA773族中的不同岩屑展现了月壳岩浆房的演化:早期富Mg橄榄石与辉石的下沉在岩浆房底部形成橄榄二辉岩/橄榄辉长岩堆晶,部分早期熔体喷发至月表形成橄榄石斑晶玄武岩,后期斜长石的上浮在岩浆房顶部形成斜长辉长岩堆晶,晚期残余熔体形成高度演化的辉长岩/亚铁辉长岩,部分晚期熔体喷发至月表形成镁铁质(黑色)火山玻璃。辉长岩与亚铁辉长石的成分不一致性可能指示着开放的岩浆体系:岩浆房演化过程中补充了成分更原始的岩浆,发育振荡环带的辉石支持来自原始成分岩浆的贡献。Swayyah 001的结构展现了某个月壳岩浆房固化的图景:早期的近似平衡结晶形成粒径相仿的富Mg辉石与斜长石,即辉长岩堆晶,晚期的残余熔体收缩为富Mg辉长岩堆晶间隙的富Fe熔体囊,冷却速率加快的熔体囊中形成具有成分环带的镁铁质矿物与晚期填隙物。NWA4734、NWA 10597与LAP月海玄武岩陨石则代表着月球玄武质岩浆演化的最终(上涌、喷发)阶段。这些月海玄武岩的结晶条件(如液相线温度)与高度演化的成分特征指示着铬铁矿、橄榄石等早期矿物的分离结晶作用,很可能也对应着某种形式的岩浆房中早期的密度分离作用。离开岩浆房后上涌、喷发的熔岩流中快速冷凝结晶使得橄榄石、辉石等主要矿物成分高度演化,EPMA定量元素成像获得的海量数据呈现了镁铁质矿物的三个演化阶段:富Mg橄榄石与辉石的成分演化、橄榄石被熔体再吸收形成辉石导致辉石生长速率的上升、辉石稳定场收缩导致生长速率陡降而富Fe橄榄石重新出现于结晶序列中。这些月海玄武岩中晚期填隙物的结构展现了硅酸盐液相不混溶机制在高度分异的月球玄武质岩浆演化中的作用。玄武质深成岩浆活动与月海火山喷发活动之间的成因联系表明,月球样品中揭示的岩浆作用类型的时间规律(深成岩普遍古老,火山岩普遍年轻)属于撞击通量变化造成的偏差,古老的火山岩由于早期高通量的撞击作用而无法保存,年轻的深成岩由于缺乏大型撞击事件的挖掘而难以出露。在月海玄武岩样品与陨石的矿物学、地球化学特征与成岩过程的文献调研与归纳总结基础上,本文提出基于月海熔岩流单元的玄武岩遥感分类策略,结合研究过程中汇编的月海熔岩流单元模式年龄研究成果,本文编制了月海玄武岩时空结构分布图,并根据成对玄武质月球陨石的全岩成分与年代学信息,追溯了这些月球样品可能的月表熔岩流单元源区。NWA4734、NWA 10597与LAP月海玄武岩陨石可能来自风暴洋、雨海、澄海或岛海中的年轻熔岩流单元,这些年轻月海玄武岩可能在撞击翻耕作用下与风暴洋KREEP地体的非月海物质发生了混合,进而发育出表面富Th的玄武质月壤层。NWA10985与NWA773族的月表源区由其中喷发相(玄武岩岩屑)进行约束,很可能来自风暴洋与雨海中毗邻非月海溅射物的年轻熔岩流与爆发式火山活动区域。虽然结晶年龄未知,但根据化学成分的匹配结果,Swayyah001可能来自与风暴洋内年轻(32亿年~21.7亿年)熔岩流单元相关的深成岩体。作为深成岩样品,Swayyah001具有不同于KREEP的ITE成分特征,但对应的熔岩流在上涌或在月表流动时可能吸收同化了 KREEP质的非月海成分。通过玄武质月球陨石与月海玄武岩单元遥感的联合研究,本文将月球样品/陨石中观测到的岩石学特征迁移至遥感研究中以解释轨道观测中发现的月表矿物学与地球化学演化规律。月海玄武岩单元成分演化趋势中,年轻单元趋向于SiO2不饱和与FeO富集的特征可能与玄武质岩浆演化晚期的硅酸盐液相不混溶机制有关,年轻的高Fe月海玄武岩单元通常也产出于富Si的非月海火山附近,进一步支持了这一观点。具有较高TiO2含量的年轻玄武岩单元无法通过低钛母岩浆的高度分离结晶演化产生,因此风暴洋/雨海中年轻中高钛玄武岩单元的母岩浆起源需要来自岩浆洋晚期富集钛铁矿堆晶的贡献,这些晚期堆晶的熔融可能也在一定程度上造成了年轻玄武岩单元中不相容元素的富集。尽管月表年轻玄武岩单元均位于风暴洋KREEP地体内,但KREEP并不是触发月球年轻玄武质火山作用和造成不相容元素富集的必要条件。年轻熔岩流单元中Th等不相容元素含量也与非月海物质的混染(熔岩流同化、撞击翻耕等)作用有关。根据不同成分橄榄石在月海玄武岩中富集的机制差异,年轻月海玄武岩单元中富集铁橄榄石的光谱与矿物学特征对应着玄武质岩浆演化晚期辉石稳定场的收缩或三斜铁辉石的分解产物。岩石化学指数在遥感数据中的应用也支持年轻月海玄武岩单元具有更高的岩浆分异程度。本文开展的玄武质月球陨石与月海玄武岩单元遥感的联合研究,建立了玄武质深成岩浆活动与月球溢流式/爆发式火山喷发活动之间的联系,为理解月海玄武岩成岩过程、玄武质岩浆作用与演化规律贡献了新的认识,也为我国未来月球探测(例如嫦娥五号~嫦娥八号)任务中返回样品、着陆区就位、巡视探测以及遥感观测数据的集成性研究积累了经验。
夏林圻,李向民,夏祖春,徐学义,马中平,王立社[10](2006)在《天山石炭—二叠纪大火成岩省裂谷火山作用与地幔柱》文中研究说明中国西北部石炭纪—早二叠世喷发的天山裂谷火山岩系构成了一个大火成岩省。该火山岩系的组成以玄武质熔岩为主,其次有中性和酸性熔岩及火山碎屑岩。根据岩石学、主元素、微量元素和Sr-Nd-Pb同位素数据,天山玄武岩可分为两个主要岩浆类型:1高Ti/Y(HT)类型,以高Ti/Y(>500)、高Ce/Y(>3)和相对低Nb/Zr(<0.11)、低εNd(t)为特征;2低Ti/Y(LT)类型,以低Ti/Y(<500)为特征。LT熔岩又可以进一步分为两个亚类:LT1熔岩以低Nb/Zr(<0.15)和高εNd(t)(+3.1+9.7)为特征;LT2熔岩具有较高的Nb/Zr值(>0.16)和较低的εNd(t)值(-0.98-2.91)。元素和同位素数据表明,HT和LT熔岩的化学变异不是由一个共同母岩浆的结晶分异作用所产生。它们极有可能是源于一种似洋岛玄武岩源的幔源(87Sr/86Sr(t)≈0.7045,εNd(t)≈+4,206Pb/204Pb(t)≈18.35,207Pb/204Pb(t)≈15.66,208Pb/204Pb(t)≈38.25,La/Nb≈0.7),且具有不同的熔融条件和经受了不同的分异和混染。以碱性熔岩为主的HT熔岩是产生于幔源石榴子石稳定区的低度部分熔融,其化学变异受控于单斜辉石(Cpx)[±橄榄石(Ol)]分离作用。相反,LT类型的母岩浆则是形成于幔源的尖晶石—石榴子石过渡带:碱性LT2亚类的母岩浆是产生于部分熔融程度较低的条件下;而以拉斑玄武质为主的LT1亚类的母岩浆则是产生于部分熔融条件较高的条件下。它们经受了浅层辉长岩质分离作用,化学变异较大。天山玄武岩可能是产生于地幔柱头。HT和LT岩浆的岩石成因又进一步为地壳和岩石圈地幔的混染作用所复杂化。我们的研究揭示,天山大火成岩省的火山岩中存在空间上的岩石地球化学变化。天山东段的LT1火山岩系的厚度最大,它们记录了玄武岩侵位的主幕,该处可能是地幔柱或地幔熔融异常的中心位置。相反,厚度较小的HT和LT2玄武岩则可能是意味着地幔柱活动影响的减弱。事实上,HT和LT2玄武岩也是该大火成岩省边缘部分的主要岩浆类型。HT和LT2熔岩的地幔熔融程度较低,可能是与地幔柱边部的岩石圈相对较厚和地热较低有关。
二、讨论——原始熔岩的成因(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、讨论——原始熔岩的成因(论文提纲范文)
(1)东天山博格达东段晚古生代火山岩岩石学、地球化学及其构造属性(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 选题依据及其科学意义 |
1.2 研究现状及其存在的关键问题 |
1.2.1 国内外火山岩研究现状 |
1.2.2 区域研究现状及存在问题 |
1.3 研究目的和研究内容 |
1.3.1 研究目的 |
1.3.2 研究内容 |
1.4 工作方法与技术路线 |
1.4.1 工作方法与研究思路 |
1.4.2 测试方法与技术手段 |
1.5 主要实物工作量 |
第二章 区域地质背景 |
2.1 区域大地构造背景 |
2.2 区域地层 |
2.2.1 下古生界 |
2.2.2 上古生界 |
2.2.3 中、新生界 |
2.3 区域岩浆岩 |
2.3.1 火山岩 |
2.3.2 侵入岩 |
2.4 主要构造断裂特征 |
第三章 东天山博格达东段晚古生代火山—沉积序列 |
3.1 泥盆纪火山—沉积序列 |
3.1.1 早泥盆世火山—沉积序列 |
3.1.2 中泥盆世火山—沉积序列 |
3.1.3 晚泥盆世火山—沉积序列 |
3.2 石炭纪火山—沉积序列 |
3.2.1 早石炭世火山—沉积序列 |
3.2.2 晚石炭世火山—沉积序列 |
3.3 早二叠世火山—沉积序列 |
3.4 晚古生代沉积构造格局 |
第四章 东天山博格达东段晚古生代火山岩年代学特征 |
4.1 火山岩锆石U-Pb定年 |
4.1.1 泥盆纪火山岩锆石U-Pb定年 |
4.1.2 石炭纪火山岩锆石U-Pb定年 |
4.1.2.1 早石炭世火山岩锆石U-Pb定年 |
4.1.2.2 晚石炭世火山岩锆石U-Pb定年 |
4.1.3 早二叠世火山岩锆石U-Pb定年 |
4.2 区域年代学格架 |
第五章 东天山博格达东段泥盆纪火山岩岩石学与地球化学特征 |
5.1 泥盆纪火山岩剖面及岩石学特征 |
5.2 泥盆纪火山岩地球化学特征 |
5.2.1 岩浆系列和分类 |
5.2.2 主量元素 |
5.2.3 稀土元素 |
5.2.4 微量元素 |
5.3 构造属性 |
第六章 东天山博格达东段石炭纪—早二叠世火山岩岩石学与地球化学特征 |
6.1 石炭纪—早二叠世火山岩剖面与岩石学特征 |
6.1.1 石炭纪火山岩剖面与岩石学特征 |
6.1.1.1 早石炭世火山岩剖面及岩石学特征 |
6.1.1.2 晚石炭世火山岩剖面与岩石学特征 |
6.1.2 早二叠世火山岩剖面与岩石学特征 |
6.2 石炭纪—早二叠世火山岩岩石地球化学特征 |
6.2.1 岩浆系列和岩石类型 |
6.2.2 常量元素 |
6.2.3 稀土元素 |
6.2.4 微量元素 |
6.2.5 Sr-Nd-Pb同位素 |
6.3 岩浆结晶分离作用与地壳混染 |
6.3.1 岩浆结晶分离作用 |
6.3.2 地壳混染 |
6.4 石炭纪—早二叠世火山岩构造环境与岩石成因 |
6.4.1 构造环境判别 |
6.4.2 岩石成因 |
6.4.2.1 基性熔岩源区性质及熔融条件 |
6.4.2.2 酸性熔岩成因:部分熔融或结晶分异 |
第七章 东天山博格达东段晚古生代火山岩的演化 |
7.1 洋盆闭合时限 |
7.2 石炭纪(—早二叠世)岩浆作用的构造属性 |
7.3 东天山博格达东段晚古生代构造演化 |
7.3.1 晚泥盆世之前洋陆演化阶段 |
7.3.2 晚泥盆世—早二叠世海陆演化(碰撞后板内伸展)阶段 |
7.3.3 中—晚二叠世陆内演化阶段 |
结论及存在问题 |
参考文献 |
攻读学位期间科研及发表的学术论文 |
致谢 |
(2)祁连山新元古代中—晚期至早古生代火山作用与构造演化(论文提纲范文)
1 引言 |
2 地质背景 |
2.1 阿拉善陆块 |
2.2 祁连陆块 |
2.3 柴达木陆块 |
2.4 塔里木克拉通 |
2.5 华南陆块 |
3 祁连山地区的新元古代中—晚期至早古生代火山作用 |
3.1 祁连陆块及邻区新元古代中—晚期(848~604 Ma)裂谷火山岩 |
3.2 新元古代晚期至寒武纪(550~497 Ma)洋中脊玄武岩(MORB) |
3.3 寒武纪—奥陶纪弧和弧后盆地火山岩 |
3.3.1 北祁连中寒武世—奥陶纪(503~446 Ma)岛弧火山岩 |
3.3.2北祁连寒武纪至奥陶纪(517~449 Ma)弧后盆地火山岩 |
3.3.3 南祁连寒武纪至奥陶纪(542~486 Ma)岛弧和弧后盆地火山岩 |
3.4 祁连陆块中部拉脊山寒武纪至奥陶纪裂谷火山岩 |
3.5 祁连陆块北缘的晚奥陶世至早志留世(445~428 Ma)碰撞后裂谷火山岩 |
3.5.1 北祁连洋和南祁连洋最终闭合的时间 |
3.5.2 祁连陆块北缘的晚奥陶世至早志留世(445~428 Ma)碰撞后裂谷火山岩 |
4 祁连山新元古代中—晚期至早古生代构造岩浆演化历史的重建 |
4.1 880~500 Ma:Rodinia超大陆裂谷化和裂解及北祁连洋和南祁连洋的开启和扩张 |
4.2 630~446 Ma:大洋俯冲和岛弧-弧后盆地对的发育 |
4.2.1 大洋俯冲和弧岩浆作用 |
4.2.2 岛弧和弧后盆地对的产生 |
4.2.3 拉脊山火山岩系形成于陆内裂谷拉伸环境 |
4.3 445~420 Ma:洋盆闭合、大陆深俯冲和志留纪初始磨拉石建造 |
4.4 420~400 Ma:俯冲岩片折返和造山作用 |
5 结语 |
(4)西天山阿吾拉勒成矿带铁矿成矿作用与成矿规律研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究现状 |
1.1.1 铁矿床分类及资源现状 |
1.1.2 国内外铁矿床研究现状 |
1.1.3 火山岩型铁矿床研究现状 |
1.1.4 西天山铁矿研究现状 |
1.2 选题依据及研究意义 |
1.3 研究内容、技术路线和完成工作量 |
1.3.1 研究内容 |
1.3.2 技术路线 |
1.3.3 完成工作量 |
1.4 论文进展与创新 |
第二章 区域地质背景 |
2.1 研究区地理位置 |
2.2 大地构造位置 |
2.3 区域地质概况 |
2.3.1 地层 |
2.3.2 侵入岩 |
2.3.3 构造 |
2.4 区域遥感解译 |
2.5 区域地球物理特征 |
2.5.1 地层磁性特征 |
2.5.2 重力场特征 |
2.5.3 磁场特征 |
2.6 区域矿产特征 |
第三章 矿床地质特征 |
3.1 敦德铁矿床 |
3.1.1 矿区地层与火山岩岩相学 |
3.1.2 矿区侵入岩 |
3.1.3 矿区构造 |
3.1.4 矿体特征 |
3.1.5 矿石特征 |
3.1.6 矿化蚀变特征 |
3.2 尼新塔格铁矿床 |
3.2.1 矿区地层与火山岩岩相学 |
3.2.2 矿区侵入岩 |
3.2.3 矿区构造 |
3.2.4 矿体特征 |
3.2.5 矿石特征 |
3.2.6 矿化蚀变特征 |
3.3 松湖铁矿床 |
3.3.1 矿区地层与火山岩岩相学 |
3.3.2 矿区侵入岩 |
3.3.3 矿区构造 |
3.3.4 矿体特征 |
3.3.5 矿石特征 |
3.3.6 矿化蚀变特征 |
第四章 火山岩年代学及成矿时代 |
4.1 样品与测试方法 |
4.1.1 样品采集 |
4.1.2 分析方法 |
4.2 火山岩年代学 |
4.3 大哈拉军山组火山岩年代学格架 |
4.4 成矿时代限定 |
第五章 火山岩岩石成因与构造环境 |
5.1 样品采集与分析方法 |
5.2 火山岩地球化学特征 |
5.2.1 主量与微量元素特征 |
5.2.2 火山岩Sr、Nd同位素 |
5.3 同化混染与源区性质 |
5.4 火山岩形成构造环境 |
5.5 西天山晚古生代构造演化 |
第六章 成因矿物学特征 |
6.1 分析方法 |
6.2 磁铁矿标型特征 |
6.3 磁铁矿微量元素特征 |
6.3.1 敦德铁矿床 |
6.3.2 尼新塔格铁矿床 |
6.3.3 松湖铁矿床 |
6.4 磁铁矿成因探讨 |
6.4.1 敦德铁矿床 |
6.4.2 尼新塔格铁矿床 |
6.4.3 松湖铁矿床 |
6.5 辉石 |
6.5.1 矿物成分特征 |
6.5.2 对岩浆演化的指示 |
第七章 矿床地球化学 |
7.1 矿石稀土、微量元素地球化学 |
7.1.1 敦德铁矿床 |
7.1.2 尼新塔格铁矿床 |
7.1.3 松湖铁矿 |
7.2 磁铁矿氧同位素特征 |
7.3 磁铁矿Pb同位素特征 |
7.4 硫化物硫同位素特征 |
7.5 成矿物质来源探讨 |
第八章 矿床成因与成矿模式 |
8.1 成矿物质来源 |
8.1.1 成矿母岩浆 |
8.1.2 磁铁矿成因 |
8.1.3 同位素示踪 |
8.2 成矿作用与成矿过程 |
8.3 火山作用与成矿 |
8.3.1 时间联系 |
8.3.2 空间联系 |
8.3.3 成因联系 |
8.4 成因类型 |
8.5 岩浆演化与铁的富集机理 |
8.5.1 岩(矿)浆成矿 |
8.5.2 热液成矿 |
8.6 成矿模型 |
第九章 区域铁矿成矿规律 |
9.1 主要铁矿床地质特征 |
9.2 铁成矿控矿因素与成矿条件 |
9.2.1 矿浆-火山热液复合型矿床的控矿因素与成矿条件 |
9.2.2 成矿带东西两段成矿条件差异 |
9.3 找矿前景 |
结论与存在的问题 |
参考文献 |
攻读博士学位期间发表的学术论文 |
致谢 |
附表 |
(5)北山南部晚古生代构造格局与演化:来自古地磁与岩浆作用的制约(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 论文选题依据及意义 |
1.2 研究思路、方法、内容及目标 |
1.3 论文主要实物工作量 |
1.4 论文主要进展及创新点 |
第二章 区域地质概况 |
2.1 区域构造特征 |
2.2 地层特征 |
2.3 岩浆特征 |
第三章 北山南部晚古生代火成岩地质学、地球化学特征及其岩石成因 |
3.1 火成岩野外地质与岩石学特征 |
3.2 火成岩锆石U-Pb定年及Hf同位素结果 |
3.3 火成岩元素地球化学特征 |
3.4 火成岩年龄及其岩石成因 |
第四章 北山南部石炭系与二叠系古地磁结果 |
4.1 古地磁样品采集 |
4.2 采样地层时代的厘定 |
4.3 岩石磁学结果 |
4.4 系统热退磁测试及数据结果 |
4.5 剩磁获取时代及原生性分析 |
第五章 北山南部晚古生代构造格局与演化 |
5.1 北山南部晚古生代岩浆活动的年代学格架及其产生构造环境 |
5.2 北山南部地块晚古生代的古地理位置及构造归属 |
5.3 北山南部地层格架与沉积演变 |
5.4 北山地区的基底结构属性 |
5.5 北山地区晚古生代构造演化过程 |
第六章 对古亚洲洋构造演化的启示 |
6.1 古亚洲洋闭合时限的探讨 |
6.2 古亚洲洋晚石炭世与早二叠世构造古地理重建 |
第七章 结论及存在的问题 |
7.1 结论 |
7.2 存在问题 |
参考文献 |
附表 |
作者在学期间发表文章与主持项目情况 |
(1)发表文章 |
(2)主持项目 |
致谢 |
(6)扬子地块西南缘拉拉IOCG矿床地质地球化学研究(论文提纲范文)
摘要 |
abstract |
第1章 前言 |
1.1 选题依据和研究意义 |
1.1.1 选题来源 |
1.1.2 选题依据 |
1.1.3 研究意义 |
1.2 国内外研究现状 |
1.2.1 IOCG矿床研究现状 |
1.2.2 IOCG矿床定义 |
1.2.3 IOCG矿床时空分布特征 |
1.2.4 IOCG矿床主要成矿环境 |
1.2.5 IOCG矿床成矿流体及矿床成因 |
1.2.6 中国的IOCG矿床 |
1.3 拉拉IOCG矿床研究现状与存在的主要问题 |
1.3.1 研究现状 |
1.3.2 存在的主要问题 |
1.4 主要研究内容和研究方法 |
1.5 论文主要成果与创新点 |
1.5.1 论文主要成果 |
1.5.2 论文创新点 |
1.6 完成的主要工作量 |
第2章 区域地质特征 |
2.1 区域地层 |
2.1.1 古元古界河口群 |
2.1.2 古元古界大红山群 |
2.1.3 古元古界东川群 |
2.1.4 中元古界昆阳群 |
2.1.5 中元古界会理群 |
2.1.6 新元古界康定群 |
2.1.7 震旦系 |
2.1.8 古生界-新生界 |
2.1.9 康滇地轴元古宇地层演化顺序 |
2.2 区域构造 |
2.2.1 褶皱构造 |
2.2.2 断裂构造 |
2.3 区域岩浆岩 |
2.3.1 古元古代岩浆岩 |
2.3.2 中元古代岩浆岩 |
2.3.3 新元古代岩浆岩 |
2.4 区域变质作用 |
2.5 区域矿产 |
第3章 矿床地质特征 |
3.1 矿区地层 |
3.1.1 赋矿层位河口群 |
3.1.2 会理群 |
3.1.3 白果湾组 |
3.2 矿区构造 |
3.2.1 褶皱构造 |
3.2.2 断裂构造 |
3.3 矿区岩浆岩 |
3.3.1 基性侵入岩 |
3.3.2 中酸性侵入岩 |
3.4 角砾岩 |
3.5 矿体特征 |
3.5.1 矿体埋藏特征 |
3.5.2 矿体产状、矿石品位及与围岩关系 |
3.6 矿石类型及构造 |
3.6.1 矿石类型 |
3.6.2 矿石构造 |
3.6.3 矿石矿物成分 |
3.6.4 矿石化学成分 |
第4章 矿床成矿期、成矿阶段及矿物成生顺序研究 |
4.1 矿床成矿期划分 |
4.1.1 成矿期 |
4.1.2 成矿阶段初步划分 |
4.2 矿物世代 |
4.2.1 矿石矿物 |
4.2.2 脉石矿物 |
4.3 矿床成矿阶段及矿物共生组合 |
4.3.1 火山喷发-沉积成矿期 |
4.3.2 变质成矿期 |
4.3.3 气成-热液成矿期 |
4.3.4 热液成矿期 |
4.3.5 矿物生成顺序表 |
4.4 与前人研究结果对比 |
第5章 稀土元素地球化学 |
5.1 围岩的REE地球化学特征 |
5.1.1 样品及分析方法 |
5.1.2 分析结果 |
5.1.3 REE配分模式及指示意义 |
5.2 含钙脉石矿物的REE地球化学 |
5.2.1 样品及分析方法 |
5.2.2 分析结果 |
5.2.3 REE配分模式特征及指示意义 |
5.3 REE来源及成矿流体演化特征 |
本章小结 |
第6章 稳定同位素地球化学 |
6.1 H-O同位素地球化学特征 |
6.1.1 样品及测试方法 |
6.1.2 成矿流体氢、氧同位素组成特征 |
6.1.3 成矿流体来源与演化特征 |
6.2 C-O同位素地球化学特征 |
6.2.1 样品及分析方法 |
6.2.2 分析结果 |
6.2.3 方解石沉淀影响因素及成矿流体中的C质来源 |
6.3 S同位素地球化学 |
6.3.1 样品及分析方法 |
6.3.2 样品的S同位素组成 |
6.3.3 S同位素分馏平衡及平衡温度 |
6.3.4 气成-热液成矿期成矿流体总S同位素组成特征及硫源 |
本章小结 |
第7章 放射性同位素地球化学 |
7.1 独居石原位U-Pb同位素测年 |
7.1.1 样品及分析测试方法 |
7.1.2 分析结果 |
7.1.3 独居石U-Pb年龄指示意义 |
7.2 辉钼矿Re-Os同位素测年 |
7.2.1 样品及分析方法 |
7.2.2 分析结果 |
7.2.3 辉钼矿Re-Os同位素年龄指示意义 |
7.3 黑云母39Ar-40Ar同位素测年 |
7.3.1 样品及分析方法 |
7.3.2 分析结果 |
7.3.3 黑云母39Ar-40Ar年龄指示意义 |
7.4 黄铜矿的Pb-Pb及 Re-Os同位素测年 |
7.4.1 黄铜矿的Pb-Pb等时线法测年 |
7.4.2 黄铜矿Re-Os等时线法测年 |
7.5 拉拉IOCG矿床成矿时代及指示意义 |
7.5.1 拉拉IOCG矿床4 期成矿事件及指示意义 |
7.5.2 对区域成矿作用的指示意义 |
7.6 拉拉IOCG矿床(金属)成矿物质来源探讨 |
7.6.1 萤石的Rb-Sr和 Sm-Nd同位素地球化学 |
7.6.2 金属成矿物质来源 |
本章小结 |
第8章 流体包裹体地球化学 |
8.1 包裹体岩相学特征 |
8.2 流体包裹体显微测温及结果 |
8.3 高盐度Ib型含石盐子晶多相包裹体的成因及指示意义 |
8.3.1 含子晶包裹体的捕获条件及显微热力学行为 |
8.3.2 拉拉IOCG矿床中Ib型含石盐子晶多相包裹体成因 |
8.3.3 拉拉IOCG矿床中Ib型含石盐子晶多相包裹体的流体来源 |
8.4 成矿压力与成矿深度估算 |
8.4.1 气成-热液成矿期早阶段成矿压力与成矿深度估算 |
8.4.2 气成-热液成矿期晚阶段成矿压力与成矿深度估算 |
8.4.3 热液成矿期成矿压力与成矿深度估算 |
8.5 成矿流体演化及矿质迁移沉淀机制 |
8.5.1 拉拉IOCG矿床成矿流体演化特征 |
8.5.2 流体超压机制及富矿角砾岩的形成过程 |
8.5.3 矿质的迁移形式及沉淀机制 |
本章小结 |
第9章 岩浆活动与拉拉IOCG矿床成矿 |
9.1 康滇地轴元古宙岩浆活动 |
9.1.1 古元古代岩浆活动 |
9.1.2 中元古代岩浆活动 |
9.1.3 新元古代岩浆活动 |
9.2 古元古代双峰式岩浆活动与拉拉IOCG矿床火山-沉积期成矿作用 |
9.2.1 扬子地块在Columbia超大陆旋回中的构造演化 |
9.2.2 古元古代双峰式岩浆活动与扬子地块西南缘区域性IOCG矿化事件 |
9.2.3 拉拉IOCG矿床古元古代火山喷发-沉积成矿期成矿作用过程 |
9.3 中元古代中酸性岩浆活动与拉拉IOCG矿床气成-热液期成矿作用 |
9.3.1 Rodinia超大陆拼贴与扬子地块西南缘中酸性岛弧岩浆事件 |
9.3.2 拉拉IOCG矿床中元古代气成-热液成矿期成矿作用过程 |
9.4 新元古代基性岩浆侵入活动与拉拉IOCG矿床热液期成矿作用 |
第10章 成果与认识 |
致谢 |
参考文献 |
攻读学位期间取得学术成果 |
(7)天山及邻区地质演化过程中的大陆裂谷火山作用(论文提纲范文)
摘要 |
Abstract |
第一章 前言 |
一、论文选题的目的和意义 |
二、研究思路和拟解决的关键性科学问题 |
三、研究方法和研究内容 |
四、研究概况和完成的主要工作量 |
五、取得的研究成果 |
第二章 大陆裂谷火山作用的研究现状 |
一、伸展构造与大陆裂谷 |
1、大陆裂谷的基本特征 |
2、裂谷演化的动力学模式 |
二、大陆裂谷火山作用 |
三、大火成岩省 |
1、大火成岩省的组成 |
2、大火成岩省形成的源区和构造背景 |
3、大火成岩省形成的地幔动力学 |
4、大火成省与大陆裂解 |
四、幔源岩浆产生的机制 |
五、不同构造环境下地幔部分熔融机制与差异 |
1、离散边界的岩浆作用 |
2、汇聚边界玄武质岩浆的产生 |
3、板内岩浆作用 |
第三章 天山及邻区新元古代—早寒武世大陆裂谷火山作用 |
一、地质背景 |
二、新元古代—早寒武世裂谷火山岩时空分布特征 |
1、空间分布特征 |
2、火山岩喷发时代的判定 |
三、火山岩组合与类型 |
1、库鲁克塔格微地块 |
2、阿克苏—柯坪微地块 |
3、卡瓦布拉克微地块 |
4、塞里木微地块 |
四、岩石地球化学特征 |
1、岩浆系列与分类 |
2、主元素与微量元素的变化特点 |
3、稀土元素变化特点 |
4、不相容元素变化特点 |
5、Sr、Nd同位素比值变化特点 |
五、岩石成因讨论 |
1、天山及邻区新元古代—早寒武世火山岩的形成环境 |
2、源区的部分熔融条件和特点 |
3、天山新元古代—早寒武世玄武岩形成过程中软流圈和岩石圈的贡献 |
4、岩石成因讨论 |
第四章 天山及邻区石炭—二叠纪裂谷火山作用 |
一、区域地质背景 |
二、石炭—二叠纪裂谷火山岩的分布特征 |
三、样品的分布和分析结果 |
四、岩石地球化学特征 |
1、火山岩分类 |
2、主元素和Ni、Cr等微量元素的变化特点 |
3、不相容元素的变化特点 |
4、Sr、Nd、Pb同位素比值变化特点 |
五、岩石成因讨论 |
1、天山石炭—二叠纪火山岩的形成环境 |
2、岩浆结晶分离作用 |
3、源区的部分熔融条件和特点 |
4、天山玄武岩形成过程中地幔柱和岩石圈之间的相互作用 |
六、HT型熔岩和LT型熔岩的空间关系 |
七、天山(中亚)大火成岩省的成矿背景意义 |
第五章 天山石炭纪酸性火山岩岩石成因 |
一、地质背景 |
二、样品的分布和分析结果 |
三、岩石地球化学特征 |
1、天山石炭纪裂谷酸性火山岩的分类 |
2、主元素特点 |
3、微量元素特点 |
4、Sr、Nd、Pb同位素比值变化特点 |
四、岩石成因讨论 |
1、前寒武纪地壳的熔融 |
2、年轻底侵玄武岩的熔融和分离结晶作用间的区分 |
3、天山东段泥盆纪岛弧玄武岩的熔融 |
4、同化作用和分离结晶作用 |
5、双峰式火山作用和正常火山作用之间空间分布关系 |
第六章 巴音沟蛇绿岩:天山早石炭纪红海型洋盆的地质记录 |
一、地质背景 |
二、巴音沟蛇绿岩的年代学研究 |
1、巴音沟蛇绿岩斜长花岗岩锆石SHRIMP年龄 |
2、巴音沟蛇绿岩辉长岩锆石La-ICP-MS U-Pb年龄年龄 |
三、样品采集和特征 |
四、分析方法和分析结果 |
五、岩石地球化学特征 |
1、巴音沟地区“基底单元”和“蛇绿岩单元”中火成岩的分类 |
2、主元素变化特征 |
3、微量元素 |
4、Sr、Nd、Pb同位素比值变化特点 |
六、岩石成因讨论 |
1、巴音沟地区早石炭纪镁铁质熔岩产出的构造环境的判别 |
2、分离结品作用 |
3、地壳混染作用 |
4、源区特征 |
5、岩石成因演化 |
结语 |
致谢 |
博士学习期间发表论文情况 |
参考文献 |
(8)天山东段晚古生代火山岩南北对比及其大地构造意义(论文提纲范文)
中文摘要 |
Abstract |
1 绪论 |
1.1 论文选题项目 |
1.2 国内外研究现状 |
1.2.1 天山造山带研究现状 |
1.2.2 天山东段吐哈盆地南北两侧晚古生代地层研究现状 |
1.3 研究内容 |
1.4 技术路线 |
1.5 完成的工作量 |
1.6 主要认识和创新点 |
2 区域地质背景 |
2.1 自然地理及大地构造概况 |
2.2 区域地层 |
2.3 区域构造 |
2.4 区域岩浆活动 |
3 吐哈盆地南北缘地区晚古生代火山-沉积地层特征概述 |
3.1 吐哈盆地南缘地区晚古生代火山-沉积地层特征概述 |
3.2 吐哈盆地南缘地区泥盆纪火山-沉积序列 |
3.3 吐哈盆地南缘地区石炭纪火山-沉积序列 |
3.3.1 吐哈盆地南缘地区早石炭世火山-沉积序列 |
3.3.2 吐哈盆地南缘地区晚石炭世火山-沉积序列 |
3.4 吐哈盆地南缘地区二叠世火山-沉积序列 |
3.5 吐哈盆地北缘地区晚古生代火山-沉积地层特征概述 |
3.6 吐哈盆地北缘地区泥盆纪火山-沉积序列 |
3.7 吐哈盆地北缘地区石炭纪火山-沉积序列 |
3.7.1 吐哈盆地北缘地区早石炭世火山-沉积序列 |
3.7.2 吐哈盆地北缘地区晚石炭世火山-沉积序列 |
3.8 吐哈盆地北缘地区早二叠世火山-沉积序列 |
4 火成岩的样品采集 |
4.1 样品采集地区与工作 |
4.1.1 沙尔湖-罗布泊地质剖面 |
4.1.2 沙尔湖地质剖面 |
4.1.3 焕彩沟地质剖面 |
4.2 锆石U-Pb同位素分析 |
4.3 锆石U-Pb测年实验结果 |
4.4 区域火成岩年龄分布 |
4.5 火成岩地球化学研究样品测试方法 |
4.6 吐哈盆地南缘晚古生代地球化学元素特征 |
4.6.1 吐哈盆地南缘泥盆纪火山岩地球化学元素特征 |
4.6.2 吐哈盆地南缘石炭纪火山岩地球化学元素特征 |
4.6.3 吐哈盆地南缘早二叠世火山岩地球化学元素特征 |
4.7 吐哈盆地北缘晚古生代地球化学元素特征 |
4.7.1 吐哈盆地北缘泥盆纪火山岩地球化学元素特征 |
4.7.2 吐哈盆地北缘石炭纪-早二叠世火成岩岩地球化学元素特征 |
4.8 吐哈盆地南缘地区基性岩浆结晶分离作用与地壳混染 |
4.9 吐哈盆地北缘地区基性岩浆结晶分离作用与地壳混染 |
5 天山东段吐哈盆地南北两侧晚古生代火山岩构造特征以及古洋盆闭合时限的讨论 |
5.1 构造环境判别 |
5.1.1 天山东段吐哈盆地南缘地区构造环境判别 |
5.1.2 天山东段吐哈盆地北缘地区构造环境判别 |
5.2 天山东段洋盆闭合时限的讨论 |
5.2.1 天山东段吐哈盆地南缘地区洋盆的闭合时限 |
5.2.2 天山东段吐哈盆地南缘地区洋盆俯冲极性 |
5.2.3 天山东段吐哈盆地北缘地区洋盆的闭合时限 |
6 天山东段吐哈盆地南北两侧晚古生代构造演化 |
6.1 天山东段吐哈盆地南缘地区晚古生代构造演化 |
6.2 天山东段吐哈盆地北缘地区晚古生代构造演化 |
7 结论 |
8 致谢 |
参考文献 |
附录1 |
附录2 |
附录3 |
(9)月海玄武岩陨石、遥感与岩浆演化研究(论文提纲范文)
摘要 |
ABSTRACT |
符号说明 |
第一章 前言 |
第一节 研究背景及意义 |
1.1.1 月海玄武岩起源 |
1.1.2 月海玄武岩研究历史 |
1.1.3 玄武质岩浆对月球内部成分结构的指示 |
1.1.4 月海玄武岩样品与遥感研究的意义 |
第二节 研究现状综述 |
1.2.1 玄武岩样品 |
1.2.2 玄武质月球陨石 |
1.2.3 全月玄武岩遥感 |
1.2.4 现状总结 |
第三节 研究内容与实施方案 |
第四节 论文创新点 |
第五节 论文结构 |
第二章 月海玄武岩样品分析与遥感探测方法 |
第一节 玄武岩样品分析方法 |
2.1.1 岩相学 |
2.1.2 矿物学 |
2.1.3 全岩化学 |
第二节 月海玄武岩遥感探测方法 |
2.2.1 化学成分 |
2.2.2 矿物学 |
2.2.3 熔岩流单元与玄武岩分类 |
2.2.4 年代学 |
第三节 本文研究方法 |
2.3.1 样品来源与加工 |
2.3.2 偏光显微镜成像与显微拉曼光谱测试 |
2.3.3 EPMA分析 |
2.3.4 化学处理与ICP-MS/OES测试方法 |
2.3.5 月海玄武岩时空结构制图与玄武岩陨石月表溯源 |
第三章 玄武质月球陨石矿物学与地球化学分析 |
第一节 月海玄武岩陨石NWA 4734和NWA 10597 |
3.1.1 矿物学与岩石学 |
3.1.2 冲击变质特征 |
3.1.3 全岩成分特征 |
第二节 辉长质角砾岩陨石NWA 10985 |
3.2.1 岩屑、矿物学与冲击变质特征 |
3.2.2 岩屑与玻璃成分特征 |
第三节 橄榄辉长岩陨石Swayyah 001 |
3.3.1 矿物学、岩石学与冲击变质特征 |
3.3.2 全岩成分特征 |
第四章 月海玄武岩时空结构制图 |
第一节 月表熔岩流单元化学成分、矿物学与年代学分布 |
4.1.1 月海玄武岩单元化学成分与玄武岩类型分布 |
4.1.2 月海玄武岩单元矿物学特征 |
4.1.3 月海玄武岩单元模式年龄 |
第二节 玄武质月球陨石成对关系及其月表源区 |
4.2.1 NWA 4734、NWA 10597与LAP月海玄武岩陨石 |
4.2.2 NWA 10985与NWA 773族 |
4.2.3 Swayyah 001 |
第五章 月海玄武岩岩浆演化 |
第一节 玄武质月球陨石成岩过程 |
5.1.1 NWA 4734、NWA 10597与LAP月海玄武岩陨石母岩浆演化 |
5.1.2 NWA 10985、NWA 773族与月壳岩浆房演化 |
5.1.3 Swayyah 001成岩过程 |
第二节 月海玄武岩单元岩浆演化 |
5.2.1 月海玄武岩单元成分演化 |
5.2.2 月海玄武岩单元矿物学特征起源与岩浆分异程度 |
第六章 总结与展望 |
附录、附图表 |
附录A 彩图 |
附录B NWA 4734与NWA 10597矿物学、化学成分与月表熔岩流源区数据 |
附录C NWA 10985与Swayyah 001矿物学、化学成分与月表源区数据 |
参考文献 |
致谢 |
攻读学位期间发表的学术论文目录 |
学位论文评阅及答辩情况表 |
四、讨论——原始熔岩的成因(论文参考文献)
- [1]东天山博格达东段晚古生代火山岩岩石学、地球化学及其构造属性[D]. 汪晓伟. 长安大学, 2016(02)
- [2]祁连山新元古代中—晚期至早古生代火山作用与构造演化[J]. 夏林圻,李向民,余吉远,王国强. 中国地质, 2016(04)
- [3]天山及邻区石炭纪—早二叠世裂谷火山岩岩石成因[J]. 夏林圻,夏祖春,徐学义,李向民,马中平. 西北地质, 2008(04)
- [4]西天山阿吾拉勒成矿带铁矿成矿作用与成矿规律研究[D]. 荆德龙. 长安大学, 2016(02)
- [5]北山南部晚古生代构造格局与演化:来自古地磁与岩浆作用的制约[D]. 许伟. 长安大学, 2019(07)
- [6]扬子地块西南缘拉拉IOCG矿床地质地球化学研究[D]. 黄从俊. 成都理工大学, 2019
- [7]天山及邻区地质演化过程中的大陆裂谷火山作用[D]. 李向民. 西北大学, 2007(04)
- [8]天山东段晚古生代火山岩南北对比及其大地构造意义[D]. 刘秀. 中国地质大学(北京), 2020(01)
- [9]月海玄武岩陨石、遥感与岩浆演化研究[D]. 陈剑. 山东大学, 2020(12)
- [10]天山石炭—二叠纪大火成岩省裂谷火山作用与地幔柱[J]. 夏林圻,李向民,夏祖春,徐学义,马中平,王立社. 西北地质, 2006(01)