一、INSTITUTE OF GEOLOGICAL INFORMATION AND NATIONAL GEOLOGICAL LIBRARY——A REVIEW OF THE DEVELOPMENT OF INFORMATION WORK(论文文献综述)
CHEN Jianping,XIANG Jie,HU Qiao,YANG Wei,LAI Zili,HU Bin,WEI Wei[1](2016)在《Quantitative Geoscience and Geological Big Data Development:A Review》文中进行了进一步梳理After long-term development, mathematical geology has today become an independent discipline. Big Data science, which has become a new scientific paradigm in the 21 st century, gives rise to the geological Big Data, i.e. mathematical geology and quantitative geoscience. Thanks to a robust macro strategy for big data, China’s quantitative geoscience and geological big data’s rapid development meets present requirements and has kept up with international levels. This paper presents China’s decade-long achievements in quantitative prediction and assessment of mineral resources, geoscience information and software systems, geological information platform development, etc., with an emphasis on application of geological big data in informatics, quantitative mineral prediction, geological environment and disaster management, digital land survey, digital city, etc. Looking ahead, mathematical geology is moving towards "Digital Geology", "Digital Land" and "Geological Cloud", eventually realizing China’s grand "Digital China" blueprint, and these valuable results will be showcased on the international academic arena.
ZOU Caineng,YANG Zhi,ZHU Rukai,ZHANG Guosheng,HOU Lianhua,WU Songtao,TAO Shizhen,YUAN Xuanjun,DONG Dazhong,WANG Yuman,WANG Lan,HUANG Jinliang,WANG Shufang[2](2015)在《Progress in China’s Unconventional Oil & Gas Exploration and Development and Theoretical Technologies》文中研究指明The new century has witnessed a strategic breakthrough in unconventional oil & gas.Hydrocarbon accumulated in micro-/nano-scale pore throat shale systems has become an important domain that could replace current oil & gas resources.Unconventional oil & gas plays an increasingly important role in our energy demand.Tight gas,CBM,heavy oil and asphaltic sand have served as a key domain of exploration & development,with tight oil becoming a ’bright spot’ domain and shale gas becoming a ’hotspot’ domain.China has made great breakthroughs in unconventional oil & gas resources,such as tight gas,shale gas,tight oil and CBM,and great progress in oil shale,gas hydrate,heavy oil and oil sand.China has an estimated(223-263)×108t of unconventional oil resources and(890-1260)×l012m3 of gas resources.China has made a breakthrough for progress in unconventional oil & gas study.New progress achieved in fine-grained sedimentary studies related to continental open lacustrine basin large-scale shallow-water delta sand bodies,lacustrine basin central sandy clastic flow sediments and marine-continental fine-grained sediments provide a theoretical basis for the formation and distribution of basin central reservoir bodies.Great breakthroughs have been made in unconventional reservoir geology in respect of research methodology & technology,multi-scale data merging and physical simulation of formation conditions.Overall characterization of unconventional reservoirs via multi-method and multi-scale becomes increasingly popular and facilitates the rapid development of unconventional oil & gas geological theory,method and technology.The formation of innovative,continuous hydrocarbon accumulation theory,the establishment of the framework of the unconventional oil & gas geological theory system,and the determination of the implications,geological feature,formation mechanism,distribution rule and core technology of unconventional oil& gas geological study lays a theoretical foundation for extensive unconventional oil & gas exploration and development.Theories and technologies of unconventional oil & gas exploration and development developed rapidly,including some key evaluation techniques such as ’sweet spot zone’ integrated evaluation and a six-property evaluation technique that uses hydrocarbon source,lithology,physical property,brittleness,hydrocarbon potential and stress anisotropy,and some key development &engineering technologies including micro-seismic monitoring,horizontal drilling & completion and "factory-like" operation pattern, "man-made reservoir" development,which have facilitated the innovative development of unconventional oil & gas.These breakthroughs define a new understanding in four aspects:①theoretical innovation;② key technologies;③ complete market mechanism and national policy support;and ④ well-developed ground infrastructure,which are significant for prolonging the life cycle of petroleum industry,accelerating the upgrade and development of theories and technologies and altering the global traditional energy structure.
高萌萌,李瑞敏,徐慧珍,曾青石,王祎萍,荆继红,李小磊,殷铭,张像源[3](2019)在《基于MapGIS建立的中国地质环境图系数据库》文中认为中国地质环境图系数据库,是中国首套统一结构、统一格式、统一编码的涵盖地质环境、地质灾害、地下水、矿山地质环境、地质遗迹5个专业领域的全国性数据库。该套数据库是基于1:1 000 000数据源的地理信息库,以分省1:500 000环境地质调查、县市地质灾害调查、重点地区1:50 000地质灾害调查、新一轮地下水资源评价、第二轮全国矿山地质环境摸底调查和矿产资源集中开采区矿山地质环境调查、首轮地质遗迹调查等数据为基础,集成近20年来水工环地质调查监测数据和最新综合研究成果,根据统一的建库技术要求建立而成。该套数据库具有统一的系统库(符号库、颜色库、图案库、线型库),属性按照统一的编码规则和要求建立,图件按照统一的图饰图例进行了规范化处理,共包含163个专业图层,图元数量共337 833个,容量约8.8 GB。该套数据库为实现成果图件的动态管理与更新、构建数字地质环境奠定了基础,可为地质环境保护管理、国土空间规划、生态修复、地质灾害防治提供详细的基础信息资料。
CHEN Baoguo,ZHANG Jiuchen,YANG Mengmeng[4](2016)在《The Present Research and Prospect of Chinese Geosciences History》文中进行了进一步梳理It has been over a hundred years since the birth of research on Chinese geosciences history, which was accompanied by the continuous progress of Chinese geosciences. For hundreds of years, it has grown out of nothing to brilliant performance by several generations of Chinese geologists committing their hearts and minds with the spirit of exert and strive without stop to promote the process of China’s industrialization and to produce the significant impact on serving the society. The study of Chinese geosciences history reflects objectively and historically the history of geosciences in China, which has recorded, analyzed and evaluated the dynamic process sitting in the background and clue of the history of Chinese geosciences development. The study of the history of geological science has roughly experienced two stages in China. The first stage is the study of individual researchers. It spanned approximately 70 years from the early 20th century to the end of the 1970s. The research contents were mainly based on the evolution of geological organizations, the development and utilization of individual mineral species, the history of deposit discovery and the research of geological characters. The main representatives are Zhang Hongzhao, Ding Wenjiang, Weng Wenhao and Li Siguang, Ye Liangfu, Huang Jiqing, Yang Zhongjian, Xie Jiarong, Gao Zhenxi, Wang Bingzhang and etc. The most prominent feature of this period is the accumulation of a very valuable document for the study of the history of China’s geological history and lays a foundation for the exchange of geological science between China and foreign countries. The second stage is organized group study. It took around 60 years from the 1920s to 1980s. It includes the history of Chinese geology, the history of geological organizations, the history of geological disciplines, the history of geological education, the history of geological philosophy, the history of Chinese and foreign geological science communication, the history of geologists and etc. The most chief feature of this stage is the birth of academic research institute―the establishment of the Commission on the History of Geology of the Geological Society of China.
黄丽[5](2018)在《二战后澳大利亚能矿产业领域的环境管理研究》文中研究表明作为物质生产的主要投资之一,自然资源(主要指矿产和能源资源)被称为国民经济发展的重要物质基础。因此,其在国民经济增长中的作用不言而喻。澳大利亚矿产资源丰富,矿藏多样,是世界发达国家之一,其经济在过去几十年内取得了长足发展。能矿产业是其经济发展的重要支柱之一,占其GDP的6%以上。澳大利亚的独特之处在于,一方面,其能矿产业发展迅速,另一方面,其矿业取得了相对可持续发展,其壮观、美丽、独特的自然环境成为澳大利亚人的骄傲。澳大利亚东北部生长着最古老的开花植物,是世界上生物多样性最丰富的生态系统之一。然而相比之下,其他一些资源丰富的国家,却以牺牲良好的环境为代价实现经济发展,这为本文研究澳大利亚在发展资源产业的同时如何平衡环境管理提供了必要性。矿业在澳大利亚经济中扮演着重要角色,占其出口收入的三分之一以上。矿业是由国际市场驱动的周期性行业,矿物产品价格和生产成本仍然是其发展的关键因素。上世纪中叶以来,环境管理在衡量采矿项目的竞争力和可行性方面,作用日益彰显。本文对二战后澳大利亚能矿产业内的环境管理进行了研究,将其发展过程划分为几个阶段,分别呈现了各阶段的能矿产业发展特征以及该阶段相关环境管理政策和措施。具体来看,从早期勘探到20世纪中期,澳大利亚能矿产业取得了很大进展,其公众对矿业繁荣发展津津乐道。采矿业为其国家发展所需的基础设施、服务和商品提供了原材料。然而,澳大利亚能矿产业的早期采掘、开发,对当地环境造成了严重影响。这些环境影响源自矿业的勘探和采矿矿物加工活动,包括植被直接毁坏、从废物岩堆、尾矿储存设施和露天矿场排放的酸性矿井水、以及不良的矿物复原措施。遗憾的是,在这段漫长的发展阶段里,与矿业发展有关的环境问题通常被视而不见。从20世纪50年代到80年代,澳大利亚矿业逐步走进世界一流行列,相关现代环境运动也相继涌现。环境问题成为公众争议的焦点,使得政府需发挥更大作用来解决这些问题。20世纪70年代早期,州政府开始采取措施解决一些相关环境问题。其中,环境影响报告书的编写和提交是其措施的重要组成部分。环境影响报告书要求矿业公司在开展矿业活动前,对项目进行环境评估,获得批准后才可开展矿业活动。经过这些措施,采矿带来的一些不利环境影响得到了避免或处理。然而,一些环境审批程序过于复杂和耗时,且其中许多程序难以获批,因此新采矿项目的启动效率受到了很大影响。上个世纪90年代以来,澳大利亚的矿业发展及其相关环境保护逐渐走向国际化。澳大利亚矿业公司海外矿产勘探和矿业海外投资大幅增加,海外矿业公司的勘探支出占比也大幅增加。此外,过去10年间,除加拿大、美国和西欧等传统矿产品出口地外,澳大利亚矿业公司开始在亚太地区、非洲、南美和东欧等新兴市场拓展业务。同时在此阶段,澳大利亚采矿业在良好的环境管理方面取得了很大进展,并将可持续发展战略纳入环境和矿业立法。1992年的生态可持续发展国家战略及其相关执行报告,标志着澳大利亚将可持续发展概念发展为其国家目标和政策方向之一。数十年来,澳大利亚矿业发展先进环境管理的能力不断提升,加强社区参与和发展的措施不断创新。澳大利亚的可持续发展矿业在全球享有领先地位,与其他国家矿产企业相比,其矿产企业在勘探、工程、矿物加工、环境管理、矿山安全、研究和开发以及教育和培训等方面更具竞争力。本文通过对澳大利亚能矿产业发展史和相关环境管理的研究,发现两者发展轨迹几乎并驾齐驱并长期相互作用。当环境管理得到改善,矿业发展效率会大大提升,这是源于良好的环境管理可促进采矿技术的创新,并获得公众对该行业的支持。此外,矿业发展和环境管理的相互作用最终可发展为一种生态可持续的矿业发展模式。实现生态可持续的矿业发展,需建立一种管理的、经济的和自愿的合作机制,政府、矿业公司和社区团体共同发挥作用。政府制定法规,为环境管理提供法律规范和准则;矿业公司遵守采矿原则和法规,提高采矿技术,减轻矿业活动对环境的不利影响;社区和公众可对采矿项目评估的批准提供监督,促使矿业公司履行相关环境管理规范。
Lisaia Daria(达丽娅)[6](2019)在《俄罗斯城市可持续发展及其对中国城市的启示研究》文中研究表明城市可持续发展是我们地球繁荣未来的一个重要方面。根据2005年联合国世界峰会的成果,可持续发展的概念包含三个基本要素:社会、经济和环境。社会经济发展问题是国家政策的核心。从方法和途径到解决(具体)问题的方案取决于国家的繁荣和国民的经济生活水平。面对严峻的全球竞争,城市居住模式的管理以及寻求组织和管理人力、国土和生产资源的最佳解决方案是社会经济发展的途径之一。目前国家最高一级的国土开发规划和管理流程的演变正在进行,并与其他各级政府的规划系统进行协调。根据在2017年5月8日至12日举行的联合国人类住区规划署理事会第二十六届会议的报告,这是在城市(市政)层面提高国家政策执行效率和改善城市环境质量的关键要求之一。国家政策发展的另一个重要要求是将传统经济转变为知识经济,并带领该国走向世界技术领先,这是最可持续的经济发展方式。建立国家的创新基础设施是实现这些任务的必要条件之一。在此背景下,对世界上最大的两个国家(俄罗斯和中国)的城市发展经验的研究正在成为城市规划、设计和建筑广阔领域专家的宝贵知识来源。本文的研究目标是明确俄罗斯和中国社会经济政策的优先事项并对其在国土和城市规划层面的实施机制进行比较分析,这两者是国家可持续发展的重要条件。全文分为五个部分,共八章。其中第一部分(第1章)对课题相关的文献进行综述和分析,并制定研究目标、研究对象、研究假设和研究方法。第二部分(第2-3章)介绍第一项研究成果,即俄罗斯和中国城市可持续发展的比较分析,并对可持续城市规划和城市化进程两个主题进行详细描述与对第一项研究的结果进行讨论。第三部分(第4-7章)介绍第二项研究成果,即俄罗斯的案例研究,相关主题包括:俄罗斯城市可持续发展的社会经济问题;俄罗斯的创新基础设施;从科学定居点到斯科尔科沃创新中心的苏联科学城市发展历史回顾;斯科尔科沃创新中心的城市规划理念。第四部分(第8章)对第二项研究的结果进行讨论,探讨城市发展在国家可持续发展过程中的作用。第五部分介绍结论并对后续的科研工作提出建议。论文作者对俄罗斯和中国的历史,以及两国在20世纪和当下建设现代国家的过程中所经历的困难道路深表敬意和理解。尽管在经济、社会、文化和地缘上存在差异,两个国家都是在现在和未来为和平与稳定做出巨大努力的强大的现代国家。
Dafina Daniel Ndumbaro[7](2019)在《坦桑尼亚油气投资合同:批判性分析》文中研究说明自21世纪前十年的油气大发现以来,坦桑尼亚政府随之改革了法律和制度。不过,投资方面的改革并不稳定,政府在油气投资中的分成也较少。这种不稳定性及较少分成是由于油气投资合同的谈判、起草和管理不佳。尽管前人揭示了这些问题,但暂无关于坦桑尼亚的此类研究。在此背景下,本文研究了坦桑尼亚的油气投资合同,旨在识别现有缺陷及其对投资行为的影响。为了使研究更贴近现实,本文聚焦于合同法和投资法。在合同方面,本文分析了政府如何就油气问题进行谈判、起草及管理合同。本文进一步研究了所有权的概念以及产权的处置和转移,从而探讨坦桑尼亚投资合同中的不稳定性和分成较少问题。在投资方面,本文研究了相关的投资法,从而确定缺陷所在。在寻找稳定性和分成提高的障碍时,关于油气投资的法律规定提供了思路。在广义的油气投资上,本文探讨了生产谈判及政府的角色。本文进一步研究了部分制度在投资合同履行中的现实作用。该部分研究对于油气投资合同的综述,基于现有法律、书籍、论文、网络资料、周期性指标以及公开的生产合同范本。本文应用了宪法托管的(constitution trusteeship)理论以及Austin的所有权理论。(constitution trusteeship理论指出,政府是自然资源的托管方,代表公众利益,即公众是自然资源的所有者。根据Austin的产权理论,公众是所有者,对财产有处置权(售卖、出租或转移)。本文认为,谈判是合同形成的首要条件,因此,生产投资合同的谈判应慎之又慎。本文指出,油气产业的生产投资所存在的问题包括:在与投资方的谈判中,缺乏有经验的谈判专家;公众是自然资源的所有者,因而需要参与合同事宜,但在投资合同的形成过程中,缺乏公众参与。本文进一步指出,由于缺乏对政府行为的监督和制衡,如果政府职能过多,那么,将发生利益冲突和权力滥用。同时,本文提供了政府可能导致利益冲突和权力滥用的案例。结论进一步表明,政府的过多职能将对合同的稳定性产生负面影响。此外,本文发现了法律和政治行为如何危害坦桑尼亚的油气投资。通过研究法律和政治影响投资合同的实例,本文以案例研究的方式指出了一系列问题。本文指出,尽管推行了油气制度改革,但制度缺乏确保油气部门平稳运作并降低监管成本的联动机制。最后,针对有意在坦桑尼亚进行油气开发的外国投资者,本文提出了指导性建议。这些建议旨在概括性地告知外国投资者,在与政府签订合同时,应考虑哪些事前事后因素。为了最小化稳定性和分成的问题,也为了在坦桑尼亚油气领域建立投资友好的环境,本文提出了几条建议,包括法律、合同以及行政的干预措施。法律干预包括但不限于修订或扩充油气投资法案的条款。合同干预包括但不限于审阅和扩充政治风险保障条款、使用权安全保障条款、谈判指导原则以及类似《2013年生产合作协议范本》第9条第4款第8项(Article 9(ix)(h)of Model Production Sharing Agreement 2013)的合同条款解释。行政干预包括但不限于提高本地人员在政府谈判中的能力。本文还建议,在合同起草之初,公众应参与其中,从而减少对政府的不满,并创建投资的有利条件,促进投资的稳定性。政府应建立一站式服务中心以及内部电子协调机制,从而改善对油气部门的管理。应重塑政府在投资中的角色,将利益冲突降到最低,从而改善对油气部门的管理。本文指出,法律、合同以及行政干预能够最小化坦桑尼亚投资中的不稳定和分成过少问题。
郭振威,赖健清,张可能,毛先成,王智琳,郭荣文,邓浩,孙平贺,张绍和,于淼,崔益安,柳建新[8](2020)在《中南大学地球科学进展与前沿(英文)》文中指出中南大学地质资源与地质工程一级学科自主创立了国际领先的地洼学说、伪随机多频电磁场理论及广域电磁勘探系统,在壳体大地构造学、地电场勘探理论与装置系统、多因复成成矿理论、三维成矿预测、复杂地层钻井技术等领域形成了具有国际影响的中南学派。2000年以来,伪随机电磁法勘探系统和广域电磁法勘探系统在国内外开展了广泛的推广应用,其中"均匀广谱伪随机电磁法及其应用"于2006年获得国家技术发明二等奖、"大深度高精度广域电磁勘探技术与装备"于2018年获得国家技术发明一等奖。本学科是危机矿山深边部接替资源勘探、地质和地球物理有机结合并直接服务于国民经济主战场的国家级重点学科。20年来,本学科以创立的成矿与找矿理论为指导,以自主研制的国家领先的电磁勘探系统为手段,在国内外矿山和成矿区带的深边部资源勘探中大显身手,在国内外众多矿山找到了一大批矿产资源,缓解了大批矿山的资源危机,取得了巨大的经济社会效益。本学科还在复杂地层钻进技术与极端地层钻具研制理论与技术、地质灾害监测与防治、三维可视化定位定量预测等方面的成果在国内享有盛誉。
Rana Muhammad Ali Washakh[9](2020)在《喜马拉雅中部阿润河谷高山环境下的冰湖溃决洪水研究》文中进行了进一步梳理冰川湖泊溃决洪水(GLOF)是一种被研究人员广泛认识的自然灾害,其爆发后的巨大破坏能力对自然生态环境和人造基础设施安全等都构成严重威胁。因此,进行GLOF风险评估是非常必要的,特别是在有水电站的流域内,如果不进行GLOF风险评估,可能会造成巨大的社会经济损失。此外,还需要综合汇编水文、地质、地貌和气候数据,以便对水电站等重要项目进行可行性研究和设计研究。值得注意的是,文献中已有很多方法可用于评估冰湖溃决洪水。这些方法通过方法构造的类型、评价特征的数量和选择、评价过程中所需的输入数据和主观性比率来区分,有些是适应环境设计的,有些是设计来适应的。评价程序对输入数据的要求和主观性的要求通常被认为是其重复使用的根本障碍。最近的一项研究考察了这些方法在高山环境中的适用性。结果表明,所采用的方法均不满足所有规定的标准,且需要耗费大量的人力、时间和成本,因此,需要一种新的方法来适用于高山环境中水电项目安全性评估。此外,由于现有的GLOF风险评估方法的主客观局限性,我们提出了一种新的、易于应用的基于历史冰湖溃决洪水流量和影响规模的四步筛选方法,应用范围更广,不需要根据主题区域进行适应变化,这也允许成本效益和时间效益重复使用这个模型,因为它不保证一个大的团队,数月的分析,昂贵的设备和现场旅行和样品收集。在这项研究中,我们的工作重点是在阿伦河流域的上阿伦水电站项目(UAHEP),除了建立水文、地质、地貌和气候数据库之外,我们还采用了一种新的、更全面的方法来确保水电站的安全项目。在本研究第一阶段,确定了49个面积大于0.1km2的冰川湖,以供进一步分析。对这49个冰川湖进行了1990-2018年间的地理描述和地貌分析,以便在根据本研究提出的新模型进行严格筛选之前,在初步阶段更好地了解在自然和人为环境下冰川湖的性质。在第二阶段,取消或增加气候变化因子及其对研究区冰川湖泊详细风险评估的影响是非常重要的,因此,我们分析了该地区气温、降水趋势与记录的GLOF事件的发生之间的关系,发现GLOF的规模随降水量和温度的增加而增加可能是影响研究区冰川湖泊详细风险评估的主要因素。然而,从1960年到2018年的气候分析表明,气候变化与全球变暖频率之间的关系尚不清楚;在第三阶段,补充编制水文、地质、地貌和气候数据资料,以协助基础设施的设计和建设,具体如下:据此计算,UAHEP坝址处的年平均流量约为217 m3/s。100年一遇的大坝和发电站坝址洪水预计分别为2620 m3/s和2980 m3/s。编制了SWAT模型,并用于模拟大坝和发电站现场的可能最大洪水(PMF)。UAHEP坝址处的PMF洪峰估计为4990 m3/s。UAHEP厂房址处的PMF洪峰估计为6060 m3/s。区域地质研究表明,研究区位于下喜马拉雅中陆单元。这一地区存在诸如MCT、std、MBT、MFT和MHT等冲断层。其中,MCT向北延伸,位于拟建坝址的东侧和西侧。MCT与项目坝址之间的最短距离为3至5公里。根据最新的地震危险性评估,坝址和厂房址的OBE峰值地面加速度(PGA)分别为0.12和0.11g。坝址SEE的PGA为0.74g。储层地质分析表明,储集盆地基岩以片麻岩为主。库区为微风化、新鲜岩体,预计渗透性低,阿伦河谷为区域最低排水点。坝址基岩主要为ZG1区(Ⅱ级),为微风化新鲜片麻岩。由于该区岩体强度高,通常选作坝址基础。1960-2019年的滑坡分布表明,在273个滑坡中,有15个可能是沿UAHEP主河道的滑坡坝。根据其发生时间进行进一步审查,确定其中5个是相对于2010年的新滑坡,因此,这5个滑坡可能需要进一步研究其对UAHEP的影响。在第四个阶段,基于历史GLOF事件记录的受影响长度和体积,我们提出了一个新的方法来用于识别4个潜在的关键湖泊;并根据历史GLOF事件进行最坏情况的情景模拟,根据受影响的长度范围对湖泊进行筛选,并假设每个湖泊都有爆发的可能性,因为在评估的初步阶段如果多标准评估排除了一些湖泊,但由于这些标准本身的不确定性,导致结果可能仍然是有问题的。另一方面,如果多标准评估确定某些湖泊具有潜在危险,而这些冰川湖泊也不对重点地区构成威胁,这可能是因为它们即使爆发后的洪水路径与大坝/电厂现场之间能达到安全距离。在第五阶段,根据多准则评价、触发因素和破坏机制,确定了爆发概率,继而对湖泊进行了深入细致的研究。通过研究发现在四个冰川湖泊中,下巴伦湖和强中克措湖为临界湖泊。一旦确定易受突发洪水影响的湖泊,洪水模拟和濒危区域的划定是风险管理程序的下一步。在第六阶段,利用MIKE 11软件进行了大坝/电站断面可能流量的数值模拟,专家们认为该方法更适合在喜马拉雅地区应用,并将计算结果与广泛使用的经验方法和历史湖泊观测结果进行了对比分析突出事件,进一步讨论了确定的重点水电站设计推荐临界湖泊的物理性质、触发因素和突出概率。巴伦冰川下湖的GLOF模拟结果表明,该湖的爆发可能引起洪峰高达10144m3/s的洪水流量,洪峰在溃决发生后1小时1分钟到达发电厂址时将衰减到8478m3/s左右。强钟克措冰川湖的GLOF模拟结果表明,强钟克措冰川湖的溃决可能引起8983m3/s的洪峰流量,溃决发生后约1小时14分钟到达坝址时,洪峰将衰减到7576m3/s左右。泄洪发生后约1小时30分钟到达厂址,泄洪流量进一步减弱至6935m3/s左右。两个冰川湖的估计洪峰流量与历史上爆发洪峰流量比较接近。将已确定的两个临界湖泊的突出洪峰估计值与不同经验模型和观测到的历史湖泊突出事件的结果进行比较,结果表明,该估计值与这些结果吻合得很好,事实上,在可接受的范围内,略偏于保守或安全的一面。因此,利用该方法建立的临界湖泊及其溃决洪水的识别模型是合理可行的。此外,虽然本分析所采用的方法和方法是新的,但本研究的结果与世界银行(WB)、尼泊尔电力局(NEA)、Claque和Connor以及ICIMOD一致。2019年10月,我们走访了中国西藏日喀则地方水利局,发现青藏宗阁措浩湖被确定为潜在的危险冰川湖,这与本次研究的结果也是一致的。通过与现有的冰湖溃决洪水敏感性评价方法的比较,我们认为该方法具有以下优点和潜力:基于历史格洛夫影响长度和体积的新模型更适合于工程产品,因为研究单个湖泊的前提条件是最小化,这是由现有文献中的常规方法建议的;可重复性,它允许对冰湖溃决洪水敏感性及其时间演变进行倒退、现在和近期的评价;多重结果原则,允许识别每个湖最可能的GLOF场景,并允许省略在特定情况下不起作用的特征(场景、决策树);另外,从经济和时间效益上本研究介绍的评估方法并不需要数百万美元的预算、庞大的团队、多年的分析、昂贵的设备以及到冰川湖的现场旅行等,正如在一般大型水电项目的建设,只需要常规的全球环境足迹分析。为了实现这些目标,我们进行了一系列密集和综合的案例研究、数据收集以及GLOF模拟和分析。
程维明,刘樯漪,赵尚民,高晓雨,王楠[10](2017)在《中国近40年来地貌学研究的回顾与展望(英文)》文中进行了进一步梳理Geomorphology is one of the main subdisciplines of geography.The research achievements and prospects in geomorphology have received considerable attention for a long time.In this paper,a general retrospect of geomorphologic research in China over the past 60 years was firstly addressed,especially the research progress during the last 40 years.Based on a summary of experience and a tendency of development,perspectives of geomorphologic research direction in the future were provided.It is concluded that the discipline of geomorphology has made great progress in the aspects of geomorphologic types,regionalization,as well as their subdisciplines such as dynamic geomorphology,tectonic geomorphology,climatic geomorphology,lithological geomorphology,palaeogeomorphology.We believe that persisting in the unity principle between morphological and genetic types would be conductive for the development of traditional landforms and integrated landforms.In addition,five perspectives aim to enhance China’s geomorphologicl research capacity were proposed.They are:(1)strengthening the research of basic geomorphologic theory and the research of integrated geomorphology to expand the research space;(2)focusing more on the research of geomorphologic structure and geomorphologic function to improve the application ability of geomorphology;(3)constructing a comprehensive resource,environmental,and geomorphologic information system and building a sharing platform to upgrade the intelligent information industry of geomorphology;(4)putting more efforts on the research of coastal geomorphology and marine geomorphology to assist the transformation of China from a maritime country to an ocean power;and(5)cultivating talents and constructing research teams to maintain a sustainable development of China’s geomorphologic research.
二、INSTITUTE OF GEOLOGICAL INFORMATION AND NATIONAL GEOLOGICAL LIBRARY——A REVIEW OF THE DEVELOPMENT OF INFORMATION WORK(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、INSTITUTE OF GEOLOGICAL INFORMATION AND NATIONAL GEOLOGICAL LIBRARY——A REVIEW OF THE DEVELOPMENT OF INFORMATION WORK(论文提纲范文)
(1)Quantitative Geoscience and Geological Big Data Development:A Review(论文提纲范文)
1 International Quantitative Geoscience and Big Data Research |
2 Quantitative Geoscience and Geological Big Data Research in China |
2.1 National macro strategies and plans |
2.2 Quantitative mineral resource prediction and assessment theories and methods |
2.2.1“Triple-type”metallogenic prediction theory |
2.2.2 Metallogenic prediction theory based on integrated information |
2.2.3 Deposit modeling and integrated geological information prediction method |
2.2.4 Prospecting method based on cube prediction model |
2.3 Geoscience information software system |
2.4 Construction of geoscience information platform |
Stage I:PC–Stand-alone Workstation |
Stage II:Local Area Network–Internet Stage |
2.5 Application of quantitative geosciences and geological big data in China |
2.5.1 Informatization of basic geological data |
2.5.2 Quantitative prediction and prospecting of mineral resources |
2.5.3 Geological environment and disasters |
(1)Early warning for geological disasters based on3S technology |
(2)Geological 3D model technology-based disaster survey |
2.5.4 Digital Land |
(1)“Digital Land”–“One Map”platform |
(2)“Digital Land”–Develop integrated supervision system |
(3)“Digital Land”–Construction of e-government land affairs platform |
(4)“Digital Land”–Construction of land and resources information sharing platform |
2.5.5 Digital City |
(1)3D urban geological survey and social services in Shanghai |
(2)Construction and application of national Digital City geospatial framework technology system |
(3)Construction of Digital City in Anhui |
3 Outlook |
4 Conclusion |
(2)Progress in China’s Unconventional Oil & Gas Exploration and Development and Theoretical Technologies(论文提纲范文)
1 Introduction |
2 The Status of Global Unconventional Oil&Gas Exploration |
2.1 Progress in global unconventional oil&gas exploration |
2.2 Progress in China's unconventional oil&gas exploration |
3 Progress in Study of China's Unconventional Oil&Gas |
3.1 Basic geological characteristics of major unconventional oil&gas types |
3.1.1 Shale gas |
3.1.2 Tight gas |
3.1.3 CBM |
3.1.4 Tight oil |
3.1.5 Shale oil |
3.2 Progress in study on fine-grained sedimentology |
3.2.1 Implications of fine-grained sedimentology |
3.2.2 Genetic mechanism and distribution of continental lacustrine basin large-scale shallow-water deltas |
3.2.3 Genetic mechanism and distribution of continental lacustrine basin sandy clastic flow |
3.2.4 Progress in study on fine-grained sedimentology |
3.3 Progress in study on unconventional reservoir geology |
3.3.1 Implications of unconventional reservoir geology |
3.3.2 Progress in study on unconventional oil&gas reservoir geology |
3.4 Progress of study on unconventional oil&gas geology |
3.4.1 Implications of unconventional oil&gas geology |
3.4.2 Progress of study on unconventional oil&gas geology |
3.5 Progress of study on unconventional oil&gas exploration techniques |
3.5.1 Progress of study on geophysics techniques for unconventional oil&gas geology |
3.5.2 Progress of study on "sweet spot zone"evaluation for unconventional oil&gas geology |
3.6 Progress of study on unconventional oil&gas development and engineering techniques |
3.6.1 Progress of study on micro-seismic monitoring |
3.6.2 Progress of study on horizontal drilling&completion&fracturing |
3.6.3 Progress of study on"factory-like"operation pattern |
3.6.4"Man-made reservoir"development |
4 New Understanding,Significance,Challenge and Positioning of Unconventional Oil&Gas Breakthroughs |
4.1 The significant new understandings of unconventional oil&gas breakthrough |
4.2 The great significance of unconventional oil&gas breakthrough |
4.3 Challenges in unconventional oil&gas development |
4.4 Strategic position of China's unconventional oil&gas exploration and development |
5 Conclusions |
(3)基于MapGIS建立的中国地质环境图系数据库(论文提纲范文)
1 引言 |
2 数据库建设原则与方法 |
2.1建库原则 |
(1)一致性原则 |
(2)集约性原则 |
(3)独立性原则 |
(4)适用性原则 |
2.2建库方法 |
3数据基础和建库流程 |
3.1数据基础 |
3.1.1地理图层 |
3.1.2专业图层 |
3.2建库流程 |
4数据库结构及内容 |
4.1数据库结构和系统库 |
4.1.1数据库结构 |
4.1.2系统库 |
4.2编码规则 |
4.2.1专业图层编码规则 |
(1)空间尺度代码 |
(2)比例尺代码 |
(3)图系类别代码 |
(4)图名 |
(5)图层 |
(6)采用的坐标系 |
4.2.2图元编码规则 |
4.3属性表的结构 |
4.4要素图层 |
4.5元数据建设 |
(1)元数据信息 |
(2)标识信息 |
(3)数据集质量信息 |
(4)空间参照系信息 |
(5)内容信息 |
(6)分发信息内容 |
(7)引用和负责单位联系信息 |
5数据质量控制和评述 |
5.1数据质量控制 |
5.2质量评述 |
6数据库共享发布 |
7结论 |
1 Introduction |
2 Principles and Methods of Database Construction |
2.1 Principles of Database Construction |
(1)Principle of Consistency |
(2)Principle of Economy |
(3)Principle of Independence |
(4)Principle of Applicability |
2.2 Method of Database Construction |
3 Data Foundation and Database Construction Process |
3.1 Data Foundation |
3.1.1 Geographic Layers |
3.1.2 Professional Map Layers |
3.2 Database Construction Process |
4 Database Structure and Content |
4.1 Database Structure and System Library |
4.1.1 Database Structure |
4.1.2 System Library |
4.2 Coding Rules |
4.2.1 Element Coding Rules |
(1)Spatial scale code |
(2)Scale code |
(3)Map system category code |
(4)Map name |
(5)Map layer |
(6)Coordinate system |
4.2.2 Primitive Coding Rules |
4.3 Structure of Attribute Table |
4.4 Element Map Layers |
4.5 Metadata Construction |
(1)Metadata information |
(2)Identification |
(3)Dataset quality |
(4)Spatial frame of reference |
(5)Content |
(6)Information distribution |
(7)Citation and contact of relevant institution |
5 Data Quality Control and Review |
5.1 Data Quality Control |
5.2 Quality Review |
6 Database Sharing and Publishing |
7 Conclusion |
(4)The Present Research and Prospect of Chinese Geosciences History(论文提纲范文)
1 The History and Present Situation of the Research on the History of International Geological Science |
1.1 The change of the content of the study |
1.2 Organizations and research institutes |
1.3 Publications and authors |
2 The Present Situation and Progress of the Study of the Chinese Geological Science History |
2.1 A brief account of the development of the Chinese geological science history |
2.2 Research institutes and research groups |
2.3 The guiding ideology of the research on the history of geological science |
2.4 Major progress in recent years |
2.4.1 Promote interaction between Chinese geological science and social development in China |
2.4.2 A study on the history of geological disciplines of China |
2.4.3 A study of geological characters |
Kwong Yung Kong(1863-1965) |
Woo Yang Tsang(1861-1939) |
Gu Lang(1880-1939) |
Lu Xun(1881-1936) |
Wang Chongyou(1879-1985) |
Zhang Hongzhao(1877-1951) |
Ding Wenjiang(1887-1936) |
Weng Wenhao(1889-1971) |
Li Siguang(1889-1971) |
R.Pumpelly(1837-1923) |
Richthofen,Ferdinand von(1833-1905) |
Amadeus Willian Grabau(1870-1946) |
Johann Gunnay Andersson(1874-1960) |
Prerre Teilhaya de Chardin(1881-1955) |
2.4.4 The study of history of ancient geological thoughts |
2.4.5 The study of the geological cause |
2.4.6 Research of the history of the communication of Chinese and foreign geological science |
3 Development Prospect |
4 Conclusion |
(5)二战后澳大利亚能矿产业领域的环境管理研究(论文提纲范文)
Abbreviations and Acronyms |
摘要 |
Abstract |
Chapter1 Introduction |
1.1 Background of the Study |
1.2 Introduction of Australian Energy and Mineral Resources Industry |
1.3 Research Methodology |
1.4 Literature Review |
1.5 Thesis Structure |
Chapter2 The Setting:Early Mining and Its Adverse Impact on Environment |
2.1 The Development of Mining before World War Two |
2.2 The Conflicts between Early Mining and Environment in Australia |
2.3 Early Environment Movement-from Observation toConversation |
Chapter3 Consolidation of the Industry and Its Pressurefrom Modern Environment Movement |
3.1 A World Class Industry and Emergence of EnvironmentalProtection Issues in the 1950s to 1970s |
3.2 Division of Governments’Powers in the Industry |
3.3 A Consolidated Industry and Environment’s Presence on National Political Agendain the1980s |
Chapter4 Both the Industry and Environment Managementin an International Context |
4.1 The Internationalization of Australia’s Resources Industry inthe 1990s |
4.2 Environment Management in an International Context |
4.3 Environmental Management in Mining as a Partnership Approach amongGovernments |
Chapter5 A Sustainable Resources Industry in the New Century |
5.1 Prosperity and Recession of the Industry |
5.2 Sustainable Development and Australia’s Resources Sector |
5.3 Case Study-A Sustainable Broken Hill |
5.4 Key Factors of Applying Sustainability to the Industry |
Chapter6 Conclusion |
6.1 Major Findings |
6.2 Implications and Limitations of the Research |
Bibliography |
个人简历及科研成果 |
Acknowledgements |
(6)俄罗斯城市可持续发展及其对中国城市的启示研究(论文提纲范文)
摘要 |
ABSTRACT |
CHAPTER Ⅰ Introduction |
1.1 Research background |
1.2 Research goal and objectives |
1.3 Literature review |
1.3.1 Concept of sustainable development |
1.3.2 Social-Economic aspects of regional planning and urban development in Russia |
1.4 Materials and methods |
1.4.1 Research framework |
1.4.2 Materials and methods |
CHAPTER Ⅱ Concept of Sustainable Development |
2.1 Sustainable development |
2.1.1 Phenomenon 'climate change' |
2.1.2 Urbanization |
2.1.3 Relationship between climate change and urbanization |
2.1.4 International level commitments |
2.1.5 Conclusion |
2.2 Sustainable urban planning in Russian Federation |
2.2.1 Introduction |
2.2.2 Sustainable development in Russia |
2.2.3 Russian town-planning legislative base |
2.2.4 Russian national green building technical legislative base |
2.2.5 GIS Technology into the Russian town-planning practice |
2.2.6 Conclusion |
2.3 Sustainable urban planning in People's Republic of China |
2.3.1 Introduction |
2.3.2 Sustainable development in China |
2.3.3 Chinese urban planning legislative base National Garden City |
2.3.4 Chinese national green building technical legislative base |
2.3.5 Conclusion |
References |
CHAPTER Ⅲ Transformation of the Scientific Views on the Process of Urbanization |
3.1 Process of urbanization in Russian Federation |
3.1.1 Introduction |
3.1.2 Three waves of Russian urbanization |
3.1.3 First wave of urbanization1860s- |
3.1.4 Second wave of urbanization1926- |
3.1.5 Third wave of urbanization in1950s |
3.1.6 Conclusion |
3.2 Process of urbanization in People's Republic of China |
3.2.1 Introduction |
3.2.2 Three great historical transformations of China |
3.2.3 First historical transformation(1911) |
3.2.4 Second historical transformation(1949) |
3.2.5 Third historical transformation(1978) |
3.2.6 Conclusion |
References |
3.3 Results of the comparative analysis of sustainable urban development in Russian Federation and People's Republic of China |
3.3.1 Introduction |
3.3.2 Has comparative analysis value? |
3.3.3 What is the valuable experience of both countries in the modern urban development? |
3.3.4 Conclusion |
CHAPTER Ⅳ Socio-economic aspects of regional planning and urban development in Russian Federation |
4.1 Introduction |
4.2 Literature review |
4.3 Historical background |
4.4 All-Russia forum‘Strategic Planning in the Regions and Cities of Russia’ |
4.5 Inquire into the relationship between priorities of sustainable development,strategic planning and Russian socio-economic policy |
4.5.1 Strategic planning system of the Russian Federation |
4.5.2 Spatial Development Strategy of the Russian Federation to 2025 |
4.5.3 Interrelation of the documents of strategic and territorial planning of Russian Federation |
4.5.4 Russian state policy of innovation development |
4.6 Conclusion |
References |
CHAPTER Ⅴ Historical overview of the Soviet science cities development |
5.1 Introduction |
5.2 Historical overview of the science cities development1917-1980s |
5.2.1 Urban design trends in the science settlements creation,1930s |
5.2.2 Urban design trends in science cities establishment after the Great Patriotic War.The beginning period of the Cold War |
5.2.3 Urban design trends in the science cities establishment in1960-1970.The period of the formulation of a standard approach to design and construction |
5.2.4 Summing up the results of the Soviet period of the construction of the science cities of1930s-1980s |
5.3 Urban design trends in the science cities establishment in1990s |
5.4 Urban design trends in the science cities establishment after2010s |
5.5 Conclusion |
References |
CHAPTER Ⅵ Russian innovation infrastructure |
6.1 Introduction |
6.2 National innovation system of the Russian Federation |
6.3 Innovation Infrastructure:territorial level |
6.3.1 Innovation special economic zones |
6.3.2 Innovation and industrial clusters' |
6.4 Innovation infrastructure physical level:technoparks and business incubators |
6.4.1 Technoparks |
6.4.2 Technopark-leaders of the II National Russian Technoparks Ranking-2016 |
6.5 Conclusion |
References |
CHAPTER Ⅶ CASE OF STUDY:Skolkovo Innovation Center |
7.1 Introduction |
7.1.1 Skolkovo Innovation Center |
7.2 Aim of creating Skolkovo Innovation Center |
7.3 Types of infrastructure of the Skolkovo Innovation Center |
7.4 Results of international competition for Skolkovo IC master plan concept |
7.4.1 Finalist of international competition for Skolkovo IC Masterplan OMA |
7.4.2 Winner of international competition for Skolkovo IC master plan- AREP |
7.5 Structure of Skolkovo IC Town Planning Board |
7.6 Development strategy and documents of Skolkovo IC master plan |
7.7 Skolkovo IC infrastructure construction financial program |
7.8 Transport accessibility to Skolkovo IC |
7.9 Key institutions facilities of the Skolkovo IC |
7.9.1 Skoltech- Skolkovo Institute of Science and Technology |
7.9.2 Research and development centres of the Skolkovo IC District D |
7.9.3 Skolkovo Technopark building |
7.9.4 Business Center Amaltea(BC Gallery) |
7.9.5 IT-Cluster Business Park of the Skolkovo IC |
7.9.6 Transmashholding Corporate Research Center |
7.9.7 Hypercube the First Building of Skolkovo IC |
7.9.8 Skolkovo Business Center(MatRex) |
7.9.9 Sberbank Technopark |
7.10 Social infrastructure facilities of Skolkovo IC |
7.11 Housing facilities of Skolkovo IC |
7.11.1 Central Zone Z |
7.11.2 South District D |
7.11.3 Technopark District D |
7.12 Skolkovo IC landscape design |
7.13 Conclusion |
CHAPTER Ⅷ Russian town-planning science in the context of socio-economic transformations |
8.1 Introduction |
8.2 Definition of the term"gradostroitelstvo" |
8.3 Historical overview of the town-planning science in Russia |
8.3.1 Socialist town-planning1917- |
8.3.2 Socialist town-planning1933- |
8.3.3 Socialist town-planning1941- |
8.3.4 Socialist town-planning1941- |
8.4 Theoretical foundations and unique traditions of town-planning science in Russia |
8.5 Russian fundamental research in the field of town-planning |
8.6 Course of town-planning in the Russian education system |
8.6.1 The town-planning faculty of the Moscow Architectural Institute(State Academy)MARHI |
8.6.2 Vysokovsky Graduate School of Urbanism |
8.6.3 Strelka Institute for Media,Architecture and Design |
8.6.4 MARCH Architecture School |
8.6.5 Summarizing the analysis of four urban planning schools in Russia |
8.7 Applied town-planning science |
8.7.1 Methods of town-planning analysis |
8.7.2 Interdisciplinary methods of town-planning analysis |
8.8 Conclusion |
References |
CONCLUSION |
SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY AND PRACTICE |
APPENDIX Ⅰ |
APPENDIX Ⅱ |
APPENDIX Ⅲ |
APPENDIX Ⅳ |
APPENDIX Ⅴ |
APPENDIX Ⅵ |
APPENDIX Ⅶ |
APPENDIX Ⅷ |
APPENDIX Ⅸ |
APPENDIX Ⅹ |
APPENDIX ⅩⅠ |
APPENDIX ⅩⅡ |
ACKNOWLEDGEMENTS |
SCIENTIFIC ACHIVEMENTS |
Appreciate |
(7)坦桑尼亚油气投资合同:批判性分析(论文提纲范文)
摘要 |
ABSTRACT |
Abbreviations |
Chapter Ⅰ: The Introduction |
1.1 Thesis Layout |
1.2 Background of Problem |
1.3 Statement of Problem |
1.4 Objective of Stud |
1.5 Hypothesis |
1.6 Literature Review |
1.7 Significant of the Study |
1.8 Research Methodology |
Chapter Ⅱ: Oil and Gas Sector Historical Review in Tanzania |
Part Ⅰ: Political Economic history |
Part Ⅱ: Exploration Legal History |
Part Ⅲ: Analysis of Oil and Gas Laws in Tanzania |
2.3.1 Primary Laws in Oil and Gas Investment |
2.3.1.1 Constitution |
2.3.1.2 Petroleum Act |
2.3.1.3 Oil and Gas Revenue Management Act |
2.3.1.4 Tanzania Extractive Industries (Transparency and Accountability) Act |
2.3.2 Secondary laws in Oil and Gas Investment |
2.3.2.1 Social Security Regulatory Authority Act |
2.3.2.2 Environmental Management Act |
2.3.2.3 Occupational Safety and Health (OSH) Act |
2.3.2.4 Workers Compensation Act |
2.3.2.5 Non Citizen (Employment Regulations) Act |
2.3.2.6 Immigration Act |
Part Ⅳ Oil and Gas Tanzania |
2.4.1 Oil and Gas Production Chain |
2.4.2 Oil and Gas Institutions |
2.4.2.1 Tanzania Petroleum Development Corporation (TPDC) and National Oil Company (NOC) |
2.4.2.2 Petroleum Upstream Regulatory Authority (PURA) |
2.4.2.3 Energy and Water Utilities Regulatory Authority (EWURA) |
2.4.2.4 Oil and Gas Institutions Overview |
2.4.3 Role of Government in Upstream Oil and Gas Investment Activities in Tanzania |
2.4.3.1 Government as Trustee |
2.4.3.2 Government as Regulator |
2.4.3.3 Government as Supervisor |
2.4.3.4 Government as a Part in Oil and Gas Activities |
2.4.3.5 Roles of Government Overview |
Chapter Ⅲ: Oil and Gas Contract |
Part Ⅰ: Brief Introduction of Forms of Investment Contract in Tanzania |
3.1.1 Oil and Gas Investment Contract in Tanzania Overview |
Part Ⅱ: Upstream Oil and Gas Investment Contract in Tanzania Overview |
3.2.1 Contractual Models |
3.2 1.1 Concession |
3.2.1.2 License in Tanzania |
3.2.1.3 Production Sharing Agreements (PSA) Overview |
3.2.1.4 Production Sharing Agreement (PSA) in Tanzania |
3.2.1.5 Joint Venture Overview |
3.2.1.6 Joint Venture in Tanzania |
3.2.1.7 Service Contract Overview |
3.2.1.8 Service Contract in Tanzania |
Part Ⅲ: Current Situation of Oil and Gas Investment Contract |
Chapter Ⅳ: Formation of Oil and Gas Investment Contract |
Part Ⅰ: Formation and Existence of Contract |
4.1.1 Negotiation of Oil and Gas Contract Overview |
4.1.1.1 Negotiation of Oil and Gas Investment Contract in Tanzania |
4.1.2 Drafting of Oil and Gas Contract Overview |
4.1.2.1 Drafting in Tanzania |
4.1.3 Management of Oil and Gas Contract |
Part Ⅱ: Roles of the Parties in Oil and Gas Contract Overview |
4.2.1 Roles of Tanzania Government in Oil and Gas Contract |
4.2.1.1 Management of Natural Resources |
4.2.1.2 Government as Supervisor |
4.2.1.3 Government as Part in Oil and Gas Contract |
4.2.2 Roles of Investors in Upstream Oil and Gas Activities Overview |
4.2.2.1 Provide Guarantee |
4.2.2.2 Provide Discovery Information |
4.2.2.3 Pay Tax |
4.2.2.4 Propose to the Government Take off Procedure |
4.2.2.5 To Furnish Necessary Information to TPDC |
4.2.2.6 Develop Internal Management Systems that Comply With the Act |
4.2.2.7 Insure Operation Risks |
4.2.2.8 Analyze Risks |
4.2.2.9 Conduct Environmental Impact Assessment |
4.2.2.10 Abide with Terms |
Part Ⅲ Contractual Liability of Parties on Oil and Gas Contract |
4.3.1 Effect of Contractual Liability in Stability and Revenue Capture |
4.3.2 Choice of Law in Handling Oil and Gas Contractual Issues in Tanzania |
4.3.3 Judicial Protection of Parties to Oil and Gas Contract |
4.3.4 Enforcement of the Oil and Gas Claims |
Chapter Ⅴ Analysis of Contractual Provisions |
Part Ⅰ Contractual Provisions Analysis |
5.1.1 Risk Assessment Provisions |
5.1.2 Guarantee of Performance of Obligations |
5.1.3 Stability Clause |
Part Ⅱ Challenges Faces Oil and Gas Investment Contract Tanzania |
5.2.1 Specific Challenges |
5.2.1.1 Contractual Provisions not Addressing all Legal Risks |
5.2.1.2 Lack of Negotiation Guidelines |
5.2.1.3 Contractual Terms do not Guarantee Security of Tenure |
5.2.1.4 Lack of Management Mechanism for Contract Performance |
5.2.1.5 Lack of Clarifications in Some Provisions of Contract |
5.2.2 General Challenges |
5.2.2.1 Lack of Expertise |
5.2.2.2 Lack of Sufficient Investment Capital |
5.2.2.3 Lack of Transparency |
5.2.2.4 Lack of Public Participation |
5.2.2.5 Conflicting Roles of Government |
5.2.2.6 Lack of Sector Management Mechanism, (Inter-Coordination, Monitoring and Evaluation) |
5.2.2.7 Political Influence |
5.2.3 China Future Investment to Tanzania |
Chapter Ⅵ Conclusion and Recommendations |
6.1 Conclusion |
6.2 Recommendations |
References |
Books and Journal Articles |
Table of Cases |
Statute and Soft Laws |
Books and Journal Articles |
News Reports |
Condition of Publications |
(9)喜马拉雅中部阿润河谷高山环境下的冰湖溃决洪水研究(论文提纲范文)
摘要 |
ABSTRACT |
Chapter1 Introduction |
1.1 Background and Significance |
1.2 Study Area |
1.2.1 Justification of Site Selection |
1.2.2 Justification and Aims of the Work in Arun |
1.3 Research Gap and Problem Statement |
1.4 Novelty |
1.5 Scope and Objectives |
1.5.1 Main Objectives |
1.5.2 Sub Objectives |
1.6 Research Outline |
Chapter2 Literature Review |
2.1 GLOFs in the Context of High Mountain Environments |
2.2 Previous research and existing methods for assessing the susceptibility of glacial lakes to outburst floods |
2.2.1 The Qualitative Approach |
2.2.2 The Semi-Quantitative Approach |
2.2.3 The Quantitative Approach |
2.3 Flood Risk Management |
2.4 Previous studies related to UAHEP |
2.4.1 General |
2.4.2 Feasibility Study Phase I in1987 |
2.4.3 Feasibility Study(1991) |
2.4.4 Feasibility Review Study(2011) |
2.5 Drawbacks and Limitations of Existing Methods and Database |
Chapter3 Materials and Research Methodology |
3.1 Introduction |
3.2 Data Collection |
3.2.1 Hydrological and Meteorological Data |
3.2.2 Weather Data |
3.2.3 Remote Sensing Data |
3.3 Field Survey |
3.4 Estimation of Probable Maximum Flood |
3.4.1 Selection of Model |
3.4.2 Model Simulation |
3.5 Establishment of Glacier and Glacial Lake Databases |
3.6 The New Model for GLOF Risk Assessment |
3.7 GLOF Hydrological Evolution |
3.7.1 Approaches followed for GLOF Modeling |
Chapter4 Data Information System for Arun Valley |
4.1 Regional Overview |
4.1.1 Location& Access |
4.2 Geological and Geomorphological Study |
4.2.1 Regional Geology |
4.2.2 Geology of the Reservoir |
4.2.3 Geological Risk |
4.2.4 Land Cover |
4.2.5 Slope Characteristics and Steepness Factor |
4.2.6 Soil Erosion Processes |
4.3 Hydrological Study related to GLOFs |
4.3.1 River Systems |
4.3.2 Drainage Characteristics |
4.3.3 Results of Runoff Study |
4.3.4 Results of Flood Study |
4.4 Climatic Correlation with GLOFs |
4.4.1 Introduction |
4.4.2 Location Specific Details |
4.4.3 Climatic Correlation with GLOFs |
4.5 Natural Hazards in Arun Basin |
4.5.1 Landslides in Arun River Basin |
4.5.2 Fires Incidents in Arun Basin |
4.5.3 Earthquakes in Arun Basin |
4.5.4 GLOFs in the Arun River Basin |
4.6 The Distribution and Quantification of Glaciers and Glacial Lakes in Arun Valley |
Chapter5 The New Model for GLOF Risk Assessment |
5.1 The New Model |
5.1.1 Justification for the Assumed Depth of the Lakes |
5.2 Determination of the Critical Lakes using the New Model |
5.2.1 Multi-criterion outburst probability and failure mechanisms of the glacial lakes |
5.2.2 Preliminary Discharge Profiles and Outburst Probability of the Critical Lakes |
5.3 GLOF Modeling and Simulation of GLOFs in the Upstream of Arun River |
5.3.1 The Two Critical Lakes |
5.3.2 GLOF Modelling |
5.4 Suggested Mitigation for the potential GLOF from the two critical lakes |
Chapter6 Conclusions and Recommendations |
6.1 Summary,Comparison and Contribution of the novel method |
6.1.1 Comparison with the State of the Art |
6.2 Conclusion of the Data Information System |
6.3 Discussion and Limitations in Relation to the Novel Model |
6.4 Recommendations and Way Forward |
References |
Appendix1 中文简本 |
Appendix2 List of Figures |
Appendix3 List of Tables |
Acknowledgements |
CV of author and Research Contribution |
(10)中国近40年来地貌学研究的回顾与展望(英文)(论文提纲范文)
1 A retrospective look at published Chinese papers in the field of geomorphology over the last four decades |
1.1 The number of published papers and the stages of development of the discipline |
1.2 The changing content of published papers |
1.2.1 Continual innovation in geomorphologic research theory and a significant elevation in its academic status |
1.2.2 Ongoing expansion of the research field and its content derived from traditional geomorphology through comprehensive research encompassing geomorphology and physical geography, thereby deepening the breadth and depth of geomorphologic theory |
1.2.3 Evolution of the discipline into a full-fledged academic subject |
1) Maturity of geomorphologic classification system |
2) Refinement of geomorphologic regionalization and the ongoing emergence of sub-disciplines |
1.2.4 Continued expansion of research teams with the capacity to conduct scientific research on a large scale |
1.2.5 Advances in research methods and the establishment of a research system entailing new technologies |
2 A retrospective and future projected analysis of the status of research within geomorphologic sub-disciplines |
2.1 Dynamic geomorphologic research |
2.1.1 Glacial geomorphologic research |
2.1.2 Periglacial (permafrost) geomorphologic research |
2.1.3 Aeolian geomorphologic research |
2.1.4 Loess geomorphologic research |
2.1.5 Karst geomorphologic research |
2.1.6 Fluvial geomorphologic research |
2.1.7 Coastal and submarine geomorphologic research |
2.2 Structural geomorphologic research |
2.2.1 Tectonic structural geomorphologic research |
2.2.2 Geological tectonic geomorphologic research in the field of geology |
2.2.3 Volcanic and lava geomorphology research |
2.3 Climate geomorphologic research |
2.4 Paleogeomorphologic research |
2.5 Research on rock geomorphology |
2.5.1 Geomorphologic research on Danxia |
2.5.2 Geomorphologic research on granite and rhyolite |
2.6 Other kinds of geomorphologic research |
1) Gravity geomorphology |
2) Artificial geomorphology |
3 Future prospects |
3.1 Strengthening of basic geomorphologic research and realizing the prejudgment of topographical variation by simulating the formation, cause, and evolution pattern of geomorphology |
3.2 Strengthening crossover studies between geomorphology and other disciplines of geography, to expand the scope of geomorphologic research and develop an integrated geomorphologic approach |
3.3 Implementation of in-depth studies on geomorphologic structures and functions, and enhancement of geomorphology’s application potential |
3.4 Consolidation of an information system relating to resources, the environment, and geomorphology and establishing an information sharing platform on resources and the environment to facilitate industrial information upgrading relating to geomorphology |
3.5 Strengthening coastal and marine geomorphologic research and acquiring holographic information on coastal and marine resources and their environment to transform China from being a large country with an extensive marine environment into a marine power |
3.6 Strengthening talent training and academic team building, establishing a sustainable system for developing talent training, and ensuring the gradual ascendance of geomorphologic research in China |
四、INSTITUTE OF GEOLOGICAL INFORMATION AND NATIONAL GEOLOGICAL LIBRARY——A REVIEW OF THE DEVELOPMENT OF INFORMATION WORK(论文参考文献)
- [1]Quantitative Geoscience and Geological Big Data Development:A Review[J]. CHEN Jianping,XIANG Jie,HU Qiao,YANG Wei,LAI Zili,HU Bin,WEI Wei. Acta Geologica Sinica(English Edition), 2016(04)
- [2]Progress in China’s Unconventional Oil & Gas Exploration and Development and Theoretical Technologies[J]. ZOU Caineng,YANG Zhi,ZHU Rukai,ZHANG Guosheng,HOU Lianhua,WU Songtao,TAO Shizhen,YUAN Xuanjun,DONG Dazhong,WANG Yuman,WANG Lan,HUANG Jinliang,WANG Shufang. Acta Geologica Sinica(English Edition), 2015(03)
- [3]基于MapGIS建立的中国地质环境图系数据库[J]. 高萌萌,李瑞敏,徐慧珍,曾青石,王祎萍,荆继红,李小磊,殷铭,张像源. 中国地质, 2019(S2)
- [4]The Present Research and Prospect of Chinese Geosciences History[J]. CHEN Baoguo,ZHANG Jiuchen,YANG Mengmeng. Acta Geologica Sinica(English Edition), 2016(04)
- [5]二战后澳大利亚能矿产业领域的环境管理研究[D]. 黄丽. 华东师范大学, 2018(02)
- [6]俄罗斯城市可持续发展及其对中国城市的启示研究[D]. Lisaia Daria(达丽娅). 华南理工大学, 2019(01)
- [7]坦桑尼亚油气投资合同:批判性分析[D]. Dafina Daniel Ndumbaro. 上海交通大学, 2019(06)
- [8]中南大学地球科学进展与前沿(英文)[J]. 郭振威,赖健清,张可能,毛先成,王智琳,郭荣文,邓浩,孙平贺,张绍和,于淼,崔益安,柳建新. Journal of Central South University, 2020(04)
- [9]喜马拉雅中部阿润河谷高山环境下的冰湖溃决洪水研究[D]. Rana Muhammad Ali Washakh. 中国科学院大学(中国科学院水利部成都山地灾害与环境研究所), 2020(01)
- [10]中国近40年来地貌学研究的回顾与展望(英文)[J]. 程维明,刘樯漪,赵尚民,高晓雨,王楠. Journal of Geographical Sciences, 2017(11)
标签:history;