一、YICHANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文文献综述)
CHEN Baoguo,ZHANG Jiuchen,YANG Mengmeng[1](2016)在《The Present Research and Prospect of Chinese Geosciences History》文中进行了进一步梳理It has been over a hundred years since the birth of research on Chinese geosciences history, which was accompanied by the continuous progress of Chinese geosciences. For hundreds of years, it has grown out of nothing to brilliant performance by several generations of Chinese geologists committing their hearts and minds with the spirit of exert and strive without stop to promote the process of China’s industrialization and to produce the significant impact on serving the society. The study of Chinese geosciences history reflects objectively and historically the history of geosciences in China, which has recorded, analyzed and evaluated the dynamic process sitting in the background and clue of the history of Chinese geosciences development. The study of the history of geological science has roughly experienced two stages in China. The first stage is the study of individual researchers. It spanned approximately 70 years from the early 20th century to the end of the 1970s. The research contents were mainly based on the evolution of geological organizations, the development and utilization of individual mineral species, the history of deposit discovery and the research of geological characters. The main representatives are Zhang Hongzhao, Ding Wenjiang, Weng Wenhao and Li Siguang, Ye Liangfu, Huang Jiqing, Yang Zhongjian, Xie Jiarong, Gao Zhenxi, Wang Bingzhang and etc. The most prominent feature of this period is the accumulation of a very valuable document for the study of the history of China’s geological history and lays a foundation for the exchange of geological science between China and foreign countries. The second stage is organized group study. It took around 60 years from the 1920s to 1980s. It includes the history of Chinese geology, the history of geological organizations, the history of geological disciplines, the history of geological education, the history of geological philosophy, the history of Chinese and foreign geological science communication, the history of geologists and etc. The most chief feature of this stage is the birth of academic research institute―the establishment of the Commission on the History of Geology of the Geological Society of China.
YAO Jianxin,BO Jingfang,HOU Hongfei,WANG Zejiu,MA Xiulan,LIU Fengshan,HU Guangxiao,JI Zhansheng,WU Guichun,WU Zhenjie,LI Suping,GUO Caiqing,LI Ya[2](2016)在《Status of Stratigraphy Research in China》文中研究表明Scientific research and productive practice for earth history are inseparable from the accurate stratigraphic framework and time framework. Establishing the globally unified, precise and reliable chronostratigraphic series and geological time series is the major goal of the International Commission on Stratigraphy(ICS). Under the leadership of the ICS, the countries around the world have carried out research on the Global Standard Stratotype-section and Points(GSSPs) for the boundaries of chronostratigraphic systems. In the current International Chronostratigraphic Chart(ICC), 65 GSSPs have been erected in the Phanerozoic Eonothem, and one has yet been erected in the Precambrian Eonothem. Based on the progress of research on stratigraphy especially that from its subcommissions, the ICS is constantly revising the ICC, and will publish a new International Stratigraphic Guide in 2020. After continual efforts and broad international cooperation of Chinese stratigraphers, 10 GSSPs within the Phanerozoic Eonothem have been approved and ratified to erect in China by the ICS and IUGS. To establish the standards for stratigraphic division and correlation of China, with the support from the Ministry of Science and Technology, the National Natural Science Foundation of China and the China Geological Survey, Chinese stratigraphers have carried out research on the establishment of Stages in China. A total of 102 stages have been defined in the "Regional Chronostratigraphic Chart of China(geologic time)", in which 59 stages were studied in depth. In 2014, the "Stratigraphic Chart of China" was compiled, with the essential contents as follows: the correlation between international chronostratigraphy and regional chronostratigraphy of China(geologic time), the distributive status of lithostratigraphy, the characteristics of geological ages, the biostratigraphic sequence, the magnetostratigraphy, the geological events and eustatic sea-level change during every geological stage. The "Stratigraphical Guide of China and its Explanation(2014)" was also published. Chinese stratigraphers have paid much attention to stratigraphic research in south China, northeast China, north China and northwest China and they have made great achievements in special research on stratigraphy, based on the 1:1000000, 1:250000, 1:200000 and 1:50000 regional geological survey projects. Manifold new stratigraphic units were discovered and established by the regional geological surveys, which are helpful to improve the regional chronostratigraphic series of China. On the strength of the investigation in coastal and offshore areas, the status of marine strata in China has been expounded. According to the developing situation of international stratigraphy and the characteristics of Chinese stratigraphic work, the contrast relation between regional stratigraphic units of China and GSSPs will be established in the future, which will improve the application value of GSSPs and the standard of regional stratigraphic division and correlation. In addition, the study of stratigraphy of the Precambrian, terrestrial basins and orogenic belts will be strengthened, the Stratigraphic Chart of China will be improved, the typical stratigraphic sections in China will be protected and the applied study of stratigraphy in the fields of oil and gas, solid minerals, etc. will be promoted. On the ground of these actions, stratigraphic research will continue to play a great role in the social and economic development of China.
Gebrehiwet Legese Reta[3](2020)在《人类活动污染物对黄柏河流域水质的影响 ——多因素水质评价和模拟》文中提出黄柏河流域(HRB)是中国宜昌市一级饮用水源保护区,水质管理目标要达到二级标准。河流的上中下游一共修建了四个梯级水库,分别是玄庙观,天福庙,西北口和尚家河。水库总蓄水量达3.32亿立方米,HRB供水区的经济总产值占宜昌市经济总产值的近80%。就像中国和世界上所有主要河流一样,HRB因人类活动的影响已受到严重的污染。主要的人为污染源以及最大的河流水污染源是:磷矿水污染,农业面源污染和生活垃圾。近来,由于长期的采矿影响和农业面源污染,水库及沿江水体富营养化现象频繁发生,引发了宜昌市的饮用水危机问题。基于三年(2014-2016年)水质监测数据并结合应用多元分析,水质指数分析和水质模拟,本论文的主要目标是大规模人为活动对HRB水质的广泛破坏和加剧影响,并在不同的时空尺度上评价了这种影响。通过多变量分析,本研究确定了流域内有两个人为污染源组。总磷为主的污染(TP污染)和总氮为主的污染(TN污染)。上游流域玄妙观和天府庙被TP污染严重,支流比主要河流和水库的影响更差。另一方面,下游流域西北口和上家河被TN污染严重污染,对主要河流和水库的影响要比对支流的影响要差。这些发现表明,有必要减少人为污染对HRB上游支流的影响。使用水质指数分析,研究调查了HRB中的水质标准在V级(严重污染)和II级(轻微污染)之间变化。上游的水库集水区玄妙观和天府庙仅达到IV类标准,而西北口和上家河水库集水区属于II类,III类,这意味着要对人类使用的水源进行处理。TP和TN是对总水质标准变化贡献最大的受害最大的污染物。因此,必须采取更有效的管理措施来保护TP和TN对HRB饮用水源保护区的影响。使用Soil and Water Assessment Tool(SWAT)模型,模拟结果显示上游水库集水区,玄庙观和天福庙,比下游水库获得了更高的营养盐负荷,特别是TP。该结果对富营养化控制具有重要意义。因此,通过减少外部营养盐,尤其是减少导致水体快速富营养化的总磷负荷,可能是HRB水质管理的最明确措施之一。营养盐模型的校准和验证在级联的水库集水区中是一项艰巨的任务,这归因于表征水流和营养物迁移的水质动态和非线性响应。水库的水质受内部水动力因素和外部或流域特征的控制。作为一项创新成就,本研究报告了有关如何通过级联或一系列水库水体进行水和养分输送的概念化和建模的建模技术。多站点(分位置)标定和验证的应用是水文和水化学联系的水库水系统非线性响应的一种创新方法,适用于黄白河流域。最后,HRB的人为污染已显示出对水质的同时影响。因此,单一方法的应用可能无法充分解决污染物对水质的综合影响。本研究所采用的方法学、多因子水质评价与模拟技术是区分不同特征污染物的最佳途径,适用于黄柏河水质研究。为此,该方法也能推广于其他类似流域的水质研究。
郭振威,赖健清,张可能,毛先成,王智琳,郭荣文,邓浩,孙平贺,张绍和,于淼,崔益安,柳建新[4](2020)在《中南大学地球科学进展与前沿(英文)》文中认为中南大学地质资源与地质工程一级学科自主创立了国际领先的地洼学说、伪随机多频电磁场理论及广域电磁勘探系统,在壳体大地构造学、地电场勘探理论与装置系统、多因复成成矿理论、三维成矿预测、复杂地层钻井技术等领域形成了具有国际影响的中南学派。2000年以来,伪随机电磁法勘探系统和广域电磁法勘探系统在国内外开展了广泛的推广应用,其中"均匀广谱伪随机电磁法及其应用"于2006年获得国家技术发明二等奖、"大深度高精度广域电磁勘探技术与装备"于2018年获得国家技术发明一等奖。本学科是危机矿山深边部接替资源勘探、地质和地球物理有机结合并直接服务于国民经济主战场的国家级重点学科。20年来,本学科以创立的成矿与找矿理论为指导,以自主研制的国家领先的电磁勘探系统为手段,在国内外矿山和成矿区带的深边部资源勘探中大显身手,在国内外众多矿山找到了一大批矿产资源,缓解了大批矿山的资源危机,取得了巨大的经济社会效益。本学科还在复杂地层钻进技术与极端地层钻具研制理论与技术、地质灾害监测与防治、三维可视化定位定量预测等方面的成果在国内享有盛誉。
Maoyan ZHU,Aihua YANG,Jinliang YUAN,Guoxiang LI,Junming ZHANG,Fangchen ZHAO,Soo-Yeun AHN,Lanyun MIAO[5](2019)在《Cambrian integrative stratigraphy and timescale of China》文中指出The Cambrian Period is the first period of the Phanerozoic Eon and witnessed the explosive appearance of the metazoans, representing the beginning of the modern earth-life system characterized by animals in contrary to the Precambrian earth-life system dominated by microbial life. However, understanding Cambrian earth-life system evolution is hampered by regional and global stratigraphic correlations due to an incomplete chronostratigraphy and consequent absence of a highresolution timescale. Here we briefly review the historical narrative of the present international chronostratigraphic framework of the Cambrian System and summarize recent advances and problems of the undefined Cambrian stage GSSPs, in particular we challenge the global correlation of the GSSP for the Cambrian base, in addition to Cambrian chemostratigraphy and geochronology. Based on the recent advances of the international Cambrian chronostratigraphy, revisions to the Cambrian chronostratigraphy of China, which are largely based on the stratigraphic record of South China, are suggested, and the Xiaotanian Stage is newly proposed for the Cambrian Stage 2 of China. We further summarize the integrative stratigraphy of South China, North China and Tarim platforms respectively with an emphasis on the facies variations of the Precambrian-Cambrian boundary successions and problems for identification of the Cambrian base in the different facies and areas of China. Moreover, we discuss stratigraphic complications that are introduced by poorly fossiliferous dolomite successions in the upper Cambrian System which are widespread in South China, North China and Tarim platforms.
阿黑丝(Danarson Jules Harris)[6](2015)在《基于有限理性理论的三峡大坝工程政策影响评估》文中研究说明一个可行的全球化系统不仅需要不同国家间的内部联系,同时也需要进行国际一体化,这种一体化超越了由策划差异引起的经济差距,不可控的环境破坏和驯服式的社会剥脱。如果全球化体系中的各个民族国家的政治能够尊重并维护彼此的相互依赖性和双赢合作,而不是彼此孤立和侵犯主权,那么上述的全球性问题就能解决。如果没有这些价值观,在社会经济损失,长期贫困和边缘化问题面前,很多国家就不堪一击。通常这样就会导致如下情况,一个国家的宏观经济政策和发展项目的决策会被一些外来的国家或者有着国际影响力的组织所操控,这些外来的力量只在乎自己的或者少数人的利益,对其他人和事则漠不关心。当一个国家的组织和政治不够强大,不能允许并支持自己政府的领导者控制并决定与国家经济,环境,文化和社会特性需求相一致的经济发展之路时,那么类似的问题也会随之而来。权力的不平衡性最能体现于发达国家,发展中国家或者贫困国家之间,这使得三峡大坝工程成为了这样一种发展项目,它在一定层面上符合合理性决策的要求。这个工程很好地体现了在全球化体系带来的挑战面前,中国政府具有强大,果敢,独立而明晰的决策能力。对于发展中国家和低收入国家而言,联合国的千年发展目标(今年逾期)的实现需要决策和执行能力,这种能力不仅体现在无障碍的发展项目上,还体现在诸如三峡大坝等具有挑战性的项目上,这个项目也成为一种现代化的标志和脱贫的有效工具。三峡大坝带来全面的经济效益,对人类和经济发展也带来了积极影响,主要体现在防洪(社会,经济)上。从可持续发展维度来说,尽管这带来多方利益,但三峡大坝项目也富有争议,因为它在社会和环境方面造成了影响。但是,毋庸置疑它在本地发展,国家发展和全球发展方面作出了利民的贡献,所以这样一个项目决策所体现的合理性需要深入的研究和不偏不倚的讨论。三峡大坝带来的重迁问题一直是人们尖锐批评的对象。就此可以参考《人类发展的条件》(尤其是最近研究所得出的结论)里的指标,书里所说的“可持续发展维度”被作为一种范例,来展示和评估重迁前后的宜昌居民的生活状况。现在的政策评估在名为“决策理论评估”的方法下执行,这种方法利用了所谓的“多属性效用分析”。整体而言,文章中所用的决策形式结合了文献综述和个案分析,其主要目标是评估三峡大坝作为一个发展项目的政策影响,同时决定工程决策中的合理性状况。这项研究的另一个重要目标是展现中国政府决策风格中具有指导性的一面,同时也描述面对尖锐的批评和抵制改变的行为时,中国政府为发展而采用的权力政治所具备的特性,这定义了当今的全球化挑战问题。通过涵盖这些目标,本研究可以得出一个对世界其他国家和地区都很重要的结论,这对于那些非洲国家来说尤其重要,因为疲软的政策决策已然成为它们的发展瓶颈。这项研究的成果整体展示了三峡大坝工程的决策还没有达到完全合理性的状态,因为该工程没有可替代的方案,而这是本论文中的参考文献《决策系统的理性模式》所需满足的要求。然而,没有可替代的方案表明了三峡大坝的重要性,而并非表明其决策过程中非合理性一面。就全球脱贫,慢性死亡问题和二氧化碳的排放而言,中国做出了积极而切实的贡献,这是证明该工程具有合理性意义的无可争辩的事实,不管这种合理性应被标注为低层次的理性,有限理性还是绝对理性。在全球化大氛围下,不管是本地,区域还是国际层面都可以发现项目的利益相关者,在分析大坝决策的合理性时,这也应该被当做新的综合指标加以考虑。这项研究还有另外的贡献,那就是希望三峡大坝的决策过程具有全球性的启示,并促进世界秩序的重塑,让每个国家有自由去选择适合本国发展需要的政策导向,同时在造福世界的同时不用担心其他方推卸责任,威胁恐吓和政策破坏的行为。
JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu[7](2021)在《New innovations in pavement materials and engineering:A review on pavement engineering research 2021》文中研究表明Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges. In the past 10 years, the pavement infrastructure strongly supports the rapid development of the global social economy. New theories, new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem. Because of actual coupled behaviors of traffic and environmental conditions, predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis. In order to summarize the current and determine the future research of pavement engineering, Journal of Traffic and Transportation Engineering(English Edition) has launched a review paper on the topic of "New innovations in pavement materials and engineering: A review on pavement engineering research 2021". Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering, this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world. The content includes asphalt binder performance and modeling, mixture performance and modeling of pavement materials,multi-scale mechanics, green and sustainable pavement, and intelligent pavement.Overall, this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.
WANG Zecheng,LIU Jingjiang,JIANG Hua,HUANG Shipeng,WANG Kun,XU Zhengyu,JIANG Qingchun,SHI Shuyuan,REN Mengyi,WANG Tianyu[8](2019)在《Lithofacies paleogeography and exploration significance of Sinian Doushantuo depositional stage in the middle-upper Yangtze region, Sichuan Basin, SW China》文中提出In recent years, natural gas exploration in the Sinian Dengying Formation and shale gas exploration in Doushantuo Formation have made major breakthroughs in the Sichuan Basin and its adjacent areas. However, the sedimentary background of the Doushantuo Formation hasn’t been studied systematically. The lithofacies paleogeographic pattern, sedimentary environment, sedimentary evolution and distribution of source rocks during the depositional stage of Doushantuo Formation were systematically analyzed by using a large amount of outcrop data, and a small amount of drilling and seismic data.(1) The sedimentary sequence and stratigraphic distribution of the Sinian Doushantuo Formation in the middle-upper Yangtze region were controlled by paleouplifts and marginal sags. The Doushantuo Formation in the paleouplift region was overlayed with thin thickness, including shore facies, mixed continental shelf facies and atypical carbonate platform facies. The marginal sag had complete strata and large thickness, and developed deep water shelf facies and restricted basin facies.(2) The Doushantuo Formation is divided into four members from bottom to top, and the sedimentary sequence is a complete sedimentary cycle of transgression–high position–regression. The first member is atypical carbonate gentle slope deposit in the early stage of the transgression, the second member is shore-mixed shelf deposit in the extensive transgression period, and the third member is atypical restricted–open sea platform deposit of the high position of the transgression.(3) The second member has organic-rich black shale developed with stable distribution and large thickness, which is an important source rock interval and major shale gas interval. The third member is characterized by microbial carbonate rock and has good storage conditions which is conducive to the accumulation of natural gas, phosphate and other mineral resources, so it is a new area worthy of attention. The Qinling trough and western Hubei trough are favorable areas for exploration of natural gas(including shale gas) and mineral resources such as phosphate and manganese ore.
Shuzhong SHEN,Hua ZHANG,Yichun ZHANG,Dongxun YUAN,Bo CHEN,Weihong HE,Lin MU,Wei LIN,Wenqian WANG,Jun CHEN,Qiong WU,Changqun CAO,Yue WANG,Xiangdong WANG[9](2019)在《Permian integrative stratigraphy and timescale of China》文中认为A series of global major geological and biological events occurred during the Permian Period. Establishing a highresolution stratigraphic and temporal framework is essential to understand their cause-effect relationship. The official International timescale of the Permian System consists of three series(i.e., Cisuralian, Guadalupian and Lopingian in ascending order) and nine stages. In China, the Permian System is composed of three series(Chuanshanian, Yansingian and Lopingian) and eight stages, of which the subdivisions and definitions of the Chuanshanian and Yangsingian series are very different from the Cisuralian and Guadalupian series. The Permian Period spanned ~47 Myr. Its base is defined by the First Appearance Datum(FAD) of the conodont Streptognathodus isolatus at Aidaralash, Kazakhstan with an interpolated absolute age 298.9±0.15 Ma at Usolka, southern Urals, Russia. Its top equals the base of the Triassic System and is defined by the FAD of the conodont Hindeodus parvus at Meishan D section, southeast China with an interpolated absolute age 251.902±0.024 Ma. Thirty-five conodont, 23 fusulinid, 17 radiolarian and 20 ammonoid zones are established for the Permian in China, of which the Guadalupian and Lopingian conodont zones have been served as the standard for international correlation. The Permian δ13 Ccarbtrend indicates that it is characterized by a rapid negative shift of 3–5‰ at the end of the Changhsingian, which can be used for global correlation of the end-Permian mass extinction interval, but δ13 Ccarbrecords from all other intervals may have more or less suffered subsequent diagenetic alteration or represented regional or local signatures only. Permian δ18 Oapatitestudies suggest that an icehouse stage dominated the time interval from the late Carboniferous to Kungurian(late Cisuralian). However, paleoclimate began to ameriolate during the late Kungurian and gradually shifted into a greenhouse-dominated stage during the Guadalupian.The Changhsingian was a relatively cool stage, followed by a globally-recognizable rapid temperature rise of 8–10°C at the very end of the Changhsingian. The87 Sr/86 Sr ratio trend shows that their values at the beginning of the Permian were between 0.70800,then gradually decreased to the late Capitanian minimum 0.70680–0.70690, followed by a persistent increase until the end of the Permian with the value 0.70708. Magenetostratigraphy suggests two distinct stages separated by the Illawarra Reversal in the middle Wordian, of which the lower is the reverse polarity Kiaman Superchron and the upper is the mixed-polarity Illawarra Superchron. The end-Guadalupian(or pre-Lopingian) biological crisis occurred during the late Capitanian, when faunal changeovers of different fossil groups had different paces, but generally experienced a relatively long time from the Jinogondolella altudensis Zone until the earliest Wuchiapingian. The end-Permian mass extinction was a catastrophic event that is best constrained at the Meishan section, which occurred at 251.941±0.037 Ma and persisted no more than 61±48 kyr. After the major pulse at Bed 25, the extinction patterns are displayed differently in different sections. The global end-Guadalupian regression is manifested between the conodont Jinogondolella xuanhanensis and Clarkina dukouensis zones and the endChanghsingian transgression began in the Hindeodus changxingensis-Clarkina zhejiangensis Zone. The Permian Period is also characterized by strong faunal provincialism in general, which resulted in difficulties in inter-continental and inter-regional correlation of both marine and terrestrial systems.
Hamza Jakada[10](2018)在《基于SWAT模型的岩溶流域形态刻画及水文模拟》文中认为岩溶是一种起源于碳酸盐岩与酸性大气降水发生溶解侵蚀而形成的一种特殊地质现象。岩溶地貌占全球陆地面积的712%,世界上超过25%的人口依赖于岩溶含水层。然而,无论是在地理信息系统领域,还是在岩溶水资源的有限元建模方面,很少有关于计算技术应用方面的研究。这可能主要是由于岩溶介质不均一性强、地质结构复杂,致使其建模难度大。另一个问题是,对岩溶结构特征的刻画和认识还不够充分,一般将其视为其他沉积地层。这导致了一些环境和基础设施的破坏,以及巨大的经济损失。尽管存在这些挑战,但在过去十年中仍有一些成功的案例研究。但是,目前还没有关于如何在岩溶环境中进行标准化水文建模的研究。此外,岩溶环境需要对其潜在的非均质性和对环境风险的敏感性进行特殊处理。正是为了满足这些需求,本文旨在提高对岩溶流域水文过程和可持续水资源管理的理解与认识。本文的研究工作概述了一些重要的研究问题,并着手系统地回答它们,目的是开发一种标准化的方法来模拟岩溶流域的水文过程。这些问题是:(1)岩溶流域与非岩溶流域有何不同?(2)岩溶特征对流域排泄系统有何影响?(3)流域内主要岩溶特征对流量的体积贡献是多少?这些特征如何影响地下水的数量和质量?(4)使用未经修改的SWAT模型,可以在岩溶环境中模拟降雨径流吗?本文选择了高岚河流域的两个相邻小流域作为案例研究。第一个是庙沟流域,是一个高度岩溶化的小流域,也是本文研究工作的重点。第二个是高家坪流域,是一个主要由火成岩和变质岩构成的非岩溶流域,用于对比典型的岩溶流域和非岩溶流域之间的差异。这些差异主要与地形、水文和地貌特征有关。首先,在第二章中,对流域的形态特征进行了刻画,以便提供对流域物理特性以及它们如何影响水文过程的理解。这是建模前的必要工作,因为它提供了重要的物理参数信息。利用地理信息系统和遥感技术刻画出庙沟岩溶流域和高家坪流域的形态参数。研究结果表明,由于碳酸盐岩(石灰岩和白云岩)的溶蚀作用,庙沟的地形起伏大且复杂。此外,庙沟具有非常高的凹度指数,导致降水事件期间的快速径流。庙沟的流域面积为45平方公里,主要河道长约15公里,水系总长度为30.86公里,Gravelius指数为1.93。地貌分析结果表明,庙沟的岩溶地貌主要为溶丘洼地类型,溶丘具有锥状几何形状,具有长而宽的岩溶洼地,流域内大型的岩溶洼地有四个。流域内还有四个洞穴和十八个落水洞,其中刘家坝落水洞成为白龙泉最主要的补给通道。另一方面,高家坪流域没有岩溶发育,是一个具有较为均匀孔隙含水介质的流域代表。其次,在第三章中,从庙沟和高家坪流域的径流过程中选取了15次水文响应过程,进行流量衰退分析和径流成分分割。目的是确定岩溶特征对流域排泄系统的影响,并估算这些特征对总流量的体积贡献。此外,进一步研究了它们对庙沟流域地下水数量和质量的影响。本文使用指数法进行衰减曲线分析,每次洪峰流量衰减过程可划分为四个衰减期,并分别计算得到各段的衰减系数。这些衰减系数可以用于划分径流组成,以评估每一径流组分的水量、百分比及其他特征。结果表明,相对于非岩溶流域,岩溶流域由于大型洞穴、裂隙发育导致的介质高度不均一性,更倾向于通过大的管道和裂隙排泄更多的水量。虽然落水洞或封闭型洼地等岩溶形态可以充当补给通道,通过大型地下溶洞、溶腔等快速径流而形成大型岩溶泉,而小型裂隙和孔隙的水流主要贡献给流域的基流。本文将高度岩溶化流域的这些共同特征称之为岩溶排泄属性(KDA),形成的径流称为岩溶排泄流量(KDF)。KDF代表了衰退曲线的第二阶段,并具有坡面流的相似特征。在两个流域对比研究中,衰退系数的统计结果表明KDA受到含水层输出时间变化的强烈影响。尽管在枯水期,以衰退曲线的第四阶段为例,两个流域的衰退系数均没有像前两个衰退期一样表现出统计差别,表明控制主要延迟排泄量的微裂隙和孔隙基本相似,并无较大区别。这一结果可为地下水资源的可持续利用提供十分有价值的信息。此外,由于连续衰退阶段的较高衰减系数意味着地下水污染的高度敏感性,以及随着时间推移其含水层输出匮乏,必须强调其中的环境意义。地下水污染是一个主要问题,尤其对于类似研究区这种以地下水为主要淡水资源的地区。前期地下水脆弱性研究结果表明,庙沟流域对污染有较高的内在敏感性。本次研究计算的衰减系数也进一步表明含水层对于污染的高度敏感性。因此,必须针对该区域加强水资源管理与保护。最后,在第四章中,通过对庙沟、高家坪流域进行模拟和计算,预测了其月流量变化。模型结果表明初始分析方法与流域物理结构特征密切相关。另外,选择12个关键参数校正了一个为期两年的模型。对于庙沟流域,研究发现最为敏感的参数是HRUSLP与CN2,主要受地形因子与流域形态影响。事实上,这主要归因于由KDA形成的KDF特性。在高家坪流域,SHALLST与OVN等因素最为敏感,这主要是由河流弯曲度及较高基流量所造成的。模型验证后,2015年模拟结果与实测值的相关系数与纳什效率系数均为0.6,2016年的相关系数与纳什效率系数分别为0.7和0.6,总体的水文动态模拟效果较好。对于非岩溶流域,2016年模拟结果的相关系数和纳什效率系数分别为0.73和0.1。总体而言,未经修正的SWAT模型在水文模拟工作中应用前景较好,但需要对流域水文过程有较为充分的认识。本次研究工作的意义主要表现在:(1)对岩溶流域和非岩溶流域的排泄特征进行了评估和对比;(2)确定并计算了流域中岩溶属性控制下的岩溶排泄流量(KDF);(3)阐述了岩溶发育特征对岩溶水资源时空分布特征的影响;(4)利用未经修正的SWAT模型为岩溶流域径流模拟提供了较为标准化的方法;(5)开创了岩溶流域与非岩溶流域的对比水文模型;(6)发现了兴山县庙沟流域内潜在的地下水短缺和污染风险。展望未来,机器学习方法可能会提供一种方法来监测长时间尺度下的径流动态,以掌握每一场暴雨事件的水文特征。随着观测数据的延长,也可获取到整个水文年内岩溶排泄流量的衰减系数,并为计算岩溶排泄系数提供准确方法,即流域中在任何降雨过程中主要在岩溶属性影响控制下的排泄比例。这种方法在未来将有益于地下水资源估算、评价和模拟工作。
二、YICHANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、YICHANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文提纲范文)
(1)The Present Research and Prospect of Chinese Geosciences History(论文提纲范文)
1 The History and Present Situation of the Research on the History of International Geological Science |
1.1 The change of the content of the study |
1.2 Organizations and research institutes |
1.3 Publications and authors |
2 The Present Situation and Progress of the Study of the Chinese Geological Science History |
2.1 A brief account of the development of the Chinese geological science history |
2.2 Research institutes and research groups |
2.3 The guiding ideology of the research on the history of geological science |
2.4 Major progress in recent years |
2.4.1 Promote interaction between Chinese geological science and social development in China |
2.4.2 A study on the history of geological disciplines of China |
2.4.3 A study of geological characters |
Kwong Yung Kong(1863-1965) |
Woo Yang Tsang(1861-1939) |
Gu Lang(1880-1939) |
Lu Xun(1881-1936) |
Wang Chongyou(1879-1985) |
Zhang Hongzhao(1877-1951) |
Ding Wenjiang(1887-1936) |
Weng Wenhao(1889-1971) |
Li Siguang(1889-1971) |
R.Pumpelly(1837-1923) |
Richthofen,Ferdinand von(1833-1905) |
Amadeus Willian Grabau(1870-1946) |
Johann Gunnay Andersson(1874-1960) |
Prerre Teilhaya de Chardin(1881-1955) |
2.4.4 The study of history of ancient geological thoughts |
2.4.5 The study of the geological cause |
2.4.6 Research of the history of the communication of Chinese and foreign geological science |
3 Development Prospect |
4 Conclusion |
(2)Status of Stratigraphy Research in China(论文提纲范文)
1 Overview of International Stratigraphic Research |
2 Research Status of Stratigraphy in China |
2.1 Ten GSSPs erected in China |
2.2 Standards for stratigraphic division and correlation established in China |
2.3 Great achievements in special research on stratigraphy |
2.4 Abundant data for stratigraphic research acquired in national land and resources survey projects |
3 Future Development of Stratigraphy in China |
3.1 To improve the standard of regional stratigraphic division and correlation |
3.2 To establish the contrasting relationship between regional stratigraphic units and GSSPs |
3.3 To strengthen the study of the Precambrian time scale |
3.4 To strengthen the study of terrestrial basins |
3.5 To further supply and improve the Stratigraphic Chart of China |
3.6 To promote the study of stratigraphy in orogenic belts |
3.7 To protect the typical stratigraphic sections |
3.8 To reinforce the applied study of stratigraphy in the fields of oil and gas,solid minerals,etc. |
4 Conclusions |
(3)人类活动污染物对黄柏河流域水质的影响 ——多因素水质评价和模拟(论文提纲范文)
内容摘要 |
Abstract |
1.General Introduction |
1.1.Research Background |
1.2.Research Problem |
1.3.Research Question |
1.4.Aim and Objectives |
1.5.Research Methodology |
1.6.Significance of the Study |
1.7.Thesis Outline |
2.Literature Review |
2.1.Sustainable Water Quality Management |
2.2.Water Pollution:Cause and Effect Factors |
2.2.1.Cause of Water Pollution |
2.2.2.Effects of Water Pollution |
2.3.Water Quality Assessment |
2.3.1.Water Quality Monitoring |
2.3.2.Choice of Water Quality Parameters for Monitoring |
2.4.Water Quality Data Analysis |
2.4.1.Multivariate Statistical Analysis Methods |
2.4.2.Water Quality Index Methods |
2.4.3.Watershed Nutrients Load modeling |
2.5.Summary of Literature Review and Research Gaps |
3.Description of the Study Area |
3.1.Geographic Location |
3.2.Environmental Setting |
3.3.Economic and Social Settings |
3.4.Hydrological Setting |
3.5.Water Resources Utilization |
3.6.Main Water-Environmental problems |
3.6.1.Mining Pollution |
3.6.2.Agricultural Pollution |
3.6.3.Domestic garbage and sewage discharge pollution |
3.6.4.Algae growth in the main reservoirs |
3.7.Monitoring Stations |
3.7.1.Hydro-Meteorological Stations |
3.7.2.Water Quality Monitoring Stations |
4.Spatiotemporal Variations of Water Quality Variables |
4.1.Introduction |
4.2.Materials and Methods |
4.2.1.Water Quality Monitoring and Analytical Method |
4.2.2.Multivariate Analysis Method |
4.3.Results |
4.3.1.Descriptive Statistics Result |
4.3.2.Principal Component Analysis Result |
4.3.3.Cluster Analysis Result |
4.3.4.Discriminate Analysis Result |
4.4.Discussion |
4.5.Summary |
5.Water Quality Standard of Hungbaihe River Water |
5.1.Introduction |
5.2.Materials and Methods |
5.2.1.Water Quality Monitoring and Analytical Method |
5.2.2.Water Quality Index Analysis Method |
5.3.Result |
5.3.1.EQSSW Analysis Result |
5.3.2.WAWQI Analysis Result |
5.4.Discussion |
5.4.1.Water Quality Standards of Huangbaihe River water |
5.4.2.Dominant Pollutants |
5.4.3.Evaluation of Water quality Standard of Huangbaihe River basin |
5.5.Summary |
6.Watershed Nutrients Loading of Huangbaihe River Basin |
6.1.Introduction |
6.2.Materials and Methods |
6.2.1.Hydro-Meteorological Data |
6.2.2.Water Quality Monitoring and Analytical method |
6.2.3.The Soil and Water Assessment Tool Modeling Basics |
6.2.4.SWAT Model Setup |
6.2.5.Model calibration and Evaluation |
6.3.Result |
6.3.1.Stream Flow Calibration and Validation Result |
6.3.2.Nutrients load Calibration and Validation Result |
6.3.3.Nutrients Load Prediction into Cascaded Reservoirs |
6.3.4.Watershed(Sub-basin)Nutrients Load |
6.4.Discussion |
6.4.1.SWAT Model Result Evaluation |
6.4.2.Implication of the Study for Water Quality Management |
6.4.3.Model Uncertainties |
6.5.Summary |
7.Conclusions and Recommendation |
7.1.Conclusions |
7.2.Contributions of the Study |
7.3.Outlook:Recommendation for Further Studies |
8.Reference |
Appendix:1 Stream flow calibration parameters |
Appendix:2 Total phosphorus load calibration parameters |
Appendix:3 Total nitrogen load calibration parameters |
Appendix:4 List of Nomenclatures |
Appendix:5 Academic Works Published during the Ph D work |
Acknowledgements |
(5)Cambrian integrative stratigraphy and timescale of China(论文提纲范文)
1. Introduction |
2. Global chronostratigraphy and timescale of the Cambrian |
2.1 History review |
2.2 Ratified Cambrian series and stages |
2.3 Newly ratified GSSP for Cambrian Stage 5 (Series3) |
2.4 Cambrian Stage 10:the defined stage without ra-tified GSSP |
2.5 The undefined Cambrian stages |
2.5.1 Cambrian Stage 2 |
2.5.2 Cambrian Stage 3 |
2.5.3 Cambrian Stage 4 |
2.6 Deficiency of the GSSP for the Cambrian base and global correlation dilemma |
2.7 Cambrian chemostratigraphy |
2.8 Cambrian geochronology |
3. Cambrian chronostratigraphy and timescale of China |
3.1 Historical review |
3.2 Revision of the Cambrian chronostratigraphy of China |
4. Subdivision and correlation of Cambrian stratigraphy in major regions of China |
4.1 South China |
4.1.1 Biostratigraphy of South China |
4.1.2 Chemostratigraphy of South China |
4.1.3 Geochronology of South China |
4.2 North China |
4.2.1 Biostratigraphy of North China |
4.2.2 Chemostratigraphy of North China |
4.3 Tarim |
4.3.1 Biostratigraphy of Tarim |
4.3.2 Chemostratigraphy of Tarim |
5. Identification of the base of the Cambrian in China |
5.1 The base of the Cambrian in South China |
5.2 The diachronous base of the Cambrian in North China |
5.3 The base of the Cambrian in Tarim |
6. Subdivision and correlation of the dolostone sequence of the upper Cambrian in China |
7. Summary |
(6)基于有限理性理论的三峡大坝工程政策影响评估(论文提纲范文)
Dedication |
摘要 |
Abstract |
List of Acronyms and Abbreviations |
1 Introduction |
1.1 Background |
1.2 The Politics in Globalization and Global Development |
1.3 Problem Statement and Research Questions |
1.4 Research Hypothesis |
1.5 Method of Research and Evaluation |
1.6 Gaps in Literature, Research Objectives and Contributions |
1.7 Structure and Organization of the Thesis |
2 Literature Review and Theoretical Framework |
2.1 Introduction |
2.2 The Global Concerns for Development |
2.2.1 Economic Concerns |
2.2.2 Environmental Concerns |
2.2.3 Social Concerns |
2.3 The Concept of Rationality in Decision-Making |
2.3.1 Rationality as Pictured within the Utility Theory |
2.3.2 The Fallibility of the Utility Theory |
2.3.3 Rationality in the Development Policy |
2.4 Decision-Making:Theoretical Frameworks and Models |
2.4.1 Rational Model of Decision-making |
2.4.2 The Theory of Bounded Rationality |
2.4.3 The Incremental Approach |
2.4.4 Mixed Scanning Approach |
2.5 Decision-making:Large Dam Planning and Creation |
2.5.1 Large Dams |
2.5.2 The 7 Strategic Priorities for Dam Planning and Operation |
2.5.3 The 5 Key Decision Points for Dam Creation |
2.6 Evaluation of Policy Decision-Making |
2.6.1 Nature of Evaluation |
2.6.2 Criteria for Policy Evaluation |
2.6.3 Approaches and Techniques for Evaluation |
3 Research Methodology and Design |
3.1 Introduction |
3.2 Research Design |
3.3 Data Collection Methods |
3.3.1 Data Collection Process and Procedures |
3.3.2 User Survey |
3.4 Research Hypothesis and Questions |
3.5 Research Instruments |
3.5.1 Sustainable Development Dimensions as a Model |
3.5.2 The Essentials of Human Development Indicators |
3.5.3 The Main Research Variables |
3.5.4 The Designed Tools for Data Collection |
3.5.5 Triangulation of Data |
3.6 Data Analysis |
3.6.1 PCA:Variables 1-16 |
3.6.2 Spearman's Rank-Order Correlation:Variable 17 |
3.7 Data Processing (MATLAB) |
3.7.1 Processing Tools |
3.7.2 Processing Steps:Variables 1-16 |
3.7.3 Processing Steps:Variable 17 |
3.8 The Policy Evaluation and Scope of Research |
3.8.1 Decision-Theoretic Evaluation |
3.8.2 Limitation In Scope |
4 Data Analysis and Findings |
4.1 Introduction |
4.2 The TGD:Project Profile |
4.2.1 Geographical Location and Lay-out of the Dam |
4.2.2 Main Features at the Initial Construction Phase |
4.2.3 Project Milestones and Timelines |
4.3 The Results of the TGD Survey |
4.3.1 Respondents'Characteristics |
4.3.2 A Questionnaire-Based Data Analysis and Findings:Variables 1-16 |
4.3.3 Principal Component Analysis |
5 Discussion and Interpretation of Findings |
5.1 Introduction |
5.2 Stakeholder Identification |
5.2.1 Global Hazard 'Zonation' |
5.2.2 Multi-Level Stakeholder of the TGD Decision-Making |
5.3 The Relevant Decision Issues |
5.3.1 The Global Concerns for Poverty Eradication |
5.3.2 The TGD as a Case of International Controversy |
5.3.3 The 70 Years' Debate on the TGD |
5.4 Policy Outcomes and Outcome Attributes |
5.4.1 Impacts at the Local Level |
5.4.2 Impact at the Regional and National Levels |
5.5 Outcome Attributes Ranking |
5.5.1 The Sustainability Status of the TGD Project Outcomes |
5.5.2 An Interview-Based Data Analysis:Variable 17 |
6 The Global Implications of TGD Policy Decision-Making |
6.1 Introduction |
6.2 Global Responsibility:Poverty Eradication |
6.2.1 The Chinese Contribution to Global Growth |
6.2.2 Positive Externalities:Review of Relations with Africa |
6.2.3 Positive Externalities:Review of Cooperation with Africa |
6.3 Global Energy Solutions |
6.3.1 Imbalance of Power |
6.3.2 The Chinese Engagement in Africa |
6.3.3 Win-Win Approach to Socio-Economic Disparities |
6.4 Foreign Policy and Development Strategies |
6.4.1 The Peace-Loving Relations |
6.4.2 The Guanxi System, An Instrument of Peace |
7 Conclusion |
7.1 Putting Collective Benefits above Personal Interests |
7.2 The Right Politics for Development |
7.2.1 Strong Government Architecture |
7.2.2 Altering the Status Quo despite 'Resistance to Change' |
7.2.3 Tough, Bold and Independent Policy Decision-making |
7.3 Sustainability as a Major TGD Impact |
7.3.1 Economic Growth |
7.3.2 Environmental Protection |
7.3.3 Social Mobility |
7.4 Rationality as Measured with the Research Questions and Hypothesis |
7.4.1 A Summary Note on Research Questions |
7.4.2 Hypothesis as Tested within the Context of Globalization |
7.4.3 The TGD Decision-making:With Bounded or Absolute Rationality? |
7.5 A Summary Note on Research Implications |
7.5.1 Implications for the Direct and Indirect Stakeholders |
7.5.2 Implications for the Distant Stakeholders |
7.6 Research Limitations and Direction for Further Study |
7.7 Final Remarks |
References |
Acknowledgements |
Appendices |
(7)New innovations in pavement materials and engineering:A review on pavement engineering research 2021(论文提纲范文)
1. Introduction |
(1) With the society development pavement engineering facing unprecedented opportunities and challenges |
(2) With the modern education development pavement engineering facing unprecedented accumulation of scientific manpower and literature |
2. Asphalt binder performance and modeling |
2.1. Binder damage,healing and aging behaviors |
2.1.1. Binder healing characterization and performance |
2.1.1. 1. Characterizing approaches for binder healing behavior. |
2.1.1. 2. Various factors influencing binder healing performance. |
2.1.2. Asphalt aging:mechanism,evaluation and control strategy |
2.1.2. 1. Phenomena and mechanisms of asphalt aging. |
2.1.2. 2. Simulation methods of asphalt aging. |
2.1.2. 3. Characterizing approaches for asphalt aging behavior. |
2.1.2. 4. Anti-aging additives used for controlling asphalt aging. |
2.1.3. Damage in the characterization of binder cracking performance |
2.1.3. 1. Damage characterization based on rheological properties. |
2.1.3. 2. Damage characterization based on fracture properties. |
2.1.4. Summary and outlook |
2.2. Mechanism of asphalt modification |
2.2.1. Development of polymer modified asphalt |
2.2.1. 1. Strength formation of modified asphalt. |
2.2.1. 2. Modification mechanism by molecular dynamics simulation. |
2.2.1. 3. The relationship between microstructure and properties of asphalt. |
2.2.2. Application of the MD simulation |
2.2.2. 1. Molecular model of asphalt. |
2.2.2. 2. Molecular configuration of asphalt. |
2.2.2. 3. Self-healing behaviour. |
2.2.2. 4. Aging mechanism. |
2.2.2. 5. Adhesion mechanism. |
2.2.2. 6. Diffusion behaviour. |
2.2.3. Summary and outlook |
2.3. Modeling and application of crumb rubber modified asphalt |
2.3.1. Modeling and mechanism of rubberized asphalt |
2.3.1. 1. Rheology of bituminous binders. |
2.3.1. 2. Rheological property prediction of CRMA. |
2.3.2. Micromechanics-based modeling of rheological properties of CRMA |
2.3.2. 1. Composite system of CRMA based on homogenization theory. |
2.3.2. 2. Input parameters for micromechanical models of CRMA. |
2.3.2. 3. Analytical form of micromechanical models of CRMA. |
2.3.2. 4. Future recommendations for improving micro-mechanical prediction performance. |
2.3.3. Design and performance of rubberized asphalt |
2.3.3. 1. The interaction between rubber and asphalt fractions. |
2.3.3. 2. Engineering performance of rubberized asphalt. |
2.3.3. 3. Mixture design. |
2.3.3. 4. Warm mix rubberized asphalt. |
2.3.3. 5. Reclaiming potential of rubberized asphalt pavement. |
2.3.4. Economic and Environmental Effects |
2.3.5. Summary and outlook |
3. Mixture performance and modeling of pavement materials |
3.1. The low temperature performance and freeze-thaw damage of asphalt mixture |
3.1.1. Low temperature performance of asphalt mixture |
3.1.1. 1. Low temperature cracking mechanisms. |
3.1.1. 2. Experimental methods to evaluate the low temperature performance of asphalt binders. |
3.1.1. 3. Experimental methods to evaluate the low temperature performance of asphalt mixtures. |
3.1.1. 4. Low temperature behavior of asphalt materials. |
3.1.1.5.Effect factors of low temperature performance of asphalt mixture. |
3.1.1. 6. Improvement of low temperature performance of asphalt mixture. |
3.1.2. Freeze-thaw damage of asphalt mixtures |
3.1.2. 1. F-T damage mechanisms. |
3.1.2. 2. Evaluation method of F-T damage. |
3.1.2. 3. F-T damage behavior of asphalt mixture. |
(1) Evolution of F-T damage of asphalt mixture |
(2) F-T damage evolution model of asphalt mixture |
(3) Distribution and development of asphalt mixture F-T damage |
3.1.2. 4. Effect factors of freeze thaw performance of asphalt mixture. |
3.1.2. 5. Improvement of freeze thaw resistance of asphalt mixture. |
3.1.3. Summary and outlook |
3.2. Long-life rigid pavement and concrete durability |
3.2.1. Long-life cement concrete pavement |
3.2.1. 1. Continuous reinforced concrete pavement. |
3.2.1. 2. Fiber reinforced concrete pavement. |
3.2.1. 3. Two-lift concrete pavement. |
3.2.2. Design,construction and performance of CRCP |
3.2.2. 1. CRCP distress and its mechanism. |
3.2.2. 2. The importance of crack pattern on CRCP performance. |
3.2.2. 3. Corrosion of longitudinal steel. |
3.2.2. 4. AC+CRCP composite pavement. |
3.2.2. 5. CRCP maintenance and rehabilitation. |
3.2.3. Durability of the cementitious materials in concrete pavement |
3.2.3. 1. Deterioration mechanism of sulfate attack and its in-fluence on concrete pavement. |
3.2.3. 2. Development of alkali-aggregate reaction in concrete pavement. |
3.2.3. 3. Influence of freeze-thaw cycles on concrete pavement. |
3.2.4. Summary and outlook |
3.3. Novel polymer pavement materials |
3.3.1. Designable PU material |
3.3.1. 1. PU binder. |
3.3.1.2.PU mixture. |
3.3.1. 3. Material genome design. |
3.3.2. Novel polymer bridge deck pavement material |
3.3.2. 1. Requirements for the bridge deck pavement material. |
3.3.2.2.Polyurethane bridge deck pavement material(PUBDPM). |
3.3.3. PU permeable pavement |
3.3.3. 1. Permeable pavement. |
3.3.3. 2. PU porous pavement materials. |
3.3.3. 3. Hydraulic properties of PU permeable pavement materials. |
3.3.3. 4. Mechanical properties of PU permeable pavement ma-terials. |
3.3.3. 5. Environmental advantages of PU permeable pavement materials. |
3.3.4. Polyurethane-based asphalt modifier |
3.3.4. 1. Chemical and genetic characteristics of bitumen and polyurethane-based modifier. |
3.3.4. 2. The performance and modification mechanism of polyurethane modified bitumen. |
3.3.4. 3. The performance of polyurethane modified asphalt mixture. |
3.3.4. 4. Environmental and economic assessment of poly-urethane modified asphalt. |
3.3.5. Summary and outlook |
3.4. Reinforcement materials for road base/subrgrade |
3.4.1. Flowable solidified fill |
3.4.1. 1. Material composition design. |
3.4.1. 2. Performance control. |
3.4.1. 3. Curing mechanism. |
3.4.1. 4. Construction applications. |
3.4.1.5.Environmental impact assessment. |
3.4.1. 6. Development prospects and challenges. |
3.4.2. Stabilization materials for problematic soil subgrades |
3.4.2.1.Stabilization materials for loess. |
3.4.2. 2. Stabilization materials for expansive soil. |
3.4.2. 3. Stabilization materials for saline soils. |
3.4.2. 4. Stabilization materials for soft soils. |
3.4.3. Geogrids in base course reinforcement |
3.4.3. 1. Assessment methods for evaluating geogrid reinforce-ment in flexible pavements. |
(1) Reinforced granular material |
(2) Reinforced granular base course |
3.4.3. 2. Summary. |
3.4.4. Summary and outlook |
4. Multi-scale mechanics |
4.1. Interface |
4.1.1. Multi-scale evaluation method of interfacial interaction between asphalt binder and mineral aggregate |
4.1.1. 1. Molecular dynamics simulation of asphalt adsorption behavior on mineral aggregate surface. |
4.1.1. 2. Experimental study on absorption behavior of asphalt on aggregate surface. |
4.1.1. 3. Research on evaluation method of interaction between asphalt and mineral powder. |
(1) Rheological mechanical method |
(2) Microscopic test |
4.1.1. 4. Study on evaluation method of interaction between asphalt and aggregate. |
4.1.2. Multi-scale numerical simulation method considering interface effect |
4.1.2. 1. Multi-scale effect of interface. |
4.1.2. 2. Study on performance of asphalt mixture based on micro nano scale testing technology. |
4.1.2. 3. Study on the interface between asphalt and aggregate based on molecular dynamics. |
4.1.2. 4. Study on performance of asphalt mixture based on meso-mechanics. |
4.1.2. 5. Mesoscopic numerical simulation test of asphalt mixture. |
4.1.3. Multi-scale investigation on interface deterioration |
4.1.4. Summary and outlook |
4.2. Multi-scales and numerical methods in pavement engineering |
4.2.1. Asphalt pavement multi-scale system |
4.2.1. 1. Multi-scale definitions from literatures. |
4.2.1. 2. A newly-proposed Asphalt Pavement Multi-scale System. |
(1) Structure-scale |
(2) Mixture-scale |
(3) Material-scale |
4.2.1. 3. Research Ideas in the newly-proposed multi-scale sys- |
4.2.2. Multi-scale modeling methods |
4.2.2. 1. Density functional theory (DFT) calculations. |
4.2.2. 2. Molecular dynamics (MD) simulations. |
4.2.2. 3. Composite micromechanics methods. |
4.2.2. 4. Finite element method (FEM) simulations. |
4.2.2. 5. Discrete element method (DEM) simulations. |
4.2.3. Cross-scale modeling methods |
4.2.3. 1. Mechanism of cross-scale calculation. |
4.2.3. 2. Multi-scale FEM method. |
4.2.3. 3. FEM-DEM coupling method. |
4.2.3. 4. NMM family methods. |
4.2.4. Summary and outlook |
4.3. Pavement mechanics and analysis |
4.3.1. Constructive methods to pavement response analysis |
4.3.1. 1. Viscoelastic constructive models. |
4.3.1. 2. Anisotropy and its characterization. |
4.3.1. 3. Mathematical methods to asphalt pavement response. |
4.3.2. Finite element modeling for analyses of pavement mechanics |
4.3.2. 1. Geometrical dimension of the FE models. |
4.3.2. 2. Constitutive models of pavement materials. |
4.3.2. 3. Variability of material property along with different directions. |
4.3.2. 4. Loading patterns of FE models. |
4.3.2. 5. Interaction between adjacent pavement layers. |
4.3.3. Pavement mechanics test and parameter inversion |
4.3.3. 1. Nondestructive pavement modulus test. |
4.3.3. 2. Pavement structural parameters inversion method. |
4.3.4. Summary and outlook |
5. Green and sustainable pavement |
5.1. Functional pavement |
5.1.1. Energy harvesting function |
5.1.1. 1. Piezoelectric pavement. |
5.1.1. 2. Thermoelectric pavement. |
5.1.1. 3. Solar pavement. |
5.1.2. Pavement sensing function |
5.1.2. 1. Contact sensing device. |
5.1.2.2.Lidar based sensing technology. |
5.1.2. 3. Perception technology based on image/video stream. |
5.1.2. 4. Temperature sensing. |
5.1.2. 5. Traffic detection based on ontology perception. |
5.1.2. 6. Structural health monitoring based on ontology perception. |
5.1.3. Road adaptation and adjustment function |
5.1.3. 1. Radiation reflective pavement.Urban heat island effect refers to an increased temperature in urban areas compared to its surrounding rural areas (Fig.68). |
5.1.3. 2. Catalytical degradation of vehicle exhaust gases on pavement surface. |
5.1.3. 3. Self-healing pavement. |
5.1.4. Summary and outlook |
5.2. Renewable and sustainable pavement materials |
5.2.1. Reclaimed asphalt pavement |
5.2.1. 1. Hot recycled mixture technology. |
5.2.1. 2. Warm recycled mix asphalt technology. |
5.2.1. 3. Cold recycled mixture technology. |
(1) Strength and performance of cold recycled mixture with asphalt emulsion |
(2) Variability analysis of asphalt emulsion |
(3) Future prospect of cold recycled mixture with asphalt emulsion |
5.2.2. Solid waste recycling in pavement |
5.2.2. 1. Construction and demolition waste. |
(1) Recycled concrete aggregate |
(2) Recycled mineral filler |
5.2.2. 2. Steel slag. |
5.2.2. 3. Waste tire rubber. |
5.2.3. Environment impact of pavement material |
5.2.3. 1. GHG emission and energy consumption of pavement material. |
(1) Estimation of GHG emission and energy consumption |
(2) Challenge and prospect of environment burden estimation |
5.2.3. 2. VOC emission of pavement material. |
(1) Characterization and sources of VOC emission |
(2) Health injury of VOC emission |
(3) Inhibition of VOC emission |
(4) Prospect of VOC emission study |
5.2.4. Summary and outlook |
6. Intelligent pavement |
6.1. Automated pavement defect detection using deep learning |
6.1.1. Automated data collection method |
6.1.1. 1. Digital camera. |
6.1.1.2.3D laser camera. |
6.1.1. 3. Structure from motion. |
6.1.2. Automated road surface distress detection |
6.1.2. 1. Image processing-based method. |
6.1.2. 2. Machine learning and deep learning-based methods. |
6.1.3. Pavement internal defect detection |
6.1.4. Summary and outlook |
6.2. Intelligent pavement construction and maintenance |
6.2.1. Intelligent pavement construction management |
6.2.1. 1. Standardized integration of BIM information resources. |
6.2.1. 2. Construction field capturing technologies. |
6.2.1. 3. Multi-source spatial data fusion. |
6.2.1. 4. Research on schedule management based on BIM. |
6.2.1. 5. Application of BIM information management system. |
6.2.2. Intelligent compaction technology for asphalt pavement |
6.2.2. 1. Weakened IntelliSense of ICT. |
6.2.2. 2. Poor adaptability of asphalt pavement compaction index. |
(1) The construction process of asphalt pavement is affected by many complex factors |
(2) Difficulty in model calculation caused by jumping vibration of vibrating drum |
(3) There are challenges to the numerical stability and computational efficiency of the theoretical model |
6.2.2. 3. Insufficient research on asphalt mixture in vibratory rolling. |
6.2.3. Intelligent pavement maintenance decision-making |
6.2.3. 1. Basic functional framework. |
6.2.3. 2. Expert experience-based methods. |
6.2.3. 3. Priority-based methods. |
6.2.3. 4. Mathematical programming-based methods. |
6.2.3. 5. New-gen machine learning-based methods. |
6.2.4. Summary and outlook |
(1) Pavement construction management |
(2) Pavement compaction technology |
(3) Pavement maintenance decision-making |
7. Conclusions |
Conflict of interest |
(8)Lithofacies paleogeography and exploration significance of Sinian Doushantuo depositional stage in the middle-upper Yangtze region, Sichuan Basin, SW China(论文提纲范文)
Introduction |
1. Stratigraphic characteristics and distribution of Doushantuo Formation |
1.1. The characteristics |
1.2. The distribution |
2. Paleotectonic pattern of Doushantuo depositional stage |
2.1. Evolution and distribution of paleouplift |
2.2. Formation and distribution of marginal sags |
3. Sedimentary features and lithofacies paleogeography |
3.1. Sedimentary features of typical profile |
3.1.1. Yangba profile in Nanjiang |
3.1.2. Well Wei117 |
3.1.3. Well Yidi4 |
3.2. Lithofacies paleogeography and its evolution |
3.2.1. Sedimentary characteristics of carbonate ramp deposits in Z2d1 |
3.2.2. Sedimentary characteristics of the shore-tidal flat-lagoon-mixed shelf, shallow water shelf, deep water shelf-sea basin in Z2d2 |
3.2.3. Sedimentary characteristics of the shore-limited semi-limited platform, shallow-water shelf, deep-water shelf and sedimentary basin facies in Z2d3 |
3.2.4. Sedimentary characteristics of the shore-shelf-sedimentary basin in Z2d4 |
4. Exploration significance |
5. Conclusions |
(9)Permian integrative stratigraphy and timescale of China(论文提纲范文)
1. Introduction |
2. Permian history |
3. High-resolution Permian biostratigraphy |
3.1 Conodonts |
3.2 Fusulines |
3.3 Radiolarians |
3.4 Ammonoids |
3.5 Brachiopods |
3.6 Rugose corals |
4. Geochronology |
5. Magnetostratigraphy |
6. Chemostratigraphy |
6.1δ13Ccarb |
6.2δ18Oapatite |
6.3 Strontium isotopes |
7. Corrleation of the Permian sequences in different regions of China |
7.1 South China |
7.2 North China |
7.3 Transitional zone in Inner Mongolia and Northeast China |
7.4 Tarim and Turpan-Hami basins, Northwest China |
7.5 Cimmerian blocks |
7.6 Himalaya Tethtys Zone in southern Tibet |
8. Summary, challenges and perspectives |
8.1 Timeline of major geological and biological events in the Permian |
8.2 Challenges and perspectives |
(10)基于SWAT模型的岩溶流域形态刻画及水文模拟(论文提纲范文)
CURRICULUM VITAE |
PUBLICATIONS |
摘要 |
abstract |
CHAPTER 1 INTRODUCTION |
1.0 GENERAL BACKGROUND |
1.1 KARST WATER RESOURCES |
1.2 KARST GROUNDWATER: IMPORTANCE AND CHALLENGES |
1.3 GEOGRAPHIC INFORMATION SYSTEMS (GIS) AND REMOTE SENSING (RS) |
1.3.1 IN-SITU HYDROGEOLOGICAL METHODS VS. REMOTE SENSING AND GIS |
1.3.2 REMOTE SENSING AND GIS IN KARST HYDROGEOLOGY |
1.3.2.1 Mapping Groundwater Preferential Flow Path |
1.3.2.2 Karst Groundwater Prospecting: Mapping and Geostatistical Interpolation |
1.3.2.3 Rainfall-Runoff Modelling |
1.4 HYDROLOGICAL MODELS |
1.5 CLIMATE AND GEOLOGICAL SETTING OF STUDY AREA |
1.6 RESEARCH QUESTIONS |
1.7 RESEARCH OBJECTIVES |
1.8 RESEARCH SIGNIFICANCE |
1.9 RESEARCH LIMITATIONS |
CHAPTER 2 WATERSHED MORPHOMETRIC CHARACTERIZATION AND MAPPINGUSING GIS AND REMOTE SENSING |
2.1 KARST WATERSHED CHARACTERIZATION |
2.2 KARST IN CHINA AND WATER RESOURCES DEVELOPMENT |
2.2.1 GIS and Remote Sensing for Karst Morphometric Characterization |
2.2.2 Study Area |
2.3 MATERIALS AND METHODS |
2.3.1 Topographic Characterization |
2.3.2 Hydrographic Characterization |
2.3.3 Geomorphic Characterization |
2.4 RESULTS AND DISCUSSION |
2.4.1 Topographic Analysis |
2.4.2 Hydrographic Analysis |
2.5 GEOMORPHIC ANALYSIS |
2.6 CONCLUSION |
CHAPTER 3 HYDROGRAPH RECESSION ANALYSIS AND COMPONENTS SEPARATION |
3.1 INTRODUCTION |
3.2 RECESSION CURVE ANALYSIS |
3.3 DATA AND METHODS |
3.4 STREAMFLOW DATA |
3.5 RESULTS AND DISCUSSION |
3.5.1 Calculation of Recession Coefficients (α) |
3.5.2 ecession Coefficient Statistics |
3.6 STREAMFLOW COMPONENT SEPARATION |
3.7 Implications on Groundwater Availability and Quality in Karst Areas |
3.8 CONCLUSION |
CHAPTER 4 HYDROLOGICAL MODELLING USING SOIL AND WATER ASSESSMENTTOOL (SWAT) |
4.1 INTRODUCTION |
4.2 RESEARCH PREMISE FOR APPLICATION OF UNMODIFIED SWAT MODEL IN KARSTIFIED CATCHMENT |
4.3 MATERIALS AND METHODS |
4.3.1 SWAT Model Description |
4.4 PROPOSED METHODOLOGY FOR KARST WATERSHED MODELLING |
4.4.1 Karst Survey and Tracer Test |
4.5 SWAT MODEL SETUP |
4.5.1 Topographic Data |
4.5.2 Land-Use/Landcover Data |
4.5.3 Soil Data |
4.5.4 Weather Data |
4.5.5 Stream Discharge Data |
4.6 MODEL EFFICIENCY EVALUATION |
4.6.1 Coefficient of Determination (R2) |
4.6.2 Nash–Sutcliffe Efficiency (NSE) |
4.6.3 Calibration and Validation |
4.6.4 Global Sensitivity Analysis |
4.7 PRECIPITATION-DISCHARGE DATA ANALYSIS |
4.8 GENERATING HYDROLOGICAL RESPONSE UNITS |
4.9 RESULTS AND DISCUSSION |
4.9.1 Model Simulation |
4.9.2 Water Balance Components |
4.10 STREAM FLOW FORECAST |
4.11 CONCLUSION |
CHAPTER 5 GENERAL CONCLUSION, RECOMMENDATIONS AND FUTURE RESEARCH |
5.1 GENERAL CONCLUSION |
5.2 RECOMMENDATIONS |
5.3 FUTURE RESEARCH |
ACKNOWLEDGEMENT |
BIBLIOGRAPHY |
APPENDIX A: MODEL DATA AND RESULTS |
四、YICHANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文参考文献)
- [1]The Present Research and Prospect of Chinese Geosciences History[J]. CHEN Baoguo,ZHANG Jiuchen,YANG Mengmeng. Acta Geologica Sinica(English Edition), 2016(04)
- [2]Status of Stratigraphy Research in China[J]. YAO Jianxin,BO Jingfang,HOU Hongfei,WANG Zejiu,MA Xiulan,LIU Fengshan,HU Guangxiao,JI Zhansheng,WU Guichun,WU Zhenjie,LI Suping,GUO Caiqing,LI Ya. Acta Geologica Sinica(English Edition), 2016(04)
- [3]人类活动污染物对黄柏河流域水质的影响 ——多因素水质评价和模拟[D]. Gebrehiwet Legese Reta. 三峡大学, 2020(06)
- [4]中南大学地球科学进展与前沿(英文)[J]. 郭振威,赖健清,张可能,毛先成,王智琳,郭荣文,邓浩,孙平贺,张绍和,于淼,崔益安,柳建新. Journal of Central South University, 2020(04)
- [5]Cambrian integrative stratigraphy and timescale of China[J]. Maoyan ZHU,Aihua YANG,Jinliang YUAN,Guoxiang LI,Junming ZHANG,Fangchen ZHAO,Soo-Yeun AHN,Lanyun MIAO. Science China(Earth Sciences), 2019(01)
- [6]基于有限理性理论的三峡大坝工程政策影响评估[D]. 阿黑丝(Danarson Jules Harris). 华中科技大学, 2015(07)
- [7]New innovations in pavement materials and engineering:A review on pavement engineering research 2021[J]. JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu. Journal of Traffic and Transportation Engineering(English Edition), 2021
- [8]Lithofacies paleogeography and exploration significance of Sinian Doushantuo depositional stage in the middle-upper Yangtze region, Sichuan Basin, SW China[J]. WANG Zecheng,LIU Jingjiang,JIANG Hua,HUANG Shipeng,WANG Kun,XU Zhengyu,JIANG Qingchun,SHI Shuyuan,REN Mengyi,WANG Tianyu. Petroleum Exploration and Development, 2019(01)
- [9]Permian integrative stratigraphy and timescale of China[J]. Shuzhong SHEN,Hua ZHANG,Yichun ZHANG,Dongxun YUAN,Bo CHEN,Weihong HE,Lin MU,Wei LIN,Wenqian WANG,Jun CHEN,Qiong WU,Changqun CAO,Yue WANG,Xiangdong WANG. Science China(Earth Sciences), 2019(01)
- [10]基于SWAT模型的岩溶流域形态刻画及水文模拟[D]. Hamza Jakada. 中国地质大学, 2018(03)
标签:history;