中学数学教学中加强新旧知识衔接的几点体会

中学数学教学中加强新旧知识衔接的几点体会

一、在中学数学教学中加强新旧知識联系的一些体会(论文文献综述)

张先波[1](2019)在《中学数学思想的培养研究 ——基于深度教学的视角》文中指出从原始的结绳记事,到对于数与形的重视;从楔形文字、象形文字的表达,到初等数学符号的出现;从面向生活实践的零散数学规律,到系统性的数学学科体系。数学这门古老的学科,在迈过其漫长的发展历史之后,在学校教学的过程中继续生根发芽。作为学校教育中的一门基础性学科,数学不仅致力于传递古今中外的数学知识和定律,更重要的是在与学校生活中其他学科的交融过程中,使学生通过知识的学习,领会数学思想,感悟数学之美。曾有学者指出,数学是关于美的学科,数学是关于艺术的学科,数学是不断反思发展的学科。数学之美,体现在其数字的变幻之美,体现在数学公式的平衡之美,体现在数学发现的探索之美,同时也蕴含在学生学习数学过程中所体会到的获得之美。数学同时还是关于思想的学科,历代数学家根据自己对相关数学领域的研究,不断充实数学思想库,在传承与创新的过程中实现数学学科的不断发展。关于数学是一门艺术还是一门科学性学科的争论至今仍然存在,数学是一门艺术体现在数学通过艺术化的语言、简练的公式表达,使得数学思想得以发展,数学学科也称为学科发展史上的一朵奇葩。数学是一门科学,数学的语言及表达要求精确而凝练地指出相应的意图,要求数学学习者和研究者对于相应数学思想的深刻化理解,并在此基础上做到运用时的精准化。数学同时是一门生活化的学科,原始的数学便发端于人们对于生活问题的解决过程。如古埃及数学文明的发展,便是由于尼罗河三角洲的河道淤积以及洪水泛滥等问题,迫使数学家开始研究淤积的面积,并提供相应的预测。数学的发展往往受到社会经济发展的影响,数学发展的每一个重要阶段必然伴随着社会发展的需要,并且也在顺应社会的需求。这一点在近现代数学发展史中得到了印证,尤其是在现代社会中数学与信息技术的融合,以及基础数学研究的日益专门化和数学教育的大众化等趋势,均是数学与社会经济发展相适应的表现。无论是古典时期阿基米德的几何《原本》,还是现代数学家所取得的重要成就和关键突破,均为数学的发展画上了浓墨重彩的一笔。当前数学的发展,除了需要数学家和相关研究者持续不断的努力,同时需要学校教育培养出对数学感兴趣、能够领悟数学之美的人才。学校教育的产生,在人类历史上无疑是具有划时代意义的事件,它使得人类文明的传承有了相对规范化和制度化的途径。学校教育的产生以及与之相伴随的学科教育的发展,使得人类发展史上的重要成果能够分门别类的进行传递和发展。正如学者所言,我们的数学教育并非是使每个孩子的都成为数学家,而是要在他们心中埋下数学的种子,使他们感悟和理解数学之美。学科教学的过程,不应当只是知识的传递过程,更重要的是学科教学应该成为思想领悟的过程,成为数学知识向数学思想跨越的过程。数学知识的学习是数学思想领悟与获得的基础,是数学深度学习达成的必要前提。基于深度教学的视角探讨中学数学思想的培养过程意味着,从知识观、学习观和教学观等方面进行中学主要数学思想进行培养。从深度教学的视角而言,知识的结构分为符号表征、逻辑结构和意义系统三个层次。数学知识教学过程中,应当是超越知识的符号性教学和表层化教学,进而深入到知识的内部结构之中,使学生在领悟数学学科知识的结构的基础之上,获得数学思想的熏陶。从数学知识到数学思想,不仅是数学教学的飞跃式发展,同时也是教学走向深度的必然要求。当前对于学生关键能力和核心素养培养的重视,最终需要回归到各个学科教学的过程中来,通过学科教学逐步渗透相应的学科思想,培养学生优秀的学科思维,进而促使学科能力和学科素养的提升。尤其是对于中学数学教学而言,中学处于义务教育阶段是学生相应学科思想学习的黄金时期,这一阶段的数学思想学习尤其需要引起教师和学生的重视,课堂教学应当以学科思想,即重要的数学思想为线索,将数学知识串点成线成面。学生的数学学习过程,经由学科思想的浸润,通常能够加深对于数学学科的认识,加深对数学知识的理解以及促进其对于学科结构的把握。因而,数学思想的教学之于数学教学过程而言至关重要,从数学知识到数学思想的跨越是当前课堂教学应当关注的重点。同时,如何在中学教学过程中培养学生的数学思想以及数学思维品质,也是一线教师及研究者应关注的的问题之一。

陈维彪[2](2020)在《基于学习迁移理论的高中数学不等式教学研究》文中认为通过迁移可以更好地架构不等式知识网络,培养学生的发散性思维,提高课堂教学效果和学生的逻辑推理能力.但在不等式实际教学中,学习迁移理论并没有发挥其应有的作用.因而,有必要了解学习迁移理论在不等式教学中的使用现状,制定相应的教学策略.本研究通过对学生进行问卷调查和访谈,调查学生对迁移概念的了解、迁移作用的认识以及在学习过程中使用迁移的情况;对教师进行访谈,了解教师在不等式教学中的困惑、对学习迁移理论的了解、影响迁移效果因素的看法及在教学中使用迁移的情况,分析存在的问题;接着研究学习迁移理论在不等式教学中的应用,得出学习迁移理论能提升学生不等式学习效果的结论.最后,提出基于学习迁移理论的不等式教学建议:(1)做好初高中不等式衔接教学,为高中不等式教学创造迁移基础;(2)借鉴新教材,迁移拓展不等式知识;(3)培养正迁移,纠正负迁移;(4)精心组织教学活动,培养学生的迁移意识;(5)重视变式训练,提高迁移能力;(6)对数学文化和不等式进行双向迁移,提升学生学习不等式的兴趣;(7)精心设计校本选修课程,为学生未来发展提供迁移基础.把学习迁移理论用到不等式教学过程中,系统地研究不等式知识,能提高学生学习不等式的兴趣,优化教师课堂教学活动,提高教学效果,对教师和学生的发展都有重要意义.

刘伟[3](2020)在《初中生数学建模能力培养研究》文中研究说明新课程改革以来,随着数学建模进入数学课程标准和初中数学教材,数学建模能力成为初中生必须掌握的关键能力,数学建模能力培养成为数学教育的重要目标和改革方向。然而,调查研究表明,当前初中生数学建模能力培养存在着一些亟待改进的问题,数学建模“教什么”“怎么教”“如何培养初中生数学建模能力”仍然困扰着一线教师。究其原因,归根结底是因为当前初中数学建模教学缺乏行之有效的理论指导,也缺乏可供参考的教学策略,初中生的数学建模学习也缺少行之有效的学习方法。因此,创建一种具有通用性和统摄性的数学建模能力培养理论,提出具体可行的初中生数学建模能力培养策略,帮助和指导一线教师有效地进行初中数学建模教学成为当务之急。基于此认识,本研究以初中生数学建模能力培养研究为切入点,希望通过全面系统地分析初中数学建模教学内容,探查初中数学建模教学内容的局限性;又希望通过详细的课堂考察和教师深度访谈,全面调查初中生数学建模的过程,总结初中生数学建模的方式及规律,以期研究并得到初中生数学建模的一般过程及初中生数学建模能力结构;然后在调查研究的基础上,通过对初中生数学建模能力培养现状进行详细分析和梳理,分析和研判初中生数学建模能力培养中的困境,透视和了解初中生数学建模学习的障碍;最后,为了有针对性地探查和寻找初中生数学建模能力培养策略,本研究从提升初中生数学建模能力和为初中生数学建模学习提供系统性支持的视角,提出了初中数学建模教学内容选择策略、初中生数学建模能力培养的教学策略和初中生数学建模学习策略。由此可见,初中生数学建模能力培养研究,通过探究初中生数学建模能力培养的规律,解答了初中生数学建模能力培养究竟“教什么”“怎么教”和“怎么学”的问题,构建了初中生数学建模能力培养的教学理论雏形,可以有效改善初中数学建模教学,为培养初中生数学建模能力提供一种新的可供选择的教学模式,此项研究不仅具有较强的理论意义,而且具有较高的实践价值。本文共分为六大部分,各部分的理路分别是:第一部分是导论,简要介绍本文研究的缘起与意义、核心概念、研究思路、研究方法,并对已有的研究文献做了研究综述;第二部分梳理了数学建模教育的背景、发展历程及理论基础,为制定初中生数学建模能力培养的策略奠定理论基础;第三部分重点对初中数学建模教学内容做了文本分析,讨论了初中数学教材与课程标准的一致性,初步分析了教材中数学建模内容的不足;第四部分通过课堂考察和教师深度访谈,详细调查了初中生数学建模的过程,构建了初中生数学建模能力结构,透视了初中生数学建模能力培养的现状;第五部分分析了初中数学建模教学内容存在的局限性、初中数学建模教学的困境以及初中生数学建模学习的障碍,意在为探寻初中生数学建模能力培养的策略奠定基础;第六部分主要探讨怎样培养初中生的数学建模能力,从数学建模教学内容选择、初中数学建模教学和初中生数学建模学习三个方面提出了初中生数学建模能力培养的策略。

罗钦[4](2019)在《高中数学教学中类比思想的应用》文中进行了进一步梳理类比是逻辑推理中的主要形式,也是高中数学中一种重要的思维方法,它在高中数学教学和学习中有着至关重要的作用。类比作为合情推理的一种形式,作为数学活动的一种过程,将类比思想用于数学教学中,有助于发展学生的创新思维,为学生探索新知识提供理论工具,从而培养学生自主探究能力,是符合当今“新课程标准”理念的。本文旨在通过对类比思想的相关研究,说明类比思想在高中数学教学中新知引入课、复习旧知课、习题讲解课的应用。本文主要从以下五个方面进行研究:第一部分主要介绍高中数学教学中类比思想应用的背景和意义,以及有关“类比”的国内外研究综述;第二部分首先介绍了数学思想方法,其次介绍了类比思想的概念、形式和特征,并把最常见的数学类比分为三种类型:知识类比、方法类比和形式类比,最后说明了合情推理的另一种形式——归纳和类比的联系。第三部分主要阐述了支撑该论文的相关教育理论,主要有结构映射理论、学习迁移理论、建构主义理论三种教育理论。第四部分主要以理论作为载体,以主动参与性、目标导向性、注重过程性为原则,分别举例说明了类比思想在新知引入课、复习旧知课、习题讲解课的应用。第五部分主要举例研究了高中数学教学中类比思想的应用,从高中数学人教A版选取两个案例进行研究,并给出相应教学设计及课后反思。最后对本文的研究内容进行总结。在高中数学教学中渗透类比思想,可以使课堂教学更加有效,同时,本文还阐述了本研究需要做的改进,希望能够激发类比思想在高中数学教学中的应用。

张蜀青[5](2019)在《问题驱动的高中数学课堂教学设计理论与实践》文中研究指明近几十年来,我国中学数学教育改革进行了若干轮,从教学大纲改为课程标准,到2017年的新课标,除了对教学知识版块进行了增减,还产生了各种教育理念.在教师群体中,则主要是基于教学形式的课堂教学改革.教育届有识之士提出数学教育应该是数学的再创造过程,我们也看到很多论文言必称弗莱登塔尔和“再创造”,但是什么是真正的数学再创造?并没有一个明确的内涵解释和操作行为准则.本研究所提出的“问题驱动”是对弗莱登塔尔数学教育观的发展和丰富,是其“再创造”思想的具体化.它倡导教师借助数学史等深入了解知识内部,通过挖掘知识产生的背景,了解数学思想形成的过程,剖析其文化价值.具体实施过程则是结合教育学和心理学的原则,根据学生的认知水平创设合理的问题情境,将引发概念被创建或定理被发现的问题嵌入到情境中,实现问题驱动教学.本研究主要做了以下几方面的工作:1.文献综述新中国建国以来的中学数学教育改革,及美国和日本为代表的世界数学教育改革情况.根据当前高中数学教学存在的问题,提出问题驱动的数学课堂教学理论.2.从数学教育的本质、数学教育的价值来详细阐述问题驱动的高中数学教学设计的理念和指导思想,强调我们的数学课堂教学应该重视思辨和直觉培养,从而培养学生的创造力,数学教育除了体现学科价值还应该体现人文价值.3.深入阐述了“问题驱动”的内涵与外延,指出何为“真问题”和“真情境”,如何通过问题驱动实现数学的再创造.给出问题驱动的高中数学课堂教学评价标准及解读.4.本研究在积累了近百篇教学设计基础上,通过三种课型的5个典型案例的教学设计进行对比评价,从多个角度用实际案例示范引领如何创设问题情境,实现问题驱动.5.总结了近四年的研究成果与不足,明确下一步研究的方向.本研究的创新之处:1.和导师一起建立了问题驱动的数学课堂教学理论并进行了实践.2.和导师一起建立了反映数学本质的简单易操作的数学课堂教学评价标准.3.提出了数学教育是数学的有限再创造的观点,丰富发展了弗莱登塔尔的再创造理论.4.大、中学教师以及教研员长期扎根一线教学,通过教学研讨形式实现理论与实践相结合的崭新合作模式,使理论研究落到实处,也使课堂教学有章法可循,在实践中提升教师的教育研究水平.本研究通过行动研究形成一套有效可行的实现数学再创造的理论,一方面落实“四基”和“四能”,一方面探索出一条在应试教育与素质教育之间寻找平衡点的道路.本研究已在高中教学取得了很好的效果,在国内有一定的影响。

胡晋宾[6](2015)在《基于数学课程知识观的高中数学教科书编写策略研究》文中研究表明对于学校教育来说,知识毫无疑问是课程和教学的核心。而从历史上来看,知识观决定着课程观和教学观,有什么样的知识观,就会有什么样的课程设计和教学实施。每一次课程改革都是在特定的知识观影响下展开的,知识观是历次课程改革的分歧焦点。对于课程物化载体的教科书来说,它的编写也是知识观指导下的创作活动。基于当下的高中数学课改现实,研究教科书编写策略既有理论意义也有实践意义。从数学哲学、心理学和教育学这样3个视角来透视知识观发现:数学哲学视角的知识观强调对宏观的数学知识发生、确证、发展、结构、属性、应用等方面的反思和追问,心理学视角的知识观强调对微观的认知过程与机制、知识分类与传递等方面的解析和实证,教育学视角的知识观强调对学校中的数学知识的价值、筛选、组织、传递、教授、习得等方面的关切和侧重。数学知识观是隐藏在数学课程观和数学教学观背后的前提性根源,有什么样的数学知识观,就有什么样的数学课程观、数学教学观和数学学习观。在数学教育领域,数学观和数学知识观不是一个概念,但是经常被混淆着使用。本文认为,前者是有关数学发展的“世界观”,使用场合主要是数学研究,隶属于“数学哲学”;后者是关照数学教育的“知识观”,使用场合主要是数学教育,隶属于“数学教育哲学”。如果把数学教育当作基于数学知识的教育,并从知识的角度来考察和反思数学教育的话,那么形成的关于数学知识的看法就是数学知识观。而数学课程知识观是数学知识观的一个子集,就是指关于数学课程知识的观念,它是立足数学课程、关照数学课程、服务数学课程的一种数学知识观。数学教科书中体现的数学课程知识不同于数学科学知识,不同于生活数学知识,而是学校教育中的数学知识。同时,它是以客观的、共同的数学科学知识为基础,整合了同龄人中的生活情境、个人知识中的共性成分以及其他学科知识(如物理、化学等)等知识形态,揉进了教学法加工和编辑技术等元素,预设教学方式并以纸质文本呈现出来的整合知识。数学教科书知识的特点是,它假借以静态陈述的数学知识为躯壳,负载了教育理念的课程价值,预设有知识获得的教学方式。借鉴有关知识观的理论框架研究,我们赋予数学学科含义,认为数学课程知识观有3个维度,即数学知识本质观、数学知识价值观和数学知识获得观。理想的数学课程知识观理论图景是:数学知识本质是一种模式化的思维创造,数学知识价值是一种辩证性的复杂谱系,数学知识获得是一种参与式的社会建构。特别地,我们指出,应该强调借助数学教科书的编写去引导师生形成全面的、辩证的、现代的数学知识观。基于上述三维框架,对历史上数学教科书中隐匿的数学知识观进行了考察,对现实中教科书作者和数学教师的数学课程知识观以及数学教科书编写策略认同进行了问卷调查和相关分析。无论是从历史上6个版本教科书的文本考察来看,还是从现实中26名中学数学教科书作者和515名数学教师的问卷调查来看,知识观都影响了教科书编写策略;反过来,教科书编写策略中预设了不同的知识本质、知识价值和知识获得观念,从而又导致教学中不同数学知识观的形成。它们之间的关系,是统一的、辩证的。对于教科书作者来说,不同知识观导致了编写策略的不同认同,这种认同直接影响了编写策略,从而导致不同的教科书编写方式,间接影响了使用教科书的广大师生的数学知识观。正因为编写策略导致不同的教科书编写方案,因此优质的教科书编写应该寻求或者采用先进的数学课程知识观来做为指导。数学教科书编写是教科书作者在数学课程知识观显性或者隐性影响下的创造性活动,有什么样的数学课程知识观,就有什么样的高中数学教科书编写策略认同——持有传统的、机械的、静态的数学课程知识观,认同传统的、机械的、静态的高中数学教科书编写策略(大致强调知识、结果、显性、学科、传授、内部等);持有现代的、辩证的、动态的数学课程知识观,认同现代的、辩证的、动态的高中数学教科书编写策略(大致强调文化、过程、隐性、活动、建构、外部等)。基于数学课程知识观理论图景,对高中数学教科书编写策略进行了理论建构,并以3个课时的内容进行了微型实证和验证反思。首先,本文认为基于数学课程知识观视角的高中数学教科书编写策略的指导思想有3个,即:数学教科书应该具有学科性,数学教科书应该具有教学性,数学教科书应该具有人文性。其次,在此基础上我们提出如下6条具体的编写设想。第一条,经历数学化:衔接知识的过程与结果样态。第二条,揭示潜隐性.:兼顾知识的外显和内敛价值。第三条,渗透心理化:整合知识的逻辑和心理顺序。第四条,创设关联性:搭建知识的内部和外部链接。第五条,彰显主体性.:协调知识的科学和人文特质。第六条,体现交互性:铺设知识的传授和建构渠道。对于我国实际来说,数学教科书编写以前主要是国家行为,受到传统的教育理念的深刻影响;现在教科书多元化以后,编写策略是教科书建设的一个重要研究课题。因此,我们主张高中数学教科书在编写的时候,立足于数学知识的结果、显性、逻辑、内部、传授维度的基础上,尤其要注意数学知识的过程、隐性、心理、外部和建构维度,把它们辩证地平衡起来,防止矫枉过正的简单化和一分为二的片面性,从而实现数学知识的最大教育价值和最佳育人效果。

顾思敏[7](2020)在《高中函数概念的教学重构》文中认为《普通高中数学课程标准(2017年版)》突出了贯穿高中数学课程的四条主线,即函数、几何与代数、统计与概率,以及强调应用的数学建模活动与数学探究活动。函数作为四条主线之一,这是史无前例的。函数概念是函数的核心内容,也是高中数学课程中的核心概念。特别地,《标准(2017年版)》在“附录2”中增设“案例2函数的概念”来促进人们理解高中为什么要强调函数是实数集之间的对应关系。一直以来,高中函数定义由于其抽象程度高,不易于被学生理解被,被教师和学生公认为难教和难学的概念之一。本文从现行高中数学教材入手,发现现行教材函数定义中的“对应关系f”一词没有明确的定义,也鲜少有学者对其进行定义。并且,由于对“对应关系f”理解不同,既有人认为函数y=x,xε{0,1}与函数y=x2019,xε{0,1}的对应关系相同,也有人认为两函数的对应关系不同。那么如何正确理解函数概念,特别是对应关系f,才能避免出现诸如此类由于对“对应关系f”理解不同而产生的教学乱象,这就是本文的研究问题。基于上述问题,本文主要采取文献资料法、调查法和统计分析法等方法,以“高中函数概念”为对象展开研究。从“函数定义”出发,通过对文献和教材的整理,分析学者及教材编写者对“高中函数定义”的理解,发现如今高中函数定义没有统一的定义,对函数的本质也没有统一的说法,并且函数定义中“对应关系”一词容易使人产生歧义,而函数关系定义避开了容易令人产生歧义的“对应关系完全一致”,而且更能突出函数的本质。因此,基于现行高中数学教材“函数的概念”存在的问题,从两个角度来探究高中函数概念的教学重构:第一,基于现行教材对函数概念进行教学重构;第二,基于“关系”定义对函数概念进行教学重构。研究发现:(1)现行人教A版教材中的函数概念存在的主要问题是:将“函数f:A→B”与“对应关系f”混淆,使得人们对“两函数相等”或“同一个函数”定义中的“对应关系完全一致”有不同的理解。为了区分“函数f:A→B”与“对应关系f”之间的区别,有如下建议:1)将《标准(2017年版)》中“对应关系强调的是对应的结果,而不是对应的过程”中的“对应关系”改为“函数”;2)删除现行课本“对应关系完全一致”的说法,将“两函数相等”定义修改“如果两个函数的定义域相同,且相同的自变量对应的函数值也相同,那么两个函数相等”;3)对于解析式不同的两个函数,它们的对应关系f不相同;4)“两个函数相等”比“同一个函数”更为恰当。(2)本文从高中引入函数关系定义的必要性和可行性出发,从理论和实践两个角度去阐述函数关系定义引入高中教学的必要性和可行性,并从实证角度说明:有72.69%的学生是能够理解函数关系定义的,有96.77%的职前教师是能够把握好函数关系定义的内容,能够教好函数关系定义的。因此,在不取消现行高中函数定义的基础上,在高中的教学中可以适当增加函数关系定义的内容。基于上述内容,有如下建议:1)适当减少现行高中“函数的概念”教材篇幅,增加一节“函数关系定义”的内容;2)渗透“函数关系定义”的内容,不出现笛卡尔积,即增加函数的集合表示法;3)增加“函数关系定义”的阅读材料。

雷焰麟[8](2020)在《高中数学新旧教科书函数部分比较研究》文中进行了进一步梳理教育部颁布的《普通高中数学课程标准》(2017年版)提出数学课程学习要使学生获得对未来发展所需的“四基”“四能”,培养学生“数学学科核心素养”。教科书作为数学课程内容学习的知识载体,它的改革迫在眉睫,使用率最高的人教A版高中数学教科书的再修订也成为此次课程改革的重要内容。新版人教A版教科书的编写是否符合课程理念的要求、与旧版教科书相比具有哪些改进和不足之处尚需进一步研究分析。因此,本文选取人教A版新旧两版教科书进行比较,目的是为今后研究课程改革、教科书的编写与使用提供文本依据。函数是贯穿高中数学课程的主线,是刻画变量之间的语言与工具,以人教A版新旧两版教科书的函数内容为研究对象,运用文献研究法、比较研究法、统计分析法、案例分析法等教科书的研究方法从教科书的三个部分进行研究,第一部分文献综述,系统地介绍教科书相关的定义、教科书的编写依据,总结前人针对各地区不同版本教科书的一般比较方法。第二部分内容比较,课程标准对函数的教学要求、知识体系与内容安排、栏目设置、章节引入方式、概念与性质的呈现方式、章末回顾的内容结构等方面进行比较。第三部分难度比较,对比两版教科书的深度、广度、难度。研究表明:新版教科书是在旧版教科书的内容结构基础上渗透新课程标准的理念,通过改变知识的引入、引例、引言方式,调整素材背景,弥补例题安排与栏目分类,设置符合学生学情的问题,采用更多样的研究环节,分层次安排习题,章末总结调整结构等完成编写。本研究希望从新旧两版教科书不同之处进行量化分析,为教师使用教科书提出相关的建议:(1)形成探究式的教学模式(2)注重知识内容的背景设置(3)加强数学思想方法的渗透(4)信息技术融入数学课堂。为后续教科书对比分析提供方法与思路,为一线教师的函数教学提供参考。

西峰山[9](2015)在《平面几何教学研究之研究 ——以《数学通报》(1951~1966)为例》文中认为本研究主要利用文献研究法、历史研究法、比较研究法等研究方法,依据教学论和课程论,把教学活动分成“教”和“学”两个维度,从每个维度的各个环节(即前期准备、内容分析、方法的选择、遵循的原则、计划与实施、评价与反思)对《数学通报》中的有关平面几何教学的文章进行统计分析,揭示我国建国初期15年间的平面几何教学特点及发展脉络。具体研究的过程中,首先,根据当时的历史背景和《数学通报》中文章的体现将该时期分为三个阶段,即1951—1957,学习苏联时期;1958—1960,教育改革时期;1961—1966,自我完善时期。其次,对每一阶段从背景的概述、平面几何教学文章的总体特点及趋势和平面几何教学的特点及发展脉络等三个层次对其进行统计分析。背景概述主要对该阶段的数学教育政策和当时的教学大纲两个方面进行概述;平面几何教学文章的总体特点及趋势对该阶段发表的平面几何文章在总体文章中所占比重和对它的变化趋势进行统计分析;平面几何教学的特点及发展脉络先从教学的六个环节对这些文章进行进一步分块统计,再对每一块(环节)所包含的内容进行深入分析(先对每环节进行类化,再深入探究)。通过上述研究得到建国初期平面几何教学的如下特点:1.教学准备:备学生方面,了解学生认知发展水平并注意个体差异;备教材方面,选材注重数学在历史上的贡献;教师能力方面,主要是注重教育实习。当时为了提高备课质量,还注意到了集体备课方面的问题。2.教学内容分析:学习苏联时期受到苏联的影响,教材的选择和编排非常重视系统性和严密性;教学改革时期更注重与实际的结合;自我完善时期,意识到改革的极端性,教学内容方面在不损坏内容系统性的和适当联系实际的基础上,以学生为核心对教材进行筛选和精简。3.教学方法选择:当时常用的教学方法有直观教学演示法、练习法、讲授法、谈话法、启发式教学法、因材施教等。练习法中有案例分析法和复习法;而案例分析法可分为定理的证明方法、典型案例的分析和实际问题解决法等三种。4.教学原则:当时遵循的教学原则有理论联系实际的原则、系统性原则、顺序渐进原则、量力性原则、巩固性原则、思想性原则、直观性原则和启发式原则等。培养学生能力时初级阶段遵循直观性原则,有一定知识储备能力时再以启发式原则为主,并且教学过程中注意对这些知识与方法的即时巩固与练习,因此要用巩固性原则。5.教学设计与实施:教学的目的从“社会本位”转向“个人本位”和“社会本位”相结合的理念。1963年第一次通过大纲提出“三大能力”的培养。教材的编排方面:学习苏联时期主要侧重知识间的系统性和逻辑性;教育改革时期主要根据生产实际的需要;自我完善时期主要围绕学生的特点和发展进行编排。6.教学评价与反思:当时数学教育者们已经开始关注教学评价与反思,并组织发表了一些很有参考价值的文章。通过分析《通报》上的文章可以了解到:当时已经关注到了教学的每个环节,即教前反思、教学内容的反思、有教学过程的反思(方法、设计、原则)等。

刘冬[10](2020)在《高一学生函数迁移能力的现状与培养策略研究》文中研究指明当今,教育界提倡“学会学习”、“教是为了不教”意味着教学不仅仅是知识的传授,更重要的是培养学生的能力。“为迁移而教”早已成为现代教育提倡的一个目标和关注点。函数作为高中数学教学的重点,也是高中数学知识的主线之一,占据着重要地位。将迁移理论运用到函数的教学中符合新课改的需求,可以推动教育目标的实现,有利于培养学生的数学素养。因此,本文在迁移理论的基础上,结合高一学生函数迁移能力的现状,实施具体研究。本文首先阐述了问题研究的背景、目的、意义及方法。通过查阅相关的资料,运用文献分析法,对本论文中涉及到的“迁移”、“函数迁移能力”等相关概念做出了规范的解释。同时,笔者梳理了迁移能力的国内外研究现状,阐述了函数在中学数学中的地位以及函数迁移能力的水平划分,并从主体因素和客观因素两个方面分析了影响函数迁移能力的因素。其次,笔者通过调查问卷与学生测试卷的数据结果,分析了高一学生函数迁移能力的现状。基于调查结果,通过访谈和课堂观摩等方式,分别从教师、学生以及课程设置等方面分析了高一学生函数迁移能力较薄弱的原因。最后,结合函数实际教学的现状以及迁移的相关理论,针对高一学生函数迁移能力较薄弱的现状及原因,从学生、教师及课程设置三个角度提出了相应的培养对策。基于调查结果,受高考导向及自身素质等方面的影响,一线数学教师在函数的实际教学中容易忽视对学生迁移能力的培养,使部分学生对函数部分的理解和掌握不够深入,仍停留浅层运用上。本文从改进学习方法、端正学习态度等方面提出了对学生的要求;从课堂导入、教学过程、课堂小结等环节研究迁移理论在函数教学中的落实,并从转变教师观念、调整函数教材内容及顺序等方面提出了合理化的建议,希望提供给一线教师一种参考方案,以期达到培养学生迁移能力的教育目的。

二、在中学数学教学中加强新旧知識联系的一些体会(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、在中学数学教学中加强新旧知識联系的一些体会(论文提纲范文)

(1)中学数学思想的培养研究 ——基于深度教学的视角(论文提纲范文)

摘要
Abstract
导论
    第一节 问题的提出
        一、数学育人价值实现与当前课堂教学实施的矛盾
        二、数学学科思想教学与当前教学变革的错位
        三、学生深度学习达成与课堂教学效果的偏离
    第二节 研究意义
    第三节 国内外研究综述
        一、国内研究综述
        (一) 关于数学课程的研究
        (二) 关于数学知识及其教学的研究
        (三) 关于学科思想方法的研究
        (四) 关于数学思想的研究
        二、国外文献综述
    第四节 研究方法
    第五节 研究内容
第一章 数学思想:内涵与意义
    第一节 数学思想的发展回溯
        一、数学思想的发展历史及阶段
        二、我国数学思想在教学中的发展
    第二节 数学思想的含义
    第三节 数学思想的特征分析
        一、内隐性
        二、连续性
        三、可迁移性
    第四节 数学思想的价值分析
        一、数学思想的教学价值
        二、数学思想的发展价值
        三、数学思想的应用价值
第二章 中学主要数学思想及相关概念辨析
    第一节 数学发展史上的主要数学思想
    第二节 中学数学教学中的数学思想
        一、数形结合思想
        二、分类讨论思想
        三、转化或化归思想
        四、类比或递推思想
        五、构造或建模思想
    第三节 相关概念辨析
        一、数学知识与数学思想
        二、数学能力与数学思想
        三、数学方法与数学思想
        四、数学素养与数学思想
第三章 当前中学数学思想教学现状分析
    第一节 中学数学思想教学现状调查的描述分析
        一、中学数学教师思想教学的基本情况
        二、中学教师数学思想教学现状
    第二节 中学教师数学思想教学的影响因素分析
        一、教师自身对于数学思想的认知
        二、学生数学学习的阶段性与连续性
        三、教材与学生发展之间的关联性
        四、教学活动组织的适切性
    第三节 问题与讨论
第四章 基于深度教学的中学生数学思想建立过程
    第一节 中学生数学思想的形成过程
        一、以观察能力为基础
        二、以猜想能力为辅助
        三、论证思维的建立
    第二节 深度学习以培养学生的数学思想
        一、深度学习之内涵
        二、深度学习与数学思想的建立
        三、深度学习以培养学生的数学思想
    第三节 深度教学以促进数学思想的培养
        一、深度教学之意涵
        二、深度教学与数学思想的建立
        三、深度教学以促进数学思想的培养
第五章 中学数学思想及其培养策略
    第一节 学科思想的特性与数学思想的价值
        一、学科思想的普遍性与特殊性
        二、数学思想的学科意蕴
    第二节 中学主要数学思想的形成过程
        一、中学数学思想培养所必备的学习经历
        二、中学数学思想培养的教学过程
        三、中学主要数学思想的培养
    第三节 中学主要数学思想的培养策略
        一、分类讨论思想的培养策略
        二、数形结合思想的培养策略
        三、转化或化归思想的培养策略
        四、递推或类比思想的培养策略
        五、构造或建模思想的培养策略
结语
参考文献
附录
致谢

(2)基于学习迁移理论的高中数学不等式教学研究(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 研究的背景
        1.1.1 不等式学习的重要性
        1.1.2 不等式教学中的困境
        1.1.3 学习迁移理论在不等式中的作用
    1.2 核心名词界定
        1.2.1 教学
        1.2.2 教学设计
        1.2.3 解题
        1.2.4 迁移
    1.3 研究的内容和意义
        1.3.1 研究的内容
        1.3.2 研究的意义
    1.4 研究的思路
        1.4.1 研究计划
        1.4.2 研究的技术路线
    1.5 论文的结构
第2章 理论基础与文献综述
    2.1 研究的理论基础
        2.1.1 学习迁移的概念
        2.1.2 迁移的分类
        2.1.3 早期的迁移理论
        2.1.4 现代的迁移理论
    2.2 文献综述
        2.2.1 文献搜集
        2.2.2 不等式的研究现状
        2.2.2.1 不等式教材的研究现状
        2.2.2.2 不等式解题教学的研究现状
        2.2.2.3 不等式教学策略的研究现状
        2.2.3 学习迁移理论的在数学中的研究现状
        2.2.4 不等式中的迁移的研究现状
        2.2.5 文献评述
    2.3 小结
第3章 研究设计
    3.1 研究目的
    3.2 研究方法
        3.2.1 文献法
        3.2.2 问卷调查法
        3.2.3 访谈法
        3.2.4 痕迹分析法
        3.2.5 案例研究法
        3.2.6 微型实验研究法
    3.3 研究工具及研究对象选取
    3.4 研究伦理
    3.5 研究的创新之处
    3.6 小结
第4章 基于学习迁移理论的不等式教学现状调查
    4.1 基于学习迁移理论的问卷分析
        4.1.1 问卷设计
        4.1.2 实施调查
        4.1.3 问卷可靠性分析
        4.1.4 学习迁移理论的问卷结果分析
        4.1.4.1 学生学习一元一次不等式的迁移体会
        4.1.4.2 学生对教师的迁移教学的感受
        4.1.4.3 学生对迁移作用的观点
        4.1.4.4 学生对解题中所涉及到迁移的体会
        4.1.4.5 学生对数学内部及其他学科间的迁移的认识
    4.2 基于学习迁移理论的访谈研究
        4.2.1 访谈设计
        4.2.2 实施访谈
        4.2.3 访谈结果及分析
        4.2.3.1 教师访谈记录
        4.2.3.2 教师访谈分析
        4.2.3.3 学生访谈记录
        4.2.3.4 学生访谈分析
    4.3 基于学习迁移理论的调查结论
    4.4 小结
第5章 学习迁移理论在不等式教学中的应用
    5.1 新、旧课标的不等式对比分析
        5.1.1 内容方面
        5.1.2 要求方面
    5.2 不等式中的迁移
        5.2.1 不等式知识中的迁移
        5.2.1.1 不等关系与不等式中的迁移
        5.2.1.2 一元二次不等式及其解法中的迁移
        5.2.1.3 基本不等式中的迁移
        5.2.1.4 教材其他内容的迁移
        5.2.2 数学文化中的迁移
        5.2.3 思想方法的迁移
    5.3 基于学习迁移理论的不等式教学目的
    5.4 基于学习迁移理论的不等式教学原则
    5.5 基于学习迁移理论的不等式教学流程
    5.6 基于学习迁移理论的不等式教学案例
        5.6.1 实验班、对照班的选择
        5.6.2 基于学习迁移理论的“一元二次不等式及其解法”的案例
        5.6.2.1 基于学习迁移理论的一元二次不等式及其解法教学设计构想
        5.6.2.2 基于学习迁移理论的一元二次不等式及其解法教学设计
        5.6.2.3 基于学习迁移理论的一元二次不等式及其解法的教学访谈
        5.6.3 基于学习迁移理论的“基本不等式”的案例
        5.6.3.1 基于学习迁移理论的基本不等式教学设计构想
        5.6.3.2 基于学习迁移理论的基本不等式教学设计
        5.6.3.3 基于学习迁移理论的基本不等式的教学访谈
        5.6.4 迁移教学效果分析
        5.6.4.1 实验班解题痕迹分析
        5.6.4.2 第10周周测分析
    5.7 小结
第6章 基于学习迁移理论的不等式教学建议
    6.1 基于学习迁移理论的不等式教学建议
        6.1.1 做好初高中不等式衔接教学,为高中不等式教学创造迁移基础
        6.1.2 借鉴新教材,迁移拓展不等式知识
        6.1.3 培养正迁移,纠正负迁移
        6.1.4 精心组织教学活动,培养学生的迁移意识
        6.1.5 重视变式训练,提高迁移能力
        6.1.6 对数学文化和不等式进行双向迁移,提升学生学习不等式的兴趣
        6.1.7 精心设计校本选修课程,为学生未来发展提供迁移基础
    6.2 小结
第7章 结论与反思
    7.1 研究的结论
        7.1.1 问卷和访谈调查分析的结果
        7.1.2 迁移理论在不等式教学中的应用分析
        7.1.3 不等式教学建议
    7.2 研究的不足之处与展望
参考文献
附录A 基于学习迁移理论的调查问卷
附录B 学生访谈提纲
附录C 教师访谈提纲
附录D 后测题
攻读学位期间发表的学术论文和研究成果
致谢

(3)初中生数学建模能力培养研究(论文提纲范文)

摘要
Abstract
导论
    一、研究的缘起和意义
    二、研究综述
    三、核心概念及论题说明
    四、研究思路
    五、研究方法
第一章 数学建模教育的背景、发展历程及理论基础
    第一节 数学建模教育的背景
        一、数学建模的兴起
        二、数学建模教育的育人价值
    第二节 数学建模教育的发展历程
        一、数学建模教育的萌芽起步阶段
        二、数学建模教育的初步发展阶段
        三、数学建模教育的稳步发展阶段
    第三节 数学建模教育的理论基础
        一、问题解决理论
        二、知识迁移理论
        三、深度学习理论
第二章 初中数学建模教学内容的文本分析
    第一节 数学课程标准对数学建模能力培养的要求
        一、对课程设计思路的要求
        二、对课程目标的要求
        三、对课程实施的建议
        四、对教材编写的建议
    第二节 初中数学教材中数学建模内容的呈现与编排
        一、初中数学教材中数学建模内容的呈现
        二、初中数学教材中数学建模内容的编排
    第三节 初中数学教材与课程标准的一致性
        一、初中数学教材与课程标准的一致性分析
        二、初中数学教材与课程标准的一致性总结
第三章 初中生数学建模能力培养的现状调查
    第一节 初中生数学建模能力培养的课堂考察
        一、课堂考察与分析
        二、教师访谈与分析
    第二节 初中生数学建模的方式及规律
        一、七年级学生数学建模的方式及规律
        二、八年级学生数学建模的方式及规律
        三、九年级学生数学建模的方式及规律
    第三节 初中生数学建模的过程及数学建模能力结构
        一、初中生数学建模的一般过程
        二、初中生数学建模能力结构
第四章 初中生数学建模能力培养的困境分析
    第一节 初中数学建模教学内容的局限性分析
        一、数学建模教学内容与学生现实脱节
        二、教学内容缺少真正意义的数学建模问题
        三、教学内容与初中生数学建模能力培养不适切
        四、教学内容局限于教材,忽视了对教学资源的开发
    第二节 初中数学建模教学的困境分析
        一、学校和教师对数学建模教学不够重视
        二、数学建模教学方式有待改进
        三、数学建模教育理念不适应数学建模能力培养
        四、数学建模教学缺乏培训和理论指导
    第三节 初中生数学建模学习困难分析
        一、数学建模学习方式需要转变
        二、尚未掌握数学建模的学习路径
        三、学习进阶过渡中遇到障碍
第五章 初中生数学建模能力培养策略
    第一节 制定初中生数学建模能力培养策略的依据
        一、依据对初中数学建模教学内容的分析
        二、依据初中数学建模教学现状
        三、依据初中生数学建模学习现状
    第二节 初中数学建模教学内容选择策略
        一、反映数学本质,突出数学学科核心素养
        二、贴近学生现实,体现数学建模的真实性
        三、注重数学建模过程性,体现数学建模能力培养的阶段性
        四、注重选择变式问题,促进问题解决能力的迁移
        五、增加开放性和探究性的问题,全面提升数学建模能力
        六、面向学生的长远发展选择数学建模内容
    第三节 初中生数学建模能力培养的教学策略
        一、由平铺直叙转变为创建有利于数学建模的真实问题情境
        二、由教碎片化知识转变为教完整的建模知识
        三、由教会做题转变为教会解决问题
        四、由强调记忆转变为致力于知识迁移
        五、由重结果性评价转向过程性评价与结果性评价并重
        六、由单项能力训练转变为数学建模能力综合提升
    第四节 初中生数学建模学习策略
        一、学习完整的数学建模知识
        二、学会条件化地储存知识
        三、学会深度加工知识
        四、掌握提取知识的路径
        五、改善数学建模的程序与方法
        六、学会类比与联想
        七、学会知识迁移
结语
附录一 七年级数学教师访谈提纲
附录二 八年级数学教师访谈提纲
附录三 九年级数学建模教师访谈提纲
参考文献
在读期间相关成果发表情况
致谢

(4)高中数学教学中类比思想的应用(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景
    1.2 研究的意义
        1.2.1 现实意义
        1.2.2 理论意义
    1.3 本课题研究的方法
    1.4 文献综述
        1.4.1 国外文献综述
        1.4.2 国内文献综述
第2章 核心概念的界定
    2.1 数学思想方法
    2.2 类比思想
        2.2.1 类比的概念及形式
        2.2.2 类比的分类
        2.2.3 类比的特征
        2.2.4 类比与归纳的联系
第3章 教育理论基础
    3.1 结构映射理论
    3.2 学习迁移理论
    3.3 建构主义理论
    3.4 小结
第4章 高中数学教学中类比思想应用的研究
    4.1 类比思想教学的设计原则
    4.2 类比思想在教学引入的应用
        4.2.1 概念课引入的应用——“等比数列”
    4.3 类比思想在复习旧知的应用
        4.3.1 类比在函数中的应用
        4.3.2 类比在解析几何中的应用
    4.4 类比思想在数学解题的应用
第5章 高中数学教学中类比思想应用的教学案例研究
    5.1 必修三——《几何概型》的教学案例研究
        5.1.1 《几何概型》的教学设计
        5.1.2 《几何概型》的教学反思
    5.2 必修五——《一元二次不等式》的教学案例研究
        5.2.1 《一元二次不等式》的教学设计
        5.2.2 《一元二次不等式》的教学反思
第6章 总结与展望
    6.1 总结
    6.2 不足与展望
参考文献
附录A 《几何概型》课堂实录
附录B 《一元二次不等式》课堂实录
致谢
在学期间的科研情况
在学期间的实践情况

(5)问题驱动的高中数学课堂教学设计理论与实践(论文提纲范文)

摘要
Abstract
第一章 引言
    1.1 问题的提出
    1.2 相关文献研究综述
        1.2.1 新中国中学数学教育研究发展概述
        1.2.2 国外当代中学数学教育改革历程
        1.2.3 我国目前高中数学课堂教学存在的问题
    1.3 研究的目的与意义
        1.3.1 与问题驱动教学设计相关的研究综述
        1.3.2 研究的理论基础
        1.3.3 研究的意义
        1.3.4 研究的目的
        1.3.5 研究的创新之处
    1.4 研究思路与方法
        1.4.1 研究思路
        1.4.2 研究方法
第二章 问题驱动的高中数学课堂教学理论
    2.1 何为数学的再创造?
    2.2 何为问题驱动的数学教学?
    2.3 如何实现问题驱动的数学教学
    2.4 我们应该教什么样的数学
        2.4.1 思辨、演绎、算法并重的数学课堂教学
        2.4.2 培养直觉能力的数学教学
第三章 从数学教育的本质看高中数学课堂教学核心要素
    3.1 数学教育的本质
        3.1.1 数学的本质
        3.1.2 数学教育的本质
    3.2 问题驱动的高中数学课堂教学核心要素
    3.3 案例分析
    3.4 体现学科特点和教学要求的教学评价量表
第四章 问题驱动的高中数学课堂教学实践
    4.1 问题驱动的高中数学概念课教学
        4.1.1 概念课案例1
        4.1.2 概念课案例2
        4.1.3 概念课案例3
    4.2 问题驱动的高中数学原理课教学
        4.2.1 原理课案例1
        4.2.2 原理课案例2
    4.3 问题驱动的高中数学解题课教学
        4.3.1 问题驱动的习题课教学设计
        4.3.2 教学评析
第五章 反思与展望
    5.1 研究成果
        5.1.1 问题驱动的数学教学对学生数学价值观念的改变
        5.1.2 问题驱动的数学教学对学生数学学习成绩的影响
        5.1.3 问题驱动的数学教学对教师教育观念的改变
        5.1.4 开创了一线教学实践者和理论研究工作者的合作新模式
        5.1.5 研究的不足
    5.2 展望
参考文献
附录
致谢
攻读学位期间的学术成果

(6)基于数学课程知识观的高中数学教科书编写策略研究(论文提纲范文)

摘要
Abstract
第1章 缘起和目标:绪论
    1.1 研究缘起及问题
        1.1.1 研究缘起
        1.1.2 问题提出
    1.2 研究价值
        1.2.1 理论价值
        1.2.2 实践价值
    1.3 概念界定
        1.3.1 数学课程知识观
        1.3.2 高中数学教科书
        1.3.3 编写策略
    1.4 研究路径及方法
        1.4.1 研究路径
        1.4.2 研究方法
第2章 综述和评论:相关研究及其进展
    2.1 关于知识观及数学(知识)观的研究
        2.1.1 关于知识观的研究
        2.1.2 关于数学(知识)观的研究
    2.2 关于高中数学教科书编写策略的相关研究
        2.2.1 关于功能目标和编写原则的研究
        2.2.2 关于内容素材和组织呈现的研究
        2.2.3 关于语言图表和教材评价的研究
        2.2.4 关于编辑技术和其他学科的研究
    2.3 关于知识观、数学(知识)观和课程教材关系的研究
        2.3.1 课程和教材对数学(知识)观形成的影响
        2.3.2 课程和教材中的数学(知识)观前提及其体现
        2.3.3 利用课程和教材去培养数学(知识)观的建议
    2.4 本章小结
第3章 梳理和考察:多维视角的知识观审视及其对数学课程和教科书的影响
    3.1 知识与知识观
        3.1.1 知识
        3.1.2 知识观与认识论、知识论
    3.2 多维视角下的知识观审视
        3.2.1 数学哲学视角下的知识观
        3.2.2 心理学视角下的知识观
        3.2.3 教育学视角下的知识观
    3.3 知识观对数学课程和教科书编写的影响
        3.3.1 从数学哲学视角来看
        3.3.2 从心理学视角来看
        3.3.3 从教育学视角来看
    3.4 本章小结
第4章 厘清和界定:数学课程知识观涵义、图景及其观照下的高中数学教科书
    4.1 数学观与数学知识观辨析
        4.1.1 数学观是有关数学发展的“世界观”
        4.1.2 数学知识观是面向数学教育的知识观
    4.2 数学课程知识观的提出及其图景
        4.2.1 数学课程知识观的概念及其特点
        4.2.2 数学课程知识观是知识教育立场的价值综合
        4.2.3 数学课程知识观的理论图景概述
    4.3 数学课程知识观下的高中数学教科书编写透视
        4.3.1 基于数学课程知识观精选的学科知识
        4.3.2 作为编写策略加工过的课程知识
        4.3.3 借助教科书编写引导数学(知识)观发展
    4.4 本章小结
第5章 检视和辩驳:数学课程知识观及教科书编写策略的历史存在和现实认同
    5.1 中外教科书里隐匿的数学课程知识观
        5.1.1 以《几何原本》和《九章算术》为例:1949年以前的典型
        5.1.2 以SMP版和人教大纲版为例:1970年前后的典型
        5.1.3 以CPMP版和苏教课标版为例:2000年以来的典型
    5.2 数学课程知识观及高中数学教科书编写策略问卷设计
        5.2.1 理论维度设计
        5.2.2 项目鉴别度、信度和效度
    5.3 对中学数学教科书作者的调查
        5.3.1 教科书作者的数学课程知识观
        5.3.2 教科书作者的编写策略认同
        5.3.3 教科书作者的数学课程知识观和编写策略认同的相关研究
    5.4 对高中数学教师的调查
        5.4.1 高中数学教师的数学课程知识观
        5.4.2 高中数学教师的编写策略认同
        5.4.3 高中数学教师的数学课程知识观和编写策略认同的相关研究
    5.5 本章小结
第6章 反思和建构:数学课程知识观下的高中数学教科书编写策略设想
    6.1 数学课程知识观下高中数学教科书编写策略的指导思想
        6.1.1 数学教科书应该具有学科性
        6.1.2 数学教科书应该具有教学性
        6.1.3 数学教科书应该具有人文性
    6.2 数学课程知识观下高中数学教科书编写策略的具体设想
        6.2.1 经历数学化:衔接知识的结果与过程样态
        6.2.2 揭示潜隐性:兼顾知识的外显与内敛价值
        6.2.3 渗透心理化:整合知识的逻辑和心理顺序
        6.2.4 创设关联性:搭建知识的内部和外部链接
        6.2.5 彰显主体性:协调知识的科学和人文特质
        6.2.6 体现交互性:铺设知识的传授和建构渠道
    6.3 本章小结
第7章 尝试和探索:基于策略设想编写的3个微型实证研究案例
    7.1 微型实验1:棱柱、棱锥和棱台(课时)
        7.1.1 实验设计
        7.1.2 信息处理
        7.1.3 研究启示
    7.2 微型实验2:两个基本计数原理(课时)
        7.2.1 实验设计
        7.2.2 信息处理
        7.2.3 研究启示
    7.3 微型实验3:基本不等式(课时)
        7.3.1 调查设计
        7.3.2 信息处理
        7.3.3 研究启示
    7.4 本章小结
第8章 总结和展望:结论、不足及前景
    8.1 研究结论
    8.2 研究不足
    8.3 研究展望
附录
    附录1 数学课程知识观调查问卷
    附录2 高中数学教科书编写策略认同调查问卷
    附录3 棱柱、棱锥和棱台(静态陈述式)
    附录4 棱柱、棱锥和棱台(动态发生式)
    附录5 棱柱、棱锥和棱台(测试问卷)
    附录6 两个基本计数原理(旁观式)
    附录7 两个基本计数原理(参与式)
    附录8 两个基本计数原理(测试问卷)
    附录9 基本不等式(孤立式)
    附录10 基本不等式(关联式)
    附录11 基本不等式(访谈问卷)
参考文献
在读期间发表的学术论文及研究成果
致谢

(7)高中函数概念的教学重构(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 问题的提出
    1.2 研究意义
    1.3 研究方法
第二章 函数概念历史及其传播
    2.1 函数概念的历史
    2.2 函数概念在中国的传播
第三章 函数概念教学研究
    3.1 函数集合对应说的相关研究
    3.2 函数集合关系说的相关研究
第四章 基于现行教材的函数概念教学重构
    4.1 课程标准和教材中的函数概念
    4.2 函数概念的定义方式
    4.3 “函数f:A→B”与“对应关系f”的区别
    4.4 函数概念的教学重构
第五章 高中函数关系定义教学实践的国际视角
    5.1 概念界定
    5.2 高中引入函数关系定义的必要性
    5.3 外国教材中的函数概念
    5.4 国内课程标准和教材中的函数关系定义
第六章 高中函数关系定义教学的可行性实验
    6.1 被试
    6.2 研究工具
    6.3 数据的收集与处理
    6.4 测试成绩及分析
    6.5 测试成绩差异性分析
    6.6 认知差异分析
    6.7 小结
第七章 基于函数关系定义的函数概念教学重构
    7.1 理论可行性分析
    7.2 函数关系定义的教材设计
第八章 研究结论与展望
    8.1 研究结论
    8.2 研究展望
参考文献
附录:函数关系定义测试题
致谢

(8)高中数学新旧教科书函数部分比较研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    一、研究背景
        (一)教科书的编写背景
        (二)函数的教学背景
    二、研究问题
    三、研究意义
        (一)理论意义
        (二)实践意义
第二章 文献综述
    一、概念界定
        (一)教科书的概念
        (二)教科书的地位
    二、教科书的历史演变
        (一)课程结构的变化
        (二)函数内容在教科书中的历史演变
    三、数学教科书的研究综述
        (一)国外数学教科书研究现状
        (二)国内数学教科书的研究现状
        (三)综述小结
第三章 研究设计
    一、研究对象
    二、研究方法
        (一)文献分析法
        (二)比较分析法
        (三)统计分析法
    三、研究框架
第四章 教科书“函数”内容的对比分析
    一、课程标准对“函数”的教学要求
        (一)课时安排与教学目标
        (二)单元教学建议
    二、教科书内容分析
        (一)知识体系与内容安排
        (二)栏目设置
        (三)章节引入方式
        (四)概念与性质的呈现方式
        (五)章末回顾
    三、教科书探究活动的分析
        (一)数学探究与信息技术的运用程度
        (二)数学建模与函数应用意识的培养程度
        (三)数学文化的渗透程度
第五章 教科书“函数”难度的比较分析
    一、新旧版教科书函数部分内容广度的比较
    二、新旧版教科书函数部分内容深度的比较
        (一)抽象度分析法
        (二)新版教科书函数内容的深度分析
        (三)旧版教科书函数内容的深度分析
    三、新旧版教科书函数部分例题与习题难度的比较
        (一)例题的界定与数量统计分析
        (二)习题的界定与数量统计分析
第六章 结论与建议
    一、研究结论
    二、建议
        (一)形成探究式教学模式
        (二)注重知识内容的背景设计
        (三)合理安排知识顺序
        (四)渗透数学思想方法
        (五)融入现代信息技术
结语
注释
参考文献
攻读硕士学位期间所发表的学术论文
致谢

(9)平面几何教学研究之研究 ——以《数学通报》(1951~1966)为例(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 问题的提出
    1.2 研究目的和意义
    1.3 国内研究现状
    1.4 研究方法
        1.4.1 文献研究法
        1.4.2 历史研究法
        1.4.3 比较研究法
    1.5 创新之处
第2章 平面几何教学相关理论概述
    2.1 关于“教”的理论基础
        2.1.1 教的准备
        2.1.2 教的内容分析
        2.1.3 教学方法选择
        2.1.4 教学原则
        2.1.5 教学设计与实施
        2.1.6 教的评价与反思
    2.2 关于“学”的理论基础
        2.2.1 学的准备
        2.2.2 训练内容分析
        2.2.3 学习方法选择
        2.2.4 学习策略
        2.2.5 学习计划与实施
        2.2.6 学习评价与反思
    2.3 平面几何教学概述
        2.3.1 平面几何教学基本概念
        2.3.2 平面几何教学特点
第3章 学习苏联时期《数学通报》中关于平面几何教学研究
    3.1 背景的概述
    3.2 平面几何教学文章的总体特点及趋势
    3.3 平面几何教学的特点及发展脉络
        3.3.1 平面几何教学各个环节的统计分析
        3.3.2 平面几何教学的发展脉络
第4章 教育改革时期《数学通报》中关于平面几何教学研究
    4.1 背景概述
    4.2 平面几何教学文章的总体特点及趋势
    4.3 平面几何教学发展脉络及特点
        4.3.1 平面几何教学各个环节的统计分析
        4.3.2 平面几何教学的发展脉络
第5章 自我完善时期《数学通报》中关于平面几何教学研究
    5.1 背景概述
    5.2 平面几何教学文章的总体特点及趋势
    5.3 平面几何教学特点及发展脉络
        5.3.1 平面几何教学各个环节的统计分析
        5.3.2 平面几何教学的发展脉络
第6章 结论与建议
    6.1 结论
        6.1.1 历史背景
        6.1.2 平面几何教学文章
    6.2 教学启示
    6.3 进一步研究方向
参考文献
致谢

(10)高一学生函数迁移能力的现状与培养策略研究(论文提纲范文)

摘要
Abstract
第一章 问题提出
    一、问题研究的背景
    二、本文研究的目的、意义及方法
第二章 函数迁移能力的理论探讨
    一、相关概念的界定
    二、国内外研究综述
    三、对函数与函数迁移能力的认识
    四、影响函数迁移能力的因素
第三章 高一学生函数迁移能力的现状调查及分析
    一、调查方式、对象及其内容
    二、调查数据结果及分析
    三、高一学生函数迁移能力的现状及原因分析
第四章 访谈调查与结果分析
    一、访谈对象及其内容
    二、访谈结果及其分析
第五章 高一学生函数迁移能力的培养策略
    一、学生方面的培养策略
    二、教师方面的培养策略
    三、课程方面的培养策略
第六章 结束语
注释
参考文献
附录一
附录二
附录三
攻读学位期间的学术成果
致谢

四、在中学数学教学中加强新旧知識联系的一些体会(论文参考文献)

  • [1]中学数学思想的培养研究 ——基于深度教学的视角[D]. 张先波. 华中师范大学, 2019(01)
  • [2]基于学习迁移理论的高中数学不等式教学研究[D]. 陈维彪. 云南师范大学, 2020(01)
  • [3]初中生数学建模能力培养研究[D]. 刘伟. 曲阜师范大学, 2020(01)
  • [4]高中数学教学中类比思想的应用[D]. 罗钦. 西华师范大学, 2019(01)
  • [5]问题驱动的高中数学课堂教学设计理论与实践[D]. 张蜀青. 广州大学, 2019(01)
  • [6]基于数学课程知识观的高中数学教科书编写策略研究[D]. 胡晋宾. 南京师范大学, 2015(05)
  • [7]高中函数概念的教学重构[D]. 顾思敏. 广州大学, 2020(02)
  • [8]高中数学新旧教科书函数部分比较研究[D]. 雷焰麟. 哈尔滨师范大学, 2020(01)
  • [9]平面几何教学研究之研究 ——以《数学通报》(1951~1966)为例[D]. 西峰山. 内蒙古师范大学, 2015(03)
  • [10]高一学生函数迁移能力的现状与培养策略研究[D]. 刘冬. 山东师范大学, 2020(08)

标签:;  ;  ;  ;  ;  

中学数学教学中加强新旧知识衔接的几点体会
下载Doc文档

猜你喜欢