一、中学数学課中有理数部分的教学(论文文献综述)
吕世虎[1](2009)在《中国当代中学数学课程发展的历程及其启示》文中研究指明进入21世纪,我国实施了新一轮基础教育课程改革,课程研究空前繁荣。相对于一般课程理论研究而言,我国数学课程理论研究则处于刚起步阶段。数学课程理论研究的不足使得中国数学教育界在面对基础教育数学课程改革实践提出的许多问题时显得无奈,对于数学课程改革的争论也是凭借个人经验有感而发,缺少理性的思考和理论的指导,常常陷入循环圈中。事实上,新一轮基础教育数学课程改革实践提出的许多问题在历次课程改革中都曾经出现过,从历史的角度审视和研究这些问题应当是建构中国数学课程理论的重要视角。本研究的论题“中国当代中学数学课程的发展历程及其启示”属于“中国数学教育史”的研究领域。该研究对于揭示中国数学教育的特征,建构中国特色的数学教育理论,解决基础教育数学课程改革中出现的问题具有重要意义。本研究主要运用历史研究法、文献法、比较法、文本分析法、访谈法等研究方法来进行问题的研究与讨论。本文拟研究的问题是“中国当代中学数学课程发展的历史给予我们什么样的经验和启示?”对于这个问题,又分解为三个子问题:中国当代中学数学课程发展的历程是怎样的?中国当代中学数学课程发展具有哪些特点?中国当代中学数学课程发展的历史对当今的数学课程改革有哪些启示?对于这三个子问题回答即是本研究的结论。本研究以数学教学大纲(数学课程标准)和数学教材的发展演变为线索,将中国当代数学课程的发展分为3个阶段:选择数学课程发展道路时期(1949—1957),探索中国数学课程体系时期(1958—1991),建立中国数学课程体系时期(1992—2000)。对每个阶段,从背景、事件及其影响三个方面梳理中学数学课程发展的历程。通过对当代(1949—2000年)代表性的数学教学大纲、主要的数学教材进行纵向比较,从课程目标(教学目标)、课程内容、课程选择性、课程编排方式等方面,梳理总结出这一时期数学课程发展具有如下特点:中学数学课程目标体系由只有一般目标发展成为一般目标和具体目标相结合的目标体系,基本上形成了一个多方面、多层次,宏观与微观相结合的比较完善的目标结构体系。对目标的陈述方式也经历了由抽象、模糊到具体、明确、可操作的过程;中学数学课程的知识领域和知识单元的数量呈“正弦曲线”变化态势;中学数学课程的选择性经历了由“一纲一本→多纲多本→一纲一本→多纲多本”的循环式发展;中学数学课程内容的整体编排方式经历了由“分科→混合→分科→混合”的循环性发展。平面几何受苏联几何内容处理方式的影响,采用论证几何体系,并成为50年中几何内容处理方式的主流。代数内容在各个时期都采用“数→式→方程→函数”的处理方式,也出现过采用“数→方程→式→函数”的处理方式。在上述基础上,对我国当今数学课程改革提出了如下建议:数学课程目标的表述应当继承重视“结果”的传统,“结果”目标与“过程”目标并重;数学课程目标的表述应当具体明确,将学段目标、年级目标、知识领域目标、知识单元目标、知识点目标结合起来;数学课程内容的选择应处理好稳定与发展的关系;数学课程内容的处理应恰当把握“理论与实践”的关系;数学课程内容现代化应与学生接受能力、教师的教学水平相适应;数学课程的选择性,应关注地区差异,分类设置课程,编写区域化教科书,处理好理想与现实的关系;数学课程内容的综合化要以主线统领,各知识领域内容相对集中,不宜太分散;几何内容编排应兼顾传统,采用实验几何与论证几何结合的方式为宜。本研究的创新之处是:以教学大纲、教材为线索,系统梳理了我国当代数学课程发展的历史,补正了已有研究中的一些缺漏;通过对教学大纲、教材的定量和定性比较研究,揭示了中国当代中学数学课程发展的特点;以史为鉴,对我国当今数学课程改革面临的一些问题提出了解决的建议。但在研究过程中,对于史料(特别是教材)的收集不全面,对教材的特点研究不够。一些结论还需要从理论上加以提炼。
甘翔凤[2](2020)在《基于APOS理论的初中数学概念微课的设计研究 ——以“实数”概念为例》文中认为近年来,“互联网+人工智能+数学教育”成为国内外数学教育领域研究的热点话题,在信息技术与数学教育深度融合的发展趋势下,微课以其主题突出、短小精悍、应用方便、传播快捷等特点在教育信息化时代脱颖而出。微课不仅能作为辅助一线教师教学的有力手段,而且还能满足学生个性化和碎片化的学习需求。目前,对微课研究的重视程度逐渐提高,但微课质量参差不齐,如何设计和优化数学微课成为亟待研究的问题。“数与代数”是初中数学课程的重要领域之一,实数在这一领域中虽然占据的篇幅不大,但作为数系第二次扩充的地位就显得非同小可,实数相关概念也是解决其他数学问题的基础工具。APOS理论是研究概念学习较具影响力的模型之一,因此本文尝试在APOS理论的指导下,以湘教版八年级第3章第3节“实数”为教学案例,提出优化概念类微课的设计策略,探讨优化策略对微课教学效果的影响。本文主要从理论研究和实践研究两个维度进行详细探讨。在理论研究方面,通过理论思辨和经验总结相结合的方式,首先,查阅大量参考文献,概述国内外关于数学微课的研究简史,数学微课设计与应用的研究现状;接着,基于APOS理论的来源与基础,梳理国内外对APOS理论的研究状况及应用APOS理论设计的微课研究;然后,根据数学概念的学习规律和APOS理论的四阶段特征,提出四个数学概念微课的设计策略:活动阶段——创设情境,参与活动;过程阶段——提问导向,经历过程;对象阶段——变式概念,辨析本质;图式阶段——突出联系,形成结构;最后,在运用APOS理论设计实数概念课的可行性分析下,优化三个实数系列的教学设计案例。在实践研究方面,通过调查研究和个案访谈相结合的方式,发放调查问卷、课堂观察、采访典型学生,分析优化版微课对学生数学学习的影响,对本科生、一线教师进一步调研,对比分析概念类微课设计策略的有效性和教学参考价值。研究结果表明:超过80%的初中生、本科生、一线教师对基于APOS理论设计的优化版微课持较为积极的态度,学生学习优化版微课后对知识理解、情感态度等方面有所改善,优化版微课的教学效果比原版微课有了显著的提升。
张蜀青[3](2019)在《问题驱动的高中数学课堂教学设计理论与实践》文中研究指明近几十年来,我国中学数学教育改革进行了若干轮,从教学大纲改为课程标准,到2017年的新课标,除了对教学知识版块进行了增减,还产生了各种教育理念.在教师群体中,则主要是基于教学形式的课堂教学改革.教育届有识之士提出数学教育应该是数学的再创造过程,我们也看到很多论文言必称弗莱登塔尔和“再创造”,但是什么是真正的数学再创造?并没有一个明确的内涵解释和操作行为准则.本研究所提出的“问题驱动”是对弗莱登塔尔数学教育观的发展和丰富,是其“再创造”思想的具体化.它倡导教师借助数学史等深入了解知识内部,通过挖掘知识产生的背景,了解数学思想形成的过程,剖析其文化价值.具体实施过程则是结合教育学和心理学的原则,根据学生的认知水平创设合理的问题情境,将引发概念被创建或定理被发现的问题嵌入到情境中,实现问题驱动教学.本研究主要做了以下几方面的工作:1.文献综述新中国建国以来的中学数学教育改革,及美国和日本为代表的世界数学教育改革情况.根据当前高中数学教学存在的问题,提出问题驱动的数学课堂教学理论.2.从数学教育的本质、数学教育的价值来详细阐述问题驱动的高中数学教学设计的理念和指导思想,强调我们的数学课堂教学应该重视思辨和直觉培养,从而培养学生的创造力,数学教育除了体现学科价值还应该体现人文价值.3.深入阐述了“问题驱动”的内涵与外延,指出何为“真问题”和“真情境”,如何通过问题驱动实现数学的再创造.给出问题驱动的高中数学课堂教学评价标准及解读.4.本研究在积累了近百篇教学设计基础上,通过三种课型的5个典型案例的教学设计进行对比评价,从多个角度用实际案例示范引领如何创设问题情境,实现问题驱动.5.总结了近四年的研究成果与不足,明确下一步研究的方向.本研究的创新之处:1.和导师一起建立了问题驱动的数学课堂教学理论并进行了实践.2.和导师一起建立了反映数学本质的简单易操作的数学课堂教学评价标准.3.提出了数学教育是数学的有限再创造的观点,丰富发展了弗莱登塔尔的再创造理论.4.大、中学教师以及教研员长期扎根一线教学,通过教学研讨形式实现理论与实践相结合的崭新合作模式,使理论研究落到实处,也使课堂教学有章法可循,在实践中提升教师的教育研究水平.本研究通过行动研究形成一套有效可行的实现数学再创造的理论,一方面落实“四基”和“四能”,一方面探索出一条在应试教育与素质教育之间寻找平衡点的道路.本研究已在高中教学取得了很好的效果,在国内有一定的影响。
孙成刚[4](2020)在《六年级校本课程的开发 ——以数学游戏为主线》文中提出新世纪以来,随着“国务院关于基础教育改革与发展的决定和基础教育课程改革纲要(试行)”的颁布与实施,让每一所学校有了立足校本自主实施与开发课程的空间,也让教育一线工作者的理性思考有了实践表达的空间。校本课程在蓬勃发展的同时,数学游戏因具有本身的趣味性、可操作性、娱乐性逐渐引起我国教育研究者的关注,并且衍生出诸多游戏在教学中的应用。但遗憾的是,将数学游戏与校本课程融合起来的课程反而研究不多。迄今为止,国内学校教育中还未见到系统完整的数学游戏课程的全面实施。在笔者实习的上海WY学校,由于目前的数学校本课程的单一化与学生家长的需求,急需一门新的数学校本课程。本文有三个研究问题:(1)沪教版六年级上学期数学教材内容有哪些可以作为数学游戏的素材?(2)数学游戏校本课程如何开发与实施?(3)数学游戏校本课程对学生带来了哪些影响?针对研究问题,笔者通过文献研究法确立了本文的理论基础,将六年数学教材内容进行了梳理,分为代数游戏与几何游戏两大类,并且确立了校本课程开发的步骤。通过访谈法、问卷调查法的数据分析和具体课程实例的效果分析,得到了数学游戏校本课程的实施对学生产生的影响结论。本文的研究结论如下:(1)沪教版数学六年级上册教材内容,按照顺序章节可以开发出“数”你最幸运、新24点计算、“裁决者”“圆”来如此,四类游戏。(2)数学游戏校本课程开发与实施需要经过前期的可行性分析、班级组建、课程目标设置、内容的选材、游戏的设计原则、课程纲要的编制和课程的实施与效果评价七个步骤。(3)六年级数学游戏校本课程的开发能够改变学生对数学情感态度的看法,提升对数学的认知水平,对于数学成绩的提高也较为明显。但是学生对于数学在生活中的应用的认识没有显著影响。
郑晨[5](2019)在《学科理解视角下的师范院校数学学科专业课程设置研究》文中进行了进一步梳理从二十世纪六十年代世界各国对于“教师教育培养”的逐步关注,到八十年代对于“教师专业化发展”的重新讨论,再到二十一世纪初始对于“卓越教师计划”的广泛实施,“教师教育标准化”、“教师教育大学化”已然成为全世界范围内对于教师培养具备高质量、高要求的共识。经济增长、科学技术进步以及多元文化的交融给教育带来了史无前例的发展机遇。基础教育课程的改革以及教师资格考核的重新调整,令教师的学科素养问题暴露在教师教育培养过程中,而学科素养的形成离不开学科理解的土壤,更离不开学科实践的磨砺。对于教师教育来说,培养方案是人才培养活动中的基本纲领,是实现培养目标的具体途径和行动依托。培养方案中的各类课程设置成为实现培养目标的具体保证。为了保障师范院校学生领会学科思想,深化学科理解,需要进一步完善师范教育整体课程结构,尤其要在学科专业课程设置中贯穿学科思想,加深师范院校学生对于学科体系的理解,使学科理解中的学科知识理解成为促进和发展数学教师专业素养的载体,引领教师更快地实现专业化成长。论文中首先采用文献研究法,界定了学科理解、数学教师教育、学科专业课程设置三个基本概念,厘清了学科理解视角下教师专业发展的理论基础,重点解释了学科理解在教师专业成长过程中的地位与作用,展现了数学教师培养对学科理解的现实诉求。(第一章和第二章)通过问卷调查法、访谈法较为系统地对三种类型师范院校在读大三数学师范生进行了学科理解现状的实证调研,结果表明数学师范生对于学科性质的理解要好于对学科功能的理解,对于学科体系(学科知识)理解的认识程度最差,从整体来看,数学师范生基本具有较好的学科观念,但对学科体系的认知并不充分,在各类专业知识的需求中,对学科知识的需求表现突出。因此,研究继续调查了数学师范生学科知识理解的现状。从师范生的作答表现可以发现,数学师范生对于学科知识的看法较为单一,仅能够从学习的课程中提取对学科知识的认识,对中小学学科知识的掌握仅停留在概念记忆、解题方法总结、性质描述等方面,而且从学科知识掌握情况来看,遗忘是影响各类型数学师范生对学科知识学习的一个重要因素,学生反映出测试题目在学习过程中“看见过”“出现过”,但是仍然不会作答,说明在学生学习过程中基础性知识掌握不牢固,难以建立对学科知识体系的贯通性认识和理解,无法认识到大学数学专业课程内容对于实现学科功能的重要意义,这也说明了数学教师对于学科知识的理解具有阶段性特征。(第三章)在分析了师范院校数学专业学生学科理解认识以及学科知识理解状况以后,研究采用了比较研究方法、问卷调查法,对不同层次和类型师范院校数学专业培养方案和学科专业课程设置满意度进行了深入的调查分析,从文本研究结果和实证研究结果共同证实,我国师范院校数学专业在学科课程设置、学科专业课程教学等方面仍存在共性问题,并对问题的成因进行了总结。目前师范院校数学专业在教师培养过程中存在某些问题:对人才培养目标的定位仍需重新衡量,应该考虑到学生学科水平的现状;各学科专业课程对于基础教育课程改革的认识不足;学科专业课程教学“师范性特征”并不明显;学科专业课程结构“重广度,缺深度”的弊端等问题。(第四章)最后,研究基于学科理解视角下数学教师教育学科专业课程设置相关理论基础和现实诉求,探讨学科专业课程设计理念、实现学科专业课程功能的理论成果,对师范院校数学学科专业课程设置进行初步建构。结果表明,学科专业课程设置应立足于数学教师专业素养的发展,提出科学性与思想性统一、贯通性与关联性统一、学科性与实践性统一、规范性与独特性统一的原则;在学科专业课程的建构中加强学生对于学科知识的掌握与理解;加深师范院校学科专业课程授课教师对于学科知识与基础教育数学课程教学的认识;利用实践课程促进数学师范生学科知识向学科教学知识的转化;科学衡量学科专业课程中的“增减”问题;避免教师资格考试压力异化学科课程的教学。最后构建出“注重学科理解”的学科专业课程样态,突显出数学专业课程设置中各类模块的结构与学分比例;在深化学科知识理解目标下学科专业课程的实施问题上,提出了保障学科专业课程“理论性”的同时,加强学科功能的实践性理解;重视学科专业课程相关学习资源的开发,实现教师教育课程改革的突破;加强学科专业课程内涵文化及课程主线的建设,成为推进数学教师学科素养认识发展的价值引导。本文认为,学科理解视角下师范院校数学学科专业课程设置问题,是当前师范院校数学专业教育教学改革的核心问题。只有正确认识“学科理解”以及“数学教师教育对学科理解的根本诉求”,才能真正在职前数学教师培养过程中实现理念与方法的创新,培养符合数学教育事业发展需要的、具有数学教师专业性的“贯通型”实践者。
张琳[6](2020)在《“洋葱数学”在初中数学教学中的应用初探》文中认为当前信息全球化在中国甚至全世界盛行,教育信息化必然发展为教育改革和发展的必然要求和核心推动力量。特别是近几年兴起的“互联网+教育”新兴发展模式,它的发展对我国教育资源、教育行业、教学模式和学习方法等方面均造成了巨大影响。随着科技和社会的进步以及移动5G时代的到来,越来越多的学生、尤其是大学生开始借助通讯设备,使用APP来进行辅助学习。虽然市面上的APP五花八门,但“洋葱数学”作为教师与学生使用频率较高的在线教育平台,为信息科技与教学课堂的融合发挥着重要的作用,有效地提高了学生的学习兴趣和学习成绩。本文以H中学初一学生为研究对象,在调查H中学数学课外学习现状的基础上,研究洋葱数学APP在数学教学中的应用及其效果。本文研究立足于实地问卷调查,运用文献综述法、访谈法、问卷调查法、反思性教学法等方法,拟解决三个方面的问题:其一,调查H中学数学课外学习现状,找出H中学数学课外学习存在问题,为洋葱数学APP助学实验在H中学数学教学的开展奠定基础;其二,调查教师与学生对“洋葱数学”的综合体验,包括“洋葱数学”是否对数学教学起到了促进作用及表现;其三,如何应用“洋葱数学”来实现数学教学目标,包括如何进一步落实“洋葱数学”在教学活动中的应用,如何通过信息技术来丰富学生的学习内容以及评价方式。本文研究结果显示:一是学生通过移动学习和课内学习相结合的方式,有利于改变传统教学模式,让学生和教师获得全新的教学体验,丰富课堂内容,提升课堂的创新性和生动性;二是初中生数学学习成绩的提高可以通过教育APP辅助课堂教学来实现;三是在线教育APP(洋葱数学)创新了教学模式,可以提升学生对数学学习的兴趣,但主动化学习成果不显著。基于以上研究成果,为促进“洋葱数学”在初中数学教学中的应用,本文提出以下几点建议:(1)将洋葱数学助学的优点向家长详细介绍,以取得家长的支持与配合;(2)教师转变教育理念,及时掌握并了解教学反馈,使课堂信息技术的运用更加广泛;(3)加强家长和学生的沟通交流,保持对特殊学生的关注,合理的利用好手机等。本文研究将有利于改变传统教学模式,改进教学方法,对于提高教师教授水平及学生学习能力具有关键性作用。
牟金保[7](2020)在《西藏职前初中数学教师基于数学史的专门内容知识个案研究》文中指出专门内容知识被描述为数学教学所特有的数学知识,而本文所研究的西藏职前初中数学教师基于数学史的专门内容知识就是属于专门内容知识的范畴。本研究主要关注西藏职前初中数学教师基于数学史的专门内容知识现状与HPM干预前后的变化情况。对于西藏职前初中数学教师基于数学史的专门内容知识的理论框架建构,目前尚无人进行研究,但有高中数学教师基于数学史的专门内容知识研究可供参考,也有国内外学科内容知识和教学内容知识方面的研究可供参考。由于西藏职前初中数学教师基于数学史的专门内容知识的理论框架,目前并没有现存的,为了得出本文理论框架的要素和针对西藏职前初中数学教师的研究流程,研究者针对15位专家进行了访谈,并利用模糊Delphi法通过三个步骤,对要素指标进行了筛选。研究者主要针对西藏职前初中数学教师基于数学史的专门内容知识建构了PT-HSCK九成分的九边模型,这九个知识成分维度分别为选择与引入的知识、比较与设计的知识、回应与解释的知识、探究与重演的知识、表征与关联的知识、编题与设问的知识、评估与决策的知识、判断与修正的知识、解决与运用的知识。同时,针对参与者的水平高低按照每个知识成分维度划分成五种不同的水平等级。为了更加具有针对性进行个案研究,研究者在HPM干预之前,调查了西藏地区初级中学在校学生、在职数学教师以及西藏地区职前数学教师数学史融入数学教学的现状与态度,同时调查了西藏职前初中数学教师基于数学史的专门内容知识现状。在前期调研的基础之上,研究者选定了12名西藏职前初中数学教师为本文个案研究对象,针对无理数的概念、二元一次方程组、平行线的判定、平面直角坐标系、全等三角形应用以及一元二次方程(配方法)6个知识点,设计了由24道客观题和6道主观题组成的PT-HSCK九成分五水平测试问卷。为了探讨HPM干预对西藏职前数学教师基于数学史的专门内容知识影响变化,研究者建立了HPM干预框架,并以该框架为指导对选定的12名西藏职前初中数学教师根据模糊Delphi法筛选6个知识点以及史料阅读、HPM讲授和HPM教学设计三个阶段分别进行HPM干预。在HPM干预之后,研究者根据问卷调查数据、访谈和作业单反馈分析了西藏职前初中数学教师基于数学史的专门内容知识水平变化情况。从总体结果来看,通过对PT-HSCK九个知识成分维度的前后测成对t检验发现,回应与解释、探究与重演、表征与关联、编题与设问、评估与决策、判断与修正、解决与运用这七种知识成分维度,后测的水平显著高于前测的水平;而选择与引入、比较与设计这两种知识成分维度,前后测水平无显著性差异,但后测的均值还是要略微高于前测。从藏族职前初中数学教师分析结果来看,藏族参与者的PT-HSCK中,回应与解释、探究与重演、表征与关联、编题与设问、评估与决策、判断与修正、解决与运用这七种知识成分维度,后测显著高于前测的水平;而选择与引入、比较与设计这两种知识成分维度,前后测水平无显著性差异。从汉族职前初中数学教师分析结果来看,汉族参与者的PT-HSCK中,回应与解释、探究与重演、表征与关联、编题与设问、评估与决策、判断与修正、解决与运用这七种知识成分维度,后测显著高于前测的水平;而选择与引入、比较与设计这两种维度,前后测水平无显著性差异,但后测的均值还是要略微高于前测。总之,HPM干预对西藏职前初中数学教师基于数学史的专门内容知识水平提高具有促进作用,同时本文也可以为西藏职前初中数学教师培养提供实施理论框架和有针对性推广的数据支持。
王萍萍[8](2018)在《基于任务设计的发展初中生数学创造性思维的课例研究》文中认为培养学生的创造性思维是数学教育的重要目标之一。目前,有关创造性思维培养的研究按照关注层面的不同,可以分为宏观、中观和微观三个层面:宏观层面关注数学学科的创造性思维的发展;中观层面关注具体学科分支(代数、几何、统计与概率)的创造性思维培养;微观层面关注具体一堂课的创造性思维教学。已有文献显示,研究者围绕数学创造性思维培养的研究大多停留在宏观层面,得到的研究结果大多具有学科一般性,而针对中观层面和微观层面的研究较少,本研究正是在这样的背景下进行的关注中观层面和微观层面的研究。研究者指出培养高层次数学能力需要相应的教学任务和相应的教学策略(Stein,2001;鲍建生,周超,2009)。基于这一观点,本研究立足于创造性思维培养的中观层面,即代数、几何、统计与概率三个数学分支,分别探讨如下三个问题:(1)初中生数学创造性思维有哪些行为表现?(2)为发展学生的数学创造性思维,有哪些有效的任务设计策略?(3)为发展学生的数学创造性思维,有哪些有效的教学策略?其中,第一个问题的回答是解决后两个问题的基础。本研究立足于中观层面,综合宏观、中观、微观三个层面展开质性研究。首先以数学宏观层面为切入点,结合不同数学分支特征,形成中观层面初步的创造性思维行为分析框架。接着以此行为分析框架为基础,初步形成中观层面创造性任务设计策略框架和教学策略框架,再根据中观层面的三个框架进行微观层面的课例研究。课例研究有两个作用,一方面展示怎样应用中观层面三个框架于具体一节课的教学;另一方面,在研究过程中反过来修正和完善中观层面的三个框架。由于本研究具有特殊的发展目标(发展创造性思维),设计课例从研究角度和教学角度同时展开,根据中观层面的三个框架,通过教材分析、学情分析,结合一线教师的意见,在一节课中选择若干创造性教学干预点进行创造性任务的设计和整节课的设计,依据框架实施教学。在课例研究过程中,修正和丰富三个框架,得出研究结果。通过“数与代数”的两个课例(《算24点》和《字母表示数》)、“图形与几何”的两个课例(《圆周角》和《一分为二》)、“统计与概率”的一个课例(《方差》)研究,得到三个数学分支以思维流畅性、灵活性、新颖性和精致性为主要特征维度的进一步细化完善的创造性思维行为分析框架(见7.1节),三个数学分支以背景、结构和认知为主要任务设计维度且兼顾创造性思维四个维度发展侧重的进一步细化完善的创造性任务设计框架(见7.2节),以及三个数学分支以氛围营造和方法引导为主要教学维度且兼顾创造性思维四个维度发展侧重的进一步细化完善的创造性任务教学框架(见7.3节)。上述研究结果是在数学中观层面和微观层面首轮课例研究下得到的,可进一步修正完善。
黄友初[9](2014)在《基于数学史课程的职前教师教学知识发展研究》文中研究指明在教师教育中,课程的设置多以经验性为主,以实证研究作为决策基础的现象还不多。教师教学知识是教师专业化程度的重要标志,研究教师教育课程对教师教学知识有怎样的影响具有重要的意义。本研究对数学史课程与职前教师教学知识的联系进行了研究,主要探讨两个方面的问题:(1)在学习数学史课程前后,职前教师的教学知识有了哪些变化?(2)在学习数学史课程过程中,职前教师的教学知识是怎么变化的?其中每个问题再分成两个小问题进行研究。本研究的教师教学知识以MKT理论框架为基础,从学科内容知识和教学内容知识两个方面,分析职前教师在学习数学史的过程中教学知识的变化情况。研究分为量化研究和质性研究两个部分,在量化研究中编制了教学知识问卷在学期前后对研究对象和控制班的职前教师进行了测量;质性研究则选取了11位职前教师,要求他们先对某知识点进行模拟教学,然后在数学史课程中听取了与该知识点相关的数学史内容后,对之前的模拟教学进行反思。研究者通过访谈,了解在数学史课堂后,职前教师在教学上出现了什么变化,哪些变化是由于数学史的因素引起的;并分析不同的类型的数学史内容和教学方式,对职前教师教学知识的影响有什么区别。研究发现:(1a)数学史对职前教师的学科内容知识和教学内容知识都产生了影响,从总体上说在学科内容知识方面影响程度小于教学内容知识。(1b)数学史对A类职前教师(师范类)教学知识的影响大于B类职前教师(非师范生),尤其在教学内容知识方面。(2a)在学习数学史的过程中,职前教师学科内容知识的变化是不连续的,与学习数学史的时间长短没有直接的联系,而与数学史内容的类型,以及史料的丰富程度有关;而教学内容知识的变化则存在连续性,不但与数学史内容有关,还与学习数学史时间的长短有关。(2b)演进史类型的数学史内容对职前教师教学知识变化最大,枚举史类型的内容对职前教师的教学知识变化最小;知识性和趣味性兼具的内容最受职前教师欢迎;数学史内容与HPM教学案例结合的方式最适合职前教师学习。课堂中组织讨论的教学方式有利于职前教师教学知识的提升;布置适当的作业有助于职前教师加深数学史与数学教育联系的理解;视频案例的教学方式可以帮助职前教师更好的将数学史内容转化成教学知识。根据研究所获得的启示,研究者在基于教师教学知识的数学史课程建设和数学史融入数学教学的教学设计流程这两个方面提出了一些建议。在探讨了研究的不足之处后,对后续研究提出了若干展望。
崔英梅[10](2014)在《课程组织的量化分析研究 ——以中韩高中数学教科书为例》文中进行了进一步梳理众所周知,课程组织是泰勒的课程设计—经典目标模式(应然)的重要环节。林智中等从课程设计的结果(实然)角度审视课程组织,提出课程的垂直组织与水平组织,但对课程组织的研究依然停留在理念层面。史宁中等提出的“课程难度模型”,为刻画课程广度与深度提供了量化工具,开启了课程组织定量研究的先河,但依然不系统。5次PISA测试结果显示,东亚国家和地区的数学成绩优异。然而,针对东亚数学课程的特色与优势的相关研究,十分鲜见。本研究以中韩高中数学教科书为切入点,采用定量研究的手法,从课程组织的深层组织、表层组织两个维度,分别探讨课程组织的量化分析方法,并试图归纳出以中韩为代表的东亚数学课程的共同特点。研究分为3个阶段:(1)课程标准的研究。从课程目标、课程内容、课程选择方式等方面对中韩高中数学课程标准进行对比分析;(2)课程深层组织的量化方法研究。通过文献梳理、专家咨询等,确立课程深层组织的基本单位,构建课程前进过程的量化工具与课程整合程度的量化方法,并以中韩现行高中数学教科书(中国A版与韩国N版)为例,进行量化分析;(3)课程表层组织的量化方法研究。从单元课时与单元页数的维度,对中韩高中数学教科书单元进行量化分析,从“导入—展开—结束”环节,对中韩高中数学教科书的单元组织结构特点进行比较分析。研究发现:1.在原有的课程深度、广度、难度概念基础上,引入知识团、频度、节奏、坡度等新概念,尝试建构了课程组织的量化分析方法(1)课程的深层组织是垂直组织与水平组织的统称,将“知识团”概念引入深层组织,确立为量化分析的基本单位,是深层组织按课程内容纵向截面的结果,加大了课程内容的可比性与课程组织的可量化性。(2)课程在垂直组织向度的前进过程涉及5个要素,即频度、起点、终点、节奏、坡度。根据不同的前进方式产生不同坡度,即学年变化量与课程前进量的比,按坡度可以将课程前进过程分为单点式编排、直线式上升编排、螺旋式上升编排3种类型,其中,螺旋式上升编排进一步可以分为标准型、压缩型和伸展型3种类型。(3)以知识团为中心,课程整合分为学科内部课程整合与学科外部课程整合,学科内部课程整合与学科外部课程整合之间具有交集关系。课程整合的介质是知识点,因此,可以从比重与范围两个维度,量化课程整合率与课程整合广度。2.中韩高中数学课程标准、教科书所体现的课程组织的突出特色:从螺旋式走向局部的直线式、关注内部整合(1)中韩课程标准均为全国统一标准,中国分为义务教育课程标准与普通高中数学课程标准,韩国是12年一贯制的课程标准。(2)中韩高中数学都是以自上而下方式构建课程目标。略微不同的是,中国高中数学课程目标是三维目标,韩国高中数学课程目标是二维目标,中国从目标层面更关注过程性目标与体验性目标;中韩高中数学课程在承认个体数学学习差异的基础上,划分必修课程与选修课程,体现了课程的选择性,课程内容的深度基本在“理解”水平;中韩高中数学课程都是基于学分制,组织课程内容,体现了课程选择方式的多样性,但中国以“模块”方式组织,而韩国以“科目”方式组织,且中韩高中数学课程的文、理差异程度不同。(3)中韩高中数学课程中,起点在小学或初中的知识团主要以螺旋式上升编排方式前进,而起点在高中的知识团,中韩具有一定差异。例如,中国以单点式编排为主,韩国对直线式上升编排与单点式编排并重。(4)中韩高中数学课程整合程度不高,学科内部课程整合程度略大于学科外部课程整合程度,从课程整合率而言,韩国略大于中国,从课程整合广度而言,学科内部课程整合广度中国略大于韩国,但学科外部课程整合广度韩国略大于中国。(5)中韩高中数学教科书的单元课时与单元页数之间都呈现出显著正相关;中韩高中数学教科书单元组织结构都是“章→节→小节”三级结构,功能模块相似,从单位课时内的教科书课程容量而言,A版是N版的近2倍,从教科书“阅读材料”容量而言,N版是A版的1.6倍。3.有关东亚数学课程特色的推论:关注双基、以传统数学分支为主体构建数学课程内容组织框架、采用整体螺旋式(而局部直线式)的结构特征基于对中韩高中数学课程的分析,我们大致可以推断东亚数学课程的主要特点:全国通用一个课程标准;重视基础知识与基本技能,相对关注数学情感与态度;以“数”、“图形”、“概率”、“统计”搭建中小学课程的基本框架,随着学段升级,不断添加课程内容;主要以螺旋式上升方式编排;关注课程内容与数学文化的整合,但信息技术尚未成为数学问题解决的重要工具。基于上述研究结论,对教育行政部门的相关建议有:研制12年一贯的课程标准,稳妥推进高中新课程;实施“教科书—练习册”配套制度,精选课程内容,精编教科书。对教科书编写的启示有:教科书编写要重视课程前进过程,关注由坡度产生的学业任务负担,即在编写教科书之初,需要先考察一类知识的坡度是否合理,如果坡度过大,可通过课程整合提供“过渡的踏板”,如果坡度过小,有必要考虑能否精编或增加学年变化;教科书编写不仅要关注课程整合广度,也要关注课程整合率,即选择编写教科书素材时,关注所选素材是否集中用于部分知识点,素材的属性是否多样化等,由此,提高课程整合程度。
二、中学数学課中有理数部分的教学(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、中学数学課中有理数部分的教学(论文提纲范文)
(1)中国当代中学数学课程发展的历程及其启示(论文提纲范文)
摘要 |
Abstract |
目录 |
第一章 引论 |
一、研究的背景及意义 |
(一) 数学教育学科建设的需要 |
(二) 基础教育数学课程改革与发展的需要 |
(三) 中国数学教育走向世界的需要 |
二、有关概念及范围的界定 |
(一) 当代 |
(二) 中学 |
(三) 数学课程 |
三、研究问题的表述 |
第二章 文献述评 |
一、文献收集的基本思路 |
二、收集到的主要文献及其述评 |
(一) 中国官方的课程文件 |
(二) 中学数学教材 |
(三) 数学课程研究的文献 |
三、文献述评的总结 |
第三章 研究方法与过程 |
一、研究方法 |
(一) 历史研究法 |
(二) 文献法 |
(三) 比较法 |
(四) 文本分析法 |
(五) 访谈法 |
二、研究过程 |
三、论文的结构 |
第四章 中国当代中学数学课程发展的历程 |
一、中国近现代中学数学课程发展的简要回顾 |
(一) 学习外国数学课程时期(1862—1928) |
(二) 探索本土化数学课程时期(1929—1949) |
二、选择数学课程发展道路时期(1949—1957) |
(一) 继承和改造原有中学数学课程时期(1949—1951) |
(二) 全面学习苏联数学课程时期(1952—1957) |
三、探索中国数学课程体系时期(1958—1991) |
(一) 探索和尝试建立中国数学课程体系时期(1958—1965) |
(二) 数学课程发展遭遇挫折时期(1966—1976) |
(三) 继续探索中国数学课程体系时期(1977—1991) |
四、建立中国数学课程体系时期(1992—2000) |
(一) 制定九年义务教育全日制初级中学数学教学大纲,编写"六·三"、"五·四"制初级中学数学实验教科书 |
(二) 制定全日制普通高级中学数学教学大纲,编写普通高级中学数学实验教科书 |
第五章 中国当代中学数学课程发展的特点 |
一、从课程目标看数学课程发展的特点 |
(一) 课程目标体系发展的特点 |
(二) 课程目标内容发展的特点 |
(三) 结论 |
二、从课程内容看数学课程发展的特点 |
(一) 中学数学课程中知识领域变化的特点 |
(二) 中学数学课程中知识单元变化的特点 |
(三) 结论 |
三、从课程选择性看数学课程发展的特点 |
(一) 从教学大纲(课程标准)层面看数学课程选择性的特点 |
(二) 从教科书层面看数学课程选择性的特点 |
(三) 结论 |
四、从课程编排方式看数学课程发展的特点 |
(一) 从宏观层面看数学课程内容编排方式的特点 |
(二) 从微观层面看数学课程内容编排方式的特点 |
(三) 结论 |
第六章 中国当代中学数学课程发展的历史对当今数学课程改革的启示 |
一、中学数学课程目标的发展变化对当今数学课程改革的启示 |
(一) 课程目标的表述应继承重视"结果"的传统,"结果"目标与"过程"目标并重 |
(二) 课程目标的表述应具体明确,将学段目标、年级目标、知识领域目标、知识单元目标、知识点目标结合起来 |
二、中学数学课程内容的发展变化对当今数学课程改革的启示 |
(一) 数学课程内容的选择应处理好稳定与发展的关系 |
(二) 数学课程内容的处理应恰当把握理论与实践的联系 |
(三) 数学课程内容现代化应与学生接受能力、教师的教学水平相适应 |
三、中学数学课程选择性的发展变化对当今数学课程改革的启示 |
(一) 应关注地区差异,分类设置课程,编写区域化教科书 |
(二) 数学课程的选择性应处理好理想与现实的关系 |
四、中学数学课程内容编排方式的发展变化对当今数学课程改革的启示 |
(一) 数学课程的综合化要以主线统领,各知识领域内容相对集中,不宜太分散 |
(二) 几何内容编排应兼顾传统,采用实验几何与论证几何结合的方式为宜 |
结束语 |
参考文献 |
附录 |
后记 |
在学期间公开发表论文及著作情况 |
(2)基于APOS理论的初中数学概念微课的设计研究 ——以“实数”概念为例(论文提纲范文)
中文摘要 |
abstract |
第1章 前言 |
1.1 研究背景与问题 |
1.2 研究思路与方法 |
1.3 研究内容与过程 |
1.4 研究目的与意义 |
第2章 相关理论研究概述 |
2.1 关于数学微课的概述 |
2.1.1 国内外对数学微课的研究综述 |
2.1.2 微课的概念界定 |
2.1.3 数学微课的设计与应用 |
2.2 关于APOS理论的概述 |
2.2.1 APOS理论的来源与基础 |
2.2.2 国内外对APOS理论的研究综述 |
2.2.3 基于APOS理论设计的微课研究 |
第3章 基于APOS理论的数学概念微课设计策略 |
3.1 中学数学概念教学的基本问题 |
3.1.1 数学概念的界定 |
3.1.2 数学概念的基本特征 |
3.1.3 数学概念学习的基本形式 |
3.1.4 影响数学概念学习的因素 |
3.2 APOS理论的内涵与四阶段特征 |
3.3 数学概念教学常态课与APOS理论概念教学的对比分析 |
3.3.1 概念教学常态课的特征 |
3.3.2 基于APOS理论指导下的概念教学特征 |
3.3.3 对比分析概念教学常态课与结合APOS理论概念教学的优劣 |
3.4 实数概念课运用APOS理论设计的可行性分析 |
3.4.1 教材编排建议 |
3.4.2 学生认知结构 |
3.5 基于APOS理论的实数概念微课的设计策略 |
3.5.1 活动阶段——创设情境,参与活动 |
3.5.2 过程阶段——提问导向,经历过程 |
3.5.3 对象阶段——变式概念,辨析本质 |
3.5.4 图式阶段——突出联系,形成结构 |
第4章 APOS理论指导下实数概念微课的教学设计案例 |
4.1 《看见无理数》的教学案例分析 |
4.1.1 微课背景与策略浅析 |
4.1.2 微课教学设计策略的新旧对比 |
4.1.3 微课优化前、后的教学实录分析 |
4.2 《再探“数”家族》的教学案例分析 |
4.2.1 微课背景与策略浅析 |
4.2.2 微课教学设计策略的新旧对比 |
4.2.3 微课优化前、后的教学实录分析 |
4.3 《回首“数”运算》的教学案例分析 |
4.3.1 微课背景与策略浅析 |
4.3.2 微课教学设计策略的新旧对比 |
4.3.3 微课优化前、后的教学实录分析 |
第5章 基于APOS理论的实数概念微课的评价分析 |
5.1 问卷调查 |
5.1.1 调查目的 |
5.1.2 调查对象 |
5.1.3 调查过程概况 |
5.1.4 数据分析与结果 |
5.2 个案访谈 |
5.2.1 访谈目的 |
5.2.2 访谈对象 |
5.2.3 访谈提纲与结果 |
第6章 结束语 |
6.1 研究回顾 |
6.1.1 对基于APOS理论研究的回顾 |
6.1.2 对微课教学调查研究的回顾 |
6.2 研究结论 |
6.3 研究反思 |
6.4 研究展望 |
参考文献 |
附录 |
在读硕士学位期间公开发表的论文题目 |
致谢 |
(3)问题驱动的高中数学课堂教学设计理论与实践(论文提纲范文)
摘要 |
Abstract |
第一章 引言 |
1.1 问题的提出 |
1.2 相关文献研究综述 |
1.2.1 新中国中学数学教育研究发展概述 |
1.2.2 国外当代中学数学教育改革历程 |
1.2.3 我国目前高中数学课堂教学存在的问题 |
1.3 研究的目的与意义 |
1.3.1 与问题驱动教学设计相关的研究综述 |
1.3.2 研究的理论基础 |
1.3.3 研究的意义 |
1.3.4 研究的目的 |
1.3.5 研究的创新之处 |
1.4 研究思路与方法 |
1.4.1 研究思路 |
1.4.2 研究方法 |
第二章 问题驱动的高中数学课堂教学理论 |
2.1 何为数学的再创造? |
2.2 何为问题驱动的数学教学? |
2.3 如何实现问题驱动的数学教学 |
2.4 我们应该教什么样的数学 |
2.4.1 思辨、演绎、算法并重的数学课堂教学 |
2.4.2 培养直觉能力的数学教学 |
第三章 从数学教育的本质看高中数学课堂教学核心要素 |
3.1 数学教育的本质 |
3.1.1 数学的本质 |
3.1.2 数学教育的本质 |
3.2 问题驱动的高中数学课堂教学核心要素 |
3.3 案例分析 |
3.4 体现学科特点和教学要求的教学评价量表 |
第四章 问题驱动的高中数学课堂教学实践 |
4.1 问题驱动的高中数学概念课教学 |
4.1.1 概念课案例1 |
4.1.2 概念课案例2 |
4.1.3 概念课案例3 |
4.2 问题驱动的高中数学原理课教学 |
4.2.1 原理课案例1 |
4.2.2 原理课案例2 |
4.3 问题驱动的高中数学解题课教学 |
4.3.1 问题驱动的习题课教学设计 |
4.3.2 教学评析 |
第五章 反思与展望 |
5.1 研究成果 |
5.1.1 问题驱动的数学教学对学生数学价值观念的改变 |
5.1.2 问题驱动的数学教学对学生数学学习成绩的影响 |
5.1.3 问题驱动的数学教学对教师教育观念的改变 |
5.1.4 开创了一线教学实践者和理论研究工作者的合作新模式 |
5.1.5 研究的不足 |
5.2 展望 |
参考文献 |
附录 |
致谢 |
攻读学位期间的学术成果 |
(4)六年级校本课程的开发 ——以数学游戏为主线(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 选题缘由 |
1.2 研究问题 |
1.3 研究意义 |
1.3.1 对学校的意义 |
1.3.2 对教师的意义 |
1.3.3 对学生的意义 |
1.4 研究方法 |
1.4.1 文献研究法 |
1.4.2 问卷调查法 |
1.4.3 访谈法 |
第2章 文献综述和理论基础 |
2.1 文献综述 |
2.1.1 概念的界定 |
2.1.2 国外的研究现状 |
2.1.3 国内的研究现状 |
2.2 理论基础 |
2.2.1 约瑟夫.施瓦布(Jeseph Schwab)的“实践的课程”理论 |
2.2.2 建构主义的数学教育理论 |
2.2.3 弗莱登塔尔的数学教育理论 |
2.2.4 情感教育理论 |
第3章 数学游戏为主的校本课程开发的可行性分析 |
3.1 数学游戏校本课程开设的可行性条件 |
3.1.1 学校条件分析 |
3.1.2 学生条件分析 |
3.1.3 家长条件分析 |
3.2 前期调查问卷结果分析 |
3.2.1 学生调查问卷结果分析 |
3.2.2 家长访谈结果分析 |
3.2.3 数学游戏校本课程开发的可行性小结 |
第4章 数学游戏校本课程开发的实施流程 |
4.1 班级组建 |
4.2 课程目标的设置 |
4.3 内容的选材与梳理 |
4.4 数学游戏的设计原则 |
4.5 课程纲要的编制 |
4.6 课程实施注意事项 |
第5章 数学游戏校本课程开发实例分析 |
5.1 代数游戏:《“数”你最幸运》的课程分析 |
5.1.1 设计方案 |
5.1.2 数学游戏课程实例——《“数”你最幸运》 |
5.1.3 效果分析 |
5.2 代数游戏:《新24 点计算》课程分析 |
5.2.1 设计方案 |
5.2.2 数学游戏校本课程实例——《新24 点计算》 |
5.2.3 效果分析 |
5.3 《“圆”来如此》教学实例 |
5.3.1 设计方案 |
5.3.2 数学游戏校本课程实例——《“圆”来如此》 |
5.3.3 效果分析 |
第6章 数学游戏校本课程实施效果分析 |
6.1 数学游戏校本课程对学生情感态度的影响 |
6.2 数学游戏校本课程对数学成绩的效果分析 |
第7章 总结与展望 |
7.1 研究的结论 |
7.2 研究的不足和展望 |
7.2.1 研究的不足 |
7.2.2 展望 |
参考文献 |
附录A 学生需求调查问卷(前测) |
附录B 《“数”你最幸运》课后的问卷调查 |
附录C 《新24点计算》课后的问卷调查 |
附录D 《“圆”来如此》课后的问卷调查 |
附录E 学生需求调查问卷(后测) |
致谢 |
(5)学科理解视角下的师范院校数学学科专业课程设置研究(论文提纲范文)
中文摘要 |
abstract |
导论 |
一、研究缘起 |
(一)卓越教师培养对教师专业素养发展的追问 |
(二)新时代教育思想对高等师范教育的新要求 |
(三)核心素养的顶层设计对教师培养的挑战 |
二、研究问题 |
(一)核心概念的界定 |
(二)主要研究问题 |
三、研究的目的与意义 |
(一)研究的目的 |
(二)研究的意义 |
四、研究的思路与方法 |
(一)研究的思路 |
(二)论文结构 |
(三)研究方法 |
第一章 文献综述 |
一、数学教师专业知识研究 |
(一)数学教师知识及其发展 |
(二)数学教师的学科知识研究 |
(三)小结 |
二、数学教师培养模式研究 |
(一)国外数学教师培养模式研究 |
(二)国内数学教师培养模式的研究 |
(三)小结 |
三、数学教师培养专业课程设置研究 |
(一)课程设置的核心理念 |
(二)课程体系结构设置 |
(三)课程内容、形式设置研究 |
(四)教育实践内容设置研究 |
(五)小结 |
第二章 学科理解视角下的教师教育 |
一、学科理解的释义 |
(一)理解的含义 |
(二)学科理解 |
(三)学科知识理解 |
二、学科理解在数学教师教育中的理论基础 |
(一)深化学科理解的目的:促进教师专业发展 |
(二)学科理解的认知基础:教师的知识观 |
(三)学科理解实施的载体:课程的开发与建构 |
三、数学教师教育对学科知识理解的诉求 |
(一)学科知识体系对于学术性与师范性的双向支持 |
(二)教师资格考核的新要求 |
(三)数学课程改革提出的新理念 |
第三章 数学师范生学科理解现状分析 |
一、数学师范生学科理解的实证分析 |
(一)研究设计 |
(二)数学师范生学科理解现状调查结果 |
(三)数学师范生学科理解认识现状结果分析 |
二、数学师范生学科知识理解的实证分析 |
(一)研究设计 |
(二)数学师范生学科知识理解现状调查结果与分析 |
三、数学师范生学科理解重要性的再确证 |
(一)数学师范生学科知识掌握的整体情况分析 |
(二)数学师范生各子类学科知识掌握具有显著差异 |
(三)影响数学师范生学科理解的具体因素 |
第四章 学科理解视角下师范院校数学学科专课程设置现状分析 |
一、研究设计 |
(一)研究对象 |
(二)研究工具 |
二、数学师范生学科专业课程设置满意度调查结果——以X大学学科专业课程设置为例 |
(一)学科课程总体满意度现状 |
(二)具体课程模块满意度现状 |
(三)不同层次研究对象课程满意度现状 |
(四)高等师范院校数学专业教师访谈结果与分析 |
(五)研究结论与启示 |
三、数学师范专业学科课程设置对比分析 |
(一)培养目标角度的对比与分析 |
(二)具体课程设置的对比与分析 |
(三)学科课程设置的对比与分析 |
四、我国高等师范院校数学专业学科专业课程设置的问题分析 |
(一)培养目标不能忽视师范生学科水平现状 |
(二)课程结构不能忽略数学教育师范性特征 |
(三)课程内容及时关注基础教育课程改革 |
(四)课程模式增添教师培养中的“示范”意识 |
(五)课程实践中加深学科知识理解 |
第五章 学科理解视角下的师范院校数学学科专业课程的构建 |
一、学科理解下的数学师范专业人才培养思路 |
(一)职业精神:学科信念指引下的“育人”初衷 |
(二)职前定位:学科性质指引下的培养理念 |
(三)职业支撑:学科功能指引下的课程设置 |
(四)职业需要:学科知识理解下专业培养 |
二、重整数学师范生学科理解下的学科专业课程设置原则 |
(一)科学性与思想性统一原则 |
(二)贯通性与关联性统一原则 |
(三)学科性与实践性统一原则 |
(四)规范性与独特性统一原则 |
三、学科理解视角下的学科专业课程设置 |
(一)课程目标的设计 |
(二)课程结构的架设 |
(三)基于数学师范生学科理解的专业课程结构特征分析 |
四、深化学科理解目标下数学学科课程的实施 |
(一)推进专业课程教学的变革 |
(二)重视学科专业课程学习资源的开发 |
(三)加强学科课程内涵文化的建设 |
结论与启示 |
一、研究的结论 |
(一)学科理解视角的理论基础和现实诉求 |
(二)数学师范生学科理解状况的研究结论 |
(三)数学师范生学科专业课程设置研究结论 |
(四)基于数学师范生学科知识理解的学科专业课程建构 |
二、研究的建议 |
(一)加强数学师范生对学科知识的掌握与理解 |
(二)加深学科专业课程教师对于学科知识的理解 |
(三)利用实践课程学习促进数学师范生学科知识的转化 |
(四)科学衡量学科专业课程中的“增减”问题 |
(五)避免教师资格考试压力异化学科课程学习 |
三、研究的展望 |
(一)数学师范专业课程主线建设问题 |
(二)课程建设与教学方式改革携手并进 |
(三)关注职前教师生源质量问题 |
参考文献 |
附录 |
后记 |
在学期间公开发表论文及著作情况 |
(6)“洋葱数学”在初中数学教学中的应用初探(论文提纲范文)
摘要 |
ABSTRACT |
1.绪论 |
1.1 研究背景 |
1.2 国内外研究现状 |
1.3 研究目的与意义 |
1.4 研究内容与方法 |
2 理论基础 |
2.1 移动学习的理论基础 |
2.2 洋葱数学APP |
3 H中学数学课外学习现状调查 |
3.1 数学课外学习现状调查 |
3.2 数学课外学习存在问题 |
4 “洋葱数学”在H初中数学教学中的应用初探 |
4.1 实验设计 |
4.2 实验过程 |
4.3 实验数据分析 |
5 研究结论与反思 |
5.1 研究结论 |
5.2 教学建议与研究反思 |
参考文献 |
附录1 |
附录2 |
附录3 |
附录4 |
附录5 |
致谢 |
(7)西藏职前初中数学教师基于数学史的专门内容知识个案研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究缘起 |
1.2 研究背景 |
1.3 研究问题 |
1.4 研究意义 |
1.5 相关概念界定 |
1.6 论文的框架结构 |
第2章 文献综述 |
2.1 藏族地区中小学数学教育研究现状 |
2.2 数学史融入数学教育的必要性 |
2.3 HPM研究的现状 |
2.4 学科内容知识的研究 |
2.5 HSCK理论框架的研究 |
第3章 研究设计与方法 |
3.1 研究对象 |
3.1.1 现状和态度研究对象 |
3.1.2 个案研究的对象 |
3.2 研究流程 |
3.3 研究方法 |
3.3.1 个案研究 |
3.3.2 问卷调查 |
3.3.3 访谈 |
3.4 研究工具 |
3.4.1 数学史融入数学教学现状与态度问卷 |
3.4.2 PT-HSCK问卷 |
3.5 数据处理与分析 |
3.5.1 数据编码 |
3.5.2 量化数据及其分析 |
3.5.3 质性数据及其分析 |
第4章 PT-HSCK理论框架的建构 |
4.1 PT-HSCK理论框架建构的动机 |
4.2 基于模糊Delphi法的PT-HSCK理论框架建构 |
4.2.1 评估指标 |
4.2.2 专家反馈资料之适度检验 |
4.2.3 初步重要的评估指标之筛选 |
4.2.4 相对重要程度之阈值 |
4.3 PT-HSCK的九种知识成分 |
4.4 PT-HSCK的五级水平划分 |
4.5 HPM干预框架 |
第5章 干预前现状与态度调查研究 |
5.1 西藏数学史融入数学教学的现状与态度 |
5.1.1 西藏数学史融入数学教学现状的调查 |
5.1.2 西藏在职初中数学教师态度的调查 |
5.2 西藏职前初中数学教师态度的调查 |
5.3 PT-HSCK的现状调查 |
第6章 职前初中数学教师的HPM干预 |
6.1 HPM干预的前期准备 |
6.2 HPM干预案例一:无理数的概念 |
6.2.1 史料阅读阶段 |
6.2.2 HPM讲授阶段 |
6.2.3 HPM教学设计阶段 |
6.2.4 HPM干预后的访谈与作业单反馈 |
6.3 HPM干预案例二:二元一次方程组 |
6.3.1 史料阅读阶段 |
6.3.2 HPM讲授阶段 |
6.3.3 HPM教学设计阶段 |
6.3.4 HPM干预后的访谈与作业单反馈 |
6.4 HPM干预案例三:平行线的判定 |
6.4.1 史料阅读阶段 |
6.4.2 HPM讲授阶段 |
6.4.3 HPM教学设计阶段 |
6.4.4 HPM干预后的访谈与作业单反馈 |
6.5 HPM干预案例四:平面直角坐标系 |
6.5.1 史料阅读阶段 |
6.5.2 HPM讲授阶段 |
6.5.3 HPM教学设计阶段 |
6.5.4 HPM干预后的访谈与作业单反馈 |
6.6 HPM干预案例五:全等三角形应用 |
6.6.1 史料阅读阶段 |
6.6.2 HPM讲授阶段 |
6.6.3 HPM教学设计阶段 |
6.6.4 HPM干预后的访谈与作业单反馈 |
6.7 HPM干预案例六:一元二次方程(配方法) |
6.7.1 史料阅读阶段 |
6.7.2 HPM讲授阶段 |
6.7.3 HPM教学设计阶段 |
6.7.4 HPM干预后的访谈与作业单反馈 |
第7章 干预结果及其变化分析 |
7.1 职前数学教师的总体变化分析 |
7.2 藏族职前数学教师的变化分析 |
7.3 汉族职前数学教师的变化分析 |
7.4 藏族与汉族职前数学教师的对比分析 |
第8章 研究结论与启示 |
8.1 研究结论 |
8.1.1 西藏数学史融入数学教学以及PT-HSCK的现状与态度 |
8.1.2 建立了理论框架以及干预框架 |
8.1.3 HPM干预对西藏职前初中数学教师的影响 |
8.2 研究启示 |
8.3 研究局限 |
8.4 研究展望 |
参考文献 |
附录 |
附录1 :西藏初中阶段数学史融入数学教学现状问卷(学生用) |
附录2 :西藏初中阶段数学史融入数学教学现状问卷(教师用) |
附录3 :西藏初中阶段数学史融入数学教学态度问卷 |
附录4 :PT-HSCK测试问卷 |
攻读学位期间发表的学术论文 |
致谢 |
(8)基于任务设计的发展初中生数学创造性思维的课例研究(论文提纲范文)
摘要 |
Abstract |
第1章 引言 |
1.1 研究背景 |
1.1.1 发展创造性思维是人的发展赋予教育的必然使命 |
1.1.2 发展创造性思维是数学教育的本质属性 |
1.1.3 发展数学创造性思维需要落实于课堂教学 |
1.2 研究问题 |
1.3 研究意义 |
1.4 概念界定 |
1.4.1 数学创造性思维 |
1.4.2 教学任务 |
1.5 论文结构 |
第2章 文献综述 |
2.1 创造力领域的相关研究 |
2.1.1 创造力研究的基本理念 |
2.1.2 创造力的聚合理论 |
2.1.3 创造性思维研究 |
2.1.4 创造力教学研究 |
2.1.5 创造性思维评价研究 |
2.1.6 小结 |
2.2 数学中的创造性思维研究 |
2.2.1 思维、数学思维与数学创造性思维 |
2.2.2 数学创造性思维的多角度理解 |
2.2.3 数学创造性思维的影响因素研究 |
2.2.4 数学创造性思维教学研究 |
2.2.5 数学创造性思维评价研究 |
2.2.6 初中学生数学创造性思维的发展特点研究 |
2.2.7 小结 |
第3章 研究方法 |
3.1 研究思路 |
3.2 研究过程 |
3.2.1 总体研究阶段 |
3.2.2 创造性思维行为分析框架的初步构建 |
3.2.3 创造性任务设计策略及教学策略框架的初步构建 |
3.2.4 课例研究的过程 |
3.3 研究工具 |
3.3.1 学生测试卷和访谈工具 |
3.3.2 教师的问卷和访谈工具 |
3.3.3 课堂观察记录表 |
3.4 数据收集 |
第4章 “数与代数”课例研究 |
4.1 “数与代数”学习与创造性思维的发展 |
4.1.1 “数与运算”学习与创造性思维的发展 |
4.1.2 “代数”学习与创造性思维的发展 |
4.2 本章研究思路 |
4.2.1 研究思路 |
4.2.2 初步构建的“数与代数”创造性思维分析框架 |
4.2.3 初步的“数与代数”创造性任务设计策略框架和教学策略框架 |
4.2.4 课例的选择 |
4.3 课例一:《算24 点》 |
4.3.1 设计前的调研 |
4.3.2 第一次教学设计及教学简析 |
4.3.3 第二次教学设计及教学分析 |
4.3.4 课例小结 |
4.4 课例二:《字母表示数》 |
4.4.1 设计前的调研 |
4.4.2 第一课时教学设计 |
4.4.3 第一课时教学分析及反馈 |
4.4.4 第二课时教学情况简述 |
4.4.5 课例小结 |
4.5 “数与代数”课例研究小结 |
4.5.1 修正的“数与代数”创造性任务设计策略框架 |
4.5.2 修正的“数与代数”创造性任务教学策略框架 |
4.5.3 修正的“数与代数”创造性思维行为分析框架 |
第5章 “图形与几何”课例分析 |
5.1 “图形与几何”学习与创造性思维的发展 |
5.2 本章研究思路 |
5.2.1 研究思路 |
5.2.2 初步构建的“图形与几何”创造性思维分析框架 |
5.2.3 初步的“图形与几何”创造性任务设计策略框架和教学策略框架 |
5.2.4 课例的选择 |
5.3 课例(一):《圆周角》 |
5.3.1 设计前的调研 |
5.3.2 教学设计 |
5.3.3 教学分析 |
5.3.4 课后访谈及调查分析 |
5.3.5 课例小结 |
5.4 课例(二):《一分为二》 |
5.4.1 设计前的调研 |
5.4.2 教学设计 |
5.4.3 教学分析及反馈 |
5.4.4 课例小结 |
5.5 “图形与几何”课例研究小结 |
5.5.1 修正的“图形与几何”创造性任务设计策略框架 |
5.5.2 修正的“图形与几何”创造性任务教学策略框架 |
5.5.3 修正的“图形与几何”创造性思维行为分析框架 |
第6章 “统计与概率”课例分析 |
6.1 “统计与概率”学习与创造性思维的发展 |
6.2 本章研究思路 |
6.2.1 研究思路 |
6.2.2 初步构建的“统计与概率”创造性思维分析框架 |
6.2.3 初步的“统计与概率”创造性任务设计策略框架和教学策略框架 |
6.2.4 课例的选择 |
6.3 课例:《方差》 |
6.3.1 设计前的调研 |
6.3.2 教学设计 |
6.3.3 教学分析及反馈 |
6.3.4 课例小结 |
6.4 “统计与概率”课例小结 |
6.4.1 修正的“统计与概率”创造性任务设计策略框架 |
6.4.2 修正的“统计与概率”创造性任务教学策略框架 |
6.4.3 修正的“统计与概率”创造性思维行为分析框架 |
第7章 研究结果与讨论 |
7.1 初中生数学创造性思维的行为表现框架 |
7.1.1 基于课例的研究结果 |
7.1.2 行为分析框架的共性提炼 |
7.2 初中生数学创造性任务设计策略框架 |
7.3 初中生数学创造性任务教学策略框架 |
7.4 研究的反思 |
7.4.1 本研究的创新之处 |
7.4.2 本研究的不足 |
7.4.3 后继研究展望 |
参考资料 |
中文文献 |
英文文献 |
附录 |
附录1 第一阶段参与设计与讨论的部分课例简表 |
附录2 培养中小学生数学创造性思维的调查问卷 |
附录3 《圆周角》前测卷 |
附录4 《圆周角》后测卷 |
附录5 《算24 点》课后学生访谈提纲 |
附录6 课堂观察记录表 |
后记 |
作者简历及在学期间科研成果 |
(9)基于数学史课程的职前教师教学知识发展研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景 |
1.1.1 职前教师教育的意义与困境 |
1.1.2 教师教学知识的研究趋势 |
1.1.3 职前教师教育中的数学史教育现状 |
1.2 研究问题 |
1.2.1 研究问题的产生 |
1.2.2 研究问题的设定 |
1.2.3 研究问题的说明 |
1.3 研究意义 |
1.3.1 基于教学知识的教师教育课程研究范式的构建 |
1.3.2 在教师教育课程中发展职前教师教学知识的探索 |
1.3.3 以教学知识为发展目标的数学史课程建设的尝试 |
1.4 名词释义 |
1.5 论文的框架结构 |
第2章 文献述评 |
2.1 教师教学知识的内涵及其发展 |
2.1.1 教师教学知识内涵的研究 |
2.1.2 教师教学知识的测量与发展研究 |
2.1.3 MKT的内涵及其发展研究 |
2.2 数学史与教师教育 |
2.2.1 数学史对教师教育的价值 |
2.2.2 数学史与教师教学知识 |
2.2.3 职前教师教育中的数学史课程 |
2.3 文献小结 |
第3章 研究的设计与过程 |
3.1 研究方法 |
3.1.1 准实验研究策略 |
3.1.2 质性研究策略 |
3.1.3 行动研究策略 |
3.1.4 收集资料的方法 |
3.2 研究工具 |
3.2.1 理论指导 |
3.2.2 量化测试工具 |
3.2.3 质性分析工具 |
3.2.4 研究信度与效度 |
3.3 研究对象 |
3.3.1 基本信息 |
3.3.2 量化研究对象 |
3.3.3 质性研究对象 |
3.4 研究过程 |
3.4.1 前期准备 |
3.4.2 预研究 |
3.4.3 实施过程 |
3.4.4 后期整理 |
3.5 数据的收集与处理 |
3.5.1 数据收集 |
3.5.2 数据编码 |
3.5.3 数据处理 |
第4章 研究结果与分析(一) |
4.1 课程前职前教师的教学知识 |
4.1.1 W校职前教师的教学知识 |
4.1.2 W校两类职前教师教学知识的比较 |
4.1.3 S校职前教师的教学知识 |
4.1.4 两校职前教师教学知识的比较 |
4.1.5 W校职前教师对数学史教育性的认识 |
4.1.6 小结 |
4.2 课程后职前教师的教学知识 |
4.2.1 W校职前教师的教学知识 |
4.2.2 W校两类职前教师教学知识的比较 |
4.2.3 S校职前教师的教学知识 |
4.2.4 两校职前教师教学知识的比较 |
4.2.5 W校职前教师对数学史教育性的认识 |
4.2.6 小结 |
4.3 课程前后职前教师教学知识的比较 |
4.3.1 W校职前教师教学知识课程前后的比较 |
4.3.2 W校A类职前教师教学知识课程前后的比较 |
4.3.3 W校B类职前教师教学知识课程前后的比较 |
4.3.4 S校职前教师教学知识课程前后的比较 |
4.3.5 小结 |
4.4 研究(一)的总结 |
4.4.1 数学史课程前后学科内容知识和教学内容知识的变化 |
4.4.2 数学史课程前后两类职前教师教学知识的变化 |
第5章 研究结果与分析(二) |
5.1 参与质性研究职前教师的基本状况 |
5.1.1 参与职前教师的产生及基本信息 |
5.1.2 数学史与教师教学知识联系的认识 |
5.1.3 课程前的数学史素养水平 |
5.2 职前教师在实数教学中教学知识的变化 |
5.2.1 教学知识点的教研背景 |
5.2.2 职前教师教学知识在数学史前后的变化 |
5.2.3 研究小结 |
5.3 职前教师在有理数乘法教学中教学知识的变化 |
5.3.1 教学知识点的教研背景 |
5.3.2 职前教师教学知识在数学史前后的变化 |
5.3.3 研究小结 |
5.4 职前教师在勾股定理教学中教学知识的变化 |
5.4.1 教学知识点的教研背景 |
5.4.2 职前教师教学知识在数学史前后的变化 |
5.4.3 研究小结 |
5.5 职前教师在一元二次方程解法教学中教学知识的变化 |
5.5.1 教学知识点的教研背景 |
5.5.2 职前教师教学知识在数学史前后的变化 |
5.5.3 研究小结 |
5.6 职前教师在相似三角形的性质及其应用教学中教学知识的变化 |
5.6.1 教学知识点的教研背景 |
5.6.2 职前教师教学知识在数学史前后的变化 |
5.6.3 研究小结 |
5.7 研究(二)的总结 |
5.7.1 职前教师学科内容知识和教学内容知识的变化情况 |
5.7.2 课程内容和教学方式对职前教师教学知识的影响 |
第6章 研究结论与建议 |
6.1 研究结论 |
6.1.1 数学史课程前后职前教师教学知识的变化程度 |
6.1.2 数学史课程中职前教师的教学知识的变化过程 |
6.2 研究启示 |
6.2.1 基于教师教学知识的数学史课程建设 |
6.2.2 数学史融入数学教学的教学设计流程 |
6.3 研究局限 |
6.4 研究展望 |
参考文献 |
附录 |
后记 |
(10)课程组织的量化分析研究 ——以中韩高中数学教科书为例(论文提纲范文)
摘要 |
Abstract |
目录 |
第一章 绪论 |
一、 研究缘起 |
(一) 来自“泰勒原理”的学习过程中产生的疑问 |
(二) PISA 测试中东亚国家和地区的数学成绩引发的思考 |
(三) “数学课程标准与教材国际比较”课题研究的延伸 |
二、 研究背景 |
(一) 数学课程的“四基”目标对教科书编制提出了新要求 |
(二) 高中数学课程标准的修订对国际比较提出了借鉴需求 |
(三) 我国数学教育国际比较迫切需要提高研究水平 |
三、 研究问题阐释 |
(一) 核心概念界定 |
(二) 基本概念界定 |
(三) 研究的主要问题 |
四、 研究意义 |
(一) 丰富和发展已有的课程组织相关理论 |
(二) 尝试建构了课程组织量化分析方法 |
(三) 试图为归纳东亚数学课程的共同特征提供依据 |
(四) 试图为教科书编写提供一定的参考和借鉴 |
五、 研究设计 |
(一) 研究对象与教科书选择 |
(二) 研究方法 |
(三) 研究工具 |
(四) 研究思路 |
(五) 研究框架结构 |
第二章 文献综述 |
一、 课程组织的研究综述 |
(一) 课程组织理论的研究综述 |
(二) 课程组织研究方法的现状分析 |
二、 中韩数学课程比较研究现状分析 |
(一) 中国数学课程比较研究现状分析 |
(二) 韩国数学课程比较研究现状分析 |
三、 东亚数学课程的比较研究综述 |
(一) 中国对东亚数学课程的比较研究综述 |
(二) 韩国对东亚数学课程的比较研究综述 |
四、 数学教科书分析方法研究综述 |
(一) 中国数学教科书分析方法综述 |
(二) 韩国数学教科书分析方法综述 |
第三章 中韩高中数学课程标准的对比分析研究 |
一、 中韩高中数学课程目标的对比分析 |
(一) 中韩高中数学课程目标 |
(二) 中韩高中数学课程目标的对比分析 |
二、 中韩高中数学课程内容的对比分析 |
(一) 中韩高中数学课程内容 |
(二) 中韩高中数学课程内容的对比分析 |
三、 中韩高中数学课程选译方式的对比分析 |
(一) 中韩高中数学课程选择方式 |
(二) 中韩高中数学课程文、理差异 |
(三) 中韩高中数学课程选择方式的对比分析 |
第四章 课程的深层组织的量化分析研究 |
一、 课程的深层组织的基本单位 |
(一) 深层组织的基本单位:知识团 |
(二) 中韩高中数学知识团的划分与比较 |
(三) 中韩高中数学知识团的教科书分布与比较 |
(四) 数学知识团的层级结构 |
(五) 中韩高中数学知识团层级结构的比较分析 |
二、 课程前进过程的“坡度”量化模型的构建 |
(一) 课程前进过程的基本要素 |
(二) 课程前进过程的“坡度”量化模型的构建 |
三、 中韩高中数学课程前进过程的比较分析 |
(一) 中韩高中数学课程前进过程的量化与比较 |
(二) 中韩高中数学课程前进过程的学年分布比较 |
(三) 中韩高中数学课程前进过程的学段分布比较 |
四、 课程整合程度的量化分析方法的构建 |
(一) 课程整合维度的划分 |
(二) 课程整合程度的量化方法 |
五、 中韩高中数学课程整合程度的比较分析 |
(一) 中韩高中数学课程整合率的比较分析 |
(二) 中韩高中数学学科内部课程整合广度的比较分析 |
(三) 中韩高中数学学科外部课程整合广度的比较分析 |
第五章 课程的表层组织的量化分析研究 |
一、 中韩高中数学教科书单元组织的量化分析 |
(一) 中韩高中数学课程内容的单元分布及量化分析 |
(二) 中韩高中数学课程内容单元课时与单元页数的频数分布分析 |
(三) 中韩高中数学课程内容单元课时与单元页数的比重分析 |
二、 中韩高中数学教科书的单元组织结构的比较分析 |
(一) 中韩高中数学教科书单元导入的比较与量化分析 |
(二) 中韩高中数学教科书单元展开的比较与量化分析 |
(三) 中韩高中数学教科书单元结束的比较与量化分析 |
第六章 研究的结论与讨论 |
一、 研究的基本结论 |
二、 对研究结论的讨论 |
(一) 关于东亚数学课程特点的讨论 |
(二) 关于研究工具适用范围的讨论 |
三、 相关建议与启示 |
(一) 对教育行政部门的相关建议 |
(二) 对教科书课程组织的启示 |
四、 对研究的展望 |
(一) 研究的创新点 |
(二) 有待进一步研究的问题 |
(三) 未来的研究方向 |
参考文献 |
附录 中韩中学数学知识团的知识点统计 |
后记 |
在学期间公开发表论文及著作情况 |
四、中学数学課中有理数部分的教学(论文参考文献)
- [1]中国当代中学数学课程发展的历程及其启示[D]. 吕世虎. 东北师范大学, 2009(11)
- [2]基于APOS理论的初中数学概念微课的设计研究 ——以“实数”概念为例[D]. 甘翔凤. 广西师范大学, 2020(01)
- [3]问题驱动的高中数学课堂教学设计理论与实践[D]. 张蜀青. 广州大学, 2019(01)
- [4]六年级校本课程的开发 ——以数学游戏为主线[D]. 孙成刚. 上海师范大学, 2020(07)
- [5]学科理解视角下的师范院校数学学科专业课程设置研究[D]. 郑晨. 东北师范大学, 2019(09)
- [6]“洋葱数学”在初中数学教学中的应用初探[D]. 张琳. 西南大学, 2020(01)
- [7]西藏职前初中数学教师基于数学史的专门内容知识个案研究[D]. 牟金保. 华东师范大学, 2020(12)
- [8]基于任务设计的发展初中生数学创造性思维的课例研究[D]. 王萍萍. 华东师范大学, 2018(02)
- [9]基于数学史课程的职前教师教学知识发展研究[D]. 黄友初. 华东师范大学, 2014(10)
- [10]课程组织的量化分析研究 ——以中韩高中数学教科书为例[D]. 崔英梅. 东北师范大学, 2014(12)