一、中学数学教学改革的一些作法(论文文献综述)
张冬莉[1](2020)在《中国数学教科书中勾股定理内容设置变迁研究(1902-1949)》文中研究表明正如约翰尼斯·开普勒(Johannes Kepler)所言:“几何学有两件伟大的瑰宝:第一件是毕达哥拉斯定理,第二件是黄金分割。”勾股定理作为平面几何中最基础的定理,它是联系数学中数与形的第一定理,导致不可公度量的发现,揭示了无理数与有理数的区别,引发了第一次数学危机。勾股定理开始把数学由计算与测量的技术转变为论证与推理的科学。千百年来人们给出勾股定理的证明至今已有五百多种,是证明方法最多的一个定理,其中蕴含了大量丰富的数学思想和技巧。自徐光启翻译欧几里得的《几何原本》以来,中国不仅对古希腊算学史有了新的认识,又更深层次地了解勾股定理在中西文化中的价值。尤其在清末民国时期,勾股定理已成为中学数学教育的核心内容之一。本研究以1902-1949年中国中学数学教科书的勾股定理内容为研究对象,以文献研究法、历史研究法、个案分析法、比较研究法等为主要研究方法,将中国中学数学教科书在1902-1949年的发展历程依照学制和课程标准的颁布,分为清末时期(1902-1911)、民国初期(1912-1922)、民国课程纲要时期(1923-1928)、民国课程标准时期(1929-1949)四个发展阶段,旨在全面、系统、深入地研究勾股定理在中国中学数学教科书中的发展特点,分析影响及其变迁的因素,力求为当今的中学数学教科书中勾股定理的编写提供借鉴和启示。本研究从如下五个部分论述,具体内容如下:一、清末时期(1902-1911)中学几何教科书的勾股定理。这一时期,学制初订,中国的中学数学教育主要以学习日本数学教育为主,几何教科书的编写主要是翻译和编译日本以及一些欧美国家的几何教科书。首先从纵向上分析在这十年中几何教科书中勾股定理内容的证明方法以及定理表述上的变迁特点;其次横向的分别选取翻译日本和美国的几何教科书进行个案分析,从教科书编撰理念、编排形式、内容设置结构等维度进行了对比分析,以便从微观上详细了解这一时期数学教科书中勾股定理的变迁特点及教育价值。二、民国初期(1912-1922)中学几何教科书的勾股定理。这一时期中国的传统教育思想理念、制度模式和知识体系在西方文明的冲击下开始了艰难的转型,同时也影响几何教科书的发展。民国初期的教育继承了清末教育改革的成果,中学数学教科书的发展也日新月异。此时,自编教科书也在逐步成熟。这一时期,虽然中国自编几何教科书,通常是参考欧美教科书并加以适当筛选和增删,但是知识内容的组织与呈现,都有了显著的改进。但是其中勾股定理内容的编排上特点并不明显,还没有彻底摆脱之前教科书中的内容和形式,仍然有清末时期几何教科书的痕迹。分别选取该时期具有代表性的教科书《共和国教科书平面几何》、《民国新教科书几何学》以及汉译本《温德华士几何学》中勾股定理内容的编排设置进行详细对比分析。三、民国课程纲要时期(1923-1928)中学数学教科书的勾股定理。1922年的“新学制”颁布后,中小学实行六三三制。无论是教学方法还是教科书的编写,都在不同程度上有所变革,凸显着美国数学教育的影响。中学教科书把代数、几何、算术和三角等内容融合在一起混合教学,将原来的几何教科书架构完全打破。中国首次采用混合编写教科书的方法,不仅能使学生明白各科之间的内在联络,而且可以建构知识的统一体系。也正是在混合教学的风靡下,勾股定理内容的编排也因此受到极大的影响,无论是在章节的设置上,还是定理证明的方法、课后习题的设置上都与以往不同。故分别选取该时期具有重要研究价值的数学教科书《布利氏新式算学教科书》、《初级混合数学》、《新学制混合算学教科书》和《现代初中教科书几何》中勾股定理内容的编排设置内容特点进行详细对比分析。四、民国课程标准时期(1929-1949)中学数学教科书的勾股定理。在此阶段我国又进行了三次数学课程标准的修订,这一时期颁布的初中和高中课程标准中都要求学习平面几何。勾股定理内容则分别出现在初中和高中教科书中,但是由于对定理掌握的目标要求不同,故所在章节不同,导致使用的证明方法、表述方法和难易程度也不同。另外1932年首次设置了实验几何课程,明确实验几何教学的目标和要求,无论是在理解几何还是实验几何中都编排了勾股定理内容。虽然重视程度和教学目标都不同,但是分别从代数和几何的角度体现了勾股定理的重要性以及在教科书中有重要的地位。故选取《复兴中学教科书》和《实验几何教科书》中勾股定理内容编排进行详细分析。在该部分中,又将1912-1949年间中学数学教科书中勾股定理内容编排变迁进行了特点分析。五、以上研究中,在简要呈现各阶段的历史文化背景的同时,适当地介绍了代表性教科书作者的生平及数学教育贡献。六、结论。首先,从宏观和微观上归纳1902-1949年中国中学数学教科书中勾股定理编排特点;其次,分析了影响1902-1949年中国中学数学教科书勾股定理编排变迁的因素;再次,阐明了1902-1949年中国中学数学教科书勾股定理证明方法编排变迁的特点;最后,总结了勾股定理的编排变迁为当今数学教科书编写提供的启示与借鉴。综上所述,本研究主要以1902-1949年为时间域,研究了中国中学数学教科书中勾股定理的编排之变迁。根据各学制、课程标准(或课程纲要)对中学数学教科书的编写背景、编撰理念的要求不同,选取各阶段具有代表性的教科书中勾股定理的编排形式、证明方法等方面进行个案分析,总结了勾股定理内容编排之特点。厘清了1902-1949年中国中学数学教科书中的勾股定理内容的编排,揭示了勾股定理编排的变迁特点和影响变迁的因素,展示了清末民国时期中学勾股定理内容的设置、编排、内容选取等诸特点对当今教科书建议和教学改革的借鉴作用。
张美霞[2](2018)在《清末民国时期中学解析几何学教科书研究》文中指出解析几何学较为系统传入中国已有150多年的历史,国内外学者对解析几何学传入中国的历史及其相关著作的研究较为丰富,但是对清末民国时期解析几何学教科书发展历史的系统研究极为少见,尤其是中学解析几何学教科书的发展历史。有几个问题是我们必须思考的:第一,中国解析几何学教学始于何时?中学为何要开设解析几何学?什么原因促使其出现?第二,数学教育制度下,解析几何学教科书的内容与课程内容是否一致?第三,在将近60年的时间里,解析几何学教科书发展有什么特点?解析几何学教科书的发展受到哪些因素的影响?清末民国时期中学解析几何学教学的意义以及对现今教科书的建设有什么启示?这也是本文选取解析几何学教科书作为研究对象的目的与意义所在。本文坚持以解析几何学教科书原始文献与二手文献为基础的研究原则,采取系统论述与重点分析的研究思路,以文献研究法、比较研究法、个案分析法为主要研究方法,以清末民国时期解析几何学教科书整体发展情况作为研究主线,重点论述中学解析几何学教科书的发展历史。根据社会与教育制度的变革,以及解析几何学教学、教科书建设、教科书内容等特点,将解析几何学教科书的发展划分为肇始(1893-1901)、初步发展期(1902-1921)、转型期(1922-1936)和成熟期(1937-1949)四个阶段。从解析几何课程设置、出版情况、审定情况、作者群的知识背景、教科书内容与课程内容比较等方面分析不同时期解析几何学教科书的特征,主要围绕下面几个方面展开研究。第一,明末清初时期,圆锥曲线随着天文历法知识从西方传入中国。鸦片战争后,西方教科书纷纷传入,第一本从美国传入的解析几何学教科书《代形合参》就是其中的代表,历史意义深远,自此解析几何学在中国成为一门独立学科。中国学校正式开始开设解析几何学课程,如京师大学堂、登州文会馆与四川中西学堂等。1902-1921年间解析几何学教科书主要以翻译美国、英国与转译日本为主。解析几何学课程以大学开设为主,中学主要在高中实科一类中开设。解析几何学教科书的编写者以留学回国者与大学教师为主。该时期解析几何学教科书具有以下特点:翻译版本与“坐标法”的“多样化”、章节结构差异较大、编排形式及数学符号完全西化以及高中几何教科书中出现“圆锥曲线”的内容。第二,1922年至1936年是解析几何学教科书建设之转型期。随着1922年“壬戌学制”的颁布,中学正式开设解析几何学课程,随之出现大量自编解析几何学教科书、《斯盖二氏解析几何学》与《斯盖尼三氏新解析几何学》的汉译本,教科书审定制度由国定制演变为审定制,教科书编写者队伍仍以留学归国者与大学教师为主,中学教师人数较少。此外,这一时期“课程纲要”与“课程标准”首次对中学解析几何学教科书内容作出具体规定,自编教科书并非完全遵照课程内容编写,稍具“自由性”;汉译教科书大多译自与中国“课程标准”相近的美国解析几何学教科书。“直角坐标”、“圆锥曲线”在高中代数、初等几何等教科书中出现;教科书章节结构基本定型;坐标法以“直角坐标”为主,极少使用“斜坐标”等是该时期的几个重要特点。1937-1949年中学解析几何学教科书建设已趋于成熟,中学仍开设解析几何学课程,自编教科书数量有所减少,汉译本仍以《斯盖二氏解析几何学》与《斯盖尼三氏新解析几何学》为主,教科书编写群体中中学教师人数增加。此外,章节结构已成型;自编教科书内容相较课程内容有删减;基本统一使用“直角坐标”;“圆锥曲线”与“直线与圆”等著作出现;解析几何学题解的相继出版是该时期解析几何学教科书的几个显著特点。第三,对清末民国典型中学解析几何学教科书进行个案研究,从教科书的作者、编写理念、内容、名词术语等方面进行分析。对“圆锥曲线”的内容编排、概念表述、作图法等方面对其进行分析,发现其内容整体安排呈现“总-分-总”、“总-分”、“分-总”三种形式。定义方式有统一定义、几何定义与代数定义,抛物线因其自身特点均为统一定义,椭圆与双曲线采用代数定义与统一定义两种定义方式,其中有的教科书以两种形式定义,也有的只使用其中一种。值得注意的是,有些解析几何学教科书中以几何定义给出”圆锥曲线”统一定义,没有使用坐标法,编排极为不妥。另外,三种曲线的排序主要有两种,一是抛物线—椭圆—双曲线,二是椭圆—双曲线—抛物线。三种曲线大多采用器械与坐标定点法的作图方法。第四,清末民国时期的解析几何学教科书具有极强的时代性,整体呈现教科书的“多样化”、使用周期长、“滞后性”、自编本以平面解析几何为主等特点。解析几何学教科书的发展与政治、经济、文化以及教育制度的变革是分不开的,美国数学教育制度与解析几何学教科书对中国的解析几何教学影响巨大,解析几何学学科自身的特点也决定了解析几何学课程是否开设、内容的难易与分配比例。此外,设置解析几何学课程不仅可以传播解析几何学知识;培养学生“数形结合”、“函数”的思想;可以使初等数学与高等数学很好的衔接。清末民国时期中学解析几何学教科书的演变,为今天的教科书编写提供了经验,如:改变从“定义出发”的知识呈现方式与建立科学的教科书评价机制。本文首次从数学教育史的角度对清末民国时期中学解析几何学教科书的整体发展进行系统研究,有必要论述1893-1921年解析几何学教科书的发展历史;首次系统论述其出版与审定情况、编写群体,尤其是课程内容与教科书内容的关系,体现编写者对教科书内容选择的影响;首次多方面揭示不同历史时期解析几何学教科书的发展特点。
王瑞芳[3](2019)在《初中平面几何作图研究发展史(1949-2012) ——基于《数学通报》文献分析》文中指出在平面几何学习中,作为几何学根基的作图一直处于核心地位,这不仅因为作图是平面几何学习过程中必须掌握的一项基本技能,也是锻炼学生逻辑思维、养成学生良好学习习惯、培养学生问题解决能力的重要手段。而初中生正处于从形象思维向抽象思维的过渡阶段,同时也是严谨逻辑思维的形成阶段。因此无论是从初中生对作图基本技能的掌握,还是为后续数学学习和思维发展角度出发,探寻初中平面几何作图研究一方面能够丰富几何教育史的研究,为今后中国数学课程改革及数学教科书的编写提供借鉴,另一方面能为几何课堂教学提供积极的指导作用,有利于数学教师的专业发展。1949年新中国成立初期,学校数学教育处于转型阶段,随着八次基础教育课程改革以及计算机等信息技术的逐渐融入,学校教育中的作图以及对其进行的研究已逐渐形成了自己的发展特色。随着八次基础教育课程改革,数学教学大纲(或课程标准)提出的作图要求无论是在作图设备还是具体学习要求都在逐渐降低,随之对作图的研究亦减少。基于以上背景,本研究依据初中数学教学大纲(或课程标准)中的作图要求,以发表在《数学通报》和《中学数学》的作图研究文章为主要研究素材,将1949-2012年的发展历程分为1949-1957年、1958-1966年、1978-1985年、1986-2000年以及2001-2012年(其中文化大革命期间的十年不做研究)五个时期,采用文献研究法、历史研究法、统计分析法和比较研究法,分别从作图理论、作图解决问题、单具作图、作图与代数间联系、作图教学、作图争论及作图谬误性问题七个方面进行研究,并结合具体作图实例做进一步阐释,以期清晰地再现1949—2012年间初中平面几何作图研究的发展历程。本研究得到如下发展特点:(1)在初中平面几何的学习过程中,作图的范围及难度逐渐缩小,许多作图要求被放宽甚至淡出人们的视野;(2)作图研究背景逐渐趋向多元化;(3)作图题的解题程序虽在弱化,但逐渐重视挖掘作图过程中蕴含的思维方法。本研究总结结论如下:(1)初中平面几何作图研究队伍不断壮大,一线教师在作图研究中的参与度逐渐增强。(2)作图研究文章的重心逐渐发生变化,1949-1960年间侧重于对作图理论的介绍,1960-1966年对之前数学教育进行调整,以作图教学为主,1978-1985年虽然作图教学研究仍然占据研究主流,但此时更侧重于作图基础的教学;1986-2000年间作图教学及作图解决问题成为研究主流;而信息技术的融入,使得2001-2012年间作图研究的重心开始转向研究初中数学课堂中使用计算机等进行作图的理论研究。(3)虽然在1949-2012年间都比较重视对作图理论方面的研究,但研究重心各有不同。1949-1957年间侧重于翻译和引进,1958-1966年以及1978-1985年间更侧重于作图教学建议以及教学经验,1986年之后作图理论的研究重心转向作图的变式教学以及几何画板在数学课堂的融入。
曹春艳[4](2016)在《民国时期中学数学课程发展研究》文中研究指明杜威说过:“历史承载着过去,而过去就是现在的历史”。自新课程实施以来,课程实施中提出的许多问题都曾有在历次课程改革中出现,而对数学课程理论的研究不深,对数学课程发展历史研究的不足导致我们对新课程中出现的一些问题认识不清,容易陷入循环当中。因此,研究民国时期的数学课程发展,认识中国近代教育发展过程中一个重要时期的数学家、教育家、教育研究者及一线教师为教育改革所产生的各种想法及这些想法之所以无法拥有璀璨未来的缘由,可以史为鉴,为解决制约新课程改革的一些历史遗留问题提供分析思路。本研究的论题是“民国时期中学数学课程发展研究”,该论题又被分解为两个子问题的研究:一是民国时期中学数学课程发展的历程是怎样的?二是民国时期中学数学课程发展的特点如何及对当前数学课程改革有怎样的启示?对于两个子问题的回答则为本论文的研究结果。本研究主要运用历史研究法、文献研究法、比较研究法、内容分析法等方法来进行研究。本研究以民国时期颁布的学制、课程标准、教科书作为线索,把这一时期的中学数学课程发展历程分为三个阶段六个时期,系统地梳理了中学数学课程发展的演变历程,并结合案例和文献研究剖析了中学数学课程实施的情况,具体如下:第一阶段(1912-1922),中学实行四年学制,也称为“四年中学时期”。这一时期修正了清末学制并改造了清末课程,编写了适应新的资产阶级共和国需要的数学教科书,但尚未出现正式关于数学课程内容规定的文件,数学教学跟着教科书走,教学方法最初以注入法为主。第二个阶段(1923-1928),中学实行六年学制,颁布了比较完整的学科课程纲要,也称为“课程纲要时期”。这一时期,受欧美,尤其是美国实用主义教育思潮的影响,初中数学流行混合教学,编写混合数学教科书;高中模仿美国综合中学制度,设置文、理分科,文科必修数学或自然科学中的一种,理科数学为必修。在教学上,各种西方教学法相继传入我国,尤其是道尔顿制教学法在中学影响较大。第三个阶段(1929-1949),中学仍然实行六年学制,但颁布了正式课程标准,也称为“课程标准时期”。这一阶段,中学数学课程日臻完善,课程标准也经历了制定、修订及完善的过程。因此,又可以分为四个主要时期:(1)暂行课程标准时期(1929-1931)。1929年,南京国民政府教育部公布了初、高级中学“暂行课程标准”,取消了中等教育文、理分科,规定普通中学由原来升学与就业兼顾的培养目标,改为以升学为主的单一培养目的,中学数学课程也相应作了一定的调整。(2)正式课程标准时期(1932-1935)。1932年,教育部组织的中小学课程及设备标准编订委员会汇集各方意见,对1929年颁布的“暂行课程标准”进行修订,颁布了初、高级中学“正式课程标准”,取消了学分制,高中取消了选修科目,加重了语文、算学、史地等科目的分量。(3)修正课程标准时期(1936-1940)。1936年,教育部根据各地反映“教学总时数之过多”、“高中算学课程繁重殆”,对1932年课程标准进行了修正。其中决定,高中从二年级开始,数学分为甲、乙两组,甲组课程内容与原课程标准相同,乙组较原标准降低。(4)重行修正课程标准时期(1941-1949)。1941年,教育部根据第三次全国会议提出的“适应抗战建国之需要”,对各科课程标准进行了重行修正,减少教学时数,调整内容,初中取消了数学混合教学。1948年,教育部为了适应抗战胜利后社会之需要,对课程标准又一次进行修订,但由于新中国解放在即,没来得及实施,因此也将其归入重行修正课程标准时期。这一阶段,我国开始探索本土化的数学课程,对前一时期模仿过程中存在的问题进行反思,并不断总结经验。在课程实施中,关注标准教育测验对教和学的诊断功能,提倡国家课程校本化,一些学校根据课程标准制定校级课程目标、课程设置、教材内容以及教学方法等。在对民国时期中学数学课程发展历程梳理的基础上,从数学课程目标、数学课程设置、数学课程内容、数学课程实施四个方面总结归纳这一时期的中学数学课程发展特点如下:(1)中国中学数学课程目标经过30多年的修订和完善,基本形成了“学段目标”和“科目目标”相结合的中观目标结构体系;中学数学课程目标内容的描述也逐渐丰富化,由一开始仅关注数学课程的单一功能,到逐步重视数学课程对其他科目学学习的工具性作用、以及数学课程对学生理想、态度、习惯养成的重要功能;数学课程目标的价值取向经历了从“社会本位”为主向“知识本位+学生本位”为主的转变。(2)自1922年以来,中国数学课程设置中初中数学课程所占的比重经历了下降→增加→下降的历程,高中数学课程所占的比重经历了增加→下降→增加→下降的过程;课程设置中的内容及安排逐步稳定化,课程设置中课时及比例仍在探索中前进,在前进中完善。(3)中学数学课程内容知识领域范围不断扩大,知识单元数量也由少增多;选择性在课程标准层面经历了“按性别选修”→“分科选修”→“无选修”→“分层选修”→“分科选修”→“无选修”的变化,在教科书层面经历了“无纲多本”到“一纲多本”的过程;编排方式在宏观上经历了“分科”→“混合”+“分科”→“分科”的变化,在微观上经历了编写方式及体系逐步完善的过程。(4)中学数学课程实施关注“知识目标”的同时,也重视“能力目标”和“情意目标”的培养;教学法经历了从单一向多元转变的过程;数学课程实施中重视国家课程校本化,一些地区根据实际对数学教材组织和课程设置作出调整;教学评价方式也在尝试中改进,尤其是标准教育测验的兴起,曾一度促进了评价方式的发展,对诊断教师教和学生学有一定的促进作用。基于以上研究,纵观当代中学数学课程发展,对我国当代数学课程改革有以下几点启示:(1)中学数学课程目标方面,目标的含义仍需厘清,不宜与“教育目的”、“培养目标”、“教学目的”、“教学目标”相混淆;目标的表述宜兼顾宏观与微观,不宜太笼统或太抽象;目标的密度应适中,不宜太多或太少;目标的制定应适当设置弹性。(2)中学数学课程设置方面,内容的调整需要有依据,各科目的变化宜在实践中调整修正,不宜增加或删减太快;结构的调整应把握好单一化与多样化的关系,适度增加课程设置的弹性。(3)中学数学课程内容方面,“核心知识”的发展应随数学和时代变化而发展;选择性应在课程标准/教学大纲的指导下,提倡教材编写风格的个性化与选择权的自主化。(4)中学数学课程实施方面,应关注学生认知发展、教学实验及师资水平等因素;应有借鉴地吸收优秀教学法经验,以促进教学效果的改善;应注重标准教育测验对学生学习和教师教学的诊断功能,以促进科学性教育评价的形成。基于民国时期中学数学课程发展历程及特点研究的基础上,纵观当代中学数学课程发展,得出以下经验和反思:应处理好中学数学课程发展中国际化与本土化、统一性与选择性、稳定与发展、综合化与分科化等几对重要关系;应树立以发展学生数学核心素养为导向的课程意识与教学意识;应落实数学课程标准对教学实践的指导作用;应逐步践行基于学生发展的数学课程评价方式。
张彩云[5](2019)在《中国中学几何作图教科书发展史(1902-1949)》文中认为正如柏拉图所言,数学是从现实世界到理念世界的桥梁,图是用思维把握客观世界的空间形式和数量关系的工具。造型艺术中的设计图、各种工程中的设计图和数学中的图或图像,无论是简单还是复杂,其出发点都是作图,这就决定了几何作图的极端重要性。作图是一种掌握技能、养成习惯、锻炼思维和培养能力的过程。自1607年欧几里得的《几何原本》被译介到中国以来,逐渐地改变了中国的数学教育,中国人对几何作图有了崭新的认识。尤其在清末民国时期,几何作图已成为中小学数学教育乃至美术教育的核心内容之一。本研究以1902-1949年中国中学几何作图教科书及几何教科书中的作图为研究对象,以数学教育史为背景和视角,以文献研究法、历史研究法、分析法、比较研究法等为主要研究方法,将中国中学几何作图教科书在1902-1949年的近半个世纪的发展历程依照国家政体的变革、教育史上的大事件及其自身的发展趋势,分为清末时期(1902-1911)、民国初期(1912-1922)、民国中期(1923-1935)、民国后期(1936-1949),旨在全面、系统、深入地研究中国中学几何作图教科书在1902-1949年间的发展脉络,总结其发展特点,分析影响其发展的因素,力求为当今的几何教育及几何教科书的编写提供借鉴和启示。本研究从如下六个部分展开论述,各部分主要内容如下:一、清末时期(1902-1911)中学几何作图教科书。这一时期,学制初创,新式的学堂亟需与之相匹配的、合用的教科书,中国中学几何作图教科书的种类有引进、翻译、编译、自编四种形式,出版发行的总数超过20种,涉及的出版机构有13家,编撰者有20多位,在今日看来,可谓“百花齐放”。这些教科书风格迥异地表现出两种派系的各自风貌,国人自编本和非自编本透露出不同文化的差异性,即使是来自不同国家的非自编本之间也有明显的不同。所以,该时期从自编本和非自编本中选取了由孙钺自编的《最新中学教科书用器画》,闫永辉编译自日本的《新式中学用器画》,张廷金、余亮翻译自英国的《中学应用几何画教科书》为例,从教科书编撰理念、编排形式、内容结构、名词术语等维度进行了分析。二、民国初期(1912-1922)中学几何作图教科书。这一时期政体发生了变革,教育制度开始影响几何作图教科书的发展,继清末之后进入稳步发展阶段,虽然数量上有所减少,但质量更胜一筹。几何作图教科书在进入课堂以后经历实践的考验和淘汰,基本实现了从清末引进、翻译、编译到自编的嬗变。自编教科书的编撰能从本国国情出发,实事求是,在进入课堂后更深入人心,促进了几何作图的教学,也实现了其创新发展。本章在阐述教育制度及教科书编审制度的基础上,对这一时期出版的,在当时影响较大、再版次数较多、使用周期较长、著名出版社出版的,由黄元吉编撰的《共和国教科书用器画》、王雅南编撰的《新制用器画》、求是学社编撰的《新撰平面几何画法》进行了多个维度的考察。三、民国中期(1923-1935)中学几何作图教科书。1922年的“新学制”颁布后,随之新的教育规章制度出炉,在1923颁布的《中学算学课程纲要》中出现了几何作图教学的具体要求,1929颁布的《中学算学暂行课程标准》亦然,1932年颁布的《中学算学课程标准》中更有“在教授图形相关性质时与图画科联络或宜与用器画取得联系”、“几何作图题,要用器画好,力求整洁”等明确的规定,这在一定程度上对几何作图教科书的编撰、出版产生了影响,促进了中学几何作图教科书的繁荣发展。该部分在阐述课程标准及教科书编审制度的基础上,对这一时期出版的,在当时使用周期较长、影响较大、特色鲜明的,由冯编撰的《应用用器画教科书》、王济仁编撰的《平面立体几何画法》、薛德炯编译的《用器画法平面几何之部》和《用器画法立体几何之部》进行了详细的分析。四、民国后期(1936-1949)中学几何作图教科书。在1936-1949年间又进行了三次数学课程标准的修订,其中对几何作图的要求更详细、更具体。1937年抗战的爆发使得国民政府借机成立了“七联社”及后来的“十一联社”,结束了清末以来40多年教科书市场自由竞争的局面,实现了教科书的国定制,产生了国定本教科书。这对此时期的几何作图教科书产生了非常大的影响,导致仅有商务印书馆一家出版了几何作图教科书,还是针对职业学校编撰的。故此,该部分在概述当时社会背景和数学课程标准中几何作图的相关要求的基础上,对这一时期使用和出版的,由朱铣、徐刚合编的《平面几何画法》、《立体投影画法》、《简易透视画法》和王品端编撰的《平面几何画法》、《投影画法》进行了考察。五、1902-1949年中国中学几何教科书中的作图。该部分又分为两方面进行考察:一是几何教科书中的作图,分初中和高中;二是几何教科书外的作图研究,首先对该时期期刊论文中几何作图研究进行整体梳理,然后以著名数学教育家傅种孙为代表对其几何作图思想进行了个案分析。以期从侧面揭示影响几何作图教科书发展的因素。六、结论。首先,从宏观和微观上归纳了1902-1949年中国中学几何作图教科书发展过程中表现出的诸多特点;其次,分析了影响1902-1949年中国中学几何作图教科书建设和发展的因素;再次,提炼了1902-1949年中国中学几何作图教科书发展史研究的启示与借鉴;最后,提出了继本研究之后,可以进一步研究的问题。本研究主要解决了如下三个问题:第一,以1902-1949年为时间域,探讨了中国中学几何作图教科书的发展历程。第二,根据各学制、课程标准(或课程纲要)及教科书审定制度的颁布和实施,对几何作图教科书的编写背景、编撰理念、编写体例、编排形式、内容结构、名词术语、几何作图典型案例等方面逐一进行考察,总结了中国中学几何作图教科书在这一时期呈现出的宏观和微观特点。第三,考察了1902-1949年中国中学几何教科书中的作图内容,从侧面揭示了影响1902-1949年中国中学几何作图教科书发展的因素。
王敏[6](2014)在《欧美对中国中小学数学教育的影响(1902-1949)》文中提出清末民国时期的中国数学教育发生了根本性的变革,期间在内部需要和外部刺激的相互作用下最终与世界数学教育接轨。自1902年中国新学制颁布之后,在欧美数学教育的间接或直接影响下,中国中小学数学教育迈进了现代化的道路。欧美对中国数学教育的影响由来已久,自明末至清末,欧美的数学著作直接或间接地陆续传入中国,对中国数学教育的发展产生了一定的影响,但却没有从根本上改变中小学数学教育的走向。1902年新学制颁布实施后,中国数学教育在借鉴欧美数学教育的基础上,在数学教育制度、数学课程设置与实施、数学教学法研究等方面发生了革命性的变化。本文从发生这些变革的历史背景和教育环境出发,以研究中国对欧美数学教育的借鉴内容、过程及相关影响为切入点,采用文献研究法为主,以其他研究法为辅,深入而系统地分析了1902-1949年欧美数学教育对中国数学教育的影响。主要内容如下:第1章,绪论。论述了研究目的与意义、研究问题、文献综述、所采用的研究方法及拟创新之处。第2章,清末民国时期中国对欧美数学教育的借鉴概述。基于对1902年新学制颁布后中国通过日本学习欧美数学教育的历史背景的介绍,分析学习欧美数学教育每一阶段所呈现的形式和特点。另外,通过梳理欧美数学教育改革运动中提出的数学教育改革思想的要点,阐明《壬戌学制》下的中国数学教育受欧美数学教育的影响。第3章,民国时期美国数学教育制度对中国的影响。1922年全国教育联合会新学制课程标准起草委员会制定公布的《新学制课程纲要》是中国课程发展史上的一次重大改革,这次改革主要是受到美国实用主义教育思想的影响,文中从数学教育制度的三个方面论述了它所产生的影响。1.在中小学各阶段数学教学总体目标方面的影响。从数学观的养成、数学学习心理的关注、数学能力的培养三个方面分析了美国数学教育尤其是实用主义教育思想对中小学数学教学目标的影响。2.在中小学各阶段数学教育理念方面的影响。从数学教育联系生活、数学问题解决理论、数学态度与习惯三个方面剖析了受美国数学教育影响下的中国数学教育的变革。3.关于民国时期数学教学法要求方面受美国的影响。主要表现在设置数学游戏、教学联系生活经验、数学教学使用发现式、启发式教学和归纳法与演绎法并注重理论思维的培养。第4章,欧美数学教科书在中国的传播。清末民国时期欧美数学教科书由起先的通过日本传入到从欧美直接翻译引进,在中国经历了使用外文原版书到翻译编译的过程,最终经过众多研究者的融合改编实现了创造性转化的过程。这一部分的主要内容有:1.概述清末和民国时期对欧美数学教科书译介背景的基础上,对欧美数学教科书在中国使用的外文原版书及翻译版的情况进行分析,考察数学教科书的译介团体与出版机构,同时通过一些相关专家学者的观点,讨论欧美数学教科书在中国使用的优点与缺点。2.1922年颁布的《新学制课程纲要》中规定初中实施混合数学教学,数学教科书也在以往分科的基础上从欧美翻译引进混合数学教科书,并在混合数学理念指导下,国人编写了三套混合数学教科书。文中分析了分科数学与混合数学各自特点的基础上,归结了分科到混合数学教科书过渡的过程。3.欧美数学教育改革运动提倡实验几何教学,使得实验几何学教科书一度成为20世纪初几何学改革的重点,文中从实验几何教学以及与论证几何教学的区别入手,论述了实验几何教学在中国的实施过程。4.欧美数学教科书在中国的创造性转化主要表现在内容方面的转化,该过程是翻译和编译的内容与课程纲要规定内容逐渐相符最终实现自编的过程。另外,从欧美数学教科书的翻译目的、使用范围及自身特点的角度分析其特点。以此阐明欧美数学教科书在中国的转化过程。第5章,欧美数学教学法在中国的实施。中国自清末实施新教育制度后,学校采用的数学教学法大多模仿欧美,中国在借鉴欧美教学法的基础上经过一系列的探索实现了自主创新。主要涉及以下三方面的转化:1.清末通过日本学习欧美数学教学法,即通过日本学习赫尔巴特的五段教学法以及单级教授法。文中通过算术科单级教授法的具体实施情况的介绍阐明中国在清末对赫尔巴特教学法的借鉴。2.论述了设计教学法、道尔顿制、文纳特卡制在数学教学中的具体实施情况,以此分析欧美教学法在中国的探讨与转化。3.阐述了数学教学实验,从借鉴欧美的数学教学实验的开展情况及相关实验结果直至自主实施教学实验的过程,并以民国时期算术科教学实验中具体的几种类型及特点分析,总结中国数学教学实验的开展情况。第6章,实用主义教育思想对中国数学教育的影响。民国时期实用主义教育思想对中国数学教育产生了巨大的影响。1.通过蔡元培、黄炎培、庄俞等学者的观点,论述实用主义教育思想在中国的早期传播。2.基于实用主义的倡导者杜威、孟禄关于数学教育的观点,摭取黄炎培在算术科中实施实用主义教育思想的具体应用,从教材的选择、教学设施的制定及教学方案的选取等方面论述实用主义与数学教育的联系。3.论述实用主义教育思想在中国数学课程标准的制定、数学教科书的编写及数学教学法的选择方面的回响。第7章,结论。阐明欧美数学教育的影响下中国数学教育的走向,同时提炼这一演变过程中的经验对当今数学教育改革的启示与借鉴。
西峰山[7](2015)在《平面几何教学研究之研究 ——以《数学通报》(1951~1966)为例》文中提出本研究主要利用文献研究法、历史研究法、比较研究法等研究方法,依据教学论和课程论,把教学活动分成“教”和“学”两个维度,从每个维度的各个环节(即前期准备、内容分析、方法的选择、遵循的原则、计划与实施、评价与反思)对《数学通报》中的有关平面几何教学的文章进行统计分析,揭示我国建国初期15年间的平面几何教学特点及发展脉络。具体研究的过程中,首先,根据当时的历史背景和《数学通报》中文章的体现将该时期分为三个阶段,即1951—1957,学习苏联时期;1958—1960,教育改革时期;1961—1966,自我完善时期。其次,对每一阶段从背景的概述、平面几何教学文章的总体特点及趋势和平面几何教学的特点及发展脉络等三个层次对其进行统计分析。背景概述主要对该阶段的数学教育政策和当时的教学大纲两个方面进行概述;平面几何教学文章的总体特点及趋势对该阶段发表的平面几何文章在总体文章中所占比重和对它的变化趋势进行统计分析;平面几何教学的特点及发展脉络先从教学的六个环节对这些文章进行进一步分块统计,再对每一块(环节)所包含的内容进行深入分析(先对每环节进行类化,再深入探究)。通过上述研究得到建国初期平面几何教学的如下特点:1.教学准备:备学生方面,了解学生认知发展水平并注意个体差异;备教材方面,选材注重数学在历史上的贡献;教师能力方面,主要是注重教育实习。当时为了提高备课质量,还注意到了集体备课方面的问题。2.教学内容分析:学习苏联时期受到苏联的影响,教材的选择和编排非常重视系统性和严密性;教学改革时期更注重与实际的结合;自我完善时期,意识到改革的极端性,教学内容方面在不损坏内容系统性的和适当联系实际的基础上,以学生为核心对教材进行筛选和精简。3.教学方法选择:当时常用的教学方法有直观教学演示法、练习法、讲授法、谈话法、启发式教学法、因材施教等。练习法中有案例分析法和复习法;而案例分析法可分为定理的证明方法、典型案例的分析和实际问题解决法等三种。4.教学原则:当时遵循的教学原则有理论联系实际的原则、系统性原则、顺序渐进原则、量力性原则、巩固性原则、思想性原则、直观性原则和启发式原则等。培养学生能力时初级阶段遵循直观性原则,有一定知识储备能力时再以启发式原则为主,并且教学过程中注意对这些知识与方法的即时巩固与练习,因此要用巩固性原则。5.教学设计与实施:教学的目的从“社会本位”转向“个人本位”和“社会本位”相结合的理念。1963年第一次通过大纲提出“三大能力”的培养。教材的编排方面:学习苏联时期主要侧重知识间的系统性和逻辑性;教育改革时期主要根据生产实际的需要;自我完善时期主要围绕学生的特点和发展进行编排。6.教学评价与反思:当时数学教育者们已经开始关注教学评价与反思,并组织发表了一些很有参考价值的文章。通过分析《通报》上的文章可以了解到:当时已经关注到了教学的每个环节,即教前反思、教学内容的反思、有教学过程的反思(方法、设计、原则)等。
于波[8](2008)在《20世纪我国中学数学课堂教学变革研究》文中提出数学课堂教学作为数学教育的重要组成部分,是数学教育研究的问题之源,是数学教育改革的重点和难点。我国中学数学课堂教学自上世纪初实施班级授课已有百年历史,探究数学课堂教学变革的历史经验与教训,找寻其中的规律,为基础教育课程改革,尤其是数学课堂教学改革提供借鉴,是本文的目的。本文研究的问题聚焦在3个方面:(1)梳理20世纪各历史时期我国中学数学课堂教学的变革情况;(2)探究变革的缘由和变革中的稳定因素与变化因素;(3)揭示变革的历史经验与教训,为当前基础教育课程改革,尤其是对数学课堂教学改革提供借鉴。全文共分5部分:第一部分,导论。主要介绍已有的相关研究和本研究的缘由、思路和方法。第二部分,20世纪我国中学数学课堂教学的历史回溯。以史实为依据,进行历史梳理。以时为经、以事为纬,分析各时期课堂教学的目标要求和内容安排,课堂教学活动的组织,教学思想方法和代表人物及其课堂教学改革实验等,探究我国各时期中学数学课堂教学变革的基本特点。第三部分,各时期中学数学课堂教学案例剖析。案例由两部分组成,一部分是课堂教学作品,采取相关因素对比分析方法,从课堂教学内容要求、课堂教学基本环节、教师教学活动、学生学习活动等方面进行分析。另一部分是不同时期“勾股定理”课堂教学实录,采用统计量表和弗兰德尔斯(Ned Fanders)的互动分析系统,对课堂教学活动类型、活动发生顺序、时间分配和语言互动等方面进行分析。第四部分,20世纪我国中学数学课堂教学变革因素及原因。以第二、三部分为基础和依据,寻找我国中学数学课堂教学相关因素中的稳定因素与变化因素,并分析有哪些原因对变革有选择和制约作用,从而分析这些原因对我国中学数学在教学目标的确定、教学内容的选择和体例结构、教学活动的组织等方面的影响。第五部分,结语:我国中学数学课堂教学特点及变革启示。对20世纪中学数学课堂教学变革的研究,既是试图客观地反映中学数学课堂教学历史,更是希望籍此寻找历史与现实的联系。以史为鉴,揭示历史经验与教训对基础教育课程改革,尤其是对数学课堂教学改革的借鉴。本文研究的基本结论:第一,20世纪我国中学数学课堂教学变革总的趋势是,教师教学更为关注学生;学生学习有了更多的主动性,学习内容更加贴近学生的生活实际;凡与传统衔接的扬长避短的变革容易为教师所接受,成为一种普遍的教学行为,都获得了成功;凡是“彻底改革”试图完全背离传统的变革,侵害了固有的教育传承性,违背了数学教学的规律和特点,难以成为普遍的教学行为,都失败了。第二,我国中学数学课堂教学中相对稳定的因素有:(1)数学教学目标定位——“双基”和“三大能力”;(2)数学教学内容的基本框架——初等代数和初等几何;(3)课堂教学基本环节——导入新课、新课教学、概括小结、巩固练习;(4)教师教学的基本形式——讲授和提问:(5)学生参与教学方式——听讲、回答和变式练习。变化因素有:(1)教学要求——逐渐具体明确:(2)教学内容——与时俱进;(3)教师讲授的关注点——由知识到学生;(4)师生的交往活动——学生活动逐渐增加。第三,在不断地变革中我国中学数学课堂教学具有了这样的特点:凸显数学对人的思维发展功能的价值取向;以数学基础知识和基本技能为主要教学任务;以五阶段教学法为基本特征的教学模式;以教师引导学生参与为特征的课堂教学活动。变革的历史经验与教训给我们以这样的启示:(1)数学课堂教学价值取向的调适(教师讲授与学生活动相结合,系统知识和知识应用相结合);(2)外来文化的本土化过程(对外来文化坚持洋为中用);(3)数学课堂教学变革具有累积性(坚持对于传统采取批判继承的态度);(4)数学课堂教学具有数学知识特征性(数学知识既有经验性,又有超经验性)。本文基于史料探寻我国中学数学课堂教学变革的特点及趋势,对当前基础教育课程改革,尤其是中学数学课堂教学改革具有重要的现实意义;从历史的视角对我国中学数学课堂教学进行研究,是对我国数学教育的理论与实践研究的必要补充;对我国20世纪中学数学课堂教学历史的梳理,丰富了我国数学教育史的研究内容。本文的创新之处:第一,首次全面系统地梳理了我国20世纪中学数学课堂教学的发展轨迹;第二,发掘了20世纪各历史时期我国中学数学课堂教学中部分鲜为人知的历史材料;第三,探索了将历史梳理与课堂教学案例分析相结合进行研究的新视角,坚持论从史出,案例为历史分析提供佐证,历史梳理为案例分析作支撑,两者相得益彰。由于历史材料的局限,对各时期代表人物及其教育思想的发掘难以丰富、详尽。
张先波[9](2019)在《中学数学思想的培养研究 ——基于深度教学的视角》文中研究指明从原始的结绳记事,到对于数与形的重视;从楔形文字、象形文字的表达,到初等数学符号的出现;从面向生活实践的零散数学规律,到系统性的数学学科体系。数学这门古老的学科,在迈过其漫长的发展历史之后,在学校教学的过程中继续生根发芽。作为学校教育中的一门基础性学科,数学不仅致力于传递古今中外的数学知识和定律,更重要的是在与学校生活中其他学科的交融过程中,使学生通过知识的学习,领会数学思想,感悟数学之美。曾有学者指出,数学是关于美的学科,数学是关于艺术的学科,数学是不断反思发展的学科。数学之美,体现在其数字的变幻之美,体现在数学公式的平衡之美,体现在数学发现的探索之美,同时也蕴含在学生学习数学过程中所体会到的获得之美。数学同时还是关于思想的学科,历代数学家根据自己对相关数学领域的研究,不断充实数学思想库,在传承与创新的过程中实现数学学科的不断发展。关于数学是一门艺术还是一门科学性学科的争论至今仍然存在,数学是一门艺术体现在数学通过艺术化的语言、简练的公式表达,使得数学思想得以发展,数学学科也称为学科发展史上的一朵奇葩。数学是一门科学,数学的语言及表达要求精确而凝练地指出相应的意图,要求数学学习者和研究者对于相应数学思想的深刻化理解,并在此基础上做到运用时的精准化。数学同时是一门生活化的学科,原始的数学便发端于人们对于生活问题的解决过程。如古埃及数学文明的发展,便是由于尼罗河三角洲的河道淤积以及洪水泛滥等问题,迫使数学家开始研究淤积的面积,并提供相应的预测。数学的发展往往受到社会经济发展的影响,数学发展的每一个重要阶段必然伴随着社会发展的需要,并且也在顺应社会的需求。这一点在近现代数学发展史中得到了印证,尤其是在现代社会中数学与信息技术的融合,以及基础数学研究的日益专门化和数学教育的大众化等趋势,均是数学与社会经济发展相适应的表现。无论是古典时期阿基米德的几何《原本》,还是现代数学家所取得的重要成就和关键突破,均为数学的发展画上了浓墨重彩的一笔。当前数学的发展,除了需要数学家和相关研究者持续不断的努力,同时需要学校教育培养出对数学感兴趣、能够领悟数学之美的人才。学校教育的产生,在人类历史上无疑是具有划时代意义的事件,它使得人类文明的传承有了相对规范化和制度化的途径。学校教育的产生以及与之相伴随的学科教育的发展,使得人类发展史上的重要成果能够分门别类的进行传递和发展。正如学者所言,我们的数学教育并非是使每个孩子的都成为数学家,而是要在他们心中埋下数学的种子,使他们感悟和理解数学之美。学科教学的过程,不应当只是知识的传递过程,更重要的是学科教学应该成为思想领悟的过程,成为数学知识向数学思想跨越的过程。数学知识的学习是数学思想领悟与获得的基础,是数学深度学习达成的必要前提。基于深度教学的视角探讨中学数学思想的培养过程意味着,从知识观、学习观和教学观等方面进行中学主要数学思想进行培养。从深度教学的视角而言,知识的结构分为符号表征、逻辑结构和意义系统三个层次。数学知识教学过程中,应当是超越知识的符号性教学和表层化教学,进而深入到知识的内部结构之中,使学生在领悟数学学科知识的结构的基础之上,获得数学思想的熏陶。从数学知识到数学思想,不仅是数学教学的飞跃式发展,同时也是教学走向深度的必然要求。当前对于学生关键能力和核心素养培养的重视,最终需要回归到各个学科教学的过程中来,通过学科教学逐步渗透相应的学科思想,培养学生优秀的学科思维,进而促使学科能力和学科素养的提升。尤其是对于中学数学教学而言,中学处于义务教育阶段是学生相应学科思想学习的黄金时期,这一阶段的数学思想学习尤其需要引起教师和学生的重视,课堂教学应当以学科思想,即重要的数学思想为线索,将数学知识串点成线成面。学生的数学学习过程,经由学科思想的浸润,通常能够加深对于数学学科的认识,加深对数学知识的理解以及促进其对于学科结构的把握。因而,数学思想的教学之于数学教学过程而言至关重要,从数学知识到数学思想的跨越是当前课堂教学应当关注的重点。同时,如何在中学教学过程中培养学生的数学思想以及数学思维品质,也是一线教师及研究者应关注的的问题之一。
秦小双[10](2019)在《初中生尺规作图能力水平划分及提升研究》文中指出尺规作图对培养学生的数学表达能力、锻炼学生的逻辑思维能力有着重要作用.本研究主要采用定性研究方法,旨在对初三学生的尺规作图能力进行定性分析,探究其尺规作图存在的问题,并提出相应的教学建议.通过对文献的查阅建立了尺规作图能力水平划分框架,并制定了相应测试卷进行验证和探究;通过“出声思考法”探究了学生进行尺规作图时的思维;通过对4位初中生的个案研究,探究学生进行尺规作图时存在的问题,并对此提出教学建议.本研究的结论是:(1)提出了从操作、描述、分析三个维度来评价学生尺规作图能力的框架,每个维度各含三个水平.经测试,该框架具有实用性;(2)影响学生尺规作图的内因分为非智力因素(审题、解题习惯、学习兴趣)和智力因素(知识的储备和运用)两方面;(3)根据测试结果提出四点教学建议:注重本质教学、注重逻辑教学、注重串联教学、注重分层教学.
二、中学数学教学改革的一些作法(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、中学数学教学改革的一些作法(论文提纲范文)
(1)中国数学教科书中勾股定理内容设置变迁研究(1902-1949)(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 问题提出 |
1.2 研究目的与意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 文献综述 |
1.3.1 国外研究现状 |
1.3.2 国内研究现状 |
1.3.3 研究现状评述 |
1.4 研究方法与思路 |
1.4.1 研究方法 |
1.4.2 研究思路 |
1.5 创新之处 |
第2章 清末中学数学教科书中的勾股定理 |
2.1 历史背景 |
2.1.1 “癸卯学制”的中学数学教育 |
2.1.2 清末中学数学教科书编译概况 |
2.2 翻译日本的几何教科书中勾股定理内容个案分析 |
2.2.1 编译者简介 |
2.2.2 编写理念及编排形式 |
2.2.3 勾股定理内容的结构 |
2.2.4 特点分析 |
2.3 翻译美国的几何教科书中勾股定理内容个案分析 |
2.3.1 编译者简介 |
2.3.2 编写理念及编排形成 |
2.3.3 勾股定理内容的结构 |
2.3.4 特点分析 |
2.4 清末教科书中勾股定理内容的结构及其特点(1902-1911) |
2.4.1 编写理念及编排形式 |
2.4.2 勾股定理内容设置的形式 |
2.4.3 勾股定理的内容表述之变迁及特点分析 |
2.4.4 勾股定理证明方法特点及教育价值分析 |
2.5 小结 |
第3章 民国初期中学数学教科书中的勾股定理 |
3.1 历史背景 |
3.1.1 “壬子癸丑学制”的数学教育 |
3.1.2 中学数学教科书编译概况 |
3.2 《共和国教科书平面几何》中“勾股定理”内容编排概述 |
3.2.1 编者简介 |
3.2.2 编写理念及编排形成 |
3.2.3 勾股定理内容的结构 |
3.2.4 特点分析 |
3.3 《民国新教科书几何学》中的“勾股定理”内容编排概述 |
3.3.1 编译者简介 |
3.3.2 编写理念及编排形成 |
3.3.3 勾股定理内容的结构 |
3.3.4 特点分析 |
3.4 汉译本《温德华士几何学》中的“勾股定理”内容编排概述 |
3.4.1 编译者简介 |
3.4.2 编写理念及编排形成 |
3.4.3 勾股定理内容的结构 |
3.4.4 特点分析 |
3.5 小结 |
3.5.1 勾股定理证明方法无明显差异 |
3.5.2 从面积和射影角度讨论钝角和锐角三角形的不同情形 |
3.5.3 习题数量参差不齐 |
3.5.4 对几何作图的认识逐渐加强 |
第4章 课程纲要时期的中学数学教科书中勾股定理 |
4.1 历史背景 |
4.1.1 “壬戌学制”下的数学教育 |
4.1.2 中学数学教科书编纂概况 |
4.2 混合教学数学教科书中的“勾股定理” |
4.2.1 《布利氏新式算学教科书》中“勾股定理”内容编排概述 |
4.2.2 《初级混合数学》中“勾股定理”内容编排概述 |
4.2.3 《新学制混合算学教科书》中“勾股定理”内容的编排概述 |
4.3 《现代初中教科书几何》中“勾股定理”内容的编排概述 |
4.3.1 编译者简介 |
4.3.2 编写理念及编排形成 |
4.3.3 勾股定理内容的结构 |
4.3.4 特点分析 |
4.4 小结 |
4.4.1 勾股定理内容分布在多个章节中 |
4.4.2 证明方法由一到多,割补法逐渐成为主要方式 |
4.4.3 由勾股定理向任意三角形推广 |
4.4.4 习题中理解型题目与作图题目相结合 |
第5章 课程标准时期的中学数学教科书中勾股定理 |
5.1 历史背景 |
5.1.1 中学算学课程标准下的中学数学教育 |
5.1.2 中学数学教科书编译概况 |
5.2 复兴中学教科书中“勾股定理”内容编排概述 |
5.2.1 部分编撰者简介 |
5.2.2 编写理念及编排形成 |
5.2.3 勾股定理内容的结构 |
5.2.4 特点分析 |
5.3 实验几何教科书中的勾股定理—以《初级中学实验几何学》为例 |
5.3.1 编撰者简介 |
5.3.2 编写理念及编排形式 |
5.3.3 勾股定理内容的结构 |
5.3.4 特点分析 |
5.4 课程标准时期教科书中勾股定理变迁之特点分析 |
5.4.1 数学史的融入 |
5.4.2 定理证明实验法与演绎法并重 |
5.4.3 体现从特殊到一般的归纳思想方法 |
5.5 民国时期数学教科书中勾股定理内容编排变迁特点分析(1912-1949) |
5.5.1 定理证明以方法为经,以教材为纬 |
5.5.2 三角形内对锐角或钝角之三边情况贯穿于教科书中 |
5.5.3 从正方形到任意相似图形 |
第6章 结论 |
6.1 清末民国中学数学教科书中勾股定理编排特点 |
6.1.1 数学教科书中定理命名的演变 |
6.1.2 作为小节内容编排在单元中 |
6.1.3 定理表述以“形的勾股定理”为主 |
6.1.4 结构体系独特,勾股定理的推广内容丰富 |
6.1.5 自编数学教科书中勾股定理史料贯彻爱国精神 |
6.2 影响中学数学教科书中勾股定理内容编排的因素 |
6.2.1 外部因素 |
6.2.2 内部因素 |
6.3 清末民国中学数学教科书中勾股定理证明方法编排之变迁 |
6.3.1 欧几里得证法始终贯穿在教科书中 |
6.3.2 证明方法由一变多,从演绎法过渡到拼补法 |
6.3.3 中国古代“赵爽弦图”仅在课后习题中出现 |
6.3.4 实验几何时期证法主要以综合法为主 |
6.3.5 清末民国时期中学勾股定理编排中存在的问题 |
6.4 清末民国中学数学教科书中勾股定理内容变迁的启示与借鉴 |
6.4.1 编排形式与内容体系应力求严谨 |
6.4.2 勾股定理内容编排重视趣味性、启发性与探究性 |
6.4.3 实验证明和理论证明相辅相成 |
6.4.4 从勾股定理到我们的思想 |
6.5 研究的不足与展望 |
参考文献 |
致谢 |
攻读博士学位期间的科研成果 |
(2)清末民国时期中学解析几何学教科书研究(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 研究目的与意义 |
1.2 研究时间范围和相关概念界定 |
1.2.1 时间范围 |
1.2.2 “高级中学用解析几何学教科书” |
1.3 文献综述 |
1.3.1 国内研究现状 |
1.3.2 国外研究现状 |
1.3.3 研究现状评述 |
1.4 研究思路与方法 |
1.4.1 研究思路 |
1.4.2 研究方法 |
1.5 创新之处 |
第2章 解析几何学教科书建设之肇始(1893-1901) |
2.1 解析几何学发展简介 |
2.2 早期传入的解析几何学知识 |
2.3 《代形合参》——中国第一本解析几何学教科书 |
2.3.1 原著作者与译者简介 |
2.3.2 《代形合参》的版次以及前人关于其底本的论断 |
2.3.3 《代形合参》与《代微积拾级》非同一底本 |
2.3.4 解析几何学在中国成为独立学科 |
2.3.5 《代形合参》的内容分析 |
2.3.6 《代形合参》的编排特色 |
2.4 教科书的编写与审定 |
2.5 学校的解析几何学教学 |
第3章 解析几何学教科书建设之初步发展期(1902-1921) |
3.1 数学教育制度对解析几何学课程的规定 |
3.1.1 清末新式教育中解析几何学的课程设置(1902-1911) |
3.1.2 新教育宗旨中解析几何学的课程设置(1912-1921) |
3.2 汉译解析几何学教科书开始兴起 |
3.2.1 翻译英美与转译日本教科书 |
3.2.2 教科书翻译群体简介 |
3.3 教科书审定制度的确立 |
3.3.1 1902 -1911年教科书的审定 |
3.3.2 1912 -1921年教科书的审定 |
3.4 个案分析——以《温特渥斯解析几何学》为例 |
3.4.1 原作者与译者简介 |
3.4.2 编写理念与编排形式 |
3.4.3 主要内容 |
3.4.4 知识呈现方式 |
3.4.5 名词术语 |
3.5 解析几何学教科书特点分析(1902-1921) |
3.5.1 翻译版本的“多样化” |
3.5.2 教科书章节结构差异较大 |
3.5.3 编排形式及数学符号完全西化 |
3.5.4 坐标法使用的“多样化” |
3.5.5 高中几何教科书中渗透“圆锥曲线”内容 |
第4章 解析几何学教科书建设之转型期(1922-1936) |
4.1 “壬戌学制”下解析几何学的课程设置 |
4.1.1 “课程纲要”对解析几何学课程的规定(1923年) |
4.1.2 “暂行课程标准”对解析几何学课程的规定(1929年) |
4.1.3 “课程标准”对解析几何学课程的规定(1932与1936年) |
4.2 “壬戌学制”下解析几何学教科书内容的规定 |
4.2.1 “课程纲要”对解析几何学教科书内容的规定(1923年) |
4.2.2 “暂行课程标准”对解析几何学教科书内容的规定(1929年) |
4.2.3 “课程标准”对解析几何学教科书内容的规定(1932与1936年) |
4.3 解析几何学教科书的出版与审定情况 |
4.3.1 自编教科书的兴起 |
4.3.2 汉译教科书以《斯盖尼三氏新解析几何学》为主 |
4.3.3 教科书的审定制度 |
4.4 解析几何学教科书编译者简介 |
4.4.1 以留学回国者及大学教师为主 |
4.4.2 中学教师人数较少 |
4.5 解析几何学教科书典型个案分析 |
4.5.1 自编教科书个案——以《复兴高级中学解析几何学》为例 |
4.5.2 汉译教科书个案——以《斯盖尼三氏新解析几何学》为例 |
4.6 解析几何学教科书特点分析(1922-1936) |
4.6.1 教科书章节结构基本定型 |
4.6.2 自编本内容在遵照“课程标准”的基础上有增删 |
4.6.3 大多使用“直角坐标”,极少数以“斜坐标”为主 |
4.6.4 高中代数、几何教科书中出现“直角坐标”、“圆锥曲线”内容 |
第5章 解析几何学教科书建设之成熟期(1937-1949) |
5.1 教育制度与解析几何学课程设置 |
5.1.1 “修正与六年制课程标准”中解析几何学的课程设置(1941年) |
5.1.2 “修订课程标准”中解析几何学的课程设置(1948年) |
5.2 教育制度对解析几何学教科书内容的规定 |
5.2.1 “修正与六年制课程标准”对解析几何学教科书内容的规定(1941年) |
5.2.2 “修订课程标准”对解析几何学教科书内容的规定(1948年) |
5.3 解析几何学教科书的出版与审定情况 |
5.3.1 自编教科书数量略有减少 |
5.3.2 汉译《斯盖二氏解析几何学》数量增加 |
5.3.3 教科书的审定制度 |
5.4 解析几何学教科书编译者简介 |
5.4.1 以大学教师为主 |
5.4.2 中学教师人数增加 |
5.5 解析几何学教科书典型个案分析 |
5.5.1 自编教科书个案——以《新中国教科书高级中学解析几何学》为例 |
5.5.2 汉译教科书个案——以《斯盖二氏解析几何学》为例 |
5.6 解析几何学教科书特点分析(1937-1949) |
5.6.1 教科书章节结构成型 |
5.6.2 自编教科书内容相较课程标准有删减 |
5.6.3 基本统一使用“直角坐标” |
5.6.4 “圆锥曲线”、“直线与圆”等著作出现 |
5.6.5 解析几何学题解大量出现 |
第6章 解析几何学教科书中“圆锥曲线”内容的演变 |
6.1 研究对象 |
6.2 解析几何学教科书中“圆锥曲线”内容编排的比较 |
6.2.1 “圆锥曲线”内容在教科书中的整体编排 |
6.2.2 “圆锥曲线”中知识点的编排 |
6.3 解析几何教科书中“圆锥曲线”概念表述之演变 |
6.3.1 “圆锥曲线”概念定义方式之演变 |
6.3.2 “抛物线”概念定义方式之演变 |
6.3.3 “椭圆”概念表述方式之演变 |
6.3.4 “双曲线”概念表述方式之演变 |
6.3.5 “圆锥曲线”及其概念编排形式之比较 |
6.4 解析几何学教科书中“圆锥曲线”作图法之比较 |
6.5 解析几何学教科书中“圆锥曲线”特点分析 |
6.5.1 关于“圆锥曲线”的定义问题 |
6.5.2 抛物线、椭圆与双曲线的排序问题 |
6.5.3 “圆锥曲线”统一定义的给出方式与出现的时间问题 |
6.5.4 “极坐标”与“圆锥曲线”的编排顺序问题 |
第7章 结论 |
7.1 解析几何学教科书的整体特点 |
7.1.1 解析几何学教科书多样化 |
7.1.2 解析几何学教科书的“滞后性” |
7.1.3 自编解析几何学教科书以平面解析几何为主 |
7.1.4 解析几何学教辅的出现对教科书的补充 |
7.1.5 解析几何学教科书内容选择与编排的特点 |
7.2 影响解析几何学教科书演变的主要因素 |
7.2.1 外部因素 |
7.2.2 内部因素 |
7.3 清末民国解析几何学教科书发展的意义与启示 |
7.3.1 清末民国解析几何学教科书的意义 |
7.3.2 清末民国解析几何学教科书的启示与借鉴 |
7.4 进一步研究的问题 |
参考文献 |
致谢 |
攻读博士学位期间发表的学术论文 |
(3)初中平面几何作图研究发展史(1949-2012) ——基于《数学通报》文献分析(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 研究缘起 |
1.2 研究目的和意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 国内外研究现状 |
1.3.1 国外研究现状 |
1.3.2 国内研究现状 |
1.4 研究方法及创新之处 |
1.4.1 研究方法 |
1.4.2 研究思路 |
1.4.3 创新之处 |
第2章 几何作图历史简介及相关概念 |
2.1 几何作图历史简述 |
2.2 三大作图难题历史及解决历程简述 |
(1)化圆为方 |
(2)倍立方体 |
(3)三等分角 |
2.3 研究对象简介 |
2.4 作图研究分类 |
(1)作图理论 |
(2)作图解决问题 |
(3)单具作图 |
(4)作图与代数间联系 |
(5)作图教学 |
(6)作图争论 |
(7)作图中的谬误性问题 |
第3章 1949-1966 年间初中几何作图研究及其特点 |
3.1 1949-1957年间初中几何作图研究情况 |
3.1.1 教学大纲中初中几何作图要求变迁概述 |
3.1.2 初中几何作图研究者群体 |
3.1.3 作图专有名词 |
3.1.4 平面几何作图研究情况 |
3.1.5 初中几何作图研究整体概况及其原因分析 |
3.2 1958-1966年间初中几何作图研究情况 |
3.2.1 教学大纲中初中几何作图要求变迁概述 |
3.2.2 初中几何作图研究者群体 |
3.2.3 平面几何作图研究情况 |
3.2.4 初中几何作图研究整体概况 |
3.3 小结 |
第4章 1978-2000 年间初中几何作图研究及其趋势 |
4.1 1978-1985年间初中几何作图研究情况 |
4.1.1 教学大纲中初中几何作图要求变迁概述 |
4.1.2 初中几何作图研究者群体 |
4.1.3 作图专有名词 |
4.1.4 平面几何作图研究情况 |
4.1.5 初中几何作图研究整体概况及其原因分析 |
4.2 1986-2000年间初中几何作图研究情况 |
4.2.1 教学大纲对初中几何作图要求变迁概述 |
4.2.2 初中几何作图研究者群体 |
4.2.3 平面几何作图研究情况 |
4.2.4 作图研究整体概况 |
4.3 小结 |
第5章 2001-2012 年间初中几何作图研究及其特点 |
5.1 课程标准对初中几何作图要求的变迁 |
5.2 初中几何作图研究者群体 |
5.3 初中几何作图研究情况 |
5.4 小结 |
第6章 结论 |
6.1 研究结论 |
6.1.1 教学大纲(课程标准)中作图要求之变迁 |
6.1.2 初中平面几何各类作图研究之变迁 |
6.2 初中平面几何作图研究发展特点 |
6.3 初中平面几何作图研究影响因素 |
6.4 进一步研究的问题 |
参考文献 |
附录 |
致谢 |
攻读硕士研究生期间论文发表情况 |
(4)民国时期中学数学课程发展研究(论文提纲范文)
摘要 |
Abstract |
一、问题的提出 |
(一)研究的背景及意义 |
1. 为完善数学教育学学科建设提供理论支撑 |
2. 为当前数学课程改革提供实践依据 |
3. 为教材编写提供史料参考 |
4. 为数学课程文化传承提供研究支持 |
(二) 相关概念及范围界定 |
1. 民国时期 |
2. 中学 |
3. 课程 |
(三) 研究问题的表述 |
二、文献述评 |
(一) 文献搜集的基本思路 |
(二) 收集到的文献及述评 |
1. 民国官方的教育政策 |
2. 民国官方的课程文件 |
3. 中学数学教科书 |
4. 课程研究的文献 |
(三)文献述评小结 |
三、研究方法与过程 |
(一)研究方法 |
1. 历史研究法 |
2. 文献研究法 |
3. 比较研究法 |
4. 内容分析法 |
(二) 研究过程 |
(三) 论文结构 |
四、民国时期中学数学课程发展的历程 |
(一)民国初期中学数学课程的因袭与改造(1912-1922) |
1. 民国初期的社会背景及学制的修正 |
2. 民国初期的中学数学课程目标 |
3. 民国初期的中学数学课程设置 |
4. 民国初期的中学数学课程内容 |
5. 民国初期的中学数学课程实施 |
(二)民国中期中学数学课程的借鉴与模仿(1923-1928) |
1. 民国中期的社会背景及学制的重建 |
2. 民国中期的中学数学课程目标 |
3. 民国中期的中学数学课程设置 |
4. 民国中期的中学数学课程内容 |
5. 民国中期的中学数学课程实施 |
(三)民国后期中学数学课程的探索与改良(1929-1949) |
1. 暂行课程标准时期的中学数学课程(1929-1931) |
(1)暂行课程标准时期的社会背景及学制修订 |
(2)暂行课程标准时期的中学数学课程目标 |
(3)暂行课程标准时期的中学数学课程设置 |
(4)暂行课程标准时期的中学数学课程内容 |
(5)暂行课程标准时期的中学数学课程实施 |
2. 正式课程标准时期的中学数学课程(1932-1935) |
(1)正式课程标准时期的社会背景及学制的完善 |
(2)正式课程标准时期的中学数学课程目标 |
(3)正式标准时期的中学数学课程设置 |
(4)正式标准时期的中学数学课程内容 |
(5)正式课程标准时期的中学数学课程实施 |
3. 修正课程标准时期的中学数学课程(1936-1940) |
(1)修正课程标准时期的社会背景及学制的修正 |
(2)修正课程标准时期的中学数学课程目标 |
(3)修正课程标准时期的中学数学课程设置 |
(4)修正课程标准时期的中学数学课程内容 |
(5)修正课程标准时期的中学数学课程实施 |
4. 重行修正课程标准时期的中学数学课程(1941-1949) |
(1)重行修正课程标准时期的社会背景及六年一贯学制的试验 |
(2)重行修正课程标准时期的中学数学课程目标 |
(3)重行修正课程标准时期的中学数学课程设置 |
(4)重行修正课程标准时期的中学数学课程内容 |
(5)重行修正课程标准时期的中学数学课程实施 |
五、民国时期中学数学课程发展的特点 |
(一)从课程目标看中学数学课程发展的特点 |
1. 中学数学课程目标体系的发展变化特点 |
2. 中学数学课程目标内容的发展变化特点 |
3. 中学数学课程目标的发展变化对当前数学课程改革的启示 |
(二)从课程设置看中学数学课程发展的特点 |
1. 中学数学课程设置中内容及安排的发展变化特点 |
2. 中学数学课程设置中结构及比例的发展变化特点 |
3. 中学数学课程设置的发展变化对当前数学课程改革的启示 |
(三)从课程内容看中学数学课程发展的特点 |
1. 中学数学课程内容编排方式的发展变化特点 |
2. 中学数学课程内容知识量的发展变化特点 |
3. 中学数学课程内容选择性的发展变化特点 |
4. 中学数学课程内容的发展变化对当前数学课程改革的启示 |
(四)从课程实施看中学数学课程发展的特点 |
1. 从教学看中学数学课程实施的发展变化特点 |
2. 从教学法研究看中学数学课程实施的发展变化特点 |
3. 从学生学习看中学数学课程实施的发展变化特点 |
4. 从评价方式看中学数学课程实施的发展变化特点 |
5. 中学数学课程实施的发展变化对当前数学课程改革的启示 |
六、经验与反思 |
(一) 应处理好影响中学数学课程发展的几对重要关系 |
1. 中学数学课程国际化与本土化关系 |
2. 中学数学课程统一性和选择性的关系 |
3. 中学数学课程内容稳定与发展的关系 |
4. 中学数学课程内容综合化与分科化的关系 |
(二) 应树立以发展学生数学核心素养为导向的课程意识与教学意识 |
1. 树立以发展学生数学核心素养为导向的课程意识 |
2. 树立以发展学生数学核心素养为导向的教学意识 |
(三) 应落实数学课程标准对教学实践的指导作用 |
1. 在课程标准的设计层面,需要与教学实践紧密联系 |
2. 在课程标准的实施层面,需要落实国家课程校本化 |
(四) 应逐步践行基于学生发展的数学课程评价方式 |
1. 应建构科学的数学教师的专业发展制度与评价机制 |
2. 应完善评价制度,落实多元化评价体系 |
参考文献 |
致谢 |
(5)中国中学几何作图教科书发展史(1902-1949)(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 研究缘由 |
1.2 研究目的与意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 研究范围及研究内容 |
1.3.1 研究范围 |
1.3.2 研究内容 |
1.4 文献综述 |
1.4.1 国内研究现状 |
1.4.2 国外研究现状 |
1.5 研究方法 |
1.6 研究过程与思路 |
1.7 创新之处 |
第2章 清末时期(1902-1911)中学几何作图教科书 |
2.1 背景 |
2.2 学制初定及教科书编写 |
2.2.1 清末学制的初定 |
2.2.2 教科书编写概况 |
2.3 个案分析 |
2.3.1 孙钺编《最新中学教科书·用器画》 |
2.3.2 闫永辉编《新式中学用器画》 |
2.3.3 张廷金、余亮译《中学应用几何画教科书》 |
2.3.4 个案教科书内容分类量化比较分析 |
2.3.5 个案教科书作图题比较分析 |
2.3.6 个案教科书名词术语比较分析 |
2.4 小结 |
第3章 民国初期(1912-1922)中学几何作图教科书 |
3.1 背景 |
3.2 教科书审定及编写 |
3.3 个案分析 |
3.3.1 黄元吉编《共和国教科书·用器画》 |
3.3.2 王雅南编《新制用器画》 |
3.3.3 求是学社编《新撰平面几何画法》 |
3.3.4 个案教科书内容设置比较分析 |
3.3.5 个案教科书作图题比较分析 |
3.3.6 个案教科书名词术语比较分析 |
3.4 小结 |
第4章 民国中期(1923-1935)中学几何作图教科书 |
4.1 教育制度 |
4.1.1 背景 |
4.1.2 课程纲要中对作图的要求 |
4.2 教科书审定及编写 |
4.3 个案分析 |
4.3.1 冯编《应用用器画教科书几何画》 |
4.3.2 王济仁编《平面立体几何画法》 |
4.3.3 薛德炯编《用器画法平面几何之部》、《用器画法立体几何之部》 |
4.3.4 个案教科书内容设置比较分析 |
4.3.5 个案教科书作图题比较分析 |
4.3.6 个案教科书名词术语比较分析 |
4.4 小结 |
第5章 民国后期(1936-1949)中学几何作图教科书 |
5.1 教育制度 |
5.1.1 背景 |
5.1.2 课程标准中对作图的要求 |
5.2 教科书审定及编写概况 |
5.3 个案分析 |
5.3.1 朱铣、徐刚编《平面几何画法》、《立体投影画法》、《简易透视画法》 |
5.3.2 王品端编《平面几何画法》、《投影画法》 |
5.3.3 个案教科书内容设置比较分析 |
5.3.4 个案教科书作图题比较分析 |
5.3.5 个案教科书名词术语比较分析 |
5.4 小结 |
第6章 1902-1949年中国中学几何教科书中的作图 |
6.1 初中几何教科书中的作图 |
6.1.1 清末时期以《普通教育几何教科书·平面之部》为例 |
6.1.2 民国初期以《共和国教科书·平面几何》为例 |
6.1.3 民国中期以《现代初中教科书》为例 |
6.1.4 民国后期以《实验几何学》为例 |
6.2 高中几何教科书中的作图 |
6.2.1 清末时期以《最新中学教科书几何学·立体部》为例 |
6.2.2 民国初期以《共和国教科书·立体几何》为例 |
6.2.3 民国中期以《新中学教科书高级几何学》为例 |
6.2.4 民国后期以《复兴高级中学教科书立体几何学》为例 |
6.3 几何作图研究 |
6.3.1 期刊论文中的几何作图研究 |
6.3.2 著名数学教育家几何作图思想—以傅种孙为例 |
6.4 小结 |
第7章 结论 |
7.1 1902-1949年中国中学几何作图教科书发展特点 |
7.1.1 宏观特点 |
7.1.2 微观特点 |
7.2 影响几何作图教科书发展的因素 |
7.2.1 政治、经济、文化的影响 |
7.2.2 教育制度、课程标准、教科书审定制度的影响 |
7.2.3 教科书编撰者群体的影响 |
7.3 启示与借鉴 |
7.4 进一步研究的问题 |
参考文献 |
附录1 个案几何作图教科书目次 |
附录2 个案中学几何教科书目次 |
致谢 |
攻读博士学位期间发表的学术论文目录 |
(6)欧美对中国中小学数学教育的影响(1902-1949)(论文提纲范文)
中文摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究目的与意义 |
1.2 研究问题 |
1.3 文献综述 |
1.3.1 国外研究现状 |
1.3.2 国内研究现状 |
1.4 研究方法 |
1.4.1 文献研究法 |
1.4.2 历史研究法 |
1.4.3 比较研究法 |
1.4.4 个案分析法 |
1.5 创新之处 |
第2章 清末民国时期中国对欧美数学教育的借鉴概述 |
2.1 借鉴欧美数学教育的过程及其特点 |
2.1.1 借鉴欧美数学教育的背景 |
2.1.2 借鉴欧美数学教育的过程 |
2.2 欧美数学教育思想的影响概述 |
2.2.1 欧美数学教育改革运动 |
2.2.2 《壬戌学制》下数学教育的建立 |
第3章 民国时期美国数学教育制度对中国的影响 |
3.1 民国时期各阶段数学教学总体目标分析 |
3.1.1 数学观的养成 |
3.1.2 数学学习心理 |
3.1.3 数学能力培养 |
3.2 民国时期各阶段数学教育理念分析 |
3.2.1 数学教育联系生活 |
3.2.2 数学问题解决 |
3.2.3 数学态度与习惯 |
3.3 民国时期数学教学法要求分析 |
3.3.1 设置数学游戏 |
3.3.2 联系生活经验 |
3.3.3 应用发现、启发式教学 |
3.3.4 归纳法与演绎法的取舍 |
第4章 欧美数学教科书在中国的传播 |
4.1 欧美数学教科书的译介及使用 |
4.1.1 译介背景概述 |
4.1.2 使用情况分析 |
4.1.3 译介团体与出版机构 |
4.1.4 典型数学教科书分析—以《实用主义数学教科书》为例 |
4.2 分科数学向混合数学过渡 |
4.2.1 混合数学的诞生 |
4.2.2 分科数学的特点 |
4.2.3 混合数学的特点 |
4.2.4 分科与混合数学的争论 |
4.2.5 混合数学在中国的发展 |
4.3 实验几何教科书的传播 |
4.3.1 实验几何的产生 |
4.3.2 实验几何与论证几何 |
4.3.3 实验几何教学的讨论 |
4.3.4 实验几何教科书在中国 |
4.4 欧美数学教科书在中国的创造性转化 |
4.4.1 通过日本翻译欧美数学教科书 |
4.4.2 欧美数学教科书在中国 |
第5章 欧美数学教学法在中国的实施 |
5.1 通过日本学习欧美数学教学法 |
5.1.1 五段教学法的传入与影响 |
5.1.2 数学单级教学法的实施 |
5.2 欧美数学教学法的探讨与转化 |
5.2.1 民国时期的数学设计教学法 |
5.2.2 道尔顿制下的数学教学法 |
5.2.3 文纳特卡制下的数学个别教学法 |
5.3 数学教学实验的开展 |
5.3.1 中小学教学单项实验的兴起 |
5.3.2 数学教学实验的实施 |
5.3.3 数学教学实验的影响及评价 |
第6章 实用主义教育思想对中国数学教育的影响 |
6.1 实用主义教育思想的早期传播 |
6.2 实用主义与数学教育 |
6.2.1 杜威的数学教育思想 |
6.2.2 孟禄的数学教育思想 |
6.2.3 实用主义教育思想在算术教学中的体现 |
6.3 实用主义在中国数学教育界的回响 |
第7章 结论 |
7.1 欧美数学教育影响下中国数学教育的走向 |
7.2 启示与借鉴 |
7.3 进一步研究的问题 |
附录:中国翻译编译的欧美数学教科书概览表 |
参考文献 |
致谢 |
(7)平面几何教学研究之研究 ——以《数学通报》(1951~1966)为例(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 问题的提出 |
1.2 研究目的和意义 |
1.3 国内研究现状 |
1.4 研究方法 |
1.4.1 文献研究法 |
1.4.2 历史研究法 |
1.4.3 比较研究法 |
1.5 创新之处 |
第2章 平面几何教学相关理论概述 |
2.1 关于“教”的理论基础 |
2.1.1 教的准备 |
2.1.2 教的内容分析 |
2.1.3 教学方法选择 |
2.1.4 教学原则 |
2.1.5 教学设计与实施 |
2.1.6 教的评价与反思 |
2.2 关于“学”的理论基础 |
2.2.1 学的准备 |
2.2.2 训练内容分析 |
2.2.3 学习方法选择 |
2.2.4 学习策略 |
2.2.5 学习计划与实施 |
2.2.6 学习评价与反思 |
2.3 平面几何教学概述 |
2.3.1 平面几何教学基本概念 |
2.3.2 平面几何教学特点 |
第3章 学习苏联时期《数学通报》中关于平面几何教学研究 |
3.1 背景的概述 |
3.2 平面几何教学文章的总体特点及趋势 |
3.3 平面几何教学的特点及发展脉络 |
3.3.1 平面几何教学各个环节的统计分析 |
3.3.2 平面几何教学的发展脉络 |
第4章 教育改革时期《数学通报》中关于平面几何教学研究 |
4.1 背景概述 |
4.2 平面几何教学文章的总体特点及趋势 |
4.3 平面几何教学发展脉络及特点 |
4.3.1 平面几何教学各个环节的统计分析 |
4.3.2 平面几何教学的发展脉络 |
第5章 自我完善时期《数学通报》中关于平面几何教学研究 |
5.1 背景概述 |
5.2 平面几何教学文章的总体特点及趋势 |
5.3 平面几何教学特点及发展脉络 |
5.3.1 平面几何教学各个环节的统计分析 |
5.3.2 平面几何教学的发展脉络 |
第6章 结论与建议 |
6.1 结论 |
6.1.1 历史背景 |
6.1.2 平面几何教学文章 |
6.2 教学启示 |
6.3 进一步研究方向 |
参考文献 |
致谢 |
(8)20世纪我国中学数学课堂教学变革研究(论文提纲范文)
摘要 |
Abstract |
1 导论 |
1.1 问题提出 |
1.2 相关研究综述 |
1.3 研究范围 |
1.3.1 研究的内容 |
1.3.2 研究的概念界定 |
1.4 研究思路与方法 |
1.5 论文框架 |
1.6 研究的意义及创新 |
2 20世纪我国中学数学课堂教学的历史回溯 |
2.1 我国中学数学课堂教学肇始阶段(1902~1949年) |
2.1.1 数学课堂教学初建时期(1902~1922年) |
2.1.2 数学课堂教学形成时期(1923~1949年) |
2.2 我国中学数学课堂教学发展阶段(1950~1976年) |
2.2.1 数学课堂教学学习前苏联时期(1950~1957年) |
2.2.2 数学教学自主探索、提出双基教学目标时期(1958~1965年) |
2.2.3 数学课堂教学无政府状态时期(1966~1976年) |
2.3 我国中学数学课堂教学创新阶段(1977~2000年) |
2.3.1 数学课堂教学调整复兴时期(1977~1985年) |
2.3.2 数学课堂教学改革创新时期(1986~2000年) |
2.4 小结 |
3 各时期中学数学课堂教学案例剖析 |
3.1 教学作品分析 |
3.1.1 各时期中学数学教学作品 |
3.1.2 作品比较分析 |
3.1.3 基本结论 |
3.2 《勾股定理》课堂教学实录分析 |
3.2.1 课堂教学案例(详见附录2) |
3.2.2 课堂教学案例比较分析 |
3.2.3 基本结论 |
4 20世纪我国中学数学课堂教学变革因素及原因 |
4.1 我国中学数学课堂教学相关因素 |
4.1.1 稳定因素 |
4.1.2 变化因素 |
4.2 20世纪我国中学数学课堂教学变革原因 |
4.2.1 数学课堂教学变革的选择与制约 |
4.2.2 数学教学目标的确定 |
4.2.3 数学教学内容的选择 |
4.2.4 数学教学内容的体例结构 |
4.2.5 数学课堂教学活动的组织形式 |
4.2.6 小结 |
5 结语:我国中学数学课堂教学特点和变革启示 |
5.1 我国中学数学课堂教学特点 |
5.1.1 凸显数学对人的思维发展功能的教学价值取向 |
5.1.2 以数学基础知识和基本技能为主要教学任务 |
5.1.3 以五阶段教学法为基本特征的课堂教学模式 |
5.1.4 以教师引导学生参与为特征的课堂教学活动 |
5.2 我国中学数学课堂教学变革的启示 |
5.2.1 课堂教学价值取向的调适 |
5.2.2 数学课堂教学变革与外来文化本土化 |
5.2.3 数学课堂教学变革具有累积性 |
5.2.4 数学课堂教学具有数学知识特性 |
参考文献 |
附录1 教师访谈提纲 |
附录2 《勾股定理》课堂教学实录 |
后记 |
(9)中学数学思想的培养研究 ——基于深度教学的视角(论文提纲范文)
摘要 |
Abstract |
导论 |
第一节 问题的提出 |
一、数学育人价值实现与当前课堂教学实施的矛盾 |
二、数学学科思想教学与当前教学变革的错位 |
三、学生深度学习达成与课堂教学效果的偏离 |
第二节 研究意义 |
第三节 国内外研究综述 |
一、国内研究综述 |
(一) 关于数学课程的研究 |
(二) 关于数学知识及其教学的研究 |
(三) 关于学科思想方法的研究 |
(四) 关于数学思想的研究 |
二、国外文献综述 |
第四节 研究方法 |
第五节 研究内容 |
第一章 数学思想:内涵与意义 |
第一节 数学思想的发展回溯 |
一、数学思想的发展历史及阶段 |
二、我国数学思想在教学中的发展 |
第二节 数学思想的含义 |
第三节 数学思想的特征分析 |
一、内隐性 |
二、连续性 |
三、可迁移性 |
第四节 数学思想的价值分析 |
一、数学思想的教学价值 |
二、数学思想的发展价值 |
三、数学思想的应用价值 |
第二章 中学主要数学思想及相关概念辨析 |
第一节 数学发展史上的主要数学思想 |
第二节 中学数学教学中的数学思想 |
一、数形结合思想 |
二、分类讨论思想 |
三、转化或化归思想 |
四、类比或递推思想 |
五、构造或建模思想 |
第三节 相关概念辨析 |
一、数学知识与数学思想 |
二、数学能力与数学思想 |
三、数学方法与数学思想 |
四、数学素养与数学思想 |
第三章 当前中学数学思想教学现状分析 |
第一节 中学数学思想教学现状调查的描述分析 |
一、中学数学教师思想教学的基本情况 |
二、中学教师数学思想教学现状 |
第二节 中学教师数学思想教学的影响因素分析 |
一、教师自身对于数学思想的认知 |
二、学生数学学习的阶段性与连续性 |
三、教材与学生发展之间的关联性 |
四、教学活动组织的适切性 |
第三节 问题与讨论 |
第四章 基于深度教学的中学生数学思想建立过程 |
第一节 中学生数学思想的形成过程 |
一、以观察能力为基础 |
二、以猜想能力为辅助 |
三、论证思维的建立 |
第二节 深度学习以培养学生的数学思想 |
一、深度学习之内涵 |
二、深度学习与数学思想的建立 |
三、深度学习以培养学生的数学思想 |
第三节 深度教学以促进数学思想的培养 |
一、深度教学之意涵 |
二、深度教学与数学思想的建立 |
三、深度教学以促进数学思想的培养 |
第五章 中学数学思想及其培养策略 |
第一节 学科思想的特性与数学思想的价值 |
一、学科思想的普遍性与特殊性 |
二、数学思想的学科意蕴 |
第二节 中学主要数学思想的形成过程 |
一、中学数学思想培养所必备的学习经历 |
二、中学数学思想培养的教学过程 |
三、中学主要数学思想的培养 |
第三节 中学主要数学思想的培养策略 |
一、分类讨论思想的培养策略 |
二、数形结合思想的培养策略 |
三、转化或化归思想的培养策略 |
四、递推或类比思想的培养策略 |
五、构造或建模思想的培养策略 |
结语 |
参考文献 |
附录 |
致谢 |
(10)初中生尺规作图能力水平划分及提升研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 研究问题 |
1.3 研究意义 |
第2章 研究综述 |
2.1 尺规作图的相关研究 |
2.1.1 历史哲学层面 |
2.1.2 课程层面 |
2.1.3 解题层面 |
2.1.4 教学层面 |
2.1.5 学习层面 |
2.2 范希尔几何思维水平 |
2.3 小结 |
第3章 研究设计 |
3.1 尺规作图能力的阐述 |
3.2 研究框架和流程 |
3.2.1 研究框架 |
3.2.2 研究流程 |
3.3 研究对象和方法 |
3.3.1 研究对象 |
3.3.2 研究方法 |
第4章 测试题的编制 |
4.1 设计思路 |
4.2 预研究 |
4.3 试题分析 |
4.4 测试时间 |
第5章 测试结果及分析 |
5.1 生1的测试结果及分析 |
5.1.1 测试结果及局部分析 |
5.1.2 整体分析 |
5.2 生2的测试结果及分析 |
5.2.1 测试结果及局部分析 |
5.2.2 整体分析 |
5.3 生3的测试结果及分析 |
5.3.1 测试结果及局部分析 |
5.3.2 整体分析 |
5.4 生4的测试结果及分析 |
5.4.1 测试结果及局部分析 |
5.4.2 整体分析 |
5.5 小结 |
第6章 研究结论及建议 |
6.1 研究结论 |
6.1.1 提出了尺规作图能力水平划分框架 |
6.1.2 影响学生尺规作图能力的内因 |
6.2 尺规作图教学建议 |
6.2.1 注重本质教学 |
6.2.2 注重逻辑教学 |
6.2.3 注重串联教学 |
6.2.4 注重分层教学 |
6.3 研究不足与展望 |
参考文献 |
附录1 尺规作图测试题 |
附录2 生1测试题答卷 |
附录3 生2测试题答卷 |
附录4 生3测试题答卷 |
附录5 生4测试题答卷 |
致谢 |
四、中学数学教学改革的一些作法(论文参考文献)
- [1]中国数学教科书中勾股定理内容设置变迁研究(1902-1949)[D]. 张冬莉. 内蒙古师范大学, 2020(07)
- [2]清末民国时期中学解析几何学教科书研究[D]. 张美霞. 内蒙古师范大学, 2018(09)
- [3]初中平面几何作图研究发展史(1949-2012) ——基于《数学通报》文献分析[D]. 王瑞芳. 内蒙古师范大学, 2019(08)
- [4]民国时期中学数学课程发展研究[D]. 曹春艳. 西北师范大学, 2016(01)
- [5]中国中学几何作图教科书发展史(1902-1949)[D]. 张彩云. 内蒙古师范大学, 2019(07)
- [6]欧美对中国中小学数学教育的影响(1902-1949)[D]. 王敏. 内蒙古师范大学, 2014(11)
- [7]平面几何教学研究之研究 ——以《数学通报》(1951~1966)为例[D]. 西峰山. 内蒙古师范大学, 2015(03)
- [8]20世纪我国中学数学课堂教学变革研究[D]. 于波. 西南大学, 2008(05)
- [9]中学数学思想的培养研究 ——基于深度教学的视角[D]. 张先波. 华中师范大学, 2019(01)
- [10]初中生尺规作图能力水平划分及提升研究[D]. 秦小双. 苏州大学, 2019(06)