功能极限不存在及其在教学中的应用研究

功能极限不存在及其在教学中的应用研究

一、函数极限的不存在性研究以及在教学中的应用(论文文献综述)

张宇静[1](2021)在《高中数学学情分析指标框架的构建及其实践研究》文中指出学情分析是学生有效学习的起点。在缺乏具体方法、步骤和指标框架指导的情况下,教师将难以从学生的真实情况出发去把握教学起点、进行教学设计、组织教学活动,而系统研究过“学情分析指标框架”的学者少之又少。构建高中数学学情分析的指标框架具有重要意义,可为一线教育工作者进行学情分析提供可借鉴的模式。研究的核心问题:科学、合理的高中数学学情分析的指标框架是什么?为编制高中数学学情分析指标框架,首先采用文献分析法,对学情分析内涵、学情分析内容、学情分析理论基础、学情分析方法、学情分析框架等方面文献进行梳理,确定数学学情分析的基本内容,找到研究框架所关注的各维度指标,选择理论基础,初步构建指标框架,同时明确实践研究的手段;其次征询专家意见,对数学学情分析框架的指标及学生行为特征进行调整与完善,保证指标框架具有优良的专家效度,形成合理、科学的指标框架;最后对数学学情分析指标框架进行实践检验,根据所构建的指标框架,选择《函数的概念》一课进行学情分析,编制学情分析测试题,检验指标框架的合理性与实用性。通过对学情分析内容的文献梳理,同时结合专家意见确定高中数学学情分析指标框架为知识能力基础、学生认知特点、学生学习风格与学习发展需要四个维度。将知识能力基础维度划分为前结构反应、单点结构反应、多点结构反应、关联结构反应、拓展抽象反应五个反应水平;将学生认知特点维度划分为感觉运动方式、形象方式、具体符号方式、形式方式、后形式方式五个阶段;将学生学习风格维度划分为发散型、同化型、聚合型、顺应型四种类型;将学习发展需要维度划分为成就需求、学习差距、外部动机、学习兴趣四个方面。同时描述了不同水平或类型的学生行为特征,为一线教师根据学生表现分析学情提供参考。基于学情分析指标框架,以高中《函数的概念》一课为例,编制《<函数的概念>学情调查分析测试卷》,在天津市新华中学高一年级选择不同类型的两个班级(普通班与特长班)进行测试,对回收的问卷进行数据分析,直观反映出两个班级学生不同的学习情况,表明基于指标框架编制的测试题可准确反映出学生在知识能力基础、学生认知特点、学生学习风格与学习发展需要四个维度方面的基本情况,由此证明本研究所编制的指标框架具有一定的合理性与可实施性。在研究构建的指标框架及实践研究的基础上,为一线数学教师提出四条建议:深入了解学情,避免经验主义误区;熟悉教学内容,编制学情测试题;了解学生情况,合理组织教学活动;简化学情分析,减轻教师教学压力。

陆奕纯[2](2021)在《初等数学教学借鉴高等数学教学法的初探》文中认为高校教师在实际教学中发现初等数学与高等数学衔接方面存在问题,尤其是大一新生,一入学就面临着微积分等核心基础课程的学习,但是仍然只习惯于高中的教学模式,不适应高等数学的教学模式,为此,大学教师额外进行各种改革以迁就学生适应和过渡.另一方面,随着新课改的实施,在教学内容上已有高等数学下放的趋势,这就为高中教学过程中部分地采用大学的教学模式提供了机会.本文将从教学方法角度出发,初步探索一个新的研究方向:初等数学教学借鉴高等数学教学法.通过对当前大学和高中教学方法使用情况的访谈调查,根据所得数据分析两种教学方法在使用上的差异:一个是偏重习题训练,另一个是围绕基本概念进行教学.然后,本文结合访谈内容从理解性教学的角度,借鉴高等数学教学法对高中教学提出7种策略,建议以“思”代“练”来减少习题,通过探索创新来理解知识点.以高中教学内容“数列与数学归纳法”为例,仅采用“斐波那契数列”为例题,重组整章内容进行教学,强调基本概念和知识点的理解与拓展,从而实现两者在教学模式上的衔接.

李超[3](2021)在《“高观点”下高中导数解题及教学研究》文中进行了进一步梳理随着普通高中数学课程改革不断深入,《普通高中数学课程标准(2017年版2020年修订)》指出数学教师要理解与高中数学关系密切的高等数学内容,能够从更高的观点理解高中数学知识的本质,这对从事数学教育工作者的本体性知识(学科知识)提出了更高的要求.导数是连接高等数学和初等数学的重要桥梁,且部分导数试题的命制具有一定高等数学的背景.因此,这项研究选取高中导数内容,在“高观点”的指导下重点研究以下三个问题:(1)揭示部分高考导数试题具有的高等数学背景;(2)如何将高等数学的思想、观点和方法渗透到中学数学中去;(3)通过具体案例展示如何在“高观点”的指导下进行高中导数内容的解题和教学.这项研究通过对高中教师和学生的问卷调查,在“高观点”指导下研究高中导数内容的解题和教学,得出了以下两方面的结论:在解题方面,整理分析了近十年(以全国卷为主)具有高等数学背景的高考导数试题,导数试题的命题背景主要有四个方面:以高等数学中的基本定义和性质为命题背景、以高等数学中的重要定理和公式为命题背景、以着名不等式为命题背景、以高等数学中的重要思想方法为命题背景;总结了用“高观点”解决高考导数试题时常犯的四类错误:知识性错误、逻辑性错误、策略性错误、心理性错误;提出五项解题方法:创设引理破难题、洛氏法则先探路、导数定义避超纲、构造函数显神通、多元偏导先找点.在教学方面,通过对高中学生和高中教师进行问卷调查分析,从前人研究的基础上,提出“高观点”下高中导数教学的三个特点:衔接性、选择性、引导性;认为“高观点”下高中导数的教学应遵循四项基本的教学原则:严谨性原则、直观性原则、因材施教原则、量力性原则;提出相应的五项教学策略:开发例题,拓展升华策略、引入四规则,知识呈现多样化策略、先实践操作,后说理策略、融合信息技术,直观解释策略、引导方向,自主学习策略.

朱晨菲[4](2021)在《磨的是课,成的是人 ——数学评优课磨课活动的研究》文中进行了进一步梳理磨课是为了课堂教学改进而进行的教师集体研究,是我国特色的教师专业发展活动。为了优秀课评比(俗称“赛课”)中参赛教师评优课的形成而展开的磨课是其中一种,它通常会在优秀课评比前系列化地进行多次。“磨的是课,成的是人”是许多一线教师经历系列评优课磨课后的共同感受。本研究以实践现象学为方法论,从过程性视角关注了该活动中“课”的改进和“人”的发展,研究问题有两个:1.在数学评优课磨课活动中,数学课怎样被改进?2.通过数学评优课磨课活动,参与教师有哪些专业发展?遵从方法论的引导,在充分论证了自身的研究条件、意向性和胜任力后,以研究者本人为工具实施了研究:首先,多来源地积累和感悟了他人(含文献)视域中的该活动。然后,兼有“局内人”和“局外人”角色,体验和洞见了两个系列的真实活动,整理并分析了采用多种研究方法获得的大量第一手资料。进而,经由反思,完成了与他人的“视域融合”,再“本质直观”出该活动中“课”如何改进、“人”有何发展的主题及其结构,并将各类资料灵活地按需融入不同主题。接着,对每个主题,采用现象学写作的方式,逐一阐释了研究结果,并对所有具体结果进行了整体梳理。对第一个研究问题:优秀课评比的规则使得参赛教师提前准备关于参赛课题的教学具备可能,而面向未知学情实施优质教学则是参赛教师执教现场评优课时的主要挑战。教师集体为了支持参赛教师有效应对挑战而展开系列化评优课磨课活动。“以发现问题为目的观察试教”是每次磨课的开端,分为“依据学生表现发现关键事件”和“在分析关键事件中提出问题”。“理解数学知识的境脉与本质”总被审慎地对待,包括“探究教材的编写逻辑与意图”、“从其他版本教材里获得启发”、“在数学知识体系中寻根究底”。“基于经验推理把握未知学情”是讨论的基础,先需“挖掘不同学情的特点与需求”,再“结合潜在难点制定教学目标”。“编排创意的课堂结构与任务”尤为重要,包括“建立简洁且深刻的课堂结构”、“设计合理创新的活动与问题”、“把握课堂容量与时间的平衡”。“设计灵活的启发时机与策略”时时发生,在“推测学生的思维方式与进程”基础上,会“预设弹性化的适时启发策略”和“规划即时性教学决策的方向”。“‘因师施磨’迭代推进问题解决”是系列磨课的发展趋势,体现为“注重教师的特质和自我建构”、“试教不同学情调适教学实施”。在系列磨课中,教师们通过一以贯之的各显所长、合作交流、协商共建、观点融合,逐渐生成多角度渐进性理解和多样化演进性建议,支持参赛教师评优课教学设计的不断完善和面向未知学情优质教学的逐步实现。对第二个研究问题:无论是短期或常年参与,经历了该活动后,参赛教师、教研员、专家教师、研究者都会产生各自的专业发展。参赛教师的发展表现在:即时判断能力达至“看得到”、即时决策能力达至“接得住”、教研理解能力达至“听得懂”、教研表达能力达至“说得出”、教研反思能力达至“想得清”、教学再设计能力达至“改得了”、研究性思维的整体优化上。教研员的发展表现在:理解教师能力的精深、教学设计能力的精进、磨课组织能力的精湛、研究性思维的持续完善上。专家教师的发展表现在:教学创新能力的改良、指导教师方法的改进、教研合作意识的改善、研究性思维的不断突破上。研究者的发展表现在作为“局内人”时数学教学观念的变革、有效备课方法的积累、卓越教学意愿的激发、教研合作意识的改良,作为“局外人”时研究方法及其实施、研究结果及其呈现、理解教育实践研究、理解教师专业发展四方面的发展,以及研究性思维的融合发展上。整体地看,以上方面的发展表现和程度都具有相对性,它们的产生均与各类教师更加善于理解他人、善于理解自己以及研究性思维的成长有关,对各类教师长期的专业发展都会形成积极影响。最后,研究者基于四个理由,提出:在现阶段,对评优课磨课活动的研究是一项“尚在起点的探索”。

沈中宇[5](2021)在《面向教师教育的数学知识研究 ——以S市高中数学教研员为例》文中认为百年大计,教育为本。教育大计,教师为本。教师培养的关键是教师教育,要改善教师教育的效果,教师教育者的作用无疑是至关重要的,因此,数学教师教育者在数学教师教育中发挥着重要的作用。近年来,数学教育研究者开始关注数学教师教育者的研究,其中,“面向教师教育的数学知识”(Mathematical Knowledge for Teaching Teachers,简称MKTT)理论为研究一般数学教师教育者所需要的数学知识提供了借鉴。但已有的研究中对于“面向教师教育的数学知识”仍然缺乏清晰准确的刻画,同时,相关研究主要集中在理论构建,相关的实证研究较少。基于以上原因,本文以面向教师教育的数学知识为研究主题,选取高中数学教研员作为研究对象,主要探讨以下三个研究问题:(1)构成面向教师教育的数学知识的要素有哪些?(2)高中数学教研员具备哪些面向教师教育的数学知识?(3)在数学教研活动中,高中数学教研员反映出哪些面向教师教育的数学知识?针对本研究的三个研究问题,将研究设计分为三个阶段,分别为文献分析与框架确立、问卷调查与深度访谈以及现场观察与案例分析。文献分析与框架确立阶段采用了专家论证法。首先通过文献分析梳理已有的数学教师教育者专业知识框架,接着通过对相关的成分和子类别的反复比较,构建初始的面向教师教育的数学知识框架,最后通过三轮专家论证得到最终的面向教师教育的数学知识框架。问卷调查与深度访谈阶段采用了问卷调查法和深度访谈法。其中选取了高中数学中重要的数学主题编制了调查问卷和访谈提纲,通过编码分析高中数学教研员的问卷回答和访谈实录,从而了解高中数学教研员具备的面向教师教育的数学知识。现场观察与案例分析采用了案例研究法。其中观察了不同的高中数学教研员的多次教研活动,在观察过程中对教研活动进行录音并在观测后对高中数学教研员进行访谈,对录音和访谈材料进行编码和统计,从而剖析高中数学教研员在教研活动中反映的面向教师教育的数学知识。本研究的基本结论是:1.构成面向教师教育的数学知识的要素包括4个成分与12个子类别。构成成分为学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识。学科内容知识包含的子类别为一般内容知识、专门内容知识和关联内容知识,教学内容知识包含的子类别为内容与学生知识、内容与教学知识和内容与课程知识,高观点下的数学知识包含的子类别为学科高等知识、学科结构知识和学科应用知识,数学哲学知识包含的子类别为本体论知识、认识论知识和方法论知识。2.高中数学教研员具备的面向教师教育的数学知识情况如下。(1)高中数学教研员在学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识4个成分中并不存在明显的短板;(2)高中数学教研员对不同知识成分的掌握存在一定差异,其中,在学科内容知识和教学内容知识2个方面掌握较好,而在高观点下的数学知识和数学哲学知识2个方面还有所欠缺;(3)高中数学教研员在各个知识成分中有以下具体理解:在学科内容知识方面,对于基本的概念、定理和公式的合理性以及不同概念、定理和公式之间的联系较为熟悉;在教学内容知识方面,对于学生有关特定数学内容学习的困难,不同数学内容的教授方式和相关数学内容在教科书中的编排理解较深;在高观点下的数学知识方面,能够对中学数学知识作出一定程度的推广、涉猎不同学科中数学知识的应用;在数学哲学知识方面,能够大致解释数学定义的基本作用和标准、数学研究的动力、数学证明的作用和价值以及数学的基本思想方法。(4)高中数学教研员在各个知识成分中有以下欠缺之处:在学科内容知识方面,对于定义的多元性、解释的多样性和联系的普遍性方面还有进步的空间;在教学内容知识方面,对于学生数学学习困难的细致理解、不同数学内容的深入教授和教学内容编排意图的全面考虑还有提升的余地;在高观点下的数学知识方面,从高观点理解中学数学知识、分析不同知识的联系和在不同学科中应用数学知识方面还有较多需要完善的地方;在数学哲学知识方面,还不能形成系统的理解。3.在数学教研活动中,高中数学教研员反映出的面向教师教育的数学知识情况如下。(1)高中数学教研员反映的面向教师教育的数学知识大部分属于教学内容知识和学科内容知识,小部分属于数学哲学知识和高观点下的数学知识。(2)高中数学教研员在数学教研活动中的主要知识来源为一般内容知识、内容与教学知识、学科高等知识和方法论知识。(3)高中数学教研员在数学教研活动中反映的面向教师教育的数学知识主要有:在学科内容知识方面有数学中的基本概念、定理、公式和性质及其由来、表征、证明及解释;不同数学概念、定理、公式之间的联系。在教学内容知识方面有学生对特定数学内容理解存在的困难;不同数学内容的引入、辨析、应用和小结的教学方法;特定数学内容在课程标准中的要求和在教科书中的编排。在高观点下的数学知识方面有中学数学课程中的数学概念在高等数学中的推广;高观点下不同数学概念之间的联系;数学知识在现代科学和实际生活中的应用。在数学哲学知识方面有对数学定义的认识;对数学认识过程的理解;推理论证在数学中的作用;数学研究的思想方法。本研究对于教师教育者专业标准的制订、数学教师教育者专业培训的设计和数学教师专业发展项目的规划有一定启示,后续可以在数学教师教育者的专业知识、数学教师教育者的专业发展和数学教师教育者的工作实践等方面进一步开展研究。

王改珍[6](2021)在《职前数学教师专业知识结构及水平的实证研究》文中认为随着教师专业发展成为教师教育领域的研究热点,各国从对教师“量”的需求逐渐转变到对教师“质”的需求,其中一个核心的研究内容便是教师知识。教师知识是教师专业素质的重要组成部分,也是影响教师教学水平的重要因素。教师教育的质量决定着教育的质量,职前教师教育的质量又是确保教师教育质量的基础环节。职前教师需要具备怎样的专业知识结构和水平,才能满足高质量教育的人才需求,受到教育研究者和教育工作者的广泛关注。教师专业知识是教师专业发展的基础,对职前教师专业知识的研究可以反映教师专业知识的最初状态。本研究聚焦于职前数学教师的专业知识结构及水平,分为三个子问题:一、职前数学教师需要怎样的专业知识结构?通过访谈和调查,从一线教师的视角给出对合格数学教师需要具备的专业知识结构的看法,并将其作为职前数学教师专业知识结构的参考标准。该知识结构是教师主观层面的认识,也可称为教师期望的专业知识结构。二、职前数学教师专业知识的掌握水平如何?通过测试了解职前数学教师专业知识的现状,进而得出实际的专业知识结构,并利用水平划分描述职前数学教师专业知识的掌握程度。三、职前数学教师实际的专业知识结构与一线教师期望的专业知识结构是否一致?通过对比,探讨职前数学教师专业知识结构的合理性,进而明确职前数学教师未来的努力方向。本研究采用量化研究与质化研究相结合的方法,以量化研究为主,质化研究为辅。子问题一通过调查教师视角下各类专业知识的重要程度来了解合格数学教师需要的各类专业知识的权重情况。首先通过文献梳理和访谈构建出数学教师的专业知识框架,并以此编制调查问卷;然后对一线教师展开问卷调查,教师根据教学经验对各类专业知识进行赋权;最后根据调查数据的统计分析得出合格数学教师需要具备的专业知识结构,并通过访谈对量化结果进行补充和说明。子问题二通过测试了解职前数学教师专业知识的现状和掌握水平。首先通过整理历年教师资格考试《数学学科知识与教学能力》(高级中学)科目的真题,明确各类知识的考查比例、题型和分值;然后结合子问题一的调查结果,确定测试所考查的内容、题型及分值,对试题进行抽取、组合、制定评分标准;接着,选取1所部属师范大学、1所省属师范大学和2所省属师范学院的数学师范生作为调查对象,展开测试;最后根据测试数据的统计分析得出职前数学教师的实际专业知识结构及水平。子问题三是基于前两个子问题的数据分析结果,再结合教师访谈,探讨职前数学教师实际的专业知识结构、不同知识掌握水平下的职前数学教师专业知识结构与教师期望的专业知识结构的一致性和合理性。研究结论如下:(1)合格数学教师的专业知识结构中数学学科知识的权重最大。教师视角下的合格数学教师需要具备的三类专业知识按照权重大小依次是数学学科知识(45.20%)、数学教学知识(30.71%)、数学课程知识(24.09%)。该知识结构可划分为三种类型。不同群体教师对各类知识权重的看法基本一致。(2)职前数学教师对所考查的数学专业知识基本能够掌握。实际知识结构中数学学科知识的权重最大。参与本研究的职前数学教师专业知识的掌握程度由低到高可划分为四个水平:前水平、识记水平、关联水平和综合水平。不同类型学校的职前数学教师专业知识测试得分具有显着差异,得分由高到低分别为部属师范大学、省属师范大学、省属师范学院。(3)职前数学教师的实际知识结构中,各类知识的权重大小顺序与教师期望的专业知识结构一致,即职前数学教师的实际知识结构是合理的。知识掌握程度处在四个水平的职前数学教师的专业知识结构也是合理的。教师期望的学科知识权重低于职前数学教师的实际权重,教师期望的教学知识权重却高于职前数学教师的实际权重,导致这一现象的原因在于职前数学教师教学经验的缺乏。根据上述研究结论,对职前数学教师教育提出相关建议:(1)职前数学教师应以理论知识学习为主;(2)职前数学教师应提高教学知识储备。

白胜南[7](2021)在《中学生概率概念学习进阶的构建问题研究》文中提出在当今时代背景下,概率素养已然成为每个社会成员不可或缺的数学素养,因而为了进行概率思维的培养,概率内容被作为数学学科的核心概念之一,贯穿于整个基础教育阶段。但无论是在TIMSS、PISA等大型测评项目,还是在我国的基础教育质量监测中,都发现:与“数与代数”、“图形与几何”等部分相比,学生在“概率与统计”部分表现不佳。并且以往研究多为对单一知识点的考察,对概率概念的内部结构关注度不高,因此对学生概率概念认知结构的研究较为薄弱。如今,核心概念学习进阶的构建是当前国际教育发展的重要趋势,为了接轨国际教育研究对学生学习与评估的动态趋向,本研究试图为学生概率的认知发展建模,以期更真实地反映学生对概率概念的思维发展过程。基于此,本研究以7到11年级的学生作为研究对象,以“概率概念”的问题解决作为研究主题,尝试基于认知诊断理论进行概率概念假设性学习进阶的构建,并据此形成正式的概率概念学习进阶,最终将其应用到学生概率概念理解的诊断评估中,详细描述学生的学习表现,以促进课程、教学和评估的一体化。研究问题1:如何基于认知诊断理论来构建概率概念的假设性学习进阶?该问题的主要研究方法为文献回顾、专家访谈。先是提取了“概率概念”问题解决过程中所需要的属性(知识、技能和策略等)。确定为5个基本概念:随机性、样本空间、概率比较、概率计算、概率估计,并从中提取出9个认知属性:A1-随机性、A2-一维样本空间、A3-二维样本空间、A4-一维概率比较、A5-二维概率比较、A6-一维概率计算、A7-二维概率计算、A8-一维概率估计、A9-二维概率估计。其次,建立起所提取属性之间的层级关系。最后,根据所提取的属性及属性间层级关系,确定假设性学习进阶的进阶维度、进阶水平和预期学生学习表现,形成了概率概念的假设性学习进阶。研究问题2:如何根据G-DINA模型进行概率概念学习进阶的检验与修订?该问题的主要研究方法为文献回顾、专家访谈和测验法。先是确定测验矩阵,并据此编制概率概念的认知诊断测验,共包含26个测验题目,采用0、1计分方式,回答正确记为“1”,回答错误记为“0”,测试时间设定为40分钟。其次,根据多种数据分析结果来验证所提取的属性、属性间层级关系和假设性学习进阶的合理性。经检验,所提取的属性及所建立的属性间层级关系较为科学合理;概率概念认知诊断测验(修订版)符合心理测量学标准;假设性学习进阶的设置基本合理,其中学生在A8-一维概率估计上的表现低于预期,根据属性掌握概率,将其从学习进阶的水平2调整到水平3,形成正式的概率概念学习进阶,以用于评估中学生的学习表现。研究问题3:应用概率概念的学习进阶评估中学生的学习表现如何?该问题的主要研究方法是测验法。先是分析了中学生概率概念的学习进阶水平,结果显示:学生对概率概念的认识在不断地发展和完善,并且对一维概率概念的认识发展较快,对二维概率概念的认识发展相对缓慢。8年级学生的学习表现较7年级有所下降,但并不存在统计学差异。其次分析了中学生概率概念的认知结构,结果显示:中学生的概率属性掌握模式不断向进阶终点聚集。具体而言,随着年级的升高,学生主要的概率属性掌握模式类别在减少,越来越集中,从7、8年级的10个左右减少到4个;同时,学生所掌握的属性个数逐步在增加,从7、8年级的3到6个之间,直到11年级,学生基本都掌握了8个或9个属性,并且达到进阶终点的学生比例也有大幅度的提高;此外,中学生概率概念的认知劣势多数都能转化为认知优势。最后,展开对中学生概率概念的多元化学习路径的设计,分别依据主要的属性掌握模式和学生个体认知诊断进行选例分析,提供了多种学习路径。综上,本研究的创新之处体现为:将认知诊断理论引入到概率概念学习进阶的构建过程,并将正式的学习进阶应用到学生学习表现的评估中,为学生制定个性化的补救措施。最终的研究结果也证实了使用认知诊断模型来构建学习进阶的可行性和优越性。同时,也不难发现:将学习进阶与认知诊断理论相结合,既具有很大的优势,也具有一定的难度。一方面,本研究为今后基于认知诊断理论来完成学习进阶的构建提供了经验。另一方面,本研究所构建的学习进阶能够为学生概率概念的评估提供丰富的认知诊断信息,有助于学习进阶的研究成果向教学实践的转化,也能为学生的自我改善提供可能,但在这一过程中仍面临着较大的挑战,需要多方专家的支持和更进一步的探索。

郭晓慧[8](2020)在《导数在高中和大学衔接阶段的教学研究》文中认为众所周知,导数是具有重要实际应用的数学工具。高考中导数也占据着重要的位置,近年来高考中导数所占比重逐渐加大。一些学生也对导数学习产生了浓厚的兴趣,甚至主动超前学习。但是作者发现导数教学中却存在一些问题,主要是教材与课程设置不合理,教师教学和学生学习也瞄准高考,缺乏对学生核心素养的培养,部分学生不能适应进入大学后学习方式的转换。因此,本文对导数的衔接教学从教师到学生进行了详细的研究。通过对老师和同学的访谈以及文献研究,本文系统总结了我国高中生的导数教学情况,对导数衔接教学能做的改变进行了分析,认为教材、教师和学生都有值得改进的地方。通过对这些高中导数的学习情况进行的研究,本文对高中导数的教学情况有一个全面的总结,认为衔接教学是改进高中导数教学的重要方法。接着,作者通过文献综合分析法,研究了国内外关于导数在高中和大学衔接教学的现状与成果,对高中与大学衔接教学存在的情况进行了分析,从不同方向探索高中导数的衔接情况。近年来,高中课改中把大学内容的一部分挪到高中,证明了在导数衔接方面,我国高中生的导数衔接是与大学紧密相连的。通过与美国高中生导数学习情况进行对比,作者发现我国与美国导数衔接教学有明显不同。美国高中生拥有更多的机会根据自己的兴趣爱好学习微积分,这样有利于学生的发展。此外,美国导数的教学上也充分考虑了学生的学习兴趣,题目设置是比较超前的,它与中国教材一样在题型上有同样的难度,但是具有分阶段题型的性质,能够充分考虑个体差异。中国高中生的学习在于练习更多的题型,并且复杂多变。接着,本文对导数衔接教学的可行性进行了研究,认为随着科技的进步、数学的发展,以及学生思维水平的提高,进行导数衔接教学的研究和实践是可行的。本文分别从教材内容设置,教师导数衔接教学和学生有效学习导数三个方面对导数衔接教学进行了深入研究,仔细探讨了如何进行导数衔接教学。作者通过电话访谈以及编制访谈表进行访谈,加深了对导数衔接教学的认识,通过研究与探索,提出了更好的衔接策略。针对导数衔接教学,作者提出了三种不同的导数衔接教学策略。在此基础上,作者给出了一个具体教学案例并选取了两个成绩相当的班级进行教学实践,分三个维度对学生成绩进行了考察。实践结果表明,两个班级的学生在导数运算及几何意义应用方面基本相同,但是采用衔接教学的班级在导数的基本概念的理解和导数的应用方面存在明显优势,表明衔接教学策略有助于学生对基本概念的掌握和数学逻辑思维能力的提高,增加对导数的学习兴趣。

彭奇林[9](2020)在《高职数学教学的有效性研究 ——以LD职业技术学院为例》文中认为当前,我国各级各类学校的教学改革正在迅猛展开,职业教育的教学改革正在同步推进。为了科学、有效地实施职业教育教学改革,职业院校的广大教师必须树立与职业教育发展相适应的教学理念,掌握职业教育的教学策略。有效教学的理念与策略便是其一。高职数学作为高等职业学校的文化基础课程,担负着培养高职学生的基本素质和提升高职学生的社会适应能力之重任,并且为高职学生的职业生涯发展提供有力的支撑。高职数学的教学,主要是在使得学生掌握必要的数学知识和数学原理的同时,培养学生的空间想象能力和逻辑思维能力,并在此基础之上利用数学方法去培养学生了解问题、分析问题和解决问题的能力,进一步形成职业能力和发展能力。因此,高职数学课程的有效教学已经成为了高职学生全面进步的基本保证。有效教学要求教学活动不仅要有效果,还要有效益,而且必须有效率。有效教学重视开发学生的智力和培养学生的能力,使之形成自主学习和终身学习的良好习惯,促进学生的全面发展。高职数学教学对于高职学生综合素质的提高和职业能力的培养有着重要的作用。高职数学的有效教学是高职学校数学教师的理论水平、教育理念、思维火花和教学艺术的集中体现,也是以学生为中心,所有学生全面参与、积极思考、自主学习、努力实践的美好过程。因此,高职数学的有效教学,必须对教学内容进行合理的调整,对学生状况存在清晰的了解,对教学方法给予恰当的选择。本研究选取了“高职数学教学的有效性研究”这一课题,利用文献研究法、行动研究法、经验总结法、质性研究法等不同方法,适当地选取了有效教学的相关原理和数学教学的有关理论,充分地研究了高职数学有效教学的概念及其内涵与外延和有效教学的特征、原则、意义等内容,深入地分析了高职数学传统教学过程中的弊端,揭示了高职数学有效教学的本质属性和影响高职数学有效教学的主要因素,阐明了高职数学有效教学的基本原理,提出了高职数学有效教学的基本策略。特别地,以位于广东省西部的L D职业技术学院的情况为例子,结合研究者的教育经历、教学实践和教育教学研究,从该校历年积累的教师座谈会、学生评教表等资料中筛选出了高职数学教学中存在的四大问题,即高职数学传统教材的问题、高职数学概念教学的问题、高职数学计算教学的问题、高职数学原理教学的问题,进行了详尽的剖析,找出了各个问题的根源所在,并且相对应地给出了解决上述问题的有效对策。此外,将教材及其编写列入教学的范畴,是本文的一个创新,毕竟教学离不开教材。第一部分是绪论。对职业教育教学改革背景下高职数学有效教学研究的必要性进行了分析,介绍了研究的背景、研究的意义和研究的方法,并对国内外有效教学的研究状况分别做了适当的综述。第二部分是高职数学有效教学的基本原理。按照本研究的基本要求,谨慎地、适当地选择了部分有效教学的基本理论与数学教学的基本原理。通过梳理有效教学的基本概念,阐明了高职数学有效教学的涵义、特征、原则、意义等基本概念,建立起了高职数学有效教学的基本原理之框架。第三部分是高职数学传统教学的问题分析。以上述内容为基础对高职数学传统教学的问题进行了深入的、细致的定向分析,包括高职数学教学材料、高职数学概念教学、高职数学计算教学、高职数学原理教学等四个方面的问题。第四部分根据上述原理和分析,在进行高职数学有效教学实践的基础上,总结性提出了高职数学有效教学的对策框架,包括通过精心编辑增强高职数学教学材料的有效性、通过问题导入增强高职数学概念教学的有效性、通过实例剖析增强高职数学计算教学的有效性、通过具体应用增强高职数学原理教学的有效性。第五部分是本文的结论部分。总结了本文的主要结论,指出了本文的不足之处,对高职数学有效教学的进一步发展进行了适当的展望。本文提倡全面实施高职数学的有效教学,积极促进高职学生的全面发展。

邬晨霞[10](2020)在《基于HPM的高中数学导数的教学研究》文中提出导数在普通高中数学中占有非常重要的地位,它是研究函数性质的一种非常重要的方法.而且,导数在高考中也占有很大的比重.但是,限于学生的思维发展水平,在高中阶段教师并不从极限的角度出发引导理解导数的概念,在进行高中数学导数及其应用的相关内容的教学时着重于导数的应用.因此,如何把握导数概念的本质并在此基础上灵活应用导数研究原函数的性质,解决实际问题成为学生的难点,也是教学者在教学过程中的难点.2013年,教育部启动了新一轮的普通高中课程修订工作.在2018年1月正式出版了《普通高中数学课程标准(2017版)》(以下简称《标准》).《标准》中提出了4点基本理念,“把握数学本质,启发思考,改进教学”是其中之一.这一理念要求高中数学教学以发展学生数学学科核心素养为导向,创设合适的教学情境,启发学生思考,引导学生把握数学内容的本质.近年来,有关于HPM的研究越来越多,HPM在教学实践中显示出来的教育价值越来越得到研究者的认可.HPM的实践为导数的实际教学提供了思路和方向.通过阐述导数的发生发展史,在实际教学中融入数学史,创设合适的教学情境,让学生知道导数从何而来,从而更好地把握导数概念的本质以及更加灵活地运用导数解决实际问题.本文通过文献研究法整理了有关HPM的研究以及有关导数的研究,包括与HPM有关的研究的发展过程、HPM应用教学的相关研究、导数的发展史以及导数教学的相关研究.在此基础上设计并实施基于HPM的导数概念和导数应用的教学,通过对问卷调查所收集到的数据进行统计分析以及对访谈结果的分析,得出如下结论:(1)基于HPM的导数教学能够促进学生对导数概念的本质的理解;(2)基于HPM的导数教学能够促进学生灵活应用导数研究原函数的性质;(3)基于HPM的数学教学研究能够提升研究者的综合能力.

二、函数极限的不存在性研究以及在教学中的应用(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、函数极限的不存在性研究以及在教学中的应用(论文提纲范文)

(1)高中数学学情分析指标框架的构建及其实践研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 选题背景
        1.1.1 学情分析是教育改革的新要求
        1.1.2 学情分析是学生有效学习的起点
        1.1.3 学情分析是教学设计的重要部分
    1.2 研究问题与内容
    1.3 研究目的
    1.4 研究意义
        1.4.1 理论意义
        1.4.2 实践意义
    1.5 核心概念界定
        1.5.1 学情
        1.5.2 数学学情
    1.6 研究重点、难点
第二章 文献综述与理论基础
    2.1 文献综述
        2.1.1 学情分析的内涵
        2.1.2 学情分析的内容
        2.1.3 学情分析的理论基础
        2.1.4 学情分析的方法
        2.1.5 学情分析的框架
        2.1.6 研究评述
    2.2 理论基础
        2.2.1 最近发展区理论
        2.2.2 SOLO分类理论
第三章 研究设计
    3.1 研究方法
    3.2 研究对象
    3.3 研究思路
    3.4 研究工具
        3.4.1 指标框架的构建
        3.4.2 指标框架的修订完善
        3.4.3 学习《函数的概念》的学情分析测试题编制
        3.4.4 学情分析测试题评分方式
第四章 高中数学学情分析指标框架初步构建
    4.1 数学学情分析指标的确定
    4.2 数学学情分析指标的划分
        4.2.1 数学知识与能力基础的划分
        4.2.2 学生认知特点水平的划分
        4.2.3 学生学习风格类型的划分
        4.2.4 数学学习需要类型的划分
    4.3 高中数学学情分析指标框架初构
第五章 高中数学学情分析指标框架修订完善
    5.1 专家评估意见数据统计分析
    5.2 学情分析框架指标维度的意见及修改
    5.3 不同指标维度下学生反应特征的意见与修改
    5.4 高中数学学情分析指标框架的确立
第六章 高中数学学情分析指标框架实践研究
    6.1 预测试卷的信度和效度
    6.2 正式测试卷的信度与效度
    6.3 特长班学情分析报告
        6.3.1 知识能力基础基本情况分析
        6.3.2 学生认知特点基本情况分析
        6.3.3 学生学习风格基本情况分析
        6.3.4 学习发展需要基本情况分析
    6.4 普通班学情分析报告
        6.4.1 知识能力基础基本情况分析
        6.4.2 学生认知特点基本情况分析
        6.4.3 学生学习风格基本情况分析
        6.4.4 学习发展需要基本情况分析
第七章 结论与展望
    7.1 研究结论
        7.1.1 构建高中数学学情分析指标框架
        7.1.2 高中数学学情分析指标框架的实践结果
    7.2 研究建议
        7.2.1 深入了解学情,避免经验主义误区
        7.2.2 熟悉教学内容,编制学情测试题
        7.2.3 了解学生情况,合理组织教学活动
        7.2.4 简化学情分析,减轻教师教学压力
    7.3 研究创新点
    7.4 研究不足
    7.5 研究展望
参考文献
附录
    附录1 高中数学学情分析指标框架征求专家意见表
    附录2 《函数的概念》学情调查分析测试卷(预测试)
    附录3 学情调查分析测试卷评分细则
    附录4 《函数的概念》学情调查分析测试卷
致谢

(2)初等数学教学借鉴高等数学教学法的初探(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景
    1.2 研究现状
        1.2.1 传统应试思想仍普遍存在
        1.2.2 初等数学与高等数学的衔接问题
        1.2.3 初等数学与高等数学的内容衔接
    1.3 文献综述
        1.3.1 中学教育与高等教育的衔接
        1.3.2 中学数学与高等数学教学的衔接与策略
    1.4 研究问题
    1.5 研究意义
第2章 初等数学与高等数学教学方法的调查与分析
    2.1 数据分析
    2.2 调查结果再分析
    2.3 高中数学与高等数学教学方法使用的比较
第3章 借鉴高等数学教学法的高中数学教学策略研究
    3.1 类化教学
    3.2 多角度理解本质
        3.2.1 语言表达角度
        3.2.2 表格角度
        3.2.3 几何(图像)角度
        3.2.4 代数角度
    3.3 多知识点串联
    3.4 趣味引申
    3.5 合理运用阅读材料和探究与实践
    3.6 培养分析的思维方式
    3.7 高中与高等数学教师加强沟通
第4章 借鉴高等数学教学法的高中数学教学
    4.1 斐波那契数列的起源
    4.2 斐波那契数列与递推关系
    4.3 斐波那契数列与极限
    4.4 斐波那契数列与通项公式
    4.5 斐波那契数列与前n项和
    4.6 斐波那契数列与算法
第5章 借鉴高等数学教学法的高中数学教学拓展
    5.1 递推数列与函数
    5.2 递推数列与方程
    5.3 换元法
    5.4 极限思想与几何
第6章 总结与展望
    6.1 总结
    6.2 优势与不足
    6.3 展望
参考文献
附录 A 高等数学的课时调查
附录 B 初等数学的课时调查
附录 C 访谈提纲
致谢

(3)“高观点”下高中导数解题及教学研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究的背景
        1.1.1 数学教师专业素养发展的需要
        1.1.2 优秀高中学生自身发展的需求
        1.1.3 导数在高中数学教学及高考中的地位
    1.2 核心名词界定
        1.2.1 高观点
        1.2.2 导数
        1.2.3 数学教学
        1.2.4 解题
    1.3 研究的内容和意义
        1.3.1 研究的内容
        1.3.2 研究的意义
    1.4 研究的思路
        1.4.2 研究计划
        1.4.3 研究的技术路线
    1.5 论文的结构
第2章 文献综述
    2.1 文献搜集
    2.2 高观点下中学数学的研究现状
        2.2.1 国外研究的现状
        2.2.2 国内的研究现状
    2.3 高观点下高中导数的研究现状
        2.3.1 国外研究的现状
        2.3.2 国内研究的现状
    2.4 文献述评
    2.5 小结
第3章 研究设计
    3.1 研究的目的
    3.2 研究的方法
        3.2.1 文献研究法
        3.2.2 问卷调查法
        3.2.3 案例研究法
    3.3 研究工具及研究对象选取
    3.4 研究伦理
    3.5 小结
第4章 调查研究及结果分析
    4.1 教师调查问卷的设计及结果分析
        4.1.1 调查问卷设计
        4.1.2 实施调查
        4.1.3 调查结果分析
        4.1.3.1 问卷的信度分析
        4.1.3.2 问卷的效度分析
        4.1.3.3 问卷的结果分析
    4.2 学生调查问卷的设计及结果分析
        4.2.1 调查问卷设计
        4.2.2 实施调查
        4.2.3 调查结果及分析
    4.3 调查结论
    4.4 小结
第5章 “高观点”下高中导数的解题研究
    5.1 “高观点”下高考导数试题的命题背景
        5.1.1 以高等数学中的基本定义和性质为命题背景
        5.1.1.1 高斯函数
        5.1.1.2 函数的凹凸性
        5.1.2 以高等数学中的重要定理或公式为命题背景
        5.1.2.1 洛必达法则
        5.1.2.2 拉格朗日中值定理
        5.1.2.3 拉格朗日乘数法
        5.1.2.4 柯西中值定理
        5.1.2.5 柯西函数方程
        5.1.2.6 泰勒公式与麦克劳林公式
        5.1.2.7 极值的第三充分条件
        5.1.2.8 两个重要极限
        5.1.2.9 欧拉常数
        5.1.3 以着名不等式为命题背景
        5.1.3.1 伯努利不等式
        5.1.3.2 詹森不等式
        5.1.3.3 对数平均不等式
        5.1.3.4 斯外尔不等式
        5.1.3.5 惠更斯不等式
        5.1.3.6 约当不等式
        5.1.4 以高等数学中的重要思想方法为命题背景
        5.1.4.1 极限思想
        5.1.4.2 积分思想
        5.1.4.3 (常微分)方程思想
    5.2 “高观点”下高考导数解题中常见的四类错误
        5.2.1 知识性错误
        5.2.1.1 柯西中值定理的误用
        5.2.1.2 拉格朗日中值定理的误用
        5.2.1.3 多元函数求最值,不注意边界情况
        5.2.1.4 不注意洛必达法则使用的前提
        5.2.2 逻辑性错误
        5.2.2.1 循环论证
        5.2.2.2 混淆充分条件和必要条件的逻辑关系
        5.2.3 策略性错误
        5.2.4 心理性错误
    5.3 “高观点”下高考导数解题的方法
        5.3.1 创设引理破难题
        5.3.2 洛氏法则先探路
        5.3.3 导数定义避超纲
        5.3.4 构造函数显神通
        5.3.5 多元偏导先找点
    5.4 “高观点”下高考导数解题研究的案例
        5.4.1 “高观点”视角研究解题方法
        5.4.2 “高观点”视角研究试题的命制
    5.5 小结
第6章 “高观点”下高中导数的教学研究
    6.1 “高观点”下高中导数教学的教学特点
        6.1.1 衔接性
        6.1.2 选择性
        6.1.3 引导性
    6.2 “高观点”下高中导数教学的教学原则
        6.2.1 严谨性原则
        6.2.2 直观性原则
        6.2.3 因材施教原则
        6.2.4 量力性原则
    6.3 “高观点”下高中导数教学的教学策略
        6.3.1 开发例题,拓展升华策略
        6.3.2 引入四规则,知识呈现多样化策略
        6.3.3 先实践操作,后说理策略
        6.3.4 融合信息技术,直观解释策略
        6.3.5 引导方向,自主学习策略
    6.4 “高观点”下高中导数的教学案例
        6.4.1 常微分方程视角下的教学案例
        6.4.2 微积分视角下的教学案例
        6.4.3 “泰勒公式”的教学案例
    6.5 小结
第7章 结论与反思
    7.1 研究的结论
    7.2 研究的不足及展望
    7.3 结束语
参考文献
附录 A 教师调查问卷
附录 B 学生调查问卷
攻读学位期间发表的论文和研究成果
致谢

(4)磨的是课,成的是人 ——数学评优课磨课活动的研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 缘起
        1.1.1 几个机缘
        1.1.2 初步推断
    1.2 研究问题
        1.2.1 研究问题的孕育
        1.2.2 研究问题的确立
    1.3 概念界定
        1.3.1 数学评优课
        1.3.2 数学评优课磨课活动
    1.4 研究背景
        1.4.1 通过优秀课评比推动教师发展:中国特色待阐扬
        1.4.2 建设高质量基础教育教师队伍:教育发展新征程
        1.4.3 数学教师专业发展的实践导向:相关研究正蓬勃
    1.5 研究意义
        1.5.1 增益中国数学教育教研的特色
        1.5.2 丰富数学教师专业发展的研究
        1.5.3 引导数学教师备好课、上好课
        1.5.4 支持教研员有效组织教研指导
第2章 文献述评
    2.1 文献主题的设计与组织
    2.2 关于数学评优课磨课活动
        2.2.1 优质数学课堂特征维度
        2.2.2 已有研究的内容与方法
    2.3 关于数学教师专业发展
        2.3.1 数学教师的专业素养
        2.3.2 数学教师的专业学习
    2.4 关于数学课例研究
        2.4.1 数学课例研究的过程与特点
        2.4.2 数学课例研究对教师专业发展的影响
第3章 研究设计
    3.1 方法论:实践现象学
        3.1.1 本研究的基本定位和范式取向
        3.1.2 研究者的人际关系和自身特点
        3.1.3 方法论的规划选取和基本含义
        3.1.4 来自实践现象学的多层次启发
    3.2 研究思路与过程
        3.2.1 积累与感悟已有认识
        3.2.2 体验与洞见真实活动
        3.2.3 反思与直观活动本质
    3.3 研究方法与对象
        3.3.1 观察法
        3.3.2 访谈法
        3.3.3 出声思维
        3.3.4 自我反思
    3.4 资料整理与分析
        3.4.1 资料的汇总与归类
        3.4.2 资料的理解与反思
        3.4.3 资料的提炼与呈现
    3.5 研究效度与伦理
        3.5.1 研究的效度
        3.5.2 研究的伦理
    3.6 论文结构与写法
        3.6.1 论文的结构
        3.6.2 论文的写法
第4章 数学评优课磨课活动中“课”的改进
    4.1 以发现问题为目的观察试教
        4.1.1 依据学生表现发现关键事件
        4.1.2 在分析关键事件中提出问题
        4.1.3 小结:“烤”
    4.2 理解数学知识的境脉与本质
        4.2.1 探究教材的编写逻辑与意图
        4.2.2 从其他版本教材里获得启发
        4.2.3 在数学知识体系中寻根究底
        4.2.4 小结:“吃橘子”
    4.3 基于经验推理把握未知学情
        4.3.1 挖掘不同学情的特点与需求
        4.3.2 结合潜在难点制定教学目标
        4.3.3 小结:“境与径”
    4.4 编排创意的课堂结构与任务
        4.4.1 建立简洁且深刻的课堂结构
        4.4.2 设计合理创新的活动与问题
        4.4.3 把握课堂容量与时间的平衡
        4.4.4 小结:“神来之笔”
    4.5 设计灵活的启发时机与策略
        4.5.1 推测学生的思维方式与进程
        4.5.2 预设弹性化的适时启发策略
        4.5.3 规划即时性教学决策的方向
        4.5.4 小结:“出彩”
    4.6 “因师施磨”迭代推进问题解决
        4.6.1 注重教师的特质和自我建构
        4.6.2 试教不同学情调适教学实施
        4.6.3 小结:“陪伴”
    4.7 本章总结
第5章 数学评优课磨课活动中“人”的发展
    5.1 参赛教师的主要发展
        5.1.1 课堂教学中的能力发展
        5.1.2 磨课活动中的能力发展
        5.1.3 磨后反思中的能力发展
        5.1.4 研究性思维的整体优化
        5.1.5 小结:“名师之智”
    5.2 教研员的主要发展
        5.2.1 理解教师能力的精深
        5.2.2 教学设计能力的精进
        5.2.3 磨课组织能力的精湛
        5.2.4 研究性思维的持续完善
        5.2.5 小结:“教研之慧”
    5.3 专家教师的主要发展
        5.3.1 教学创新能力的改良
        5.3.2 指导教师方法的改进
        5.3.3 教研合作意识的改善
        5.3.4 研究性思维的不断突破
        5.3.5 小结:“专家之谋”
    5.4 研究者的主要发展
        5.4.1 作为“局内人”的诸多发展
        5.4.2 作为“局外人”的诸多发展
        5.4.3 研究性思维的融合发展
        5.4.4 小结:“科研之思”
    5.5 本章总结
第6章 结论与启示
    6.1 结论
        6.1.1 关于数学评优课磨课活动中“课”的改进
        6.1.2 关于数学评优课磨课活动中“人”的发展
    6.2 启示:“尚在起点的探索”
参考文献
    中文文献
    英文文献
附录1 《二次函数的图像和性质(整体建构)》现场评优课教学设计
附录2 《中心对称与中心对称图形(第一课时)》现场评优课教学设计
作者简历及在学期间所取得的科研成果
致谢:行的是路,知的是情

(5)面向教师教育的数学知识研究 ——以S市高中数学教研员为例(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 研究背景
        1.1.1 教师教育者的专业发展需要关注
        1.1.2 数学教师教育者的研究值得重视
        1.1.3 数学教师教育者的专业知识有待探索
    1.2 研究问题
    1.3 研究意义
        1.3.1 理论意义
        1.3.2 实践意义
    1.4 论文结构
第2章 文献述评
    2.1 数学教师教育者的专业知识
        2.1.1 数学教师教育者的专业知识框架
        2.1.2 数学教师教育者的专业知识测评
        2.1.3 文献小结
    2.2 数学教师教育者的专业发展
        2.2.1 数学教师教育者的专业发展框架
        2.2.2 数学教师教育者的专业发展调查
        2.2.3 文献小结
    2.3 数学教师教育者的工作实践
        2.3.1 数学教师教育课堂的学习任务框架
        2.3.2 数学教师教育课堂的学习任务实践
        2.3.3 文献小结
    2.4 文献述评总结
第3章 研究方法
    3.1 研究设计
        3.1.1 文献分析与框架确立
        3.1.2 问卷调查与深度访谈
        3.1.3 现场观察与案例分析
    3.2 研究对象
        3.2.1 专家论证对象
        3.2.2 问卷调查对象
        3.2.3 深度访谈对象
        3.2.4 案例研究对象
    3.3 研究工具
        3.3.1 论证手册
        3.3.2 调查问卷
        3.3.3 访谈提纲
        3.3.4 观察方案
    3.4 数据收集
        3.4.1 专家论证
        3.4.2 问卷调查
        3.4.3 深度访谈
        3.4.4 现场观察
    3.5 数据分析
        3.5.1 专家论证
        3.5.2 问卷与访谈
        3.5.3 现场观察
第4章 研究结果(一):面向教师教育的数学知识框架
    4.1 文献分析
        4.1.1 已有框架选取
        4.1.2 相关成分析取
        4.1.3 相关类别编码
    4.2 框架构建
        4.2.1 相关类别合并
        4.2.2 相应成分生成
        4.2.3 初步框架构建
    4.3 框架论证
        4.3.1 第一轮论证
        4.3.2 第二轮论证
        4.3.3 第三轮论证
第5章 研究结果(二):高中数学教研员具备的面向教师教育的数学知识
    5.1 学科内容知识
        5.1.1 一般内容知识
        5.1.2 专门内容知识
        5.1.3 关联内容知识
    5.2 教学内容知识
        5.2.1 内容与学生知识
        5.2.2 内容与教学知识
        5.2.3 内容与课程知识
    5.3 高观点下的数学知识
        5.3.1 学科高等知识
        5.3.2 学科结构知识
        5.3.3 学科应用知识
    5.4 数学哲学知识
        5.4.1 本体论知识
        5.4.2 认识论知识
        5.4.3 方法论知识
    5.5 总体分析
        5.5.1 学科内容知识
        5.5.2 教学内容知识
        5.5.3 高观点下的数学知识
        5.5.4 数学哲学知识
第6章 研究结果(三):数学教研活动中反映的面向教师教育的数学知识
    6.1 案例1
        6.1.1 第一轮观察:平均值不等式
        6.1.2 第二轮观察:对数的概念
        6.1.3 案例1 总体分析
    6.2 案例2
        6.2.1 第一轮观察:幂函数的概念
        6.2.2 第二轮观察:函数的基本性质
        6.2.3 案例2 总体分析
    6.3 案例3
        6.3.1 第一轮观察:幂函数的概念
        6.3.2 第二轮观察:出租车运价问题
        6.3.3 案例3 总体分析
    6.4 案例4
        6.4.1 第一轮观察:反函数的概念
        6.4.2 第二轮观察:反函数的图像
        6.4.3 案例4 总体分析
    6.5 跨案例分析
        6.5.1 学科内容知识
        6.5.2 教学内容知识
        6.5.3 高观点下的数学知识
        6.5.4 数学哲学知识
        6.5.5 案例总体分析
第7章 研究结论及启示
    7.1 研究结论
        7.1.1 面向教师教育的数学知识框架
        7.1.2 高中数学教研员具备的面向教师教育的数学知识
        7.1.3 高中数学教研活动中反映的面向教师教育的数学知识
    7.2 研究启示
        7.2.1 教师教育者的专业标准制订需要关注学科性
        7.2.2 数学教师教育者的专业培训需要提升针对性
        7.2.3 数学教师专业发展项目规划需要增加多元性
    7.3 研究局限
    7.4 研究展望
        7.4.1 拓展数学教师教育者的专业知识研究
        7.4.2 深入数学教师教育者的专业发展研究
        7.4.3 延伸数学教师教育者的工作实践研究
参考文献
附录
    附录1 论证手册(第一轮)
    附录2 论证手册(第二轮)
    附录3 论证手册(第三轮)
    附录4 调查问卷(第一版)
    附录5 调查问卷(第二版)
    附录6 调查问卷(第三版)
    附录7 调查问卷(第四版)
    附录8 调查问卷(第五版)
    附录9 访谈提纲
    附录10 观察方案
作者简历及在学期间所取得的科研成果
致谢

(6)职前数学教师专业知识结构及水平的实证研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    第一节 研究背景
    第二节 研究问题
    第三节 研究意义
    第四节 论文结构
第二章 文献综述
    第一节 教师知识
        一.知识的内涵及分类
        二.教师知识的分类
    第二节 数学教师知识
        一.数学教师学科知识
        二.数学教师学科教学知识
        三.数学教师知识相关文献的量化分析
    第三节 职前数学教师知识
        一.职前数学教师知识的现状及来源
        二.职前数学教师知识中某类具体知识
        三.职前数学教师综合性知识和技能
        四.中外职前数学教师知识的对比
    第四节 本章小结
第三章 研究设计与实施
    第一节 研究思路与方法
        一.研究思路
        二.研究方法
    第二节 相关概念界定
        一.教师知识
        二.数学教师专业知识
        三.职前教师
        四.知识结构
    第三节 理论基础与框架
        一.数学教师专业知识分类框架构建
        二.职前数学教师专业知识分析层次建构
    第四节 研究的具体过程
第四章 教师视角下的合格数学教师专业知识结构
    第一节 教师视角下合格数学教师专业知识结构描述分析
    第二节 教师视角下合格数学教师专业知识结构聚类分析
    第三节 不同群体教师对合格数学教师各类知识权重看法的量化分析
        一.不同教龄教师对合格数学教师各类知识权重看法的差异分析
        二.不同职称教师对合格数学教师各类知识权重看法的差异分析
        三.不同称号教师对合格数学教师各类知识权重看法的差异分析
        四.不同学历教师对合格数学教师各类知识权重看法的差异分析
    第四节 教师视角下合格数学教师各类知识权重看法的质化分析
    第五节 本章小结
第五章 职前数学教师专业知识现状分析
    第一节 职前数学教师专业知识掌握情况的水平划分
        一.职前数学教师专业知识测试成绩整体描述
        二.职前数学教师测试总成绩的水平分布
        三.职前数学教师主观题作答情况的水平分析
    第二节 职前数学教师专业知识的实际结构
    第三节 不同类型学校职前数学教师专业知识得分情况的差异分析
        一.不同类型学校职前数学教师总成绩的差异分析
        二.不同类型学校职前数学教师各类知识得分的差异分析
    第四节 不同性别职前数学教师得分情况的差异分析
        一.不同性别职前数学教师总成绩的差异分析
        二.不同性别职前数学教师各类知识得分的差异分析
    第五节 各类数学专业知识之间的关系分析
        一.各类数学专业知识得分之间的相关性分析
        二.数学学科知识对数学教学知识的影响分析
        三.数学学科知识对数学课程知识的影响分析
    第六节 本章小结
第六章 职前数学教师专业知识实际结构与期望结构的对比分析
    第一节 职前数学教师专业知识实际结构与期望结构的整体比较
    第二节 不同水平下职前数学教师专业知识实际结构与期望结构的比较
        一.前水平的职前数学教师专业知识结构的比较
        二.识记水平的职前数学教师专业知识结构的比较
        三.关联水平的职前数学教师专业知识结构的比较
        四.综合水平的职前数学教师专业知识结构的比较
    第三节 职前数学教师专业知识结构的讨论
    第四节 本章小结
第七章 结论与建议
    第一节 研究的结论
    第二节 研究的建议
    第三节 研究的局限性与展望
参考文献
附录
    附录1 中学数学教师知识结构状况调查与访谈提纲
    附录2 数学教师专业知识分类框架
    附录3 中学数学教师知识权重调查问卷
    附录4 教师资格考试2014-2018 试题汇总
    附录5 职前数学教师专业知识与基本能力测试
    附录6 职前数学教师专业知识与基本能力测试参考答案
    附录7 职前数学教师专业知识结构及其培养策略访谈提纲
后记
在学期间公开发表论文及着作情况

(7)中学生概率概念学习进阶的构建问题研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    一、研究背景
    二、研究问题
    三、研究意义
第二章 研究基础
    一、知识背景
    二、认知发展理论
    三、学习进阶理论
    四、认知诊断理论
第三章 文献综述
    一、学生对概率概念理解的研究
    二、学习进阶的相关研究
    三、基于认知诊断理论的相关研究
    四、文献述评小节
第四章 研究设计
    一、总体研究目标与框架
    二、概率概念假设性学习进阶的构建
    三、概率概念学习进阶的检验与修订
    四、中学生概率概念学习表现的诊断评估
第五章 概率概念假设性学习进阶的构建
    一、假设性学习进阶的理论依据
    二、属性的提取
    三、属性间层级关系的建立
    四、概率概念假设性学习进阶的构建
第六章 概率概念学习进阶的检验与修订
    一、概率概念认知诊断测验Q矩阵的确定
    二、概率概念认知诊断测验的编制
    三、概率概念假设性学习进阶的检验与修订
第七章 中学生概率概念学习表现的诊断评估
    一、中学生概率概念的学习进阶水平
    二、中学生概率概念的认知结构
    三、中学生概率概念的多元化学习路径
第八章 综合讨论
    一、基于认知诊断理论构建概率概念的学习进阶
    二、应用学习进阶评估学生概率概念的学习表现
第九章 研究结论与建议
    一、主要研究结论
    二、研究建议
    三、研究不足及展望
参考文献
附录
    附录一 数学课程标准中的概率内容课程目标
    附录二 理想掌握模式和理想反应模式之间的相互对应
    附录三 概率概念的认知诊断测验(修订版)
后记
在学期间公开发表论文及着作情况

(8)导数在高中和大学衔接阶段的教学研究(论文提纲范文)

摘要
Abstract
1 前言
    1.1 导数的重要性
    1.2 导数教学的重要性
    1.3 高中阶段导数教学的现状与问题
    1.4 本文所要解决的主要问题
    1.5 研究目的
    1.6 研究意义
2 导数衔接教学的基本情况
    2.1 导数衔接教学的基本概念
    2.2 导数衔接教学的重要性
    2.3 国内导数衔接教学研究现状
    2.4 国外导数衔接教学研究现状
3 导数衔接教学的研究与探索
    3.1 可行性研究
    3.2 导数衔接教学对教材的要求
    3.3 教师在导数衔接教学中应避免的问题
    3.4 学生如何有效的学习导数
4 导数衔接教学的教学策略
    4.1 高中课堂导数衔接教学的策略
    4.2 导数衔接教学教学策略的具体实践
5 结论
参考文献
附录
致谢

(9)高职数学教学的有效性研究 ——以LD职业技术学院为例(论文提纲范文)

摘要
Abstract
一、绪论
    (一)课题研究的背景
    (二)课题研究的意义
        1.理论意义
        2.实践意义
    (三)课题研究的方法
        1.文献研究法
        2.行动研究法
        3.经验总结法
        4.质性研究法
    (四)国内外文献综述
        1.国外有效教学研究文献综述
        2.国内有效教学研究文献综述
二、高职数学有效教学的基本原理
    (一)有效教学几个有关的重要概念
        1.有效教学的基本概念
        2.有效教学的本质特征
        3.有效教学的基本原则
        4.有效教学的影响因素
    (二)高职数学有效教学的理论依据
        1.陶行知的生活教育理论
        2.郭思乐的生本教育理论
        3.波利亚的数学教学理论
        4.张奠宙的数学教育理论
    (三)高职数学有效教学的主要内容
        1.高职数学有效教学的基本概念
        2.高职数学有效教学的影响因素
        3.高职数学有效教学的主要特征
        4.高职数学有效教学的现实意义
三、高职数学传统教学的问题分析
    (一)高职数学传统教材的问题分析
        1.重知识传授,轻能力培养
        2.重教学过程,轻教学效果
        3.重知识展示,轻知识应用
        4.重逻辑推理,轻形象思维
    (二)高职数学概念教学的问题分析
        1.重形式而轻内涵
        2.重结果而轻过程
        3.重定义而轻应用
        4.重呈现而轻探究
    (三)高职数学计算教学的问题分析
        1.情境综合症
        2.媒介依赖性
        3.形式主义病
        4.过程简单化
    (四)高职数学原理教学的问题分析
        1.理论性过强
        2.应用性偏弱
        3.抽象性较高
        4.操作性太低
四、高职数学有效教学的对策分析
    (一)通过精心编辑增强高职数学教学材料的有效性
        1.确定高职数学教育目标
        2.选择高职数学教育途径
        3.组织高职数学教育经验
    (二)通过问题导入增强高职数学概念教学的有效性
        1.抓住数学定义重要特征
        2.捕捉数学文化闪光瞬间
        3.结合数学思想联系脉络
    (三)通过实例剖析增强高职数学计算教学的有效性
        1.力求计算准确
        2.训练一题多解
        3.选择最优方案
    (四)通过具体应用增强高职数学原理教学的有效性
        1.培养学习能力
        2.培养思维能力
        3.培养应用能力
五、结论与展望
    (一)结论
    (二)展望
注释
参考文献
读硕期间发表的论文目录
致谢

(10)基于HPM的高中数学导数的教学研究(论文提纲范文)

摘要
Abstract
1.问题提出
    1.1 研究背景
        1.1.1 课程标准中导数的相关内容
        1.1.2 高考试卷中导数的相关内容
    1.2 研究问题
2.文献综述
    2.1 HPM的相关研究
        2.1.1 国外相关研究
        2.1.2 国内相关研究
        2.1.3 历史相似性原理
        2.1.4 运用数学史的方式
    2.2 导数的相关研究
        2.2.1 微积分的历史
        2.2.2 近年来HPM与导数的教学研究
3.研究方法
    3.1 文献研究法
    3.2 问卷调查法
    3.3 访谈法
4.基于HPM的导数教学设计与实施
    4.1 基于HPM的数学教学原则
        4.1.1 数学史料的选取原则
        4.1.2 数学教学的特殊原则
    4.2 基于HPM的导数概念的教学设计
        4.2.1 教学设计相关数学史
        4.2.2 教学设计内容
    4.3 基于HPM的导数应用的教学设计
        4.3.1 教学设计相关数学史
        4.3.2 教学设计内容
5.研究结果分析
    5.1 问卷调查的结果分析
    5.2 访谈的结果分析
6.研究结论与教学建议
    6.1 研究结论
    6.2 教学建议
参考文献
附录
致谢

四、函数极限的不存在性研究以及在教学中的应用(论文参考文献)

  • [1]高中数学学情分析指标框架的构建及其实践研究[D]. 张宇静. 天津师范大学, 2021(09)
  • [2]初等数学教学借鉴高等数学教学法的初探[D]. 陆奕纯. 上海师范大学, 2021(07)
  • [3]“高观点”下高中导数解题及教学研究[D]. 李超. 云南师范大学, 2021(08)
  • [4]磨的是课,成的是人 ——数学评优课磨课活动的研究[D]. 朱晨菲. 华东师范大学, 2021(08)
  • [5]面向教师教育的数学知识研究 ——以S市高中数学教研员为例[D]. 沈中宇. 华东师范大学, 2021(08)
  • [6]职前数学教师专业知识结构及水平的实证研究[D]. 王改珍. 东北师范大学, 2021(09)
  • [7]中学生概率概念学习进阶的构建问题研究[D]. 白胜南. 东北师范大学, 2021(09)
  • [8]导数在高中和大学衔接阶段的教学研究[D]. 郭晓慧. 西南大学, 2020(05)
  • [9]高职数学教学的有效性研究 ——以LD职业技术学院为例[D]. 彭奇林. 广西师范大学, 2020(07)
  • [10]基于HPM的高中数学导数的教学研究[D]. 邬晨霞. 江西师范大学, 2020(11)

标签:;  ;  ;  ;  ;  

功能极限不存在及其在教学中的应用研究
下载Doc文档

猜你喜欢