一、XI′AN INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——ACHIEVEMENTS OF RESEARCH(论文文献综述)
ZHENG Mianping,ZHANG Yongsheng,LIU Xifang,NIE Zhen,KONG Fanjing,QI Wen,Jia Qingxian,PU Linzhong,HOU Xianhua,WANG Hailei,ZHANG Zhen,KONG Weigang,LIN Yongjie[1](2016)在《Progress and Prospects of Salt Lake Research in China》文中研究说明China has unique salt lake resources, and they are distributed in the east of Eurasian salt lake subzone of the Northern Hemisphere Salt Lake Zone, mainly concentrated in the regions with modern mean annual precipitation lower than 500 mm. This paper preliminarily reviews the progress made in salt lake research in China for the past 60 years. In the research of Paleoclimate and paleoenvironment from salt lake sediments, a series of salts have been proposed to be indicators of paleoclimate, and have been well accepted by scholars. The chloride-sulfate depositional regions of the west Qaidam and the east Tarim have been revealed to be the drought center of China since the Quaternary, and more than 6 spreading stages of arid climate(salt forming) have been identified. Five pan-lake periods with highstands have been proved to exist during the late Quaternary on the Tibetan Plateau. In mineral resource prospecting and theories of the forming of salt deposits: the atlas(1:2500000) of hydrochemical zoning of salt lakes on the Tibetan Plateau has been compiled for the first time, revealing the zonal distribution and transition from carbonate type to chloride type from south to north and presenting corresponding mineral assemblages for different type of salt lakes; several large continental salt deposits have been discovered and the theory of continental potash deposition has been developed, including the salt deposition in deep basins surrounded by high mountains, the mineral deposition from multistage evolution through chains of moderate or shallow lakes with multilevels, the origin of potassium rich brines in gravel layers, and the forming of potassium deposits through the inheriting from ancient salt deposits, thus establishing the framework of "Continental Potash Deposition Theory"; several new types of Mg-borate deposits have been discovered, including the ulexite and pinnoite bed in Da Qaidam Lake, Qinghai, the pinnoite and kurnakovite bed in Chagcam Caka, Tibet, the kurnakovite bed in Lake Nyer, and the corresponding model of borate deposition from the cooling and dissolution of boron rich brines was proposed based on principles of geology, physics and chemistry. The anti-floatation-cold crystallization method developed independently has improved the capacity of KCl production to 3 million tons per year for the Qarham, serving the famous brand of potash fertilizer products. One 1.2 million ton K-sulfate production line, the biggest in the world, has been built in Lop Nor, and K-sulfate of about 1.6 million tons was produced in 2015. Supported by the new technology, i.e. brine preparation in winter-cooling-solarization-isolation-lithium deposition from salt gradient solar pond" the highest lithium production base at Zabuye Lake(4421 m), Tibet, has been established, which is the first lithium production base in China that reaches the year production of 5000 tons of lithium carbonate. The concept of Salt lake agriculture(Salt land agriculture) has been established based on the mass growth of Dunaliella and other bacillus-algae and the occurrence of various halophytes in saltmarsh and salt saline-alkali lands, finding a new way to increase arable lands and develop related green industry in salt rich environments. Finally this paper presents some new thoughts for the further research and development on salt science, and the further progress in salt science and technology will facilitate the maturing of the interdisciplinary science "Salinology".
CHEN Jianping,XIANG Jie,HU Qiao,YANG Wei,LAI Zili,HU Bin,WEI Wei[2](2016)在《Quantitative Geoscience and Geological Big Data Development:A Review》文中研究表明After long-term development, mathematical geology has today become an independent discipline. Big Data science, which has become a new scientific paradigm in the 21 st century, gives rise to the geological Big Data, i.e. mathematical geology and quantitative geoscience. Thanks to a robust macro strategy for big data, China’s quantitative geoscience and geological big data’s rapid development meets present requirements and has kept up with international levels. This paper presents China’s decade-long achievements in quantitative prediction and assessment of mineral resources, geoscience information and software systems, geological information platform development, etc., with an emphasis on application of geological big data in informatics, quantitative mineral prediction, geological environment and disaster management, digital land survey, digital city, etc. Looking ahead, mathematical geology is moving towards "Digital Geology", "Digital Land" and "Geological Cloud", eventually realizing China’s grand "Digital China" blueprint, and these valuable results will be showcased on the international academic arena.
王飞飞,刘池洋,邱欣卫,郭佩,张少华,程相虎[3](2017)在《世界砂岩型铀矿探明资源的分布及特征》文中认为最新核电发展规划显示未来我国对铀资源的需求很大。长久来看在继续加大国内勘探力度的同时,需尽快了解国外已探明铀资源尤其是砂岩型铀资源的分布,以更好地从全球视角完善我国的铀资源供应链。我国北方砂岩型铀矿大规模勘探始于本世纪初,起点较晚,在实际勘探和研究中也遇到较多难题及困惑。因此与全球同类型矿床的对比研究亟需展开,亦要求首先了解世界各国砂岩型铀矿的分布和基本特征。本文通过大量文献和最新勘探形势的调研整理,对比分析了近年来全球主要产铀国砂岩型铀矿资源量的变化,系统全面地编制了全新的全球和各国(或各大洲)已发现砂岩型铀矿床及其容矿层位分布图,总体可较精细地反映迄今全球各国已探明砂岩型铀矿分布面貌的现状,同时提炼了重点矿床的主要地质特征。最后总结出全球已发现砂岩型铀矿时空分布具有五大特征:(1)全球分布广泛但不均衡,跨欧亚存在东西向巨型铀矿带;(2)规模因地而异、(超)大型矿床较多;(3)平面分布与气候环境耦合明显;(4)容矿层时代跨度长、成矿时间相对较晚;(5)主要赋存于含油气或聚煤能源盆地中。本文提供了一份可以快速了解和全面把握全球砂岩型铀资源分布及其重要地质特征的材料,为科研人员提供可对比研究的国外矿床实例,同时也为我国企业"走出去"和"走向哪里"提供科学依据。
郭振威,赖健清,张可能,毛先成,王智琳,郭荣文,邓浩,孙平贺,张绍和,于淼,崔益安,柳建新[4](2020)在《中南大学地球科学进展与前沿(英文)》文中进行了进一步梳理中南大学地质资源与地质工程一级学科自主创立了国际领先的地洼学说、伪随机多频电磁场理论及广域电磁勘探系统,在壳体大地构造学、地电场勘探理论与装置系统、多因复成成矿理论、三维成矿预测、复杂地层钻井技术等领域形成了具有国际影响的中南学派。2000年以来,伪随机电磁法勘探系统和广域电磁法勘探系统在国内外开展了广泛的推广应用,其中"均匀广谱伪随机电磁法及其应用"于2006年获得国家技术发明二等奖、"大深度高精度广域电磁勘探技术与装备"于2018年获得国家技术发明一等奖。本学科是危机矿山深边部接替资源勘探、地质和地球物理有机结合并直接服务于国民经济主战场的国家级重点学科。20年来,本学科以创立的成矿与找矿理论为指导,以自主研制的国家领先的电磁勘探系统为手段,在国内外矿山和成矿区带的深边部资源勘探中大显身手,在国内外众多矿山找到了一大批矿产资源,缓解了大批矿山的资源危机,取得了巨大的经济社会效益。本学科还在复杂地层钻进技术与极端地层钻具研制理论与技术、地质灾害监测与防治、三维可视化定位定量预测等方面的成果在国内享有盛誉。
晁红丽,任建德,吕际根,谢朝永,李莹琪,李瑞强,焦静华[5](2020)在《河南省三川幅1:50000地质图数据库》文中提出河南省三川幅(I49E013014)1:50000地质图数据库的数据源采用实测和数字填图方法获得,野外数据采集过程中实施构造–岩性填图,注重特殊地质体及非正式填图单位的表达,共采集薄片66件,全岩岩石化学样品180件,同位素测年样品19件,化学分析样品21件。图幅主要成果有:在陶湾群层型剖面上发现多门类、时限短的微体化石,确定陶湾群为奥陶纪;在陶湾群发现碱性火山岩夹层,指示奥陶纪在华北板块南缘发育伸展性盆地;确定宽坪岩群四岔口岩组、谢湾岩组内的绿片岩为板内火山岩,指示宽坪岩群主体形成于伸展性盆地;在图幅区南部填绘出志留纪碱长花岗斑岩岩墙群,限定了秦岭洋关闭的时代不晚于志留纪;将晚中生代侵入岩划分为5个侵入期次;厘定了栾川断裂带存在早古生代、早中生代、晚中生代3期活动;在区内新发现震旦纪冰积物。该数据库的数据内容分为基本要素类、综合要素类和对象类,数据量约为63.5 MB,充分反映了本图幅区的地质矿产成果资料,对该区矿产勘查与开发、地质灾害防治、秦岭造山带研究与地质科普等提供基础数据支撑。
WANG Chenghui,WANG Denghong,XU Jue,YING Lijuan,LIU Lijun,LIU Shanbao[6](2015)在《A Preliminary Review of Metallogenic Regularity of Gold Deposits in China》文中认为Gold is one of the most important mineral resources in China with its rich mineral resources. In recent years,significant progress has been made on the process of gold resource exploration. Some large and giant gold deposits were newly found and some important expansions in the main mining regions were also been completed. Studies on metallogenic regularity of gold deposits in China also have made achievements with a long–term work. This review aims to conclude the achievements of research on gold metallogenic regularity in China. Based on the data of about 2000 gold deposits and other ore(mineralized) occurrences,gold deposits in China were classified into five prediction types: gold deposits genetically related to granite–greenstone formation,gold deposits related to sedimentary formation(including the Carlin type and the metamorphosed clastic rock related vein gold deposit),gold deposits genetically related to volcanic rocks(including the continental and marine types),gold deposits genetically related to intrusions(including the porphyry type and the inner intrusion and contact zone related gold deposit),gold deposits of supergenesis(including fracture zone–altered rock gold deposit,placer gold deposit,gossan type gold deposit and soil type gold deposit). Statistics on precise chronology data of gold deposits indicate that there occurred 5 main periods of gold–mineralization in geological history of China. They were Neoarchean to Paleoproterozoic,Meso–Neoproterozoic,Paleozoic,Mesozoic,and Cenozoic. Gold deposits in China mainly formed in the Mesozoic and the Cenozoic. On the studies of the spatial–temporal distribution characteristics of gold deposits,53 gold–forming belts were delineated in China. The metallogenic regularity of gold deposits was preliminarily summarized and 71 gold metallogenic series were proposed in China. This suggests that it is necceary to deepen the study on metallogenic regularity of gold deposits and to provide the theory guide for the ore–prospecting for gold resources in China.
王训练,周洪瑞,王振涛,沈阳,于子栋,杨志华[7](2019)在《扬子板块西北缘早中泥盆世构造演化:来自略阳地区踏坡组岩石学、锆石年代学和微量元素组成的约束》文中研究说明碧口地块北缘下中泥盆统踏坡组的物源长期被认为来自碧口地块新元古界基底——碧口岩群,但一直缺少碎屑锆石物源数据的支持。本文对略阳地区泥盆系踏坡组不同层位的3个碎屑岩样品开展了系统的岩石学、锆石岩相学及其U-Pb定年和微量元素组成研究。锆石晶体特征对比分析显示,研究样品存在两种类型的锆石:普遍发育变质增生边的碎屑锆石(剖面北段样品)和不发育变质增生边的典型岩浆成因的碎屑锆石(剖面南、中段样品)。前者显示2个年龄峰值(~2.5 Ga主峰、~2.0 Ga次峰),还形成了2473±24 Ma的上交点年龄和359±84 Ma的下交点年龄,而后者两个样品有着一致的年龄峰值(~2.0 Ga主峰、~2.5 Ga次峰和~1.39 Ga微小峰值)。3个样品的谐和年龄均大于1.3 Ga,并不能限定踏坡组的沉积时代,且均不支持其物源主要来自碧口岩群的传统认识。碎屑锆石地球化学判别图解指示它们的源岩主要为形成于造山带环境中的花岗岩类(花岗闪长岩和英云闪长岩)、基性岩和钾镁煌斑岩。基于样品中的岩屑类型,结合区域地质、古流向、锆石年龄对比和源岩判别,认为踏坡组的原始物源来自位于扬子板块北缘的太古宙—古元古代基底(鱼洞子杂岩和崆岭杂岩),并且鱼洞子杂岩在踏坡组沉积后期曾大面积出露/抬升。同时表明碧口地块可能至少在早中泥盆世就与扬子板块拼合在一起了。
CHEN Fahu,WU Shaohong,CUI Peng,CAI Yunlong,ZHANG Yili,YIN Yunhe,LIU Guobin,OUYANG Zhu,MA Wei,YANG Linsheng,WU Duo,LEI Jiaqiang,ZHANG Guoyou,ZOU Xueyong,CHEN Xiaoqing,TAN Minghong,WANG Xunming,BAO Anming,CHENG Weixin,DANG Xiaohu,WEI Binggan,WANG Guoliang,WANG Wuyi,ZHANG Xingquan,LIU Xiaochen,LI Shengyu[8](2021)在《Progress and prospects of applied research on physical geography and the living environment in China over the past 70 years (1949–2019)》文中研究说明Physical geography is a basic research subject of natural sciences. Its research object is the natural environment which is closely related to human living and development, and China’s natural environment is complex and diverse. According to national needs and regional development, physical geographers have achieved remarkable achievements in applied basis and applied research, which also has substantially contributed to the planning of national economic growth and social development, the protection of macro ecosystems and resources, and sustainable regional development. This study summarized the practice and application of physical geography in China over the past 70 years in the following fields: regional differences in natural environments and physical regionalization; land use and land cover changes; natural hazards and risk reduction; process and prevention of desertification; upgrading of medium-and low-yield fields in the Huang-Huai-Hai region; engineering construction in permafrost areas; geochemical element anomalies and the prevention and control of endemic diseases; positioning and observation of physical geographical elements; and identification of geospatial differentiation and geographical detectors. Furthermore, we have proposed the future direction of applied research in the field of physical geography.
毛景文,袁顺达,谢桂青,宋世伟,周琦,高永宝,刘翔,付小方,曹晶,曾载淋,李通国,樊锡银[9](2019)在《21世纪以来中国关键金属矿产找矿勘查与研究新进展》文中提出关键金属作为全球高科技产业不可或缺的战略性资源,其成矿作用及找矿勘查均是目前国际矿床学领域关注的热点。近年来,中国在关键金属Li、Rb、Nb、Ta、W、Sn、Ni、Co、Mn和离子吸附型稀土矿找矿勘查及成矿作用研究方面取得了一系列重要突破和认识。文章初步系统地总结了中国进入21世纪以来不同类型关键金属矿床的主要勘查成果及全球关键金属矿产研究新进展。在前人研究基础上,研究总结认为锂循环与成矿主要在上地壳内部,而REE在大陆聚合与裂解以及壳幔之间循环并成矿。针对主要关键金属矿床的成矿作用和成矿环境,并考虑共伴生特点,将主要的关键金属矿床划分为8种成因类型:①与花岗岩-伟晶岩有关的W、Sn、Nb、Ta、Li、Rb、Cs、Be矿床;②与碳酸岩-碱性岩有关的REE、Nb、U矿床;③与镁铁质-超镁铁质岩有关的Ni、Co、Cr、Pt族元素矿床;④低温热液型Tl、Te矿床;⑤多种类型热液矿床中的伴生组分,包括Re、Ge、In、Cd、Tl、Te、Se、Sc、Ga等;⑥表生沉积型(包括铝土矿和煤矿中的伴生组分)矿床,例如Mn、V、Ni、Mo、Co、Li、Ga、Tl、Ge、V、Sc、Nb、Ta等;⑦与表生盐湖有关的Li、Rb、Cs矿床;⑧与表生风化作用有关的离子吸附型REE矿床。希望该分类能作为新一轮关键矿产研究的基础。
DU Peixiao,LI Yang,WEI Mengyi,HAN Chunming,ZHAO Liang,WU Jing[10](2020)在《Research Progress of Geophysical Exploration in Karatungk Mine in Northern Xinjiang,China》文中进行了进一步梳理Karatungk Mine in northern Xinjiang,China,which is a large-scale magmatic Cu-Ni sulfide mine in the Central Asian orogenic belt,has a long history of mining.The mine is located at the merging belt between Altay orogenic belt and Junggar Basin,and has strong tectonic activities.In recent years,mining source detection has become an important target for mineral exploration due to the difficulties in ore body exploitation.In this paper,we systematically summarize the achievements of the geophysical explorations in Karatungk Mine from various aspects,including tectonic backgrounds of the mine,dynamic mechanisms,geophysical characteristics and scientific challenges in the future.Because of the restrictions of observation density and analysis methods,the fine geometrical structure of the mine cannot be completely characterized yet.Therefore,in order to obtain the high-resolution structure and detailed spatial distribution of orebodies,researchers should focus on combining multiple geophysical methods,developing high-resolution imaging methods,and improving petro physical experiments in the future.
二、XI′AN INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——ACHIEVEMENTS OF RESEARCH(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、XI′AN INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——ACHIEVEMENTS OF RESEARCH(论文提纲范文)
(1)Progress and Prospects of Salt Lake Research in China(论文提纲范文)
1 Introduction |
2 Saline Lake Sediments,Paleoclimate and Paleoenvironment Study |
2.1 Salt minerals as climatic indicators |
2.2 Arid and salt deposit center and its expansion period in the Quaternary in China |
2.3 The Quaternary pan-lake(overflow)period and paleoclimate on the Qinghai-Tibetan Plateau |
2.3.1 Evidence of Quaternary pan-lakes on the Qinghai-Tibet Plateau |
2.3.1. 1 Siling Co pan-lake area |
2.3.1. 2 Zabuye-Zhari Namco pan-lake area |
2.3.1. 3 Qaidam and South Kunlun pan-lake areas |
2.3.1. 4 Gozha Co-Tianshuihai pan-lake area |
2.3.1. 5 Lumajangdong Co-Bangong Co pan-lake area |
2.3.1. 6 Nam Co pan-lake |
2.3.2 Timing and extent of high lake levels of pan-lakes on the Qinghai-Tibet Plateau |
3 New Knowledge of Mineralization and Salting Theory of Saline Lakes on the Qinghai-Tibet Plateau |
3.1 Classification criteria for the hydrochemical types of salt lakes |
3.2 Hydrochemical zoning and mineral assemblages of salt lakes on the Qinghai-Tibet Plateau |
3.2.1 Hydrochemical zonation |
3.2.2 Mineral assemblages for different types of salt lakes |
3.3 Deposition models for salts |
3.3.1 Mineralization model for multi-level moderate-shallow lake chains |
3.3.2 Salt deposition in large scale multi-level lakes in deep basins |
3.3.3 Studies of salt minerals of the Tibetan Plateau |
3.4 Discovery of potassium-rich salt lakes and progress in the theory on continental potassium deposition |
3.4.1 Overview |
3.4.2 Framework of the continental potash deposition theory |
3.4.2. 1 The primary cause for potassium accumulation in continental salt lakes |
3.4.2. 2 The model for the enrichment and deposition of continental potash |
3.4.3 Application of the continental salt deposition theory |
3.5 Discovery of a new type of magnesium borate deposits and the new insight on boron deposition from cooling and dilution |
3.5.1 Boron deposits in Da Qaidam lake:ulexite-pinnoite deposits |
3.5.2 Magnesium-borate deposits in Chagcam Caka,Tibet |
3.5.3 Kurnakovite deposits in Nyêr Co,Tibet |
3.5.3. 1 Introduction |
3.5.3. 2 Ore-bearing Strata |
3.5.4 New knowledge on the genesis of new type Mg-borate deposits and the theory of salt precipitation via cooling with diluting in the Qinghai-Tibet Plateau |
4 Salt Lake Chemistry and Sylvite,Lithium Resource Development and Utilization |
4.1 Salt lake chemistry |
4.2 Sylvite resource development and utilization-two case from Qarham salt lake and Lop Nur salt lake |
4.2.1 Qarham salt lake industry |
4.2.2 Lop Nur salt lake industry |
4.3 Studies on utilization of lithium resources-a case of Zhabuye salt lake |
4.3.1 Saltpan preparation and control technology of lithium-rich brine |
4.3.2 Heat accumulation and lithium precipitation and crystallization in the solar pond |
5 Saline Lake Geo-ecology,Halophiles and Saline Lake Agriculture |
5.1 The briny region |
5.2 Salt marshes,saline and alkaline lands |
6 Prospect of Scientific and Technological Development on Salt Lakes in China |
7 Conclusions |
(2)Quantitative Geoscience and Geological Big Data Development:A Review(论文提纲范文)
1 International Quantitative Geoscience and Big Data Research |
2 Quantitative Geoscience and Geological Big Data Research in China |
2.1 National macro strategies and plans |
2.2 Quantitative mineral resource prediction and assessment theories and methods |
2.2.1“Triple-type”metallogenic prediction theory |
2.2.2 Metallogenic prediction theory based on integrated information |
2.2.3 Deposit modeling and integrated geological information prediction method |
2.2.4 Prospecting method based on cube prediction model |
2.3 Geoscience information software system |
2.4 Construction of geoscience information platform |
Stage I:PC–Stand-alone Workstation |
Stage II:Local Area Network–Internet Stage |
2.5 Application of quantitative geosciences and geological big data in China |
2.5.1 Informatization of basic geological data |
2.5.2 Quantitative prediction and prospecting of mineral resources |
2.5.3 Geological environment and disasters |
(1)Early warning for geological disasters based on3S technology |
(2)Geological 3D model technology-based disaster survey |
2.5.4 Digital Land |
(1)“Digital Land”–“One Map”platform |
(2)“Digital Land”–Develop integrated supervision system |
(3)“Digital Land”–Construction of e-government land affairs platform |
(4)“Digital Land”–Construction of land and resources information sharing platform |
2.5.5 Digital City |
(1)3D urban geological survey and social services in Shanghai |
(2)Construction and application of national Digital City geospatial framework technology system |
(3)Construction of Digital City in Anhui |
3 Outlook |
4 Conclusion |
(3)世界砂岩型铀矿探明资源的分布及特征(论文提纲范文)
1 砂岩型铀矿的分类 |
2 世界砂岩型铀矿资源总体分布特征 |
2.1 砂岩型铀矿的地位 |
2.2 世界砂岩型铀矿资源的分布格局与近年变化 |
3 亚洲 |
3.1 中亚 |
3.2 中国 |
3.3 蒙古 |
3.4 俄罗斯 |
4 北美洲 |
4.1 美国 |
4.2 加拿大 |
5 大洋洲 |
6 非洲 |
6.1 北部 |
6.2 中部 |
6.3 南部 |
7 欧洲 |
8 南美洲 |
9 讨论 |
9.1 全球整体富集分布特征 |
9.2 矿床数量和规模 |
9.3 气候环境对砂岩型铀矿分布的影响 |
9.4 容矿层时代与成矿时间 |
9.5 共生能源矿产 |
1 0 结论 |
(7)扬子板块西北缘早中泥盆世构造演化:来自略阳地区踏坡组岩石学、锆石年代学和微量元素组成的约束(论文提纲范文)
1 区域地质概况 |
2 踏坡组地层特征与样品描述 |
3 分析方法 |
4 结果 |
4.1 锆石晶体特征 |
4.2 锆石微量元素组成特征 |
4.3 锆石U-Pb年龄 |
5 讨论 |
5.1 踏坡组碎屑岩的物源 |
5.2 碧口地块北缘踏坡组的形成模式 |
6 结论 |
(9)21世纪以来中国关键金属矿产找矿勘查与研究新进展(论文提纲范文)
1找矿勘查新进展 |
1.1锂矿找矿新进展 |
1.1.1西昆仑大红柳滩伟晶岩型锂矿床 |
1.1.2川西伟晶岩型锂矿床 |
1.2钨锡矿找矿新进展 |
1.2.1江南晚侏罗世—早白垩世斑岩-矽卡岩型钨矿带 |
1.2.2大兴安岭南段晚侏罗世—早白垩世锡矿 |
1.2.3东昆仑西段白干湖W-Sn矿 |
1.3铌钽矿找矿新进展 |
1.3.1小秦岭华阳川铀铌铅矿床 |
1.3.2湘东北仁里超大型伟晶岩型铌钽矿 |
1.3.3甘肃省中祁连山西端余石山超大型铌钽矿床 |
1.4铷矿找矿新进展 |
1.5稀土矿找矿新进展 |
1.5.1以花岗质岩石为容岩的离子吸附型稀土矿床 |
1.5.2以变质岩为容岩的离子吸附型稀土矿床 |
1.6锰矿找矿新进展 |
1.6.1新疆西昆仑玛尔坎苏锰矿带 |
1.6.2黔渝湘毗邻区锰矿集区 |
1.7基性-超基性岩有关镍铜钴矿找矿新进展 |
2研究进展与思考 |
2.1关键矿产的成因分类 |
2.2白垩纪—古近纪盆地古卤水Li-Rb-Cs矿化的研究发现,提供了找矿的新方向 |
2.3沉积型锂矿的研究发现有望推动该类型找矿突破 |
2.4喜马拉雅淡色花岗岩带——将成为中国一个稀有金属矿产资源的储备基地 |
2.5风化壳型离子吸附型稀土矿形成机制和时空分布规律研究取得重要进展 |
2.6钨与锡分离成矿机制的控制要素 |
2.7锂的地球化学循环与成矿 |
2.8稀土元素的地球化学循环与成矿 |
2.9与花岗质岩有关的W-Sn-Nb-Ta-Li-Be关键金属矿床成矿年代学研究取得突破性进展 |
2.10其他研究进展 |
(10)Research Progress of Geophysical Exploration in Karatungk Mine in Northern Xinjiang,China(论文提纲范文)
INTRODUCTION |
1 INTRODUCTION OF THE STRUCTURE AND METALLOGENIC SETTING OF KARATUNGK MINE |
1.1 Tectonic Settings and Seismicity |
1.2 Metallogenic Dynamic Mechanism |
2 RESEARCH PROGRESS OF GEOPHYSICAL EXPLORATION IN KARATUNGK MINE |
2.1 G ravity Exploration |
2.2 Magnetic Exploration |
2.3 Electrical Exploration |
2.4 Seismic Exploration Using Artificial Source |
2.5 Ambient Noise Tomography Based on a Dense Seismic Array |
3 CURRENT UNDERSTANDING AND DEFICIENCY |
4 CONCLUSION AND PROSPECTS |
四、XI′AN INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——ACHIEVEMENTS OF RESEARCH(论文参考文献)
- [1]Progress and Prospects of Salt Lake Research in China[J]. ZHENG Mianping,ZHANG Yongsheng,LIU Xifang,NIE Zhen,KONG Fanjing,QI Wen,Jia Qingxian,PU Linzhong,HOU Xianhua,WANG Hailei,ZHANG Zhen,KONG Weigang,LIN Yongjie. Acta Geologica Sinica(English Edition), 2016(04)
- [2]Quantitative Geoscience and Geological Big Data Development:A Review[J]. CHEN Jianping,XIANG Jie,HU Qiao,YANG Wei,LAI Zili,HU Bin,WEI Wei. Acta Geologica Sinica(English Edition), 2016(04)
- [3]世界砂岩型铀矿探明资源的分布及特征[J]. 王飞飞,刘池洋,邱欣卫,郭佩,张少华,程相虎. 地质学报, 2017(09)
- [4]中南大学地球科学进展与前沿(英文)[J]. 郭振威,赖健清,张可能,毛先成,王智琳,郭荣文,邓浩,孙平贺,张绍和,于淼,崔益安,柳建新. Journal of Central South University, 2020(04)
- [5]河南省三川幅1:50000地质图数据库[J]. 晁红丽,任建德,吕际根,谢朝永,李莹琪,李瑞强,焦静华. 中国地质, 2020(S1)
- [6]A Preliminary Review of Metallogenic Regularity of Gold Deposits in China[J]. WANG Chenghui,WANG Denghong,XU Jue,YING Lijuan,LIU Lijun,LIU Shanbao. Acta Geologica Sinica(English Edition), 2015(02)
- [7]扬子板块西北缘早中泥盆世构造演化:来自略阳地区踏坡组岩石学、锆石年代学和微量元素组成的约束[J]. 王训练,周洪瑞,王振涛,沈阳,于子栋,杨志华. 地质学报, 2019(12)
- [8]Progress and prospects of applied research on physical geography and the living environment in China over the past 70 years (1949–2019)[J]. CHEN Fahu,WU Shaohong,CUI Peng,CAI Yunlong,ZHANG Yili,YIN Yunhe,LIU Guobin,OUYANG Zhu,MA Wei,YANG Linsheng,WU Duo,LEI Jiaqiang,ZHANG Guoyou,ZOU Xueyong,CHEN Xiaoqing,TAN Minghong,WANG Xunming,BAO Anming,CHENG Weixin,DANG Xiaohu,WEI Binggan,WANG Guoliang,WANG Wuyi,ZHANG Xingquan,LIU Xiaochen,LI Shengyu. Journal of Geographical Sciences, 2021(01)
- [9]21世纪以来中国关键金属矿产找矿勘查与研究新进展[J]. 毛景文,袁顺达,谢桂青,宋世伟,周琦,高永宝,刘翔,付小方,曹晶,曾载淋,李通国,樊锡银. 矿床地质, 2019(05)
- [10]Research Progress of Geophysical Exploration in Karatungk Mine in Northern Xinjiang,China[J]. DU Peixiao,LI Yang,WEI Mengyi,HAN Chunming,ZHAO Liang,WU Jing. Earthquake Research in China, 2020(03)