喀斯特地质研究所——科研工作总结

喀斯特地质研究所——科研工作总结

一、INSTITUTE OF KARST GEOLOGY——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文文献综述)

Hamza Jakada[1](2018)在《基于SWAT模型的岩溶流域形态刻画及水文模拟》文中认为岩溶是一种起源于碳酸盐岩与酸性大气降水发生溶解侵蚀而形成的一种特殊地质现象。岩溶地貌占全球陆地面积的712%,世界上超过25%的人口依赖于岩溶含水层。然而,无论是在地理信息系统领域,还是在岩溶水资源的有限元建模方面,很少有关于计算技术应用方面的研究。这可能主要是由于岩溶介质不均一性强、地质结构复杂,致使其建模难度大。另一个问题是,对岩溶结构特征的刻画和认识还不够充分,一般将其视为其他沉积地层。这导致了一些环境和基础设施的破坏,以及巨大的经济损失。尽管存在这些挑战,但在过去十年中仍有一些成功的案例研究。但是,目前还没有关于如何在岩溶环境中进行标准化水文建模的研究。此外,岩溶环境需要对其潜在的非均质性和对环境风险的敏感性进行特殊处理。正是为了满足这些需求,本文旨在提高对岩溶流域水文过程和可持续水资源管理的理解与认识。本文的研究工作概述了一些重要的研究问题,并着手系统地回答它们,目的是开发一种标准化的方法来模拟岩溶流域的水文过程。这些问题是:(1)岩溶流域与非岩溶流域有何不同?(2)岩溶特征对流域排泄系统有何影响?(3)流域内主要岩溶特征对流量的体积贡献是多少?这些特征如何影响地下水的数量和质量?(4)使用未经修改的SWAT模型,可以在岩溶环境中模拟降雨径流吗?本文选择了高岚河流域的两个相邻小流域作为案例研究。第一个是庙沟流域,是一个高度岩溶化的小流域,也是本文研究工作的重点。第二个是高家坪流域,是一个主要由火成岩和变质岩构成的非岩溶流域,用于对比典型的岩溶流域和非岩溶流域之间的差异。这些差异主要与地形、水文和地貌特征有关。首先,在第二章中,对流域的形态特征进行了刻画,以便提供对流域物理特性以及它们如何影响水文过程的理解。这是建模前的必要工作,因为它提供了重要的物理参数信息。利用地理信息系统和遥感技术刻画出庙沟岩溶流域和高家坪流域的形态参数。研究结果表明,由于碳酸盐岩(石灰岩和白云岩)的溶蚀作用,庙沟的地形起伏大且复杂。此外,庙沟具有非常高的凹度指数,导致降水事件期间的快速径流。庙沟的流域面积为45平方公里,主要河道长约15公里,水系总长度为30.86公里,Gravelius指数为1.93。地貌分析结果表明,庙沟的岩溶地貌主要为溶丘洼地类型,溶丘具有锥状几何形状,具有长而宽的岩溶洼地,流域内大型的岩溶洼地有四个。流域内还有四个洞穴和十八个落水洞,其中刘家坝落水洞成为白龙泉最主要的补给通道。另一方面,高家坪流域没有岩溶发育,是一个具有较为均匀孔隙含水介质的流域代表。其次,在第三章中,从庙沟和高家坪流域的径流过程中选取了15次水文响应过程,进行流量衰退分析和径流成分分割。目的是确定岩溶特征对流域排泄系统的影响,并估算这些特征对总流量的体积贡献。此外,进一步研究了它们对庙沟流域地下水数量和质量的影响。本文使用指数法进行衰减曲线分析,每次洪峰流量衰减过程可划分为四个衰减期,并分别计算得到各段的衰减系数。这些衰减系数可以用于划分径流组成,以评估每一径流组分的水量、百分比及其他特征。结果表明,相对于非岩溶流域,岩溶流域由于大型洞穴、裂隙发育导致的介质高度不均一性,更倾向于通过大的管道和裂隙排泄更多的水量。虽然落水洞或封闭型洼地等岩溶形态可以充当补给通道,通过大型地下溶洞、溶腔等快速径流而形成大型岩溶泉,而小型裂隙和孔隙的水流主要贡献给流域的基流。本文将高度岩溶化流域的这些共同特征称之为岩溶排泄属性(KDA),形成的径流称为岩溶排泄流量(KDF)。KDF代表了衰退曲线的第二阶段,并具有坡面流的相似特征。在两个流域对比研究中,衰退系数的统计结果表明KDA受到含水层输出时间变化的强烈影响。尽管在枯水期,以衰退曲线的第四阶段为例,两个流域的衰退系数均没有像前两个衰退期一样表现出统计差别,表明控制主要延迟排泄量的微裂隙和孔隙基本相似,并无较大区别。这一结果可为地下水资源的可持续利用提供十分有价值的信息。此外,由于连续衰退阶段的较高衰减系数意味着地下水污染的高度敏感性,以及随着时间推移其含水层输出匮乏,必须强调其中的环境意义。地下水污染是一个主要问题,尤其对于类似研究区这种以地下水为主要淡水资源的地区。前期地下水脆弱性研究结果表明,庙沟流域对污染有较高的内在敏感性。本次研究计算的衰减系数也进一步表明含水层对于污染的高度敏感性。因此,必须针对该区域加强水资源管理与保护。最后,在第四章中,通过对庙沟、高家坪流域进行模拟和计算,预测了其月流量变化。模型结果表明初始分析方法与流域物理结构特征密切相关。另外,选择12个关键参数校正了一个为期两年的模型。对于庙沟流域,研究发现最为敏感的参数是HRUSLP与CN2,主要受地形因子与流域形态影响。事实上,这主要归因于由KDA形成的KDF特性。在高家坪流域,SHALLST与OVN等因素最为敏感,这主要是由河流弯曲度及较高基流量所造成的。模型验证后,2015年模拟结果与实测值的相关系数与纳什效率系数均为0.6,2016年的相关系数与纳什效率系数分别为0.7和0.6,总体的水文动态模拟效果较好。对于非岩溶流域,2016年模拟结果的相关系数和纳什效率系数分别为0.73和0.1。总体而言,未经修正的SWAT模型在水文模拟工作中应用前景较好,但需要对流域水文过程有较为充分的认识。本次研究工作的意义主要表现在:(1)对岩溶流域和非岩溶流域的排泄特征进行了评估和对比;(2)确定并计算了流域中岩溶属性控制下的岩溶排泄流量(KDF);(3)阐述了岩溶发育特征对岩溶水资源时空分布特征的影响;(4)利用未经修正的SWAT模型为岩溶流域径流模拟提供了较为标准化的方法;(5)开创了岩溶流域与非岩溶流域的对比水文模型;(6)发现了兴山县庙沟流域内潜在的地下水短缺和污染风险。展望未来,机器学习方法可能会提供一种方法来监测长时间尺度下的径流动态,以掌握每一场暴雨事件的水文特征。随着观测数据的延长,也可获取到整个水文年内岩溶排泄流量的衰减系数,并为计算岩溶排泄系数提供准确方法,即流域中在任何降雨过程中主要在岩溶属性影响控制下的排泄比例。这种方法在未来将有益于地下水资源估算、评价和模拟工作。

程维明,刘樯漪,赵尚民,高晓雨,王楠[2](2017)在《中国近40年来地貌学研究的回顾与展望(英文)》文中进行了进一步梳理Geomorphology is one of the main subdisciplines of geography.The research achievements and prospects in geomorphology have received considerable attention for a long time.In this paper,a general retrospect of geomorphologic research in China over the past 60 years was firstly addressed,especially the research progress during the last 40 years.Based on a summary of experience and a tendency of development,perspectives of geomorphologic research direction in the future were provided.It is concluded that the discipline of geomorphology has made great progress in the aspects of geomorphologic types,regionalization,as well as their subdisciplines such as dynamic geomorphology,tectonic geomorphology,climatic geomorphology,lithological geomorphology,palaeogeomorphology.We believe that persisting in the unity principle between morphological and genetic types would be conductive for the development of traditional landforms and integrated landforms.In addition,five perspectives aim to enhance China’s geomorphologicl research capacity were proposed.They are:(1)strengthening the research of basic geomorphologic theory and the research of integrated geomorphology to expand the research space;(2)focusing more on the research of geomorphologic structure and geomorphologic function to improve the application ability of geomorphology;(3)constructing a comprehensive resource,environmental,and geomorphologic information system and building a sharing platform to upgrade the intelligent information industry of geomorphology;(4)putting more efforts on the research of coastal geomorphology and marine geomorphology to assist the transformation of China from a maritime country to an ocean power;and(5)cultivating talents and constructing research teams to maintain a sustainable development of China’s geomorphologic research.

Hai CHENG,Haiwei ZHANG,Jingyao ZHAO,Hanying LI,Youfeng NING,Gayatri KATHAYAT[3](2019)在《Chinese stalagmite paleoclimate researches: A review and perspective》文中指出Stalagmite is one kind of secondary carbonates formed in limestone caves(speleothem). After cave water droplets containing Ca2+and HCO3 drip onto floor, carbonate in the water might become supersaturated due to CO2 degassing under certain conditions, resulting in the formation of stalagmite in a process year after year. Stalagmite is one of important geological archives for paleoclimate research. The advantages include wide spatial distribution, suitable for U-Th and U-Pb dating, enriched in climate proxies, continuity, long time span, comparability and lower sampling cost etc. These factors have propelled stalagmite paleoclimate research to the forefront of global paleoclimatology with an irreplaceable role. The stalagmite paleoclimate study started in the western countries, mainly in Europe and America in 1960 s–1970 s, while the relevant research in China was progressively developed in the 1980 s–1990 s after the Reform and Opening up. Although there was a huge gap between the overall research level in China and western countries, a solid research foundation, as well as a number of talent teams were established during the period. In the 21 st century, starting from the publication of stalagmite records from Hulu Cave in Nanjing in 2001, the stalagmite paleoclimate research in China has ushered in a flourishing development and a real leap on the basis of international cooperation, resulting in significant international impacts. The landmark achievements, including establishment of the world’s longest(640000 years) East Asian monsoon stalagmite record, as well as the longest Indian monsoon(280000 years),South American monsoon(250000 years), North American westerly climate(330000 years), Central Asian westerly climate(135000 years), and northwestern China westerly climate(500000 years), have laid a milestone in the paleoclimate study in these climate domains. Importantly, these stalagmite records have revealed the relationship of Asian monsoon variations with solar insolation climate change in polar regions, and the South American monsoon changes on orbital-suborbital timescales, which have provided new geological observations for the development of orbital-suborbital climate theory; elaborated coupling and differentiation relationships between the Asian monsoon and the westerly climate; reconstructed the history of Asian monsoon changes in the Holocene in detail, and thus the hydrological and climate variances behind Chinese and Indian civilizationcultural evolutions. Furthermore, a large number of high-resolution stalagmite records over the past 2000 years have been reconstructed, which are important for understanding short-term climate variability and magnitude, events, cycles, and thus the future climate projection. The achievements have also involved the improvements of a number of important techniques, such as U-Th dating method, the establishments of various hydroclimatic proxies, as well as the contributions to the reconstruction of the atmosphere14C variation history over the past ~54000 years. On the perspective of the future, the Chinese stalagmite community should continue to develop key techniques, further clarify the hydroclimatic significance of stalagmite proxies, impel the integration of related disciplines, and concentrate on key scientific issues in global climate change and major social demands.

凯立德 艾尔巴兹(Khalid Elbaz Ahmed Elbaz)[4](2019)在《基于机器学习技术的隧道掘进机性状的预测模型研究》文中指出盾构隧道掘进机器性能和刀具磨损的预测是一个非线性和多变量的复杂问题。为解决这个问题,本研究旨在:i)建立确定隧道掘进机性能的智能分析框架,ii)预测隧道掘进过程中的机器性能(即盾构掘进效率和盾构切入速率),iii)建立预测盾构刀盘寿命的智能化统计模型,iv)分析隧道施工过程中每个参数的作用效应,特征和影响因素。研究过程中,应用统计分析,机器学习技术,智能分析和现场实测数据验证等手段研究这一系列问题。首先,通过确定隧道掘进过程性能预测中最有效的参数,提出盾构掘进效率和盾构切入速率的新预测模型;然后,建立盾构刀盘寿命的智能化新模型来预测刀盘寿命;为了获得更为可靠的施工操作,基于地层力学参数与盾构施工参数两个方面,提出一种智能分析方法;最后,讨论分析盾构刀盘寿命预测中最重要影响参数的作用,确定预测模型。研究的创新成果总结如下:(1)提出了新的机器学习模型预测盾构机的掘进效率提出的机器学习模型集成了改进的粒子群优化(PSO)合法自适应神经模糊推理系统(ANFIS)在一起。提出的改进模型组合了基于模糊规则的系统和PSO算法,可以同时调整先行变量和后续变量。提出的模型与当前广泛使用模型,如神经网络、模糊逻辑、ANFIS和经验模型等相比,该模型在预测盾构机的掘进效率上具有更高的准确性。(2)提出了多目标优化模型预测盾构切入速率。提出的多目标优化模型集成了自适应神经模糊推理系统(ANFIS)与遗传算法(GA)。GA应用多目标适应度函数来提高运行时ANFIS进行参数调整的准确性。计算结果表明,在预测盾构机切入速率时,多目标优化模型预测结果的准确率高于ANFIS模型的预测结果。(3)提出了一种预测盾构刀盘寿命的分析模型提出了一种经验模型来预测盾构刀盘滚刀的寿命。提出的模型可以考虑地层力学参数与盾构施工参数两个方面对施工操作的影响。与以前的模型相比,所提出的经验模型可以提供一种合理可靠的方法,快速评估预测盾构刀盘滚刀寿命的影响因素,并可以确定可接受的精度范围。(4)建立了一个智能方法预测盾构滚刀寿命智能模型集成了数据处理多项式神经网络(GMDH)的群组方法与遗传算法(GA)相结合。GA用于优化GMDH的最合适的网络结构,使每个神经元能够搜索前一层的最佳连接集。虽然经验模型和智能模型都可用于滚刀寿命的估算,但智能GMDH-GA模型能够提供更高的准确度。此外,分析确定了隧道掘进过程中盾构滚刀寿命中最重要的影响因素。结果表明,盾构机的切入速率是影响盾构滚刀寿命的最重要的参数;因此,。(5)现场施工案例验证应用如下两个案例分析验证研究成果:其一为广州地铁9号线马鞍山公园站-莲塘村站区间隧道工程,其二为穗莞深城际铁路项目宝安机场下穿隧道。从两个现场实际案例收集了现场实测数据,室内试验参数和文献信息的数据,输入到提出的模型并进行了计算分析。结果表明,提出的模型可以有效地确定隧道机的掘进性状和预测盾构滚刀的寿命。最后,研究成果表明,使用不同的新型机器学习技术预测TBM性能、盾构滚刀寿命,可以提高TBM现场操作的状态与性能。

申京浩(Sim Kyong Ho)[5](2019)在《钛合金航空材料高新技术产业化机制研究》文中指出随着科学技术的迅速发展,产品价值中的科技含量不断增加,科学技术对经济增长的作用越来越加强。高新技术成果一旦实现了产业化,就会转化为巨大的生产力,带来客观的经济效益。高新技术产业化是一项复杂的系统活动,其过程涉及到科研系统、生产系统、社会支撑系统、市场及其之间的协同作用,这个转化大系统中的每一个小系统及其构成要素之间的相互联系、相互作用可以影响高新技术成果的转化。基于科技的发展和改革创新的推动,目前中国钛合金航空材料高新技术成果大量产出,数量是成倍增长。钛合金航空材料以其优异的高温性能,在未来航空航天领域具有广阔的应用前景。中国在钛合金航空材料研究方面基本与欧美发达国家同步,已进行了合金化和组织结构设计方面的系统研究,在应用研究方面已经在卫星、导弹发动机等领域获得了突破。如果钛合金企业实现钛合金航空材料高新技术产业化,就能在国际航空市场上拥有强大的竞争力迅速发展。因此,钛合金航空材料高新技术产业化机制研究,在理论和实践上都有很重要的意义。本论文在高新技术产业化机制相关理论分析的基础上,从中国钛合金航空材料产业发展路径层面、钛合金航空材料高新技术产业化机制层面揭示了钛合金航空材料高新技术产业化的必要性,并提出了钛合金航空材料高新技术产业化动力和过程、运行机制以及其保障措施。首先,本论文通过世界钛合金产业化现状和发展趋势以及世界钛合金市场展望的分析,提出了中国钛合金航空材料产业发展路径,并且采用网络层次分析法对目前中国钛合金航空材料产业化水平进行了评价。其次,本论文从钛合金航空材料高新技术发展、市场需求、国际竞争和宏观经济政策环境角度,探讨了钛合金航空材料高新技术产业化的动力。然后,对钛合金航空材料高新技术产业化过程的重要阶段——技术开发阶段、产品开发及批量生产阶段、市场推广及规模化生产阶段,进行了深度的研究。再次,对钛合金航空材料高新技术产业化运行机制进行了系统分析。研究主要包括钛合金航空材料高新技术产业化的技术创新机制、技术人才培养及激励机制、融资机制以及政策法律保障机制。最后,本论文在钛合金航空材料高新技术产业化运行机制研究的基础上,提出了钛合金航空材料高新技术产业化的技术创新机制、技术人才机制、融资机制的保障措施以及政策法律保障机制的完善措施。

G.Shanmugam[6](2017)在《Global case studies of soft-sediment deformation structures(SSDS): Definitions,classifications, advances, origins, and problems》文中研究表明Soft-sediment deformation structures(SSDS)have been the focus of attention for over 150 years.Existing unconstrained definitions allow one to classify a wide range of features under the umbrella phrase"SSDS".As a consequence,a plethora of at least 120 different types of SSDS(e.g.,convolute bedding,slump folds,load casts,dish-and-pillar structures,pockmarks,raindrop imprints,explosive sandegravel craters,clastic injections,crushed and deformed stromatolites,etc.)have been recognized in strata ranging in age from Paleoproterozoic to the present time.The two factors that control the origin of SSDS are prelithification deformation and liquidization.A sedimentological compendium of 140 case studies of SSDS worldwide,which include 30 case studies of scientific drilling at sea(DSDP/ODP/IODP),published during a period between 1863and 2017,has yielded at least 31 different origins.Earthquakes have remained the single most dominant cause of SSDS because of the prevailing"seismite"mindset.Selected advances on SSDS research are:(1)an experimental study that revealed a quantitative similarity between raindrop-impact cratering and asteroid-impact cratering;(2)IODP Expedition 308 in the Gulf of Mexico that documented extensive lateral extent(>12 km)of mass-transport deposits(MTD)with SSDS that are unrelated to earthquakes;(3)contributions on documentation of pockmarks,on recognition of new structures,and on large-scale sediment deformation on Mars.Problems that hinder our understanding of SSDS still remain.They are:(1)vague definitions of the phrase"soft-sediment deformation";(2)complex factors that govern the origin of SSDS;(3)omission of vital empirical data in documenting vertical changes in facies using measured sedimentological logs;(4)difficulties in distinguishing depositional processes from tectonic events;(5)a model-driven interpretation of SSDS(i.e.,earthquake being the singular cause);(6)routine application of the genetic term"seismites"to the"SSDS",thus undermining the basic tenet of process sedimentology(i.e.,separation of interpretation from observation);(7)the absence of objective criteria to differentiate 21 triggering mechanisms of liquefaction and related SSDS;(8)application of the process concept"high-density turbidity currents",a process that has never been documented in modern oceans;(9)application of the process concept"sediment creep"with a velocity connotation that cannot be inferred from the ancient record;(10)classification of pockmarks,which are hollow spaces(i.e.,without sediments)as SSDS,with their problematic origins by fluid expulsion,sediment degassing,fish activity,etc.;(11)application of the Earth’s climate-change model;and most importantly,(12)an arbitrary distinction between depositional process and sediment deformation.Despite a profusion of literature on SSDS,our understanding of their origin remains muddled.A solution to the chronic SSDS problem is to utilize the robust core dataset from scientific drilling at sea(DSDP/ODP/IODP)with a constrained definition of SSDS.

CHEN Baoguo,ZHANG Jiuchen,YANG Mengmeng[7](2016)在《The Present Research and Prospect of Chinese Geosciences History》文中认为It has been over a hundred years since the birth of research on Chinese geosciences history, which was accompanied by the continuous progress of Chinese geosciences. For hundreds of years, it has grown out of nothing to brilliant performance by several generations of Chinese geologists committing their hearts and minds with the spirit of exert and strive without stop to promote the process of China’s industrialization and to produce the significant impact on serving the society. The study of Chinese geosciences history reflects objectively and historically the history of geosciences in China, which has recorded, analyzed and evaluated the dynamic process sitting in the background and clue of the history of Chinese geosciences development. The study of the history of geological science has roughly experienced two stages in China. The first stage is the study of individual researchers. It spanned approximately 70 years from the early 20th century to the end of the 1970s. The research contents were mainly based on the evolution of geological organizations, the development and utilization of individual mineral species, the history of deposit discovery and the research of geological characters. The main representatives are Zhang Hongzhao, Ding Wenjiang, Weng Wenhao and Li Siguang, Ye Liangfu, Huang Jiqing, Yang Zhongjian, Xie Jiarong, Gao Zhenxi, Wang Bingzhang and etc. The most prominent feature of this period is the accumulation of a very valuable document for the study of the history of China’s geological history and lays a foundation for the exchange of geological science between China and foreign countries. The second stage is organized group study. It took around 60 years from the 1920s to 1980s. It includes the history of Chinese geology, the history of geological organizations, the history of geological disciplines, the history of geological education, the history of geological philosophy, the history of Chinese and foreign geological science communication, the history of geologists and etc. The most chief feature of this stage is the birth of academic research institute―the establishment of the Commission on the History of Geology of the Geological Society of China.

DANG Xiaohu,SUI Boyang,GAO Siwen,LIU Guobin,WANG Tao,WANG Bing,NING Duihu,BI Wei[8](2020)在《Regions and Their Typical Paradigms for Soil and Water Conservation in China》文中认为China is experiencing conflicts between its large population and scarce arable land, and between a demand for high productivity and the severe soil erosion of arable land. Since 1949, China has committed to soil and water conservation(SWC), for which eight regions and 41 subregions have been developed to improve the environment and increase land productivity. To obtain information from the regional planning and strategies for SWC and to explore whether SWC practices simultaneously contribute to soil conservation, ecosystem functioning, and the livelihoods of local farmers, and to summarize the successful experiences of various SWC paradigms with distinct characteristics and mechanisms of soil erosion, this paper systematically presents seven SWC regions(excluding the Tibetan Plateau region) and 14 typical SWC paradigms, focusing on erosion mechanisms and the key challenges or issues in the seven regions as well as on the core problems, main objectives, key technologies, and the performance of the 14 typical paradigms. In summary, the 14 typical SWC paradigms successfully prevent and control local soil erosion, and have largely enhanced, or at least do not harm, the livelihoods of local farmers. However, there remain many challenges and issues on SWC and socioeconomic development that need to be addressed in the seven SWC regions. China, thus, still has a long way to go in successfully gaining the win-win objective of SWC and human aspects of development.

张婷婷[9](2019)在《《邵阳市餐厨废弃物资源化利用和无害化处理项目可行性报告》英译实践报告 ——功能对等理论视角》文中认为随着中国综合国力不断增强,国际地位不断提升,中国的工程类科技报告逐渐受到国际社会的关注,并成为了解中国国情的渠道之一。为了促进中外合资企业双方在工程项目方面的沟通与交流,总结归纳这类文本的翻译技巧及翻译时遇到的问题是十分必要的。因此,本报告通过对《邵阳市餐厨废弃物资源化利用和无害化处理项目可行性报告》翻译过程和翻译行为进行研究和总结,旨在促进国际交流,并通过解读相关背景和措施,宣传中国公民在促进公共餐饮安全的发展过程中所做出的努力,从而使国际社会更好地了解中国公共餐饮安全未来的发展重点和发展方向,进而提高并扩大中国公共餐饮安全在国际上的知名度和影响力。本报告选取笔者所翻译的《邵阳市餐厨废弃物资源化利用和无害化处理项目可行性报告》作为翻译文本,笔者通过阅读和理解源文本,确定此文本属于工程类科技报告。通过比较同一源文本语句的初译和功能对等理论指导下的改译,笔者发现改译后的文本更加准确、客观和公正,这说明功能对等理论对工程类科技文本的翻译具有实际指导意义。在确定了功能对等理论对于工程类科技报告英译的指导意义之后,本报告以“读者接受”为重点,以《邵阳市餐厨废弃物资源化利用和无害化处理项目可行性报告》为例,从功能对等理论深入分析其词汇,句子,篇章特点,并探讨在不同的文本情景应采用何种翻译方法,如直译,增译,转译,省略等。通过对比文本翻译实例,本报告得出的结论是运用功能对等理论来指导工程类科技文本英译的实践工作,能够有效的提高工程类科技文本英译的翻译质量。通过此次翻译实践,笔者加深了对工程类科技文本的理解,并初步总结归纳出翻译这类文本的难点及对策,这将给笔者以后翻译类似文件时提供经验。同时,笔者希望本翻译实践报告能够对今后翻译此类文本的同行有一定的指导作用。

TENG Jiwen,LI Songying,JIA Mingkui,LIAN Jie,LIU Honglei,LIU Guodong,WANG Wei,FENG Lei,YAO Xiaoshuai,WANG Kang,YAN Yafen,ZHANG Wanpeng[10](2020)在《Research and Application of In-seam Seismic Survey Technology for Disaster-causing Potential Geology Anomalous Body in Coal Seam》文中提出In order to effectively detect potential geology anomalous bodies in coal bearing formation, such as coal seam thickness variation, small faults, goafs and collapse columns, and provide scientific guidance for safe and efficient mining, the SUMMIT-II EX explosion-proof seismic slot wave instrument, produced by German DMT Company, was used to detect the underground channel wave with the help of transmission method, reflection method and transflective method. Region area detection experiment in mining face had been carried out thanks to the advantage of channel wave, such as its great dispersion, abundant geology information, strong anti-interference ability and long-distance detecting. The experimental results showed that:(1) Coal seam thickness variation in extremely unstable coal seam has been quantitatively interpreted with an accuracy of more than 80% generally;(2) The faults, goafs and collapse columns could be detected and predicted accurately;(3) Experimental detection of gas enrichment areas, stress concentration regions and water inrush risk zone has been collated;(4) A research system of disaster-causing geology anomalous body detection by in-seam seismic survey has been built, valuable and innovative achievements have been got. Series of innovation obtained for the first time in this study indicated that it was more effective to detect disaster-causing potential geology anomalies by in-seam seismic survey than by ground seismic survey. It had significant scientific value and application prospect under complex coal seam conditions.

二、INSTITUTE OF KARST GEOLOGY——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、INSTITUTE OF KARST GEOLOGY——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文提纲范文)

(1)基于SWAT模型的岩溶流域形态刻画及水文模拟(论文提纲范文)

CURRICULUM VITAE
PUBLICATIONS
摘要
abstract
CHAPTER 1 INTRODUCTION
    1.0 GENERAL BACKGROUND
    1.1 KARST WATER RESOURCES
    1.2 KARST GROUNDWATER: IMPORTANCE AND CHALLENGES
    1.3 GEOGRAPHIC INFORMATION SYSTEMS (GIS) AND REMOTE SENSING (RS)
        1.3.1 IN-SITU HYDROGEOLOGICAL METHODS VS. REMOTE SENSING AND GIS
        1.3.2 REMOTE SENSING AND GIS IN KARST HYDROGEOLOGY
        1.3.2.1 Mapping Groundwater Preferential Flow Path
        1.3.2.2 Karst Groundwater Prospecting: Mapping and Geostatistical Interpolation
        1.3.2.3 Rainfall-Runoff Modelling
    1.4 HYDROLOGICAL MODELS
    1.5 CLIMATE AND GEOLOGICAL SETTING OF STUDY AREA
    1.6 RESEARCH QUESTIONS
    1.7 RESEARCH OBJECTIVES
    1.8 RESEARCH SIGNIFICANCE
    1.9 RESEARCH LIMITATIONS
CHAPTER 2 WATERSHED MORPHOMETRIC CHARACTERIZATION AND MAPPINGUSING GIS AND REMOTE SENSING
    2.1 KARST WATERSHED CHARACTERIZATION
    2.2 KARST IN CHINA AND WATER RESOURCES DEVELOPMENT
        2.2.1 GIS and Remote Sensing for Karst Morphometric Characterization
        2.2.2 Study Area
    2.3 MATERIALS AND METHODS
        2.3.1 Topographic Characterization
        2.3.2 Hydrographic Characterization
        2.3.3 Geomorphic Characterization
    2.4 RESULTS AND DISCUSSION
        2.4.1 Topographic Analysis
        2.4.2 Hydrographic Analysis
    2.5 GEOMORPHIC ANALYSIS
    2.6 CONCLUSION
CHAPTER 3 HYDROGRAPH RECESSION ANALYSIS AND COMPONENTS SEPARATION
    3.1 INTRODUCTION
    3.2 RECESSION CURVE ANALYSIS
    3.3 DATA AND METHODS
    3.4 STREAMFLOW DATA
    3.5 RESULTS AND DISCUSSION
        3.5.1 Calculation of Recession Coefficients (α)
        3.5.2 ecession Coefficient Statistics
    3.6 STREAMFLOW COMPONENT SEPARATION
    3.7 Implications on Groundwater Availability and Quality in Karst Areas
    3.8 CONCLUSION
CHAPTER 4 HYDROLOGICAL MODELLING USING SOIL AND WATER ASSESSMENTTOOL (SWAT)
    4.1 INTRODUCTION
    4.2 RESEARCH PREMISE FOR APPLICATION OF UNMODIFIED SWAT MODEL IN KARSTIFIED CATCHMENT
    4.3 MATERIALS AND METHODS
        4.3.1 SWAT Model Description
    4.4 PROPOSED METHODOLOGY FOR KARST WATERSHED MODELLING
        4.4.1 Karst Survey and Tracer Test
    4.5 SWAT MODEL SETUP
        4.5.1 Topographic Data
        4.5.2 Land-Use/Landcover Data
        4.5.3 Soil Data
        4.5.4 Weather Data
        4.5.5 Stream Discharge Data
    4.6 MODEL EFFICIENCY EVALUATION
        4.6.1 Coefficient of Determination (R2)
        4.6.2 Nash–Sutcliffe Efficiency (NSE)
        4.6.3 Calibration and Validation
        4.6.4 Global Sensitivity Analysis
    4.7 PRECIPITATION-DISCHARGE DATA ANALYSIS
    4.8 GENERATING HYDROLOGICAL RESPONSE UNITS
    4.9 RESULTS AND DISCUSSION
        4.9.1 Model Simulation
        4.9.2 Water Balance Components
    4.10 STREAM FLOW FORECAST
    4.11 CONCLUSION
CHAPTER 5 GENERAL CONCLUSION, RECOMMENDATIONS AND FUTURE RESEARCH
    5.1 GENERAL CONCLUSION
    5.2 RECOMMENDATIONS
    5.3 FUTURE RESEARCH
ACKNOWLEDGEMENT
BIBLIOGRAPHY
APPENDIX A: MODEL DATA AND RESULTS

(2)中国近40年来地貌学研究的回顾与展望(英文)(论文提纲范文)

1 A retrospective look at published Chinese papers in the field of geomorphology over the last four decades
    1.1 The number of published papers and the stages of development of the discipline
    1.2 The changing content of published papers
        1.2.1 Continual innovation in geomorphologic research theory and a significant elevation in its academic status
        1.2.2 Ongoing expansion of the research field and its content derived from traditional geomorphology through comprehensive research encompassing geomorphology and physical geography, thereby deepening the breadth and depth of geomorphologic theory
        1.2.3 Evolution of the discipline into a full-fledged academic subject
        1) Maturity of geomorphologic classification system
        2) Refinement of geomorphologic regionalization and the ongoing emergence of sub-disciplines
        1.2.4 Continued expansion of research teams with the capacity to conduct scientific research on a large scale
        1.2.5 Advances in research methods and the establishment of a research system entailing new technologies
2 A retrospective and future projected analysis of the status of research within geomorphologic sub-disciplines
    2.1 Dynamic geomorphologic research
        2.1.1 Glacial geomorphologic research
        2.1.2 Periglacial (permafrost) geomorphologic research
        2.1.3 Aeolian geomorphologic research
        2.1.4 Loess geomorphologic research
        2.1.5 Karst geomorphologic research
        2.1.6 Fluvial geomorphologic research
        2.1.7 Coastal and submarine geomorphologic research
    2.2 Structural geomorphologic research
        2.2.1 Tectonic structural geomorphologic research
        2.2.2 Geological tectonic geomorphologic research in the field of geology
        2.2.3 Volcanic and lava geomorphology research
    2.3 Climate geomorphologic research
    2.4 Paleogeomorphologic research
    2.5 Research on rock geomorphology
        2.5.1 Geomorphologic research on Danxia
        2.5.2 Geomorphologic research on granite and rhyolite
    2.6 Other kinds of geomorphologic research
        1) Gravity geomorphology
        2) Artificial geomorphology
3 Future prospects
    3.1 Strengthening of basic geomorphologic research and realizing the prejudgment of topographical variation by simulating the formation, cause, and evolution pattern of geomorphology
    3.2 Strengthening crossover studies between geomorphology and other disciplines of geography, to expand the scope of geomorphologic research and develop an integrated geomorphologic approach
    3.3 Implementation of in-depth studies on geomorphologic structures and functions, and enhancement of geomorphology’s application potential
    3.4 Consolidation of an information system relating to resources, the environment, and geomorphology and establishing an information sharing platform on resources and the environment to facilitate industrial information upgrading relating to geomorphology
    3.5 Strengthening coastal and marine geomorphologic research and acquiring holographic information on coastal and marine resources and their environment to transform China from being a large country with an extensive marine environment into a marine power
    3.6 Strengthening talent training and academic team building, establishing a sustainable system for developing talent training, and ensuring the gradual ascendance of geomorphologic research in China

(3)Chinese stalagmite paleoclimate researches: A review and perspective(论文提纲范文)

1. Introduction
2. The developments since the founding of the People’s Republic of China
    2.1 1960s–1970s:Stalagmite paleoclimate research started in European and American countries
    2.2 1980s–1990s:Preliminary stalagmite paleoclimate research in China after the Reform and Opening-up
3. Outstanding research results since the be-ginning of the 21st century
    3.1 The Asian monsoon variations and millennial events during the last two glacial-interglacial cycles
    3.2 Asian monsoon variations over the past 640 ka and underlying mechanisms
    3.3 New observations for the orbital theory
    3.4 Asian monsoon variations during the Holocene
    3.5 East Asian Monsoon variations over the past 2000years and possible mechanisms
    3.6 Coupling and differentiation between the Asian monsoon and the westerly climates
    3.7 Research on new or multiple stalagmite proxies
    3.8 Hulu Cave stalagmites and atmospheric14C cali-bration
    3.9 Worldwide researches
    3.1 0 Technique developments
4. Future perspective of Chinese stalagmite paleoclimate research
    4.1 Hydroclimatic significance of stalagmiteδ18O proxy
    4.2 Continue to improve dating techniques
    4.3 Exploration of new proxies and techniques
    4.4 Multidisciplinary integration
    4.5 Focusing on scientific frontlines and/or key issues
    4.6 In response to important social demands
5. Conclusions

(4)基于机器学习技术的隧道掘进机性状的预测模型研究(论文提纲范文)

Abstract
摘要
List of acronyms and abbreviations
Chapter1 Introduction
    1.1 Background and motivation
    1.2 Role of models in tunneling
    1.3 Definition of the problem
    1.4 Objectives of this study
    1.5 Research strategy/design
    1.6 Structure of this dissertation
Chapter2 Literature review
    2.1 Introduction
    2.2 TBM Tunneling
        2.2.1 Working principle
        2.2.2 Earth pressure balance(EPB)tunnel boring machine
    2.3 Parameters influencing excavation performance and tool wear
        2.3.1 Face pressure
        2.3.2 Screw conveyor
        2.3.3 Thrust and torque of cutter wheel
        2.3.4 Soil conditioning agent
        2.3.5 Cutter wheel rotation speed
        2.3.6 Penetration rate,utilization factor,and advance rate
    2.4 Current state of disc cutter design and development direction
        2.4.1 Disc cutter life(Hf)prediction model
    2.5 TBM prediction models
        2.5.1 Artificial intelligent techniques
        2.5.2 Optimization techniques
        2.5.3 Evaluation TBM performance through AI techniques
    2.6 Summary
Chapter3 Data-driven framework for improving shield performance
    3.1 Introduction
    3.2 Visual analysis of the data
        3.2.1 Statistical modeling
        3.2.2 Principal component analysis
        3.2.3 Simple regression analysis
        3.2.4 Non-linear multiple regression analysis
    3.3 Advance rate prediction through neural network model
        3.3.1 Neural network architecture selection
        3.3.2 Analysis of neural network
    3.4 Advance rate prediction through fuzzy logic model
        3.4.1 Fuzzification part
        3.4.2 Knowledge base
        3.4.3 Fuzzy inference system(FIS)
        3.4.4 Defuzzification process
        3.4.5 Analysis of fuzzy logic
    3.5 Advance rate prediction through ANFIS techniques
        3.5.1 ANFIS Architecture
        3.5.2 Hybrid learning algorithm
        3.5.3 Structure identification methods
    3.6 Summary
Chapter4 Machine performance using optimization models
    4.1 Introduction
    4.2 Estimating TBM performance
    4.3 Proposed technique for advance rate prediction
        4.3.1 Original PSO algorithm
        4.3.2 Improvement of inertia weight
        4.3.3 Improvement of constriction factor
        4.3.4 Synchronously inertia weight and constriction factor
        4.3.5 Hybrid improved IPSO-ANFIS model
        4.3.6 Model evaluations
        4.3.7 Comparison of IPSO-ANFIS model with other techniques
    4.4 Proposed technique for penetration rate prediction
        4.4.1 Genetic algorithm
        4.4.2 Improving ANFIS using GA model
        4.4.3 Multi-objective fitness function
        4.4.4 Model evaluation
        4.4.5 Comparison of multi-objective optimization model with other technique
    4.5 Discussion
    4.6 Summary
Chapter5 Intelligent approach to estimate disc cutter life
    5.1 Introduction
    5.2 Visualization to estimate the consumption of disc cutter
    5.3 Developing model for estimating disc cutter life
        5.3.1 Statistical analysis
        5.3.2 Simple regression analysis
        5.3.3 Non-linear multiple regression analysis
    5.4 An intelligence technique
        5.4.1 Group method of data handling polynomial neural network
        5.4.2 Hybrid GMDH-GA technique
        5.4.3 Evaluation methodology of cutter life using optimized GMDH-GA
        5.4.4 Model validation
    5.5 Analyze the efficiency of parameters to predict cutter life
    5.6 Summary
Chapter6 Case studies:prediction of tunnel performance
    6.1 Introduction
    6.2 Guangzhou Metro Line no.9(Case study)
        6.2.1 Project description
        6.2.2 Geological conditions
        6.2.3 Rock percentage encountered the tunnel face
        6.2.4 Cutter wear and its effect on shield advancement rate
        6.2.5 Effect of TBM field database on advance rate
    6.3 Guangzhou-Shenzhen intercity railway project
        6.3.1 Project description
        6.3.2 Geological conditions
        6.3.3 Disc cutter consumption
        6.3.4 Analysis of shield parameters
    6.4 Discussion
        6.4.1 Visualization of the evolving models for TBM performance
        6.4.2 Visualization of the evolving models for disc cutter life
    6.5 Summary
Chapter7 Concluding remarks
    7.1 A brief summary
    7.2 Limitations
    7.3 Perspective
Appendix A
Appendix B
References
Acknowledgements
Curriculum vitae
Publications during my Ph D study

(5)钛合金航空材料高新技术产业化机制研究(论文提纲范文)

摘要
Abstract
Chapter 1 Introduction
    1.1 Research background and research questions
        1.1.1 Research background
        1.1.2 Research questions
    1.2 Research purpose and significance
        1.2.1 Research purpose
        1.2.2 Research significance
    1.3 Relevant literature review
        1.3.1 Literature review on aeronautical titanium alloy technology
        1.3.2 Literature review on high-tech industrialization mechanism
    1.4 Research content and thesis structure
        1.4.1 Main research contents
        1.4.2 Research methods
        1.4.3 Thesis structure
Chapter 2 Basic theories and definition in relative conceptions
    2.1 Connotation and characteristics of high-tech industrialization
        2.1.1 Connotation of high-tech industrialization
        2.1.2 Characteristics of high-tech industrialization
    2.2 Relevant theory of high-tech industrialization mechanism
        2.2.1 Process and constituent elements of high-tech industrialization
        2.2.2 Modes of high-tech industrialization
        2.2.3 Operating mechanism of high-tech industrialization
    2.3 Policies of high-tech industrialization
        2.3.1 Policies of high-tech industrialization in the developed countries(regions)
        2.3.2 Current situation of high-tech industrialization policies in China
    2.4 Summary
Chapter 3 Development way and industrialization level of aeronautical titaniumalloy industry
    3.1 Current situation and development trend of titanium alloy industry in developedcountries
        3.1.1 Prospect of aeronautical titanium alloy market
        3.1.2 Current situation and development trend of titanium alloy industrialization
        3.1.3 R&D status and development trend of aeronautical titanium alloys
    3.2 Development way of aeronautical titanium alloy industry in China
        3.2.1 Current situation and development trend of titanium alloy industry
        3.2.2 R&D status and development trend of aeronautical titanium alloys
        3.2.3 Problems and development way of aeronautical titanium alloy industry
    3.3 Analysis of industrialization level of aeronautical titanium alloy in China
        3.3.1 The analytic network process
        3.3.2 Index system for evaluating industrialization level of aeronautical titaniumalloy
        3.3.3 Evaluation of industrialization level of aeronautical titanium alloy
    3.4 Summary
Chapter 4 Motivation and process of high-tech industrialization of aeronauticaltitanium alloy
    4.1 Motivation of high-tech industrialization of aeronautical titanium alloy
        4.1.1 Development of aeronautical titanium alloy technology
        4.1.2 Market demand for aeronautical titanium alloys
        4.1.3 International competition in aviation market
        4.1.4 National macroeconomic policy environment
    4.2 Process of high-tech industrialization of aeronautical titanium alloy
        4.2.1 Technology development stage
        4.2.2 Stage of product development and batch production
        4.2.3 Stage of market promotion and large-scale production
    4.3 Summary
Chapter 5 Operating mechanism of high-tech industrialization of aeronauticaltitanium alloy
    5.1 Technology innovation mechanism
        5.1.1 Current situation of technology innovation mechanism of titanium alloyenterprises
        5.1.2 Decision-making mechanism of technology innovation strategy
        5.1.3 R&D mechanism of technology innovation
    5.2 Talent mechanism
        5.2.1 Strategic planning mechanism for technical talent
        5.2.2 Training mechanism of technical talent
        5.2.3 Incentive mechanism for technical talent
    5.3 Financing mechanism
        5.3.1 Financing characteristics of high-tech industrialization of aeronauticaltitanium alloy
        5.3.2 Financing channels for high-tech industrialization of aeronautical titaniumalloy
        5.3.3 Financing mechanism of high-tech industrialization of aeronautical titaniumalloy
    5.4 Policy and regulation guarantee mechanism
        5.4.1 Policy and regulation guarantee for the development of high-techindustrialization
        5.4.2 Policy and regulation guarantee for technical talent training
        5.4.3 Financing policy and regulation guarantee for the development of high-techindustry
    5.5 Summary
Chapter 6 Guarantee measures for high-tech industrialization of aeronauticaltitanium alloy
    6.1 Guarantee measures for the technology innovation mechanism
        6.1.1 Main position of the enterprise in technology innovation
        6.1.2 Technology innovation system of enterprise-led, E-U-R cooperation
        6.1.3 Technology introduction management of enterprise
    6.2 Guarantee measures for the talent mechanism
        6.2.1 Guarantee measures for the training mechanism of technical talents
        6.2.2 Guarantee measures for the incentive mechanism of technical talents
        6.2.3 Guarantee measures for the introduction mechanism of technical talent
    6.3 Guarantee measures for the financing mechanism
        6.3.1 Self-construction and financing channels of enterprise
        6.3.2 Service of financial institutions
        6.3.3 Government's role in optimizing the financing environment
        6.3.4 Coordinated development of financing service system for aeronauticaltitanium alloy industrialization
    6.4 Improving measures of the policy and regulation guarantee mechanism
        6.4.1 Policy and regulation guarantee system for technology innovation of theE-U-R cooperation
        6.4.2 Effective policies for high-tech industrialization of aeronautical titanium alloy
        6.4.3 Regulation guarantee system for promoting high-tech industrialization ofaeronautical titanium alloy
    6.5 Summary
Conclusions
References
Papers published in the period of Ph.D. Education
Acknowledgement
Resume

(7)The Present Research and Prospect of Chinese Geosciences History(论文提纲范文)

1 The History and Present Situation of the Research on the History of International Geological Science
    1.1 The change of the content of the study
    1.2 Organizations and research institutes
    1.3 Publications and authors
2 The Present Situation and Progress of the Study of the Chinese Geological Science History
    2.1 A brief account of the development of the Chinese geological science history
    2.2 Research institutes and research groups
    2.3 The guiding ideology of the research on the history of geological science
    2.4 Major progress in recent years
        2.4.1 Promote interaction between Chinese geological science and social development in China
        2.4.2 A study on the history of geological disciplines of China
        2.4.3 A study of geological characters
        Kwong Yung Kong(1863-1965)
        Woo Yang Tsang(1861-1939)
        Gu Lang(1880-1939)
        Lu Xun(1881-1936)
        Wang Chongyou(1879-1985)
        Zhang Hongzhao(1877-1951)
        Ding Wenjiang(1887-1936)
        Weng Wenhao(1889-1971)
        Li Siguang(1889-1971)
        R.Pumpelly(1837-1923)
        Richthofen,Ferdinand von(1833-1905)
        Amadeus Willian Grabau(1870-1946)
        Johann Gunnay Andersson(1874-1960)
        Prerre Teilhaya de Chardin(1881-1955)
        2.4.4 The study of history of ancient geological thoughts
        2.4.5 The study of the geological cause
        2.4.6 Research of the history of the communication of Chinese and foreign geological science
3 Development Prospect
4 Conclusion

(8)Regions and Their Typical Paradigms for Soil and Water Conservation in China(论文提纲范文)

1 Introduction
2 Typical Paradigms for the Seven Regions of Soil and Water Conservation(SWC)in China
    2.1 Black soil region in Northeast China
        2.1.1 Dominant mechanisms for soil erosion in this region
        2.1.2 Main issues and challenges in the SWC of this region
        2.1.3 Typical paradigms for black soil region in Northeast China
    2.2 Windy and sandy region in North China
        2.2.1 Dominant mechanism for soil erosion in this region
        2.2.2 Main issues and challenges in the SWC of this region
        2.2.3 Typical paradigms for the windy and sandy re-gion in North China
    2.3 Earth-rock mountain region in North China
        2.3.1 Dominant mechanism for soil erosion in this region
        2.3.2 Main issues and challenges in the SWC of this region
        2.3.3 Typical paradigms for the earth-rock mountain region in North China
    2.4 Loess Plateau in Northwest China
        2.4.1 Dominant mechanism for soil erosion in this region
        2.4.2 Main issues and challenges in the SWC of this region
        2.4.3 Typical paradigms for the Loess plateau in Northwest China
    2.5 Red soil region in South China
        2.5.1 Dominant mechanism for soil erosion in this region
        2.5.2 Main issues and challenges in the SWC of this region
        2.5.3 Paradigms for red soil region in South China
    2.6 Purple soil region in Southwest China
        2.6.1 Dominant mechanism for soil erosion in this region
        2.6.2 Main issues and challenges in the SWC of this region
        2.6.3 Paradigms for the purple soil region in South-west China
    2.7 Karst region in Southwest China
        2.7.1 Dominant mechanism for soil erosion in this region
        2.7.2 Main issues and challenges in the SWC of this region
        2.7.3 Paradigms for karst region in Southwest China
3 Discussion
4 Conclusions

(9)《邵阳市餐厨废弃物资源化利用和无害化处理项目可行性报告》英译实践报告 ——功能对等理论视角(论文提纲范文)

摘要
ABSTRACT
Introduction
Chapter 1 Task Description
    1.1 Background of the Translation Task
    1.2 Reasons for Choosing the Original Text
    1.3 Introduction to the Original Text
    1.4 Client's Requirements
Chapter 2 Process Description
    2.1 Preparation Before Translation
        2.1.1 Source Text Comprehension
        2.1.2 Parallel Text Collection and Analysis
        2.1.3 Translation Tool and Reference Material Selection
        2.1.4 Sample Translation
    2.2 The Duration of the Task
    2.3 Quality Control of the Task
        2.3.1 Proofreading
        2.3.2 Finalizing
        2.3.3 Reflection
Chapter 3 Translation Theory
    3.1 Overview of the Functional Equivalence Theory
    3.2 The Feasibility and Necessity of Applying the Functional Equivalence Theory toEngineering Translation
    3.3 Principles of Engineering Translation: Perspective of Functional Equivalence
        3.3.1 Accuracy
        3.3.2 Objectivity
        3.3.3 Formalization
Chapter 4 Case Analysis
    4.1 Equivalence at Lexical Level
        4.1.1 Literal Translation for Terminologies
        4.1.2 Explanatory Translation for Culture-loaded Words
    4.2 Equivalence at Syntactical Level
        4.2.1 Adjusting Attributive Order
        4.2.2 Adjusting Adverbial Order
        4.2.3 Word Conversion for Serial Verb Construction
        4.2.4 Division for Structurally Incomplete Sentence
        4.2.5 Combination for Structurally Incomplete Sentence
        4.2.6 The Choice of Voice
    4.3 Equivalence at Textual Level
        4.3.1 Omission
        4.3.2 Addition
        4.3.3 Transformation
Chapter 5 Difficulties and Implications in Translation Process
    5.1 Difficulties
    5.2 Implicationss
Conclusion
Bibliography
Acknowledgements
Appendix A
Appendix B
Appendix C (中英文长摘要)

(10)Research and Application of In-seam Seismic Survey Technology for Disaster-causing Potential Geology Anomalous Body in Coal Seam(论文提纲范文)

1 Introduction
2 Development and Application of ISS Technology in China
3 Quantitative Detection of Coal Seam Thickness
    3.1 Dispersion characteristics of coal seam thickness variation
    3.2 Detection of coal seam thickness variation in Huaxing Coal Mine(HCM)
    3.3 Coal seam thickness variation detection in Yian Coal Mine(YCM)
    3.4 Summary of ISS in coal seam thickness variation
4 Small Faults Detection
    4.1 Set-up for small faults detection
    4.2 Detection of faults in coal seam of Yunding Coal Mine(YCM)
    4.3 Detection of faults in Xinyi Mine
    4.4 Effect of ISS on faults in coal seam
5 Goaf Detection
    5.1 The harmfulness of goaf and water inrush event
    5.2 Detection of goaf water of Xinan Coal Mine
    5.3 Goaf water detection in a coal mine in Shanxi Province
    5.4 Effect and problems of ISS application in goaf water
6 Collapse Column Detection
    6.1 Collapse column water inrush in coal seam
    6.2 Collapse column detection in Chengzhuang Coal Mine(CCM)of Shanxi Jincheng Anthracite Minging Group Co.,Ltd
7 Stress Concentration Zone Detection
    7.1 Rock burst originated from stress concentration
    7.2 In-situ stress concentration area detection in Gengcun Coal Mine(GCM)
8 Detection of Gas Enrichment Area
    8.1 Gas in coal mine
    8.2 Gas enrichment area detection in Xinan Coalfield
9 Detection of Floor Water-irruption in High Risk Area
    9.1 Coal mining safety and bottom plate bearing karst aquifer threat
    9.2 Detection of Ordovician aquifer water inrush risk in Xinan Coal Mine
1 0 Detection of Region Area
    1 0.1 Detection of region area beneficial to design coal mining face scientifically
    1 0.2 Region area detection in Yunding Coal Mine
1 1 Innovation and Suggestion
    1 1.1 Innovation
    1 1.2 Suggestions

四、INSTITUTE OF KARST GEOLOGY——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文参考文献)

  • [1]基于SWAT模型的岩溶流域形态刻画及水文模拟[D]. Hamza Jakada. 中国地质大学, 2018(03)
  • [2]中国近40年来地貌学研究的回顾与展望(英文)[J]. 程维明,刘樯漪,赵尚民,高晓雨,王楠. Journal of Geographical Sciences, 2017(11)
  • [3]Chinese stalagmite paleoclimate researches: A review and perspective[J]. Hai CHENG,Haiwei ZHANG,Jingyao ZHAO,Hanying LI,Youfeng NING,Gayatri KATHAYAT. Science China(Earth Sciences), 2019(10)
  • [4]基于机器学习技术的隧道掘进机性状的预测模型研究[D]. 凯立德 艾尔巴兹(Khalid Elbaz Ahmed Elbaz). 上海交通大学, 2019(06)
  • [5]钛合金航空材料高新技术产业化机制研究[D]. 申京浩(Sim Kyong Ho). 哈尔滨工业大学, 2019(01)
  • [6]Global case studies of soft-sediment deformation structures(SSDS): Definitions,classifications, advances, origins, and problems[J]. G.Shanmugam. Journal of Palaeogeography, 2017(04)
  • [7]The Present Research and Prospect of Chinese Geosciences History[J]. CHEN Baoguo,ZHANG Jiuchen,YANG Mengmeng. Acta Geologica Sinica(English Edition), 2016(04)
  • [8]Regions and Their Typical Paradigms for Soil and Water Conservation in China[J]. DANG Xiaohu,SUI Boyang,GAO Siwen,LIU Guobin,WANG Tao,WANG Bing,NING Duihu,BI Wei. Chinese Geographical Science, 2020(04)
  • [9]《邵阳市餐厨废弃物资源化利用和无害化处理项目可行性报告》英译实践报告 ——功能对等理论视角[D]. 张婷婷. 长沙理工大学, 2019(07)
  • [10]Research and Application of In-seam Seismic Survey Technology for Disaster-causing Potential Geology Anomalous Body in Coal Seam[J]. TENG Jiwen,LI Songying,JIA Mingkui,LIAN Jie,LIU Honglei,LIU Guodong,WANG Wei,FENG Lei,YAO Xiaoshuai,WANG Kang,YAN Yafen,ZHANG Wanpeng. Acta Geologica Sinica(English Edition), 2020(01)

标签:;  ;  ;  

喀斯特地质研究所——科研工作总结
下载Doc文档

猜你喜欢