一、数学教学中的精講多練(论文文献综述)
代钦[1](2018)在《历史文化视角下的中国数学课例研究(续)》文中进行了进一步梳理5 1949年以来的课例研究情况11949年10月1日中华人民共和国成立后,由于意识形态原因开始学习前苏联的教育理论,模仿前苏联的教育模式.就数学教育而言于1952年仿照前苏联制定了中小学数学教学大纲,翻译或编译前苏联数学教科书,大量地翻译出版了数学教育理论研究的书籍,如伯拉基斯的《中学数学教学法》(有单册和6分册两种版本)、萨!耶!利亚平的《高中数学教学法》(几何代数两册)、伊斯托
西峰山[2](2015)在《平面几何教学研究之研究 ——以《数学通报》(1951~1966)为例》文中认为本研究主要利用文献研究法、历史研究法、比较研究法等研究方法,依据教学论和课程论,把教学活动分成“教”和“学”两个维度,从每个维度的各个环节(即前期准备、内容分析、方法的选择、遵循的原则、计划与实施、评价与反思)对《数学通报》中的有关平面几何教学的文章进行统计分析,揭示我国建国初期15年间的平面几何教学特点及发展脉络。具体研究的过程中,首先,根据当时的历史背景和《数学通报》中文章的体现将该时期分为三个阶段,即1951—1957,学习苏联时期;1958—1960,教育改革时期;1961—1966,自我完善时期。其次,对每一阶段从背景的概述、平面几何教学文章的总体特点及趋势和平面几何教学的特点及发展脉络等三个层次对其进行统计分析。背景概述主要对该阶段的数学教育政策和当时的教学大纲两个方面进行概述;平面几何教学文章的总体特点及趋势对该阶段发表的平面几何文章在总体文章中所占比重和对它的变化趋势进行统计分析;平面几何教学的特点及发展脉络先从教学的六个环节对这些文章进行进一步分块统计,再对每一块(环节)所包含的内容进行深入分析(先对每环节进行类化,再深入探究)。通过上述研究得到建国初期平面几何教学的如下特点:1.教学准备:备学生方面,了解学生认知发展水平并注意个体差异;备教材方面,选材注重数学在历史上的贡献;教师能力方面,主要是注重教育实习。当时为了提高备课质量,还注意到了集体备课方面的问题。2.教学内容分析:学习苏联时期受到苏联的影响,教材的选择和编排非常重视系统性和严密性;教学改革时期更注重与实际的结合;自我完善时期,意识到改革的极端性,教学内容方面在不损坏内容系统性的和适当联系实际的基础上,以学生为核心对教材进行筛选和精简。3.教学方法选择:当时常用的教学方法有直观教学演示法、练习法、讲授法、谈话法、启发式教学法、因材施教等。练习法中有案例分析法和复习法;而案例分析法可分为定理的证明方法、典型案例的分析和实际问题解决法等三种。4.教学原则:当时遵循的教学原则有理论联系实际的原则、系统性原则、顺序渐进原则、量力性原则、巩固性原则、思想性原则、直观性原则和启发式原则等。培养学生能力时初级阶段遵循直观性原则,有一定知识储备能力时再以启发式原则为主,并且教学过程中注意对这些知识与方法的即时巩固与练习,因此要用巩固性原则。5.教学设计与实施:教学的目的从“社会本位”转向“个人本位”和“社会本位”相结合的理念。1963年第一次通过大纲提出“三大能力”的培养。教材的编排方面:学习苏联时期主要侧重知识间的系统性和逻辑性;教育改革时期主要根据生产实际的需要;自我完善时期主要围绕学生的特点和发展进行编排。6.教学评价与反思:当时数学教育者们已经开始关注教学评价与反思,并组织发表了一些很有参考价值的文章。通过分析《通报》上的文章可以了解到:当时已经关注到了教学的每个环节,即教前反思、教学内容的反思、有教学过程的反思(方法、设计、原则)等。
陈维彪[3](2020)在《基于学习迁移理论的高中数学不等式教学研究》文中指出通过迁移可以更好地架构不等式知识网络,培养学生的发散性思维,提高课堂教学效果和学生的逻辑推理能力.但在不等式实际教学中,学习迁移理论并没有发挥其应有的作用.因而,有必要了解学习迁移理论在不等式教学中的使用现状,制定相应的教学策略.本研究通过对学生进行问卷调查和访谈,调查学生对迁移概念的了解、迁移作用的认识以及在学习过程中使用迁移的情况;对教师进行访谈,了解教师在不等式教学中的困惑、对学习迁移理论的了解、影响迁移效果因素的看法及在教学中使用迁移的情况,分析存在的问题;接着研究学习迁移理论在不等式教学中的应用,得出学习迁移理论能提升学生不等式学习效果的结论.最后,提出基于学习迁移理论的不等式教学建议:(1)做好初高中不等式衔接教学,为高中不等式教学创造迁移基础;(2)借鉴新教材,迁移拓展不等式知识;(3)培养正迁移,纠正负迁移;(4)精心组织教学活动,培养学生的迁移意识;(5)重视变式训练,提高迁移能力;(6)对数学文化和不等式进行双向迁移,提升学生学习不等式的兴趣;(7)精心设计校本选修课程,为学生未来发展提供迁移基础.把学习迁移理论用到不等式教学过程中,系统地研究不等式知识,能提高学生学习不等式的兴趣,优化教师课堂教学活动,提高教学效果,对教师和学生的发展都有重要意义.
徐建星[4](2011)在《GX实验教学原则的形成与发展研究》文中进行了进一步梳理GX实验是“提高课堂效益的初中数学教改实验”的简称(“G”、“X”分别为“高效”一词的汉语拼音Gao Xiao的首字母),是陈重穆先生、宋乃庆教授于1992年正式提出并实施,以“减负提质”为核心,旨在通过提高数学课堂教学效益减轻师生负担、提升学生能力与素质,是一项融教育思想、教材编写、教学方法为一体的综合性数学教学改革实验。GX实验教学原则的“32字诀”是:积极前进,循环上升;淡化形式,注重实质;开门见山,适当集中;先做后说,师生共作。它是GX实验的基本理念,其中“淡化形式,注重实质”、“向课堂45分钟要效益”等观念已渗透到数学教育中,影响广泛。2010年颁布的《国家中长期教育改革和发展规划纲要(2010-2020年)》提出要“减轻中小学生课业负担”,否则“素质教育推进困难”,减负提质要落实到中小学各科的课程与教学中,但反思当下课程改革中存在的师生负担过重,课堂教学效率低下等现象,更有必要对GX实验的教学原则进行传承与挖掘。数学教育的发展过程是一系列数学教学改革的过程,这些改革构成了数学学科教育的发展史,在数学教学的历史长河中,不是今天的教学创造了教学的历史,而是教学的历史造就着今天的教学。教学的传统与历史远比我们所能认识的要丰富、深厚与完整,它们是先人们在长期的历史进程中的智慧累积,是人类教学发展的“源”与“流”。当前数学课程改革中人们对数学课程改革理解的偏见或缺失,课堂教学改革出现的简单与重复等一系列问题,其中一个重要的原因就是遗忘了以前许多数学教学改革的实践与经验,割裂了数学教学改革的历史,不前返教学改革的历史就失去了继承传统的阶梯,没有“源”与“流”的改革与发展将会迷失正确的路向。本研究主要在素质教育视域下,审视GX实验教学原则的形成与发展,以期在当下教育背景下挖掘与激活GX实验的教学原则,为数学课程改革提供一定的借鉴与启示,同时也反思GX实验研究中存在的问题。研究过程中主要以GX实验教学原则的集中体现——“GX32字诀”为研究基点与核心,具体采用历史研究法、文献研究学、调查研究法、案例研究法等研究方法,在教育改革涵盖的教育理论与改革理论二个维度上,结合数学课程改革中存在的相关教学问题展开研究。除导言、文献综述与结语外,论文还有6章,分为三个主要部分,其中第一部分为第3、4、5、6章,主要参照教育改革的阶段性理论框架,把GX实验教学原则的发展历程划分为酝酿、启动、实施、提升四个阶段。对每一个发展阶段的研究,首先梳理本阶段中影响改革的因素,力图把GX实验教学原则的发展置于当时的背景下进行思考,然后根据教育改革的两大构成要素:教育理论——改什么的问题;改革理论——如何改的问题。从两个维度进行分析,在教育理论维度上的分析,主要在当代素质教育视域下,本源性的梳理每一个发展阶段GX实验教学原则的内涵与特征,阐述了在每一个阶段GX实验教学原则是什么;其次,在改革理论维度上的分析,主要在GX实验教学原则构思、启动、实施与提升的历程中,窥视其改革实践的策略与方法。基于两个维度的分析,系统探讨了GX实验教学原则由散到聚,由教材到教法,再到教材与教法融合于一体的教学改革实验的内涵及其实践的方法策略。通过教学改革事件的衔接,还原了GX实验教学原则的形成与发展历程,从数学观、数学教学观、数学学习观等角度系统梳理了GX实验教学原则的整体概貌。第二个部分为第7章,主要对GX实验作一个方法上的考量。由于GX实验是一项数学的教学实验,因此把讨论分为两个维度,一是把GX实验置于数学教育研究的范式下来思考,从GX实验的发展路径来看,GX实验属于经验的——科学家的研究传统。从GX实验教学原则构建的路向来分析,GX实验属于数学——归纳的研究范式:二是把GX实验置于教学实验的视角下来审视,GX实验是一项自然教学环境下的准实验,通过其改革事件的分析进一步明确了GX实验的实验假设、实验变量、实验评价等。并试图回答人们对GX实验科学性、方法论上的追问。第三部分为第8章,主要根据GX实验教学原则的形成与发展研究,启示当下的数学课程改革要认识数学形式化谱系,构建学校数学的知识体系;切实物化理念,构建易于师生操作的一体化课程资源;高效课堂释放课外,突破减负提质的现实困境;加强教师培训的“数学化”,提高教师的数学素养等。反思认为GX实验教学原则的研究要进一步提高理论与实证研究的水平,加强对GX实验教学原则的传播与发展。研究的拟创新之处主要有以下几点:一是以大量的第一手资料为依据,从改革史的角度,首次对GX实验教学原则的形成与发展进行系统梳理。尽管对GX实验研究的硕博学位论文有十余篇,期刊论文有一百四十余篇,但这些主要是对GX实验教材编写、教学效果、学习策略等某一方面进行分析研究,缺少整体的系统研究,本研究弥补了这一缺失;二是研究中采用历史研究法、调查研究法,结合文献计量学方法,对大量的改革史料从质与量两个角度进行综合分析,按教学理论与改革理论两个维度,通过改革事件的续接,对GX实验教学原则的发展进行全景式的发展性透视;三是通过对GX实验教学原则的历史挖掘,为数学教学改革史与构建具有中国特色的数学教育增添了一份素材,为当下数学课程改革提供借鉴与启示。当然,研究中还存在许多问题与不足。如对GX实验研究史料的挖掘还不是很全面,对GX实验史料的理论提炼还有待提高,如何进一步继承与深化GX实验教学原则的内涵与特色,当下GX实验如何再发展等都有待于进一步研究,这也是以后将继续探讨的问题。
何盈[5](2020)在《普通高中数学教学中学生探究能力培养的策略研究 ——以甘肃省通渭县X高中为例》文中认为新课程改革倡导转变教师的教学理念、教学方式,教师不再单纯的以讲授为主,而是要引导学生积极主动的进行探索学习。故研究在普通高中数学教学中培养学生的数学探究能力愈发重要。探究教学以学生为主体,鼓励学生积极参与课堂探究活动,培养学生自主学习能力、数学探究能力。本文的研究内容有:第一,高二年级学生数学探究能力现状以及影响因素;第二,探究教学现状及数学教师对探究教学的认识和开展过程中存在的问题;第三,提出教学中培养学生数学探究能力的策略。本文首先通过查阅国内外相关的文献资料,总结探究教学的相关理论,探讨数学探究能力的结构。数学探究能力是一种复杂的综合能力,它包括观察和发现问题的能力、提出有意义的数学问题的能力、分析和概括问题的能力、创造性的思维能力以及选择与评估解决方法的能力。其次,利用教师问卷了解笔者所调查学校数学教师对探究理论的掌握情况、探究教学的实施现状以及影响探究教学的实施的因素;利用学生问卷调查学生数学探究能力现状和影响因素。结果表明,大部分教师认为探究教学有利于培养学生的数学探究能力,对其理论掌握也较充分,但是课堂的具体实施并不理想,所调查学校学生数学探究能力较弱。再次,结合相关文献资料及问卷调查,以“数列”为教学内容的载体,将探究教学的相关理论与课堂实践结合起来,并通过访谈学生对这节内容的教学效果进行分析,得出以下结论:实施探究教学,可以转变中等及偏上学生的学习态度,增加学生学习的积极性;实施探究教学,可以使学生由被动学习逐渐变为主动学习;实施探究教学,可以使学生的数学探究意识逐渐提高。最后,本文通过自身教学实践,研究在日常教学中如何培养学生的数学探究能力,提出普通高中数学教学中培养学生探究能力的策略,进而提高学生的科学素养,为教师的教和学生的学提供一些参考及建议。
杨代翠[6](2014)在《高中数学课堂中的“精讲多练”教学》文中认为课堂是学校教学的主阵地,只有营造出良好的课堂教学模式,才会收到丰硕的教学成果。良好的课堂教学应该是全体学生全身心地参与教学,在教学活动中学会自学,踊跃发言,自主探索,合作交流,真正成为教学活动的主人。而教师所扮演的角色是教学活动的组织者、引导者和合作者。因此,提高数学的教学效果对高中数学教师提出了更高的要求,即在课堂教学中如何以最少的时间和精力,获取最佳的课堂教学效果。德国教育家第斯多惠说:"教学艺术的本质不在于传授的本质,而在激励、唤醒和鼓舞。"精讲多练"是体现教师为主导,学生为主体的最重要教学原则之一。
邱云兰[7](2020)在《高等数学精讲多学模式的研究》文中提出在高等数学教学中,不以讲得多、讲得全为导向,要在"讲得精""讲得新""学得好"上下功夫。把握大纲,了解学情,"以学定教",精讲多学,精讲重难点、疑难问题。减少讲课时间,把时间交给学生去学习、理解、互动、体验、观察和交流。
王成营[8](2012)在《数学符号意义及其获得能力培养的研究》文中提出为什么随着年级的增加,许多学生感觉数学越来越难学、越来越枯燥,普遍出现“听而不懂”、“懂而不会”、“会而不对”问题?对小学和初中数学教材中的数学概念、数学符号、数学图表、数学公式、数学定理、数学关键词进行分类统计的结果表明,小学生平均每学期需要学习42个新符号,而初中生每学期需要学习120个新符号,几乎是小学生学习量的3倍。对小学、初中、高中三个阶段学生的问卷调查表明,学生的数学符号意义获得能力普遍较低,38%的学生不认识学过的数学符号,45%的学生只能说出数学符号的一个意义,只有17%的学生能够想到二个或二个以上的意义,而且三个学段学生的数符号意义获得能力无显著差异。这些数据表明,随着年级增加,数学符号的数量急剧增加,形式越来越简洁,意义越来越复杂,学生的数学符号意义获得能力却仍处在低水平,没有得到相应提升,是导致学生数学学习困难的根本原因。为此,本课题提出了研究假设:培养和提高学生的数学符号意义获得能力是解决上述问题的有效方法。首先,概括阐述了符号学的基本方法和基本原理,作为本研究的理论基础。符号学理论认为,任何事物的存在状态和变化规律既受内部组成要素的影响,也受外部环境因素的影响,始终处在由内部要素和外部因素组成的关系结构中;符号是包含符号形式(记号)和符号意义(记号表象)的统一体,不能脱离记号谈论符号意义,也不能脱离符号意义谈论记号;符号都不是孤立存在的,它本身是一个结构,又处于更大的符号结构中;研究符号意义需要全面构建相互关联的包括要素结构、联结结构和意义结构三个层次的符号结构。其次,应用符号学理论分析教学活动中的符号现象,探讨符号学理论和方法的教学意蕴,对传统的“符号”、“知识”、“学习”、“教学”进行新的诠释。符号本质上是一种能够刺激人的感官,使人产生意义联想的客观存在形式,是一种可以替代认识对象的“感官刺激物”。教学活动中可以刺激学生产生意义联想,帮助学生理解教学内容的实物、模型、手势、视频、教材等一切东西都可看作符号,视作教学资源。知识是由知识外部表征(记号结构)与知识内部表征(认知结构)组成的统一体,本质上是一种符号结构。人的任何想法都可以通过符号以“直观”的方式直接地或通过符号结构以“意会”方式间接地传递给他人。个体知识的外部表征构成了与现实世界相对应的个体的“记号世界”,个体知识的内部表征构成了与“记号世界”相对应的个体的“经验世界”。由记号结构和认知结构构成的符号结构,代表了个体的所有知识和经验,代表了个体适应和改造现实世界的综合能力。人类的某一感官不可能同时感知整个客观事物,只能感知它的部分属性。感知到的属性被感知者赋予意义后就建立了一个刺激物(记号)与意义(感觉表象)的联结,成为自然符号。当感觉表象被感性思维加工成与客观事物对应的知觉表象(感性经验)时,与感觉表象对应的符号就联结成自然符号结构,并与客观事物建立了对应关系。当感觉表象被理性思维加工成客观世界中不存在的知觉形象(概念)时,人类就需要创造人工符号来表征它,并使建立在概念基础上的理性经验与人工符号结构形成对应关系。因此,学习知识的过程本质上是建构符号结构的过程,具体包括客观事物的经验化、经验的符号化、符号的经验化三个相互转换过程。知识的教学就是教师帮助学生建构符号结构的过程。再次,应用符号学理论和方法重新界定了数学符号、数学符号意义、数学符号意义获得能力的内涵,分析了影响数学符号意义获得能力培养的主要因素和困难,并结合数学概念教学、数学命题教学和数学问题教学进行了案例研究。在教学活动中,数学符号是一切承载数学信息的符号,主要包括数学自然符号、数学模型符号、数学语音符号、数学文字符号、数学专业符号、数学图表符号、数学行为符号七大类。数学符号意义是指在数学符号刺激下被激活的整个数学符号结构,主要包括数学符号的语符意义、基本意义、转换意义、隐性意义、美学意义、个性化意义、操作意义七种意义,它可通过联想到的所有数学符号的记号的数量来测量。数学符号意义获得能力是指在数学符号刺激下建构包含这该数学符号的数学符号结构的能力,主要包括数学符号的形式感性能力、意义联想能力、意义转换能力、意义整合能力和记号操作能力五大能力。影响数学符号意义获得能力培养的因素主要是数学教师的数学符号观和教学资源观、数学教学观和教学方法观。在数学教学实践,数学教师应转变观念,依据《数学课程》的“三维”教学目标要求,科学选择、安排、呈现数学符号资源,灵活应用符号结构分析方法,传授学生建构数学符号意义结构的基本方法和思维模式,探讨数学符号的多元表征,全面建构数学符号意义结构,并使之内化为学生自己的认知结构,提升学生的数学素养,促进学生的全面发展。最后,概括了本研究的基本逻辑:(1)无法获得数学符号丰富的数学意义是学生害怕、讨厌数学,感觉数学难学的主要原因;(2)教师忽视数学符号教学是导致学生数学符号意义获得能力较低的主要原因;(3)教师片面的数学符号观和知识观是导致教师忽视数学符号教学的主要原因;(4)数学符号结构中蕴含了数学知识的所有信息,需要学习者去感知、发现、领悟和建构;(5)获得数学符号结构中的数学信息需要学生具备较高的数学符号意义获得能力;(6)培养数学符号意义获得能力的核心是超越数学符号“是什么”的传统思维,努力思考它“意味着什么”;(7)培养学生的数学符号意义获得能力需要教师转变片面的符号观、知识观、学习观和教学观。本研究的最终结论是:培养和提高学生的数学符号意义获得能力是解决“数学难学”、“数学枯燥”,“听而不懂”、“懂而不会”“会而不对”等教学难题的一种有效的、可行的、具有操作性的途径和方法。
张有德,宋晓平[9](2006)在《儒家教学观与我国数学教学》文中研究表明以儒家教育思想为主导的我国古代教育,在教学思想及方法上有许多特色,深刻影响着我国的数学教学.对其进行深入研究,加以继承和发扬,并与现代数学教育理念相结合,对搞好数学课程改革,走中国特色数学教学之路有重要意义。
代钦[10](2012)在《中国的传统数学教学智慧》文中提出1如何认识中国传统数学教学中国数学教育源远流长,经历了三千多年的漫长历程.中国古代数学教育不仅培养出一大批杰出的数学家,创造如唐代的"明算科"那样世界上第一所数学高等学校的记录,而且也创造了迄今为止仍然闪烁着睿智的数学教学思想方法.然而,数学教育研究者和广大中小学数学教师对中国古代数学教学思想方法的了解和应用却不够.
二、数学教学中的精講多練(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、数学教学中的精講多練(论文提纲范文)
(1)历史文化视角下的中国数学课例研究(续)(论文提纲范文)
5 1949年以来的课例研究情况 (1) |
5.1数学课的类型和结构 |
5.2课堂教学研究情况 |
5.2.1备课 |
(1) 个人备课 |
(2) 集体备课, 每周排有固定时间, 着重解决: |
5.2.2说课情况 |
5.2.3反思 |
5.2.4精讲多练的课堂教学研究 |
5.2.5课堂讨论教学研究 |
5.3 20世纪90年代以后的对课例研究的认识 |
5.4 20世纪90年代以来中国数学课例研究的诸形式 |
6结语 |
(2)平面几何教学研究之研究 ——以《数学通报》(1951~1966)为例(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 问题的提出 |
1.2 研究目的和意义 |
1.3 国内研究现状 |
1.4 研究方法 |
1.4.1 文献研究法 |
1.4.2 历史研究法 |
1.4.3 比较研究法 |
1.5 创新之处 |
第2章 平面几何教学相关理论概述 |
2.1 关于“教”的理论基础 |
2.1.1 教的准备 |
2.1.2 教的内容分析 |
2.1.3 教学方法选择 |
2.1.4 教学原则 |
2.1.5 教学设计与实施 |
2.1.6 教的评价与反思 |
2.2 关于“学”的理论基础 |
2.2.1 学的准备 |
2.2.2 训练内容分析 |
2.2.3 学习方法选择 |
2.2.4 学习策略 |
2.2.5 学习计划与实施 |
2.2.6 学习评价与反思 |
2.3 平面几何教学概述 |
2.3.1 平面几何教学基本概念 |
2.3.2 平面几何教学特点 |
第3章 学习苏联时期《数学通报》中关于平面几何教学研究 |
3.1 背景的概述 |
3.2 平面几何教学文章的总体特点及趋势 |
3.3 平面几何教学的特点及发展脉络 |
3.3.1 平面几何教学各个环节的统计分析 |
3.3.2 平面几何教学的发展脉络 |
第4章 教育改革时期《数学通报》中关于平面几何教学研究 |
4.1 背景概述 |
4.2 平面几何教学文章的总体特点及趋势 |
4.3 平面几何教学发展脉络及特点 |
4.3.1 平面几何教学各个环节的统计分析 |
4.3.2 平面几何教学的发展脉络 |
第5章 自我完善时期《数学通报》中关于平面几何教学研究 |
5.1 背景概述 |
5.2 平面几何教学文章的总体特点及趋势 |
5.3 平面几何教学特点及发展脉络 |
5.3.1 平面几何教学各个环节的统计分析 |
5.3.2 平面几何教学的发展脉络 |
第6章 结论与建议 |
6.1 结论 |
6.1.1 历史背景 |
6.1.2 平面几何教学文章 |
6.2 教学启示 |
6.3 进一步研究方向 |
参考文献 |
致谢 |
(3)基于学习迁移理论的高中数学不等式教学研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究的背景 |
1.1.1 不等式学习的重要性 |
1.1.2 不等式教学中的困境 |
1.1.3 学习迁移理论在不等式中的作用 |
1.2 核心名词界定 |
1.2.1 教学 |
1.2.2 教学设计 |
1.2.3 解题 |
1.2.4 迁移 |
1.3 研究的内容和意义 |
1.3.1 研究的内容 |
1.3.2 研究的意义 |
1.4 研究的思路 |
1.4.1 研究计划 |
1.4.2 研究的技术路线 |
1.5 论文的结构 |
第2章 理论基础与文献综述 |
2.1 研究的理论基础 |
2.1.1 学习迁移的概念 |
2.1.2 迁移的分类 |
2.1.3 早期的迁移理论 |
2.1.4 现代的迁移理论 |
2.2 文献综述 |
2.2.1 文献搜集 |
2.2.2 不等式的研究现状 |
2.2.2.1 不等式教材的研究现状 |
2.2.2.2 不等式解题教学的研究现状 |
2.2.2.3 不等式教学策略的研究现状 |
2.2.3 学习迁移理论的在数学中的研究现状 |
2.2.4 不等式中的迁移的研究现状 |
2.2.5 文献评述 |
2.3 小结 |
第3章 研究设计 |
3.1 研究目的 |
3.2 研究方法 |
3.2.1 文献法 |
3.2.2 问卷调查法 |
3.2.3 访谈法 |
3.2.4 痕迹分析法 |
3.2.5 案例研究法 |
3.2.6 微型实验研究法 |
3.3 研究工具及研究对象选取 |
3.4 研究伦理 |
3.5 研究的创新之处 |
3.6 小结 |
第4章 基于学习迁移理论的不等式教学现状调查 |
4.1 基于学习迁移理论的问卷分析 |
4.1.1 问卷设计 |
4.1.2 实施调查 |
4.1.3 问卷可靠性分析 |
4.1.4 学习迁移理论的问卷结果分析 |
4.1.4.1 学生学习一元一次不等式的迁移体会 |
4.1.4.2 学生对教师的迁移教学的感受 |
4.1.4.3 学生对迁移作用的观点 |
4.1.4.4 学生对解题中所涉及到迁移的体会 |
4.1.4.5 学生对数学内部及其他学科间的迁移的认识 |
4.2 基于学习迁移理论的访谈研究 |
4.2.1 访谈设计 |
4.2.2 实施访谈 |
4.2.3 访谈结果及分析 |
4.2.3.1 教师访谈记录 |
4.2.3.2 教师访谈分析 |
4.2.3.3 学生访谈记录 |
4.2.3.4 学生访谈分析 |
4.3 基于学习迁移理论的调查结论 |
4.4 小结 |
第5章 学习迁移理论在不等式教学中的应用 |
5.1 新、旧课标的不等式对比分析 |
5.1.1 内容方面 |
5.1.2 要求方面 |
5.2 不等式中的迁移 |
5.2.1 不等式知识中的迁移 |
5.2.1.1 不等关系与不等式中的迁移 |
5.2.1.2 一元二次不等式及其解法中的迁移 |
5.2.1.3 基本不等式中的迁移 |
5.2.1.4 教材其他内容的迁移 |
5.2.2 数学文化中的迁移 |
5.2.3 思想方法的迁移 |
5.3 基于学习迁移理论的不等式教学目的 |
5.4 基于学习迁移理论的不等式教学原则 |
5.5 基于学习迁移理论的不等式教学流程 |
5.6 基于学习迁移理论的不等式教学案例 |
5.6.1 实验班、对照班的选择 |
5.6.2 基于学习迁移理论的“一元二次不等式及其解法”的案例 |
5.6.2.1 基于学习迁移理论的一元二次不等式及其解法教学设计构想 |
5.6.2.2 基于学习迁移理论的一元二次不等式及其解法教学设计 |
5.6.2.3 基于学习迁移理论的一元二次不等式及其解法的教学访谈 |
5.6.3 基于学习迁移理论的“基本不等式”的案例 |
5.6.3.1 基于学习迁移理论的基本不等式教学设计构想 |
5.6.3.2 基于学习迁移理论的基本不等式教学设计 |
5.6.3.3 基于学习迁移理论的基本不等式的教学访谈 |
5.6.4 迁移教学效果分析 |
5.6.4.1 实验班解题痕迹分析 |
5.6.4.2 第10周周测分析 |
5.7 小结 |
第6章 基于学习迁移理论的不等式教学建议 |
6.1 基于学习迁移理论的不等式教学建议 |
6.1.1 做好初高中不等式衔接教学,为高中不等式教学创造迁移基础 |
6.1.2 借鉴新教材,迁移拓展不等式知识 |
6.1.3 培养正迁移,纠正负迁移 |
6.1.4 精心组织教学活动,培养学生的迁移意识 |
6.1.5 重视变式训练,提高迁移能力 |
6.1.6 对数学文化和不等式进行双向迁移,提升学生学习不等式的兴趣 |
6.1.7 精心设计校本选修课程,为学生未来发展提供迁移基础 |
6.2 小结 |
第7章 结论与反思 |
7.1 研究的结论 |
7.1.1 问卷和访谈调查分析的结果 |
7.1.2 迁移理论在不等式教学中的应用分析 |
7.1.3 不等式教学建议 |
7.2 研究的不足之处与展望 |
参考文献 |
附录A 基于学习迁移理论的调查问卷 |
附录B 学生访谈提纲 |
附录C 教师访谈提纲 |
附录D 后测题 |
攻读学位期间发表的学术论文和研究成果 |
致谢 |
(4)GX实验教学原则的形成与发展研究(论文提纲范文)
摘要 |
Abstract |
第1章 导言 |
1.1 研究的缘起 |
1.1.1 减轻学生学习负担过重的需要 |
1.1.2 提高数学课堂教学效益的需要 |
1.2 研究目的与意义 |
1.2.1 研究的目的 |
1.2.2 研究的意义 |
1.3 研究的思路与方法 |
1.3.1 研究的思路 |
1.3.2 研究的方法 |
1.4 论文的结构 |
第2章 文献综述 |
2.1 素质教育概述 |
2.1.1 素质教育的提出 |
2.1.2 素质教育的内涵 |
2.1.3 素质教育的特征 |
2.2 GX实验教学原则概述 |
2.2.1 教学原则概述 |
2.2.2 数学教学的主要原则 |
2.2.3 GX实验的数学教学原则 |
2.3 GX实验研究述评 |
2.3.1 GX实验的经验总结性研究 |
2.3.2 GX实验的理论基础研究 |
2.3.3 GX实验的推广与迁移研究 |
2.4 GX实验的阶段划分 |
2.4.1 教学改革过程的阶段性理论 |
2.4.2 GX实验的四个阶段 |
第3章 GX实验对中学数学形式化的批判与重建 |
3.1 对中学数学形式化的批判 |
3.1.1 基础教育改革的社会背景 |
3.1.2 数学教学改革的传统 |
3.1.3 数学教学内容的过度形式化 |
3.1.4 数学教学过度形式化的批判 |
3.2 GX实验淡化形式的提出与初步形成 |
3.2.1 淡化数学形式的思想溯源 |
3.2.2 GX实验教学原则初步形成的主要路径 |
3.2.3 酝酿阶段GX实验教学原则的教材呈现 |
3.3 GX实验教学原则初步形成的基础 |
3.3.1 丰厚的学术背景奠定了重建的数学基础 |
3.3.2 多元化的合作与交流搭建了重建的平台 |
3.3.3 多套教材的编写提供了重建的实践经验 |
第4章 GX实验教学原则由教材到教法的渗透与融合 |
4.1 教法改革启动的影响因素 |
4.1.1 教材多样化的政策 |
4.1.2 教师参与改革的阻力 |
4.1.3 改革理念由教材到教法的发展 |
4.1.4 学生学习负担过重事件的道德诱因 |
4.2 教材与教法融合的初步试验 |
4.2.1 编写GX实验教材与启动实验 |
4.2.2 初步试验的效果 |
4.3 教材与教学融合的改革策略 |
4.3.1 关注智力、政策和精神的有机融合 |
4.3.2 构建数学教学原则表达的民族话语 |
4.3.3 切中数学教学实践中存在的问题 |
第5章 GX实验教学原则的实施与形成 |
5.1 GX实验数学教学原则的实践与澄清 |
5.1.1 教学改革核心观点的实践与澄清 |
5.1.2 形式化与非形式化之争 |
5.1.3 GX实验教学原则的确认 |
5.2 实施阶段的GX实验教学原则 |
5.2.1 "淡化形式,注重实质"的形成 |
5.2.2 "积极前进,循环上升"的形成 |
5.2.3 "开门见山,适当集中"的形成 |
5.2.4 "先做后说,师生共作"的形成 |
5.3 GX实验教学原则实施与形成的对策 |
5.3.1 构建观点澄清的多元化路径 |
5.3.2 构建学导研三级互动的培训制度 |
5.3.3 构建基于教学现实的改革策略 |
第6章 GX实验教学原则的发展 |
6.1 实施后的追问 |
6.1.1 追问GX实验"32字诀"的内涵 |
6.1.2 追问GX实验的理论基础 |
6.1.3 追问GX实验的方法 |
6.1.4 追问GX实验的推广 |
6.2 GX实验教学原则的发展 |
6.2.1 GX实验数学观的分析 |
6.2.2 GX实验教学观的构建 |
6.2.3 GX实验学习观的发展 |
6.2.4 GX实验教材意涵的挖掘 |
6.2.5 GX实验教学原则的整体认识 |
6.3 GX实验教学原则提升与完善的路向 |
6.3.1 演绎与归纳的双向理论构建 |
6.3.2 科学精神的改革导引 |
6.3.3 学术传播推动改革的发展 |
第7章 GX实验研究的方法考量 |
7.1 基于数学教育研究范式的审视 |
7.1.1 数学教育研究概述 |
7.1.2 数学教育研究的范式 |
7.1.3 GX实验的研究范式 |
7.2 基于教学实验方法的审视 |
7.2.1 教学实验的内涵与特征 |
7.2.2 GX实验的实验设计 |
7.2.3 GX实验的实施程序 |
7.2.4 GX实验的实验评价 |
7.3 实验方法的现实反思 |
第8章 GX实验教学原则研究的启示与反思 |
8.1 GX实验教学原则研究的启示 |
8.1.1 认识数学形式化谱系,构建学校数学的知识体系 |
8.1.2 切实物化理念,构建易于师生操作的一体化课程资源 |
8.1.3 高效课堂释放课外,突破减负提质的现实困境 |
8.1.4 加强教师培训的"数学化",提高教师的数学素养 |
8.1.5 协调利益与力量,构建和谐改革共同体 |
8.1.6 遵循实践的理性,推动数学课程改革的稳步发展 |
8.2 对GX实验教学原则研究的反思 |
8.2.1 GX实验教学原则的理论研究有待于进一步提高 |
8.2.2 GX实验教学原则的实证研究有待于进一步提高 |
结语 |
参考文献 |
附录 |
附录一:1993-2008年以GX实验为主题发表的论文 |
附录二:GX实验的博硕学位论文统计表 |
附录三:陈重穆先生关于GX实验的部分报告、信件、手稿 |
附录四:宋乃庆教授组织教材编写活动的文件 |
附录五:GX实验学校的实验计划 |
附录六:沙坪坝区实验学校考试通知、考试成绩与教师概况统计表 |
附录七:GX实验教师的调查问卷 |
附录八:GX实验教研员的访谈提纲 |
后记 |
(5)普通高中数学教学中学生探究能力培养的策略研究 ——以甘肃省通渭县X高中为例(论文提纲范文)
摘要 |
abstract |
一、绪论 |
(一)问题提出 |
1.研究背景 |
2.研究问题 |
(二)核心概念界定 |
1.探究能力 |
2.数学探究能力 |
(三)研究目的与意义 |
1.研究目的 |
2.研究意义 |
二、文献综述 |
(一)国外相关研究综述 |
(二)国内相关研究综述 |
(三)国内外相关研究存在的问题 |
三、研究思路与方法 |
(一)研究思路 |
(二)研究方法 |
1.文献分析法 |
2.问卷调查法 |
3.访谈法 |
四、普通高中数学教学中学生探究能力培养的现状调研 |
(一)高中学生问卷调查分析 |
1.学生数学探究能力情况调查分析 |
2.数学探究能力的影响因素调查分析 |
(二)高中教师问卷调查分析 |
1.探究教学开展情况调查分析 |
2.教师对探究教学的了解状况调查分析 |
3.影响探究活动实施的因素调查分析 |
五、普通高中数学教学中培养学生数学探究能力的教学案例及效果分析 |
(一)案例1——等比数列 |
(二)案例2——等比数列的前项和 |
(三)课堂教学效果分析 |
1.教学分析 |
2.教学结论 |
六、普通高中数学教学中培养学生数学探究能力的策略 |
(一)创设问题情境,激发学生的探究欲望 |
1.设置悬念问题,创设问题情境 |
2.结合跨学科知识,创设问题情境 |
3.巧用趣味性故事,创设问题情境 |
4.联系生活实际,创设问题情境 |
5.设计数学实验,创设问题情境 |
6.引入趣味游戏,创设问题情境 |
(二)注重学法指导,培养学生数学探究能力 |
1.引导学生猜想假设,培养学生迁移类推能力 |
2.引导学生联想,培养学生创造性的思维能力。 |
3.指导学生实践,培养学生动手操作能力 |
4.指导学生应用,培养学生解决实际问题的能力 |
(三)合作探究,加强探究效果 |
1.培养合作意识 |
2.训练合作技能 |
(四)鼓励学生自我反思 |
1.引导学生以“自我提问”的方式进行反思 |
2.引导学生对自己在探究活动中的得失进行反思 |
七、研究结论与建议 |
(一)研究结论 |
(二)研究建议 |
参考文献 |
致谢 |
附录 |
(6)高中数学课堂中的“精讲多练”教学(论文提纲范文)
一、精讲多练的必要性 |
二、精讲多练的含义 |
三、“精讲多练”的学习策略 |
四、转变教师落后观念 |
五、教师精讲点拨 |
六、多练要讲究梯度性 |
七、利用多媒体进行“精讲多练” |
(7)高等数学精讲多学模式的研究(论文提纲范文)
一、问题提出 |
二、精讲多练的实践与探索 |
1.精讲多练的意义 |
2.精讲多练,以学定教 |
(1)精讲概念和例题,强化概念例题的应用引领示范 |
(2)精讲练习,以练为主 |
三、结语 |
(8)数学符号意义及其获得能力培养的研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 问题提出 |
1.1.1 现实问题 |
1.1.2 问题分析 |
1.1.3 研究假设 |
1.2 国内外研究现状 |
1.2.1 数学语言的研究现状 |
1.2.2 数学符号的研究现状 |
1.2.3 数学符号感的研究现状 |
1.2.4 数学多元表征的研究现状 |
1.2.5 小结与思考 |
1.3 研究方法和思路 |
1.3.1 研究方法 |
1.3.2 研究思路 |
1.4 研究意义 |
1.4.1 研究的理论意义 |
1.4.2 研究的实践意义 |
2 符号学理论及其教学意蕴 |
2.1 符号学基本研究方法:结构分析法 |
2.1.1 结构的内涵 |
2.1.2 结构分析法 |
2.2 符号学基本原理:符号结构的建构 |
2.2.1 符号的要素结构 |
2.2.2 符号的联结结构 |
2.2.3 符号的意义结构 |
2.3 符号学视域中的知识学习与教学 |
2.3.1 符号学视域中的教学活动 |
2.3.2 符号学视域中的“知识” |
2.3.3 符号学视域中的“知识学习” |
2.3.4 符号学视域中的“知识教学” |
3 数学符号及其意义结构 |
3.1 数学符号的内涵界定 |
3.1.1 数学符号的三种理解 |
3.1.2 数学符号的分类 |
3.1.3 数学符号的特征 |
3.1.4 数学符号的功能 |
3.1.5 义务教育阶段数学教材中数学符号分布状况的统计与分析 |
3.2 数学符号的意义结构 |
3.2.1 数学符号的语符意义 |
3.2.2 数学符号的基本意义 |
3.2.3 数学符号的转换意义 |
3.2.4 数学符号的隐性意义 |
3.2.5 数学符号的美学意义 |
3.2.6 数学符号的操作意义 |
3.2.7 数学符号的个性化意义 |
4 数学符号意义获得能力及其培养 |
4.1 中小学生数学符号意义获得能力的现状调查 |
4.1.1 调查过程的设计 |
4.1.2 调查结果的统计与分析 |
4.1.3 调查结论 |
4.2 中小学生数学符号意义获得过程中的主要困难和错误 |
4.2.1 数学符号意义获得过程中的主要困难 |
4.2.2 减少数学符号意义获得困难应注意的几个问题 |
4.3 数学符号意义获得能力的基本特征 |
4.3.1 数学符号意义获得能力的内涵 |
4.3.2 数学符号意义获得能力的基本结构 |
4.3.3 数学符号意义获得能力的综合表现形式——符号感及其培养 |
4.4 数学符号意义获得能力培养的影响因素 |
4.4.1 数学教师的数学符号观 |
4.4.2 数学教师的教学资源观 |
4.4.3 数学教师的教学观 |
4.4.4 数学教师的教学方法观 |
4.5 数学符号意义获得能力培养的教学案例 |
4.5.1 数学概念教学中的培养案例 |
4.5.2 数学命题教学中的培养案例 |
4.5.3 数学问题解决教学中的培养案例 |
5 结论与展望 |
5.1 研究结论 |
5.2 研究的创新点 |
5.3 研究展望 |
参考文献 |
附录 |
附录1 小学与初中数学教材中数学符号的统计表 |
附录2 中小学生数学符号意义获得能力调查问卷 |
附录3 中小学生数学符号意义获得能力的调查统计表 |
附录4 数学符号感的行为结构表 |
攻读学位期间发表的学术论文 |
后记 |
(9)儒家教学观与我国数学教学(论文提纲范文)
1 启发诱导——数学教学的钥匙 |
2 精讲多练——数学教学的基石 |
3 循序渐进——数学教学的规律 |
4 释疑解惑——数学教学的艺术 |
5 经世致用——数学教学的目的 |
6 因材施教——数学教学的命脉 |
7 诲人不倦——数学教学的责任 |
8 教学相长——数学教学的真谛 |
(10)中国的传统数学教学智慧(论文提纲范文)
1 如何认识中国传统数学教学 |
2 中国传统数学教育思想的灵魂 |
3 中国传统数学教学实践典型案例 |
3.1 整体性思想方法的应用 |
3.2 对称性思想方法的应用 |
1.杨辉的对称性思想方法 |
2.甄鸾的问题解决教学 |
3.3 数学的歌诀教学方法 |
3.4 游戏中学习数学 |
4 结束语 |
四、数学教学中的精講多練(论文参考文献)
- [1]历史文化视角下的中国数学课例研究(续)[J]. 代钦. 数学通报, 2018(09)
- [2]平面几何教学研究之研究 ——以《数学通报》(1951~1966)为例[D]. 西峰山. 内蒙古师范大学, 2015(03)
- [3]基于学习迁移理论的高中数学不等式教学研究[D]. 陈维彪. 云南师范大学, 2020(01)
- [4]GX实验教学原则的形成与发展研究[D]. 徐建星. 西南大学, 2011(06)
- [5]普通高中数学教学中学生探究能力培养的策略研究 ——以甘肃省通渭县X高中为例[D]. 何盈. 西北师范大学, 2020(01)
- [6]高中数学课堂中的“精讲多练”教学[J]. 杨代翠. 当代教研论丛, 2014(07)
- [7]高等数学精讲多学模式的研究[J]. 邱云兰. 牡丹江教育学院学报, 2020(05)
- [8]数学符号意义及其获得能力培养的研究[D]. 王成营. 华中师范大学, 2012(06)
- [9]儒家教学观与我国数学教学[J]. 张有德,宋晓平. 数学教育学报, 2006(04)
- [10]中国的传统数学教学智慧[J]. 代钦. 数学通报, 2012(08)