矿产研究所——出版物

矿产研究所——出版物

一、INSTITUTE OF MINERAL DEPOSITS——PUBLICATIONS(论文文献综述)

Yonggang Sun,Bile Li,Fengyue Sun,Qingfeng Ding,Junlin Dong,Ye Qian,Yujin Li,Zhen Yao[1](2022)在《Late Cretaceous K-rich rhyolitic crystal tuffs from the Chuduoqu area in Eastern Qiangtang subterrane:evidence for crustal thickening of the central Tibetan Plateau prior to India–Asia collision》文中研究指明In order to constrain whether the Lhasa–Qiangtang collision contributed to an early crustal thickening of the central Tibetan Plateau prior to the India–Asia collision,we present zircon LA–ICP–MS U–Pb ages,wholerock geochemistry,and zircon Hf isotopic compositions of the newly discovered rhyolitic crystal tuffs from the Chuduoqu area in the eastern Qiangtang subterrane,central Tibet.Zircon U–Pb dating suggests that the Chuduoqu rhyolitic crystal tuffs were emplaced at ca.68 Ma.The Chuoduoqu rhyolitic crystal tuffs display high SiO2 and K2 O,and low MgO,Cr,and Ni.Combined with their zircon Hf isotopic data,we suggest that they were derived from partial melting of the juvenile lower crust,and the magma underwent fractional crystallization and limited upper continental crustal assimilation during its evolution prior to eruption.They should be formed in a post-collisional environment related to lithospheric mantle delamination.The Chuduoqu rhyolitic crystal tuffs could provide important constraints on the Late Cretaceous crustal thickening of the central Tibetan Plateau caused by the Lhasa–Qiangtang collision.

Hamidullah Wani,M.E.A.Mondal,Iftikhar Ahmad[2](2022)在《Geochemistry of metasedimentary rocks of the Sonakhan and Mahakoshal greenstone belts,Central India:Implications for paleoweathering,paleogeography and mechanisms of greenstone belt development》文中进行了进一步梳理A comparative study of the Precambrian Sonakhan(SGB) and Mahakoshal(MGB) greenstones belts of Central India has been undertaken to decipher their provenance,paleoweathering,paleogeography,and tectonics.As compared to the Upper Continental Crust(UCC),the MGB samples are enriched while the SGB samples are depleted in mafic elements indicating the presence of mafic rocks in the source of the MGB.This is complemented by the Ni–Cr diagram.The REE concentrations,LREE fractionated patterns and negative Eu anomalies of the MGB and SGB samples indicate derivation of sediments from a highly fractionated granitic source.Since MGB samples also contain the geochemical signature of mafic rocks,it is,therefore proposed that the MGB clastic load were derived from two sources(mafic + felsic) with arc character.This is attested by Cr and Zr relationships,and LILE enrichment,and HFSE depletion.These features suggest that the SGB developed as autochthonous while the MGB developed as an allochthonous belt.The chemical alteration indices such as chemical index of alteration(CIA),plagioclase index of alteration(PIA),and index of compositional variability for MGB samples indicate that they were dominantly derived as the first cycle(with minor recycled) sediments from bimodal sources(dominantly continental arcs) by intense chemical weathering as compared to the SGB samples,which were derived from felsic sources(dominantly cratonic rocks),and partly by recycling through a low chemical weathering.The CIA and PIA values of the samples reveal a change in the climatic conditions from Late Archean to Late Paleoproterozoic.Such change is interpreted in terms of migration of the Indian plate from high latitudes in the Late Archean to lower latitudes during the Late Paleoproterozoic.This is consistent with the paleomagnetic data that placed India in the configuration of 2.45 Ga Ur and 1.78 Ga Columbia supercontinents.

GROVESDI,张良,GROVESIM,SENERAK[3](2022)在《锂辉石:巨型花岗伟晶岩锂-铯-钽矿床中关键含锂矿物(英文)》文中认为寻找传统化石燃料的替代能源已成为全球性议题。受动力电池消费的拉动,锂资源需求急剧上升,伟晶岩型锂矿勘查热度持续攀升。虽然众多伟晶岩型锂矿地质特征尚不清晰,已有证据表明锂辉石是大多数大型-巨型伟晶岩型锂矿床的主要含锂矿物。与许多近直立的伟晶岩脉群不同,世界范围内大多数太古代伟晶岩矿脉往往呈近水平或缓倾斜在角闪岩相围岩中产出,它们往往具有复杂的三维形态并发育明显的矿物和地球化学分带。这些太古代伟晶岩脉通常形成于挤压或压剪构造体制下同变质环境中,成岩期最小主应力(σ3)近竖直。因此,伟晶岩常常侵位于近水平的构造局部引张区而形成复杂的几何学形态。压性的构造环境为富锂熔体多次脉动式注入和富含挥发分熔体垂向结晶分异提供了充足的时间;锂辉石在中高温压条件下结晶成为缓倾富锂带中最为常见的含锂矿物。

刘洪,李光明,李文昌,黄瀚霄,李佑国,欧阳渊,张向飞,周清[4](2022)在《西藏中拉萨地块北部早白垩世晚期控错A型花岗岩的成因及构造环境研究》文中研究说明在中拉萨地块北部尼玛控错地区发育着一套碱性长石花岗岩,对该花岗岩体开展成因和形成背景的研究,能为探索班公湖-怒江洋的构造演化提供有价值的信息。用LA-ICP-MS方法测得该花岗岩的锆石206Pb/238U年龄加权平均值为104.9±1.4Ma(MSWD=1.5)和104.6±1.3Ma(MSWD=1.3),表明该岩体形成于早白垩世。花岗岩具有高硅(SiO2=76.75%~77.51%,平均77.27%)、高钾(K2O=4.61%~4.85%,平均4.77%)、高碱(K2O+Na2O=8.24%~8.57%,平均8.44%)、低钙(CaO=0.28%~0.48%,平均0.35%)、低镁(MgO=0.11%~0.16%,平均0.13%)和低铝(Al2O3=11.79%~12.22%,平均12.09%)等特征,里特曼指数(σ)为1.96~2.15(平均2.08), A/NK值为1.06~1.09,A/CNK值为1.01~1.04。这些特征表明控错花岗岩为弱过铝质的高钾钙碱性-钾玄岩系列岩石。控错花岗岩相对富集Zr、Nb、Ce、Y和Hf等微量元素,相对亏损Ti、Ba、Sr和P等微量元素,分异系数(DI)为95.5~96.9(平均:96.3),还具有较高的FeOT/MgO值(5.61~10.22,平均7.26)、10000Ga/Al值(2.78~2.56,平均2.84)、Y/Nb值(2.29~4.97,平均3.57)、Rb/Nb值(11.6~18.2,平均15.2);此外,该岩体还具有较高的全岩Zr饱和温度(875~910℃,平均890℃)和锆石Ti饱和温度(848~919℃,平均890℃),明显的Eu负异常(δEu=0.04~0.09,平均0.06),以及向右缓倾的"V型"稀土元素配分曲线,这些特征表明控错花岗岩为产于碰撞后环境的A2型花岗岩。正的锆石εHf(t)值(4.26~6.38,平均5.16)、相对年轻的锆石Hf地壳模式年龄(tDM2=757~889Ma,平均833Ma)、下地壳与地幔混合特征的(87Sr/86Sr)t(0.7194~0.7407,平均0.7313)、εNd(t)(-3.39~-3.00,平均-3.24))和Pb同位素特征((206Pb/204Pb)t=18.792~18.845,(207Pb/204Pb)t=15.708~15.718,(208Pb/204Pb)t=38.870~38.037),指示控错花岗岩熔融于幔源物质加入的新生地壳。研究结果揭示,控错花岗岩形成于羌塘-拉萨地块碰撞作用下,俯冲板片的断离后,软流圈上涌诱发的地壳部分熔融,并经历了显着的以钾长石和角闪石为主的分离结晶作用。

C.S.Sindhuja,Arijit Pahari,C.Manikyamb,M.Santoshb,Li Tang,Jyotisankar Ray,K.S.V.Subramanyam,Madhuparna Paul,I.Gonzalez-Alvarez,P.C.Sruthi[5](2022)在《Crustal stabilization: Evidence from the geochemistry and U–Pb detrital zircon geochronology of quartzites from Simlipal Complex, Singhbhum Craton, India》文中认为Cratonic stabilization was a critical crustal process during the Hadean to Archean for the formation of cratons. The understanding of how and where this process took place is significant to evaluate the architecture of continents. The Singhbhum Craton of eastern India has well preserved Precambrian volcanosedimentary sequences. The Simlipal volcano-sedimentary complex of Singhbhum Craton consists of circular bands of mafic volcanic rocks interlayered with quartzites/shales/phyllites. In the present study, we report petrographic and geochemical characteristics of quartzites from Simlipal Complex coupled with U–Pb ages of detrital zircons and zircon geochemistry to understand the provenance and depositional conditions and its connection with the crustal stabilization in the Singhbhum Craton. The quartzites are texturally mature with sub-angular to sub-rounded quartz grains followed by feldspars embedded in a silty matrix. Based on modal compositions and major element ratios, these quartzites are categorized as quartz arenite and sub-lithic arenites. Trace element abundances normalized to Archean Upper Continental Crust(AUCC) display positive anomalies at U, Zr, Hf and negative anomalies at Nb. REE patterns are characterized by negative Eu anomalies(Eu/Eu* = 0.47–0.97) and flat HREE suggesting felsic provenance. These quartzites show depletion of LILE, enrichment of HFSE and transition metals relative to AUCC. High weathering indices such as CIA, PIA, and ICV are suggestive of moderate to intense chemical weathering. Low trace element ratios such as Th/Cr, Th/Sc, La/Sc, La/Co and Th/Co indicate a predominantly felsic source for these rocks. The overall geochemical signatures indicate passive margin deposition for these quartzites. Detrital zircons from the Simlipal quartzites yield U–Pb ages3156 ± 31 Ma suggesting Mesoarchean crustal heritage. The trace element geochemistry of detrital zircons suggests that the zircons are magmatic in origin and possibly derived from the 3.1 Ga anorogenic granite/granitoid provenance of Singhbhum Craton. These observations collectively indicate the Mayurbhanj Granite and Singhbhum Granite(SBG-III) provenance for these quartzites, thereby tracking the stabilization of the eastern Indian Shield/Singhbhum Craton back to Mesoarchean.

Ming-chun Song,Zheng-jiang Ding,Jun-jin Zhang,Ying-xin Song,Jun-wei Bo,Yu-qun Wang,Hong-bo Liu,Shi-yong Li,Jie Li,Rui-xiang Li,Bin Wang,Xiang-dong Liu,Liang-liang Zhang,Lei-lei Dong,Jian Li,Chun-yan He[6](2021)在《Geology and mineralization of the Sanshandao supergiant gold deposit(1200 t) in the Jiaodong Peninsula, China: A review》文中提出The Jiaodong Peninsula in Shandong Province, China is the world’s third-largest gold metallogenic area,with cumulative proven gold resources exceeding 5000 t. Over the past few years, breakthroughs have been made in deep prospecting at a depth of 500-2000 m, particularly in the Sanshandao area where a huge deep gold orebody was identified. Based on previous studies and the latest prospecting progress achieved by the project team of this study, the following results are summarized.(1) 3D geological modeling results based on deep drilling core data reveal that the Sanshandao gold orefield, which was previously considered to consist of several independent deposits, is a supergiant deposit with gold resources of more than 1200 t(including 470 t under the sea area). The length of the major orebody is nearly 8 km, with a greatest depth of 2312 m below sea level and a maximum length of more than 3 km along their dip direction.(2) Thick gold orebodies in the Sanshandao gold deposit mainly occur in the specific sections of the ore-controlling fault where the fault plane changes from steeply to gently inclined,forming a stepped metallogenic model from shallow to deep level. The reason for this strong structural control on mineralization forms is that when ore-forming fluids migrated along faults, the pressure of fluids greatly fluctuated in fault sections where the fault dip angle changed. Since the solubility of gold in the ore-forming fluid is sensitive to fluid pressure, these sections along the fault plane serve as the target areas for deep prospecting.(3) Thermal uplifting-extensional structures provide thermodynamic conditions, migration pathways, and deposition spaces for gold mineralization. Meanwhile, the changes in mantle properties induced the transformation of the geochemical properties of the lower crust and magmatic rocks. This further led to the reactivation of ore-forming elements, which provided rich materials for gold mineralization.(4) It can be concluded from previous research results that the gold mineralization in the Jiaodong gold deposits occurred at about 120 Ma, which was superimposed by nonferrous metals mineralization at 118-111 Ma. The fluids were dominated by primary mantle water or magmatic water. Metamorphic water occurred in the early stage of the gold mineralization, while the fluid composition was dominated by meteoric water in the late stage. The S, Pb, and Sr isotopic compositions of the ores are similar to those of ore-hosting rocks, indicating that the ore-forming materials mainly derive from crustal materials, with the minor addition of mantle-derived materials. The gold deposits in the Jiaodong Peninsula were formed in an extensional tectonic environment during the transformation of the physical and chemical properties of the lithospheric mantle, which is different from typical orogenic gold deposits. Thus, it is proposed that they are named "Jiaodong-type" gold deposits.

CAI Yuqi,HAN Meizhi,ZHANG Chuang,YI Chao,LI Xiaocui,ZHANG Yan,WANG Gui,LI Huaming[7](2021)在《Geological and Geochemical Characteristics of the Zhiluo Formation in the Bayinqinggeli Uranium Deposit, Northern Ordos Basin: Significance for Uranium Mineralization》文中指出The Bayinqinggeli deposit in the northern Ordos Basin, northwestern of China, is a recently discovered sandstone-type uranium deposit. The uranium(U) orebodies are generally hosted in the lower member of the Jurassic Zhiluo Formation(Fm.), and are primarily tabular or irregular in shape. In the study area, 23 sandstone samples were collected from the Zhiluo Fm. and analyzed for major, trace, and rare earth elements(REEs). The geochemical characteristics of these sandstones are used to evaluate the factors controlling U mineralization. The source rocks of the Zhiluo Fm. sandstones are mainly volcanic and felsic magmatic rocks formed in continental arc and active continentalmarginal arc environments, and they provided the material required for the mineralization. The index of compositional variability ranges from 1.02 to 3.29(average1.38), indicating that the Zhiluo Fm. sandstones are immature and composed of first-cycle sediments. The corrected chemical index of alteration averages 56, suggesting that the source rocks underwent weak chemical weathering. The ore host rocks are loose, providing favorable conditions for epigenetic oxidation and U precipitation and enrichment. Ferrous iron in minerals such as chlorite, biotite, ilmenite, and pyrite might have played a role either in adsorbing or reducing the uranium.

Kathryn M.Goodenough,Eimear A.Deady,Charles D.Beard,Sam Broom-Fendley,Holly A.L.Elliott,Frederick van den Berg[8](2021)在《Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements》文中研究说明The rare earth elements(REE) are critical raw materials for much of modern technology,particularly renewable energy infrastructure and electric vehicles that are vital for the energy transition.Many of the world’s largest REE deposits occur in alkaline rocks and carbonatites, which are found in intracontinental, rift-related settings, and also in syn-to post-collisional settings. Post-collisional settings host significant REE deposits, such as those of the Mianning-Dechang belt in China. This paper reviews REE mineralization in syn-to post-collisional alkaline-carbonatite complexes worldwide, in order to demonstrate some of the key physical and chemical features of these deposits. We use three examples, in Scotland, Namibia, and Turkey, to illustrate the structure of these systems. We review published geochemical data and use these to build up a broad model for the REE mineral system in post-collisional alkaline-carbonatite complexes. It is evident that immiscibility of carbonate-rich magmas and fluids plays an important part in generating mineralization in these settings, with REE, Ba and F partitioning into the carbonate-rich phase. The most significant REE mineralization in post-collisional alkaline-carbonatite complexes occurs in shallow-level, carbothermal or carbonatite intrusions, but deeper carbonatite bodies and associated alteration zones may also have REE enrichment.

薛玉山,刘新伟,胡西顺,寸小妮,杨海涛[9](2021)在《南秦岭香沟金钨矿白钨矿原位微区分析及方解石Sm-Nd同位素定年:对钨成矿过程的限定》文中研究说明陕西省山阳县香沟钨矿是近年来南秦岭地质勘查新发现的钨矿化地段之一。本文开展了白钨矿电子探针、LA-ICP-Ms和共生方解石的Sm-Nd同位素测年,研究结果显示:香沟白钨矿成矿过程至少可划分为两个阶段,由早阶段韵律环带白钨矿至晚阶段集合体状白钨矿,白钨矿经历了多次迁移;白钨矿具有高F、含微量Au元素的特征,稀土总量较高(ΣREE+Y含量介于5.44×10-6~382.67×10-6,平均为95.48×10-6),其稀土配分型式为无MREE富集的平坦型,与Ghaderi等人划分的白钨矿Ⅱ型稀土配分型式总体类似,负铕异常,利用白钨矿La-Ce-Y三角图解,结合地质事实,判断香沟钨矿属于石英脉型钨矿;结合共生方解石Sm-Nd同位素年龄195 Ma,认为南秦岭香沟钨矿是印支末期深部隐伏岩浆-热液活动的结果。

张立平,李鹏,黄志飚,刘翔,李建康,黄小强,苏俊男,周芳春,曾乐,陈虎,姜鹏飞[10](2021)在《湖南仁里稀有金属矿田206号锂辉石伟晶岩脉地球化学特征及成矿时代》文中研究说明湖南仁里稀有金属矿田是中国近年来新发现的一处重要的花岗伟晶岩型铌、钽、锂等稀有金属矿产地,文章针对矿田含锂伟晶岩地球化学特征、成矿时代及其与花岗岩的关系,选取传梓源锂铌钽矿床内规模最大的206号锂辉石伟晶岩脉开展地球化学和白云母Ar-Ar定年工作,并与区内其他伟晶岩、花岗岩的地球化学特征、成岩时代对比分析。传梓源206号锂辉石伟晶岩属高分异稀有金属伟晶岩,形成时代为(135.4±1.4)Ma,岩石地球化学表现为高硅、高铝、低钙、相对富碱、钙碱性及过铝质特征;稀土元素总量很低,以轻稀土元素为主;微量元素富集Cs、Rb、U、Ta、Nb、Zr、Hf,相对亏损Ba、Ti,Zr/Hf、Nb/Ta比值低且集中。幕阜山地区稀有金属成矿可分为2期:第1期稀有金属成矿时代约145 Ma,与燕山早期岩浆活动有关;第2期稀有金属成矿时代135~125 Ma,为主成矿期,该期稀有金属伟晶岩与燕山晚期的二云母二长花岗岩存在成因联系,两者为同源岩浆连续结晶分异过程中不同阶段的产物。稀有金属富集成矿经历了岩浆-热液两阶段作用,Be、Nb、Ta、Li、Rb、Cs等稀有元素的富集多发生于岩浆结晶分异晚期,热液作用使Ta、Li、Rb、Cs再次富集。

二、INSTITUTE OF MINERAL DEPOSITS——PUBLICATIONS(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、INSTITUTE OF MINERAL DEPOSITS——PUBLICATIONS(论文提纲范文)

(1)Late Cretaceous K-rich rhyolitic crystal tuffs from the Chuduoqu area in Eastern Qiangtang subterrane:evidence for crustal thickening of the central Tibetan Plateau prior to India–Asia collision(论文提纲范文)

1 Introduction
2 Geological background and sample descriptions
3 Analytical methods
    3.1 Zircon U–Pb dating
    3.2 Whole-rock major and trace element analyses
    3.3 Zircon Hf isotopic analyses
4 Analytical results
    4.1 LA–ICP–MS zircon U–Pb ages
    4.2 Whole-rock major and trace element compositions
    4.3 Zircon Hf isotopic compositions
5 Discussion
    5.1 Origin of the rhyolitic crystal tuffs
    5.2 Magmatic evolution
    5.3 Geodynamic implications
6 Conclusions

(2)Geochemistry of metasedimentary rocks of the Sonakhan and Mahakoshal greenstone belts,Central India:Implications for paleoweathering,paleogeography and mechanisms of greenstone belt development(论文提纲范文)

1 Introduction
2 Geological setting
3 Methodology
4 Results
    4.1 Mineralogy
    4.2 Major element geochemistry
    4.3 Trace elements
    4.4 Rare earth elements (REE)
5 Discussion
    5.1 Source rock characteristics
    5.2 Classification of SGB and MGB sediments and sedimentary sorting
    5.3 Sediment recycling and tectonics
    5.4 Paleoweathering and paleoweathering trends
6 Implications
    6.1 Implications for greenstone belt development
    6.2 Implications for paleogeography
7 Conclusions

(3)锂辉石:巨型花岗伟晶岩锂-铯-钽矿床中关键含锂矿物(英文)(论文提纲范文)

1 Introduction
2 Characteristics of large lithium pegmatites with economic ore grades
3 Syn-tectonic and syn-metamorphic timing of emplacement
4 Significance to formation of world-class high-grade lithium deposits
5 Spodumene as the key economic lithium mineral
6 Conclusions

(4)西藏中拉萨地块北部早白垩世晚期控错A型花岗岩的成因及构造环境研究(论文提纲范文)

1 地质概况及岩体特征
2 样品及分析方法
3 分析结果
    3.1 全岩主量元素及微量元素
    3.2 锆石U-Pb年龄及Lu-Hf同位素组成
    3.3 Rb-Sr、Sm-Nd、Pb同位素
4 讨论
    4.1 岩石类型厘定
    4.2 岩石成因探讨
    4.3 构造环境分析
5 结论

(7)Geological and Geochemical Characteristics of the Zhiluo Formation in the Bayinqinggeli Uranium Deposit, Northern Ordos Basin: Significance for Uranium Mineralization(论文提纲范文)

1 Introduction
2 Geological Setting
3 Ore Deposit Geology
4 Sampling and Analytical Methods
5 Geochemical Characteristics of Zhiluo Formation Sandstones
    5.1 Major elements
    5.2 Trace elements
    5.3 Rare earth elements
6 Discussion
    6.1 Provenance of Zhiluo Formation sandstones and uranium mineralization
    6.2 Tectonic settings of the source area and uranium mineralization
    6.3 Sedimentary sorting and uranium mineralization
    6.4 Epigenetic alteration and uranium mineralization
7 Conclusions

(8)Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements(论文提纲范文)

1 OVERVIEW OF REE MINERALIZATION ASSOCIA-TED WITH ALKALINE&CARBONATITE MAGMATISMIN POST-COLLISIONAL SETTINGS
    1.1 Archean
    1.2 Paleoproterozoic
    1.3 Neoproterozoic to Paleozoic
    1.4 Mesozoic
    1.5 Cenozoic
2 BUILDING A REE DEPOSIT MODEL FOR POST-COLLISIONAL SETTINGS:CASE STUDIES
    2.1 Kizilca?ren
    2.2 Eureka
    2.3 NW Scotland
3 METHODS
4 RESULTS
5 DISCUSSION
    5.1 Geochemical and Isotopic Features
    5.2 Post-Collisional Alkaline-Carbonatite Mineral Systems
        5.2.1 Province-scale
        5.2.2 District-scale (a single alkaline-carbonatite complex)
    5.3 Comparison with Alkaline-Carbonatite Complexes in Rift-Related Settings
6 CONCLUSIONS

(9)南秦岭香沟金钨矿白钨矿原位微区分析及方解石Sm-Nd同位素定年:对钨成矿过程的限定(论文提纲范文)

1 引言
2 区域地质背景
3 矿床地质特征
    3.1 矿区地质
    3.2 矿体和矿石特征
    3.3 围岩蚀变与矿化特征
4 样品与实验方法
5 测试结果
    5.1 电子探针分析
    5.2 原位微区分析
    5.3 Sm-Nd同位素定年
6 讨论
    6.1 成矿物质来源
    6.2 成矿时代
    6.3 深部岩浆活动
7 结论

(10)湖南仁里稀有金属矿田206号锂辉石伟晶岩脉地球化学特征及成矿时代(论文提纲范文)

1 区域及矿床地质特征
2 样品采集及测试方法
3 测试结果
    3.1 全岩地球化学
    3.2 白云母40Ar-39Ar同位素定年
4 讨论
    4.1 稀有元素的富集成矿作用
    4.2 伟晶岩与花岗岩成因关系
    4.3 稀有金属矿成矿时代及成矿期次
5 结论

四、INSTITUTE OF MINERAL DEPOSITS——PUBLICATIONS(论文参考文献)

  • [1]Late Cretaceous K-rich rhyolitic crystal tuffs from the Chuduoqu area in Eastern Qiangtang subterrane:evidence for crustal thickening of the central Tibetan Plateau prior to India–Asia collision[J]. Yonggang Sun,Bile Li,Fengyue Sun,Qingfeng Ding,Junlin Dong,Ye Qian,Yujin Li,Zhen Yao. Acta Geochimica, 2022
  • [2]Geochemistry of metasedimentary rocks of the Sonakhan and Mahakoshal greenstone belts,Central India:Implications for paleoweathering,paleogeography and mechanisms of greenstone belt development[J]. Hamidullah Wani,M.E.A.Mondal,Iftikhar Ahmad. Acta Geochimica, 2022
  • [3]锂辉石:巨型花岗伟晶岩锂-铯-钽矿床中关键含锂矿物(英文)[J]. GROVESDI,张良,GROVESIM,SENERAK. 岩石学报, 2022
  • [4]西藏中拉萨地块北部早白垩世晚期控错A型花岗岩的成因及构造环境研究[J]. 刘洪,李光明,李文昌,黄瀚霄,李佑国,欧阳渊,张向飞,周清. 岩石学报, 2022
  • [5]Crustal stabilization: Evidence from the geochemistry and U–Pb detrital zircon geochronology of quartzites from Simlipal Complex, Singhbhum Craton, India[J]. C.S.Sindhuja,Arijit Pahari,C.Manikyamb,M.Santoshb,Li Tang,Jyotisankar Ray,K.S.V.Subramanyam,Madhuparna Paul,I.Gonzalez-Alvarez,P.C.Sruthi. Geoscience Frontiers, 2022(01)
  • [6]Geology and mineralization of the Sanshandao supergiant gold deposit(1200 t) in the Jiaodong Peninsula, China: A review[J]. Ming-chun Song,Zheng-jiang Ding,Jun-jin Zhang,Ying-xin Song,Jun-wei Bo,Yu-qun Wang,Hong-bo Liu,Shi-yong Li,Jie Li,Rui-xiang Li,Bin Wang,Xiang-dong Liu,Liang-liang Zhang,Lei-lei Dong,Jian Li,Chun-yan He. China Geology, 2021(04)
  • [7]Geological and Geochemical Characteristics of the Zhiluo Formation in the Bayinqinggeli Uranium Deposit, Northern Ordos Basin: Significance for Uranium Mineralization[J]. CAI Yuqi,HAN Meizhi,ZHANG Chuang,YI Chao,LI Xiaocui,ZHANG Yan,WANG Gui,LI Huaming. Acta Geologica Sinica(English Edition), 2021(06)
  • [8]Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements[J]. Kathryn M.Goodenough,Eimear A.Deady,Charles D.Beard,Sam Broom-Fendley,Holly A.L.Elliott,Frederick van den Berg. Journal of Earth Science, 2021(06)
  • [9]南秦岭香沟金钨矿白钨矿原位微区分析及方解石Sm-Nd同位素定年:对钨成矿过程的限定[J]. 薛玉山,刘新伟,胡西顺,寸小妮,杨海涛. 中国地质, 2021(06)
  • [10]湖南仁里稀有金属矿田206号锂辉石伟晶岩脉地球化学特征及成矿时代[J]. 张立平,李鹏,黄志飚,刘翔,李建康,黄小强,苏俊男,周芳春,曾乐,陈虎,姜鹏飞. 矿床地质, 2021

标签:;  ;  

矿产研究所——出版物
下载Doc文档

猜你喜欢