一、高中几何綜合复习的初步探索(论文文献综述)
李海[1](2019)在《职前数学教师实践知能发展的设计研究 ——以三个初中几何定理证明教学为例》文中提出实践知能是上海“青浦经验”发展到今天最核心的概念,是顾泠沅先生、鲍建生教授及其研究团队经过青浦实验、教师行动教育模式和教师发展指导者三个阶段40年左右的实践研究所形成的中国特色数学教育理论的重要组成部分。在顾泠沅先生、鲍建生教授及其团队关于实践知能研究的基础上,本文从词源学、哲学的视角出发,分析了与实践知能有关的词语“知识”、“能力”、“实践”的生活来源及其发展,分析了与这些词语相关的哲学观点以及各个不同哲学观点的共同之处。然后结合相关理论尤其是结合德国哲学家康德的四个问题,进一步探寻了数学教师实践知能的理论基础,重新界定了数学教师实践知能的概念。在鲍建生教授关于数学教师实践知能框架的基础上,对数学教师实践知能的框架进行了细化。在这个细化了的数学教师实践知能框架下,以《数学教育学》、《数学教学技能训练》和《数学课程标准解读与教材研究》为主要干预性课程,选择初中几何定理证明教学内容中的三角形内角和定理、勾股定理和垂径定理教学对某高校的2015级44名职前数学教师、2016级76名职前数学教师在2017年秋季学期和2018年秋季学期分别进行了一个学期的数学教师实践知能发展的干预性教学。本文以设计研究为研究的方法论,在细化了的数学教师实践知能框架基础上,编制职前数学教师实践知能问卷调查表和访谈提纲,采用问卷调查、访谈和讨论等收集研究数据的方法,对职前数学教师的实践知能发展进行实证研究,主要解决四个研究问题:(1)职前数学教师实践知能的现状是怎样的?(2)职前数学教师在学习干预课程中的教学理论时,对三个定理证明的教学进行了什么样的分析?这些分析对他们理解这三个定理的教学有什么帮助?(3)在数学教师实践知能模型框架之下,职前数学教师对研究者提供的三角形内角和定理、勾股定理和垂径定理教学设计文本案例的学习、思考和研讨,对职前数学教师理解三个定理的教学有什么作用?(4)经过数学教师实践知能干预性课程的学习和训练,职前数学教师实践知能产生了哪些变化?经过研究,得出以下主要结论:1.职前数学教师的数学教学实践知能现状不容乐观,但同时职前数学教师的数学教学实践知能并非空白,虽然职前数学教师没有真正做数学教师的经验,但他们在数学教师实践知能的知识基础、教学过程和支持系统领域都存在着一定的积累,这些积累来自于他们受教育的过程,包括中小学的教育过程和大学教育过程和部分职前数学教师做中小学数学家教的过程;职前数学教师通过接受中小学教育和大学教育尤其是数学教育,他们在教育教学理论、心理学理论、数学素养和信息技术方面已经有了一定的积累,但对数学课堂教学的教学经验尤其是课堂把控能力还比较薄弱;2.通过运用数学教师实践知能模型进行教学干预,职前数学教师的实践知能得到很大的发展,表现为实践知能的前后测存在显著性差异;3.实践知能模型应用于职前数学教师的培养具有一定的应用潜力,但在应用过程中需做好设计,即需要一个科学的教学干预过程;4.在实践知能干预性课程教学中既要重视理论的教和学,也要注重随时将理论与三个定理证明教学的实践相结合,在这一结合过程中,组织、引导职前数学教师对数学教学理论的学习、思考、分析和研讨,不但有利于他们理解数学教学理论,也有利于理解具体数学教学内容的教学;5.为职前数学教师提供比较成熟的三个定理证明教学的教学案例,并且组织他们对案例进行比较系统的学习、讨论、交流,对他们理解三个定理的证明教学具有积极的意义;6.通过数学教学理论学习、数学教学技能训练、设计教学、讨论和信心宣告,职前数学教师在实践知能的支持系统(信念与态度)得到提高。7.本研究设计的职前数学教师实践知能干预性教学,对提高职前数学教师的实践知能具有明显的作用。这些研究结论,对数学教师实践知能的研究、我国的数学教师教育具有一定的启示。最后,结合本研究的研究过程和结论,对高校数学教师教育数学专业任课教师和数学教育类课程任课教师给出了一些建议。并且对数学教师实践知能的未来研究进行了展望,提出了一些需要进一步研究的问题。本研究相信,为开拓新的数学教育研究广阔天地,建立具有鲜明中国特色的研究领域,本研究做出了些许的进展工作。
王奋平[2](2020)在《认知效率视角的数学教科书质量评价指标建构与应用研究 ——以中、美、英高中数学教科书比较为例》文中认为在教育全球化趋势下的数学教育改革越来越国际化,包括数学教科书比较在内的数学教育国际比较研究逐渐成为热点。鉴于国内外数学教科书比较大多集中于文本内容分析及学科知识的深度、难度探索,本研究主要解决两个目标:第一、探索形成一个适合认知效率视野下的高中数学教科书评价指标体系;第二、依据第一步评价指标比较中、美、英三国高中数学教科书在认知效率视野中的质量。其中包含将质性研究和量化研究相结合进行教科书质量评价实证研究方法的探索。研究过程:第一步,通过学习建构主义教育理论、进步教育思想等教育教学理论,并梳理中、英文献,参考国际、国内有代表性的、比较权威的教科书评价理论模型,依据该理论模型形成评价指标模型,依据该理论模型并参考了各国教科书评价指标体,初步构建了一个教科书评价指标结构,通过调研数学教育研究专家获取各初始指标权重的意见,并应用层次分析法软件处理专家数据后获取各指标权重,并据此分解指标形成问卷,在基层一线中学数学教师、数学教育研究专家等群体开展问卷调查,获取对问卷指标的调研数据,通过因子分析最终形成一个简洁而易于在教科书评价实践中操作的高学习效率视野下的教科书质量评价指标体系,研制的教科书评价指标体系包含7个一级指标,35个二级指标。7个一级指标为:学习目标、学生基础、学习动机、知识结构、探究反思、学习评价、学习环境。第二步,依托建构的评价标准,邀请五位数学教学专家和数学教育研究专家对中、美、英三国高中数学样本教科书进行评价打分,再通过模糊综合评价模型工具处理评价数据,获得三国教科书评价比较结果。第三步,通过一个教学实验验证评价结论。评价指标建构遵循以下原则:评价指标的建构应依托多元化的教育理论;认知效率视野中考量跨国教科书评价标准建构更加公允;将非智力因素作为教科书评价指标中的重要因素;兼收并蓄地建构更加包容的教科书质量评价标准;质性分析和量化研究相结合建构教科书评价标准;数学文化和数学史融入教科书质量评价因素;努力体现出创新精神培养、教育公平等观点。依据本研究制定的教科书评价指标体系,受邀数学教育专家群对中、美、英三国高中数学教科书评价结论:美国教科书质量较好,中国教科书次之,英国教科书质量较差,中、美、英教科书在七项指标以及二级指标中各有较好的表现。中国教科书书面知识覆盖广度不比美国教科书大;数学知识融入宽视野且多层次问题链是美国教科书特点之一;美国教科书更明显趋于培养学生服务于未来生活目的;不同文化背景下的数学教科书差异对数学认知效率影响较小;英国分类编写高中数学教科书对数学认知效率可能存在影响;中国教科书传统设计模式中的优秀元素值得保留。评价结论表明:认知效率视角的问题解决是高质量教科书对高效率学习的核心牵引力,而且重视开放性问题解决;高质量教科书重视合作学习、情境教学、数学应用、数学交流、重视非智力因素;学习者对数学的理解是高质量教科书主要目标;高质量教科书重视数学课程内容的综合化;结构化知识图谱构建是高质量教科书共同特点;数学课程内容的综合化是高质量教科书发展的大趋势。英国教科书分模块编写,此研究中英国教科书样本采用纯数学(核心数学)教科书,因此在其中应用性指标方面的表现必然影响其质量。应完整理解和辩证运用相关教育理论构建评价指标;选择性吸收西方教科书设计的元素。影响教科书质量因素复杂。教科书使用效率的评价很难做到涵盖所有影响因素的教科书质量因素,本研究只探索能在一定程度上反映认知视野中的高中数学教科书质量的评价指标建构及教科书比较。
吕世虎[3](2009)在《中国当代中学数学课程发展的历程及其启示》文中进行了进一步梳理进入21世纪,我国实施了新一轮基础教育课程改革,课程研究空前繁荣。相对于一般课程理论研究而言,我国数学课程理论研究则处于刚起步阶段。数学课程理论研究的不足使得中国数学教育界在面对基础教育数学课程改革实践提出的许多问题时显得无奈,对于数学课程改革的争论也是凭借个人经验有感而发,缺少理性的思考和理论的指导,常常陷入循环圈中。事实上,新一轮基础教育数学课程改革实践提出的许多问题在历次课程改革中都曾经出现过,从历史的角度审视和研究这些问题应当是建构中国数学课程理论的重要视角。本研究的论题“中国当代中学数学课程的发展历程及其启示”属于“中国数学教育史”的研究领域。该研究对于揭示中国数学教育的特征,建构中国特色的数学教育理论,解决基础教育数学课程改革中出现的问题具有重要意义。本研究主要运用历史研究法、文献法、比较法、文本分析法、访谈法等研究方法来进行问题的研究与讨论。本文拟研究的问题是“中国当代中学数学课程发展的历史给予我们什么样的经验和启示?”对于这个问题,又分解为三个子问题:中国当代中学数学课程发展的历程是怎样的?中国当代中学数学课程发展具有哪些特点?中国当代中学数学课程发展的历史对当今的数学课程改革有哪些启示?对于这三个子问题回答即是本研究的结论。本研究以数学教学大纲(数学课程标准)和数学教材的发展演变为线索,将中国当代数学课程的发展分为3个阶段:选择数学课程发展道路时期(1949—1957),探索中国数学课程体系时期(1958—1991),建立中国数学课程体系时期(1992—2000)。对每个阶段,从背景、事件及其影响三个方面梳理中学数学课程发展的历程。通过对当代(1949—2000年)代表性的数学教学大纲、主要的数学教材进行纵向比较,从课程目标(教学目标)、课程内容、课程选择性、课程编排方式等方面,梳理总结出这一时期数学课程发展具有如下特点:中学数学课程目标体系由只有一般目标发展成为一般目标和具体目标相结合的目标体系,基本上形成了一个多方面、多层次,宏观与微观相结合的比较完善的目标结构体系。对目标的陈述方式也经历了由抽象、模糊到具体、明确、可操作的过程;中学数学课程的知识领域和知识单元的数量呈“正弦曲线”变化态势;中学数学课程的选择性经历了由“一纲一本→多纲多本→一纲一本→多纲多本”的循环式发展;中学数学课程内容的整体编排方式经历了由“分科→混合→分科→混合”的循环性发展。平面几何受苏联几何内容处理方式的影响,采用论证几何体系,并成为50年中几何内容处理方式的主流。代数内容在各个时期都采用“数→式→方程→函数”的处理方式,也出现过采用“数→方程→式→函数”的处理方式。在上述基础上,对我国当今数学课程改革提出了如下建议:数学课程目标的表述应当继承重视“结果”的传统,“结果”目标与“过程”目标并重;数学课程目标的表述应当具体明确,将学段目标、年级目标、知识领域目标、知识单元目标、知识点目标结合起来;数学课程内容的选择应处理好稳定与发展的关系;数学课程内容的处理应恰当把握“理论与实践”的关系;数学课程内容现代化应与学生接受能力、教师的教学水平相适应;数学课程的选择性,应关注地区差异,分类设置课程,编写区域化教科书,处理好理想与现实的关系;数学课程内容的综合化要以主线统领,各知识领域内容相对集中,不宜太分散;几何内容编排应兼顾传统,采用实验几何与论证几何结合的方式为宜。本研究的创新之处是:以教学大纲、教材为线索,系统梳理了我国当代数学课程发展的历史,补正了已有研究中的一些缺漏;通过对教学大纲、教材的定量和定性比较研究,揭示了中国当代中学数学课程发展的特点;以史为鉴,对我国当今数学课程改革面临的一些问题提出了解决的建议。但在研究过程中,对于史料(特别是教材)的收集不全面,对教材的特点研究不够。一些结论还需要从理论上加以提炼。
张蜀青[4](2019)在《问题驱动的高中数学课堂教学设计理论与实践》文中研究表明近几十年来,我国中学数学教育改革进行了若干轮,从教学大纲改为课程标准,到2017年的新课标,除了对教学知识版块进行了增减,还产生了各种教育理念.在教师群体中,则主要是基于教学形式的课堂教学改革.教育届有识之士提出数学教育应该是数学的再创造过程,我们也看到很多论文言必称弗莱登塔尔和“再创造”,但是什么是真正的数学再创造?并没有一个明确的内涵解释和操作行为准则.本研究所提出的“问题驱动”是对弗莱登塔尔数学教育观的发展和丰富,是其“再创造”思想的具体化.它倡导教师借助数学史等深入了解知识内部,通过挖掘知识产生的背景,了解数学思想形成的过程,剖析其文化价值.具体实施过程则是结合教育学和心理学的原则,根据学生的认知水平创设合理的问题情境,将引发概念被创建或定理被发现的问题嵌入到情境中,实现问题驱动教学.本研究主要做了以下几方面的工作:1.文献综述新中国建国以来的中学数学教育改革,及美国和日本为代表的世界数学教育改革情况.根据当前高中数学教学存在的问题,提出问题驱动的数学课堂教学理论.2.从数学教育的本质、数学教育的价值来详细阐述问题驱动的高中数学教学设计的理念和指导思想,强调我们的数学课堂教学应该重视思辨和直觉培养,从而培养学生的创造力,数学教育除了体现学科价值还应该体现人文价值.3.深入阐述了“问题驱动”的内涵与外延,指出何为“真问题”和“真情境”,如何通过问题驱动实现数学的再创造.给出问题驱动的高中数学课堂教学评价标准及解读.4.本研究在积累了近百篇教学设计基础上,通过三种课型的5个典型案例的教学设计进行对比评价,从多个角度用实际案例示范引领如何创设问题情境,实现问题驱动.5.总结了近四年的研究成果与不足,明确下一步研究的方向.本研究的创新之处:1.和导师一起建立了问题驱动的数学课堂教学理论并进行了实践.2.和导师一起建立了反映数学本质的简单易操作的数学课堂教学评价标准.3.提出了数学教育是数学的有限再创造的观点,丰富发展了弗莱登塔尔的再创造理论.4.大、中学教师以及教研员长期扎根一线教学,通过教学研讨形式实现理论与实践相结合的崭新合作模式,使理论研究落到实处,也使课堂教学有章法可循,在实践中提升教师的教育研究水平.本研究通过行动研究形成一套有效可行的实现数学再创造的理论,一方面落实“四基”和“四能”,一方面探索出一条在应试教育与素质教育之间寻找平衡点的道路.本研究已在高中教学取得了很好的效果,在国内有一定的影响。
周郁[5](2020)在《小学数学问题链设计与实践研究》文中研究指明教师提出问题的方式塑造了课堂话语。教师通常运用问题来检查学生的事实回忆和基本理解,诊断学习者的困难,维持课堂秩序和纪律。这些问题始终占据了教师提出的大部分总体问题。教师每天可以问300-400个问题,但鼓励思考和反思、激发兴趣和好奇心的高阶开放性、连续性、梯度性问题在课堂话语中却很少见。随着现代课堂越来越基于探究,这些问题变得越来越有必要。本研究旨在探索有效的问题链教学。本文共分4个章节,第一章绪论整理了前期的一些思绪。首先,针对如今提问存在的弊端,对研究的价值进行阐释;其次,对国内外相关研究进行收集归纳;再次,介绍研究所使用的方法,并从关键问题入手细分研究主要内容;最终,形成较为完整的推进途径。第二章,首先,选择对“问题”、“数学问题”和“问题链”等重点概念进行界定;其次,阐述了如“最近发展区”理论、问题教学理论和“问题解决”理论等理论基础;再次,得到理论基础对设计问题链教学的启示;最后,根据整理的文字材料,寻找问题链的特征和原则。第三章是第一轮教学行动研究,对问题链教学进行了初步探索。首先,进行教学实践总体设计;然后,讲清选题缘由并对课题深入分析,在此基础上设计问题链教学;接着,在课堂的自然环境中实施教学;最后,进行教学反思,为第四章做好铺垫。第四章是第二轮教学行动研究,对问题链教学进行了调整改进。首先,对教学方案再次进行设计;然后,在平行班中实施问题链教学;最后,从教师教学情况和问题链设计两方面反思,并在第五章提出总结和展望。本研究研究结论如下:一是问题链教学有其独特意义,二是问题链设计有其独特原则,三是问题链设计有其独特理念。未来开展小学数学问题链设计与实践研究要关注如下几点:一是实现“问题链”教学设计与实践的平衡,二是完善“问题链”教学设计原则体系,三是构建“问题链”教学设计的整体框架。
王敏雪[6](2017)在《数学教学目标在中小学数学课堂教学中的应用研究》文中研究说明在课程改革中,教学有效性已成为人们普遍关注的热点问题。因为教学目标在课堂教学中处于核心地位,扮演着指导、激励及评价教学的角色。教学目标的设计与实施,关系到一节课的教学效果和效益。所以,对中小学数学课堂教学中教学目标的应用情况进行研究,对提高数学课堂教学的效益具有重要的意义。这项研究总体上探讨两个问题:其一,如何进行有利于开展课堂教学活动的课时教学目标的设计;其二,预设的教学目标与具体的课堂教学开展之间的存在着怎样的关系。研究主要采用文献分析法,调查访谈法,案例研究法,辅之以课堂观察法和教育评价法。围绕要解决的问题,通过对昆明市、重庆市部分中小学数学教师的调查,从教学目标的认识、教学目标的设计、教学目标的实施进行调查研究,得出调查结论;通过文献分析、理论探讨、教学案例的收集与分析,探讨教学目标设计的技术和教学组织过程中如何落实教学目标、探讨如何依据教学目标开展教学反思并及时对教学目标和教学设计进行精心地修改,在此基础上提出数学教学目标优化的建议。研究中注意定量分析与定性分析相结合。这项研究的结论主要有:首先,中小学教师在进行教学设计时表现出对数学教学目标认识不够深入、数学教学目标设计笼统、表述不够规范、与课程改革理念吻合度不高;其次,存在教学目标在教学过程中落实不够全面的现象。针对这两个突出的问题,研究中通过课堂观察、案例收集、教学目标设计实践等手段,提出数学教学目标设计与课堂教学中落实目标的建议,主要包括:钻研数学课程标准与教材,分析学生学习的具体情况;依据教学目标科学地选择和组织教学内容;以教学目标统领教学过程、以教学目标确定教学组织策略、以教学目标达成度作为教学评价的主要依据等。
郑晓萍[7](2019)在《高三圆锥曲线复习教学研究》文中进行了进一步梳理圆锥曲线是解析几何的重要内容之一。学习圆锥曲线能培养学生的数学发现能力、数学问题解决能力。同时,圆锥曲线也是每年高考必考的内容,它涉及内容广泛,有基础知识的考察,也有与直线、三角、数列、平面向量等知识的综合考察。这部分内容的考察,对学生的数学思维能力要求较高,以致学生的得分率历年均较低。如果教师对这部分内容的复习下足功夫,找到行之有效的复习策略,那么这对学生的数学发展将意义深远。本研究以YM中学高三理科(5)(6)班为实验对象,从以下两方面探索基于CPFS结构理论的高中圆锥曲线复习教学策略对学生数学成绩的影响。首先,调查了高三理科学生学习圆锥曲线的现状,以此了解学生对圆锥曲线的掌握情况、复习方法、听课习惯。同时对7名高三数学教师关于圆锥曲线的复习进行问卷调查,初步了解教师复习圆锥曲线的教学现状。其次,基于理论结合上述调查结果的分析开展基于CPFS结构理论的圆锥曲线复习实验研究,提出教学策略实施教学、进行课堂实录。最后对教学实施前后的学生数学成绩做差异性检验。实验研究表明:基于CPFS结构理论的圆锥曲线复习教学策略能够在统计学意义上显著提高学生的数学成绩。这些复习教学策略包括概念复习中的多角度揭示概念内涵策略、形成概念体系策略、加强概念应用策略;命题复习中的注重过程策略、注意变式策略、形成命题策略、加强命题应用策略;综合问题复习中的变式教学策略、重组整合策略。本研究为一线教师在圆锥曲线的复习教学中实施,引导学生建构圆锥曲线的概念域、概念系、命题域、命题系的教学提供了参考。帮助其有效完成高中数学教育教学任务。
栗晶晶[8](2020)在《基于大观念的高中数学章首课教学设计》文中认为数学学科核心素养的提出要求高中数学教师通过更高站位的教学思考和教学实践引导学生树立整体学习的观念.章首课作为整章教学的先行组织者,对整章学习具有宏观调控的作用,是培养学生整体观念的良好载体.因此,将大观念与高中数学章首课教学设计相结合为落实数学学科核心素养提供了新思路.同时,实际教学中高中数学教师对于大观念和章首课的认识还不够全面和深刻,很少能够基于大观念设计章首课的教学,因而章首课未能实现其统领全章的功能和价值.基于以上背景,本文主要采用文献分析法和案例分析法,以实现大观念的理解、联结、迁移功能为目的,以数学核心概念、中心问题、主要思想方法为大观念的主要表现形式,从要求与策略、过程与方法两方面研究基于大观念的高中数学章首课教学设计.本文分析了大观念及高中数学章首课教学设计的具体含义,提出了基于大观念的高中数学章首课教学设计应满足的要求,即突出先行组织者的作用、体现大观念的核心地位、包含丰富的知识生长点,相应地给出了找准起点、精选内容、整合目标、明确主线、巧设问题和阶段评价6条教学设计策略,并在教学设计策略的基础上按照教学起点分析→教学目标分析→教学内容的选择与整合→教学过程设计→学习效果评价的过程提出了具体的教学设计方法.在理论研究的基础上,又分别以大观念的三种表现形式为主线完成了三个有代表性的教学设计案例,充分说明本文的理论研究结论在指导实践方面的可行性。
牟金保[9](2020)在《西藏职前初中数学教师基于数学史的专门内容知识个案研究》文中指出专门内容知识被描述为数学教学所特有的数学知识,而本文所研究的西藏职前初中数学教师基于数学史的专门内容知识就是属于专门内容知识的范畴。本研究主要关注西藏职前初中数学教师基于数学史的专门内容知识现状与HPM干预前后的变化情况。对于西藏职前初中数学教师基于数学史的专门内容知识的理论框架建构,目前尚无人进行研究,但有高中数学教师基于数学史的专门内容知识研究可供参考,也有国内外学科内容知识和教学内容知识方面的研究可供参考。由于西藏职前初中数学教师基于数学史的专门内容知识的理论框架,目前并没有现存的,为了得出本文理论框架的要素和针对西藏职前初中数学教师的研究流程,研究者针对15位专家进行了访谈,并利用模糊Delphi法通过三个步骤,对要素指标进行了筛选。研究者主要针对西藏职前初中数学教师基于数学史的专门内容知识建构了PT-HSCK九成分的九边模型,这九个知识成分维度分别为选择与引入的知识、比较与设计的知识、回应与解释的知识、探究与重演的知识、表征与关联的知识、编题与设问的知识、评估与决策的知识、判断与修正的知识、解决与运用的知识。同时,针对参与者的水平高低按照每个知识成分维度划分成五种不同的水平等级。为了更加具有针对性进行个案研究,研究者在HPM干预之前,调查了西藏地区初级中学在校学生、在职数学教师以及西藏地区职前数学教师数学史融入数学教学的现状与态度,同时调查了西藏职前初中数学教师基于数学史的专门内容知识现状。在前期调研的基础之上,研究者选定了12名西藏职前初中数学教师为本文个案研究对象,针对无理数的概念、二元一次方程组、平行线的判定、平面直角坐标系、全等三角形应用以及一元二次方程(配方法)6个知识点,设计了由24道客观题和6道主观题组成的PT-HSCK九成分五水平测试问卷。为了探讨HPM干预对西藏职前数学教师基于数学史的专门内容知识影响变化,研究者建立了HPM干预框架,并以该框架为指导对选定的12名西藏职前初中数学教师根据模糊Delphi法筛选6个知识点以及史料阅读、HPM讲授和HPM教学设计三个阶段分别进行HPM干预。在HPM干预之后,研究者根据问卷调查数据、访谈和作业单反馈分析了西藏职前初中数学教师基于数学史的专门内容知识水平变化情况。从总体结果来看,通过对PT-HSCK九个知识成分维度的前后测成对t检验发现,回应与解释、探究与重演、表征与关联、编题与设问、评估与决策、判断与修正、解决与运用这七种知识成分维度,后测的水平显著高于前测的水平;而选择与引入、比较与设计这两种知识成分维度,前后测水平无显著性差异,但后测的均值还是要略微高于前测。从藏族职前初中数学教师分析结果来看,藏族参与者的PT-HSCK中,回应与解释、探究与重演、表征与关联、编题与设问、评估与决策、判断与修正、解决与运用这七种知识成分维度,后测显著高于前测的水平;而选择与引入、比较与设计这两种知识成分维度,前后测水平无显著性差异。从汉族职前初中数学教师分析结果来看,汉族参与者的PT-HSCK中,回应与解释、探究与重演、表征与关联、编题与设问、评估与决策、判断与修正、解决与运用这七种知识成分维度,后测显著高于前测的水平;而选择与引入、比较与设计这两种维度,前后测水平无显著性差异,但后测的均值还是要略微高于前测。总之,HPM干预对西藏职前初中数学教师基于数学史的专门内容知识水平提高具有促进作用,同时本文也可以为西藏职前初中数学教师培养提供实施理论框架和有针对性推广的数据支持。
杨燕芬[10](2019)在《核心素养下数学体验式教学样态的构建》文中提出本文立足于核心素养的时代背景,阐述了核心素养与数学体验式教学的关系,在理论的梳理、实践调查的基础上构建了核心素养下的数学体验式教学样态,并对构建的样态模型在教学实践中进行了检验与修正。主要研究结论有:(1)核心素养下的数学体验式教学样态具有多样性首先,对数学体验式教学的内涵、特征及发展、数学体验式教学样态的内涵及功能进行了研究。其次,进一步研究数学体验式教学样态的结构要素,分析了样态构建的原则,再次,梳理了数学体验式教学样态的表现形式,制定了核心素养下的数学体验式教学设计框架,总体设计框架包括了3个一级指标,12个二级指标,33个三级指标。最后,确定了核心素养下的数学体验式教学样态设计总模型及样态流程,并在此基础上,衍生出了“情境-探究”式、交流-反馈式、主题-探究式、阅读-指导式4个子样态模型。每一种教学样态在教学开展的过程中都是动态呈现的。(2)教学影响因素。从教师角度看,涉及教师的教育教学观,对数学体验式教学的认识观、教师的教学设计能力、课堂教学中设置的问题、教学内容量大等。从学生角度看,涉及学习态度、学习方法、数学学习观念、学习的状态、学生的知识储备等。此外,还涉及课型及知识性质。知识内容不同,课型不同,选取的教学方式与手段也不同。(3)学生的学习体验与成绩具有相关性前期调查研究结果表明:学生的认知体验、行为体验、情感体验都与成绩存在显著性相关,且在在0.01水平(双侧)上显著相关。通过对数学体验式教学实验班持续半学期的跟踪观察,对学生的访谈,以及前后测的学生体验调查问卷的对比分析,发现学生的认知体验、情感体验、行为体验的平均得分有所提升。这说明体验式的学习有助于提升学生的学习成绩,增强学生的学习体验。(4)实践表明,构建的体验式教学样态利于教学目标的达成对于构建的数学体验式教学样态用于教学中检验,并在实践的过程中进行了修正。结合案例研究,进行了课堂观察、教师及学生访谈、收集学生数学作业情况等,得出了以下结论:构建的样态在教学实践中经过检验,并具有一定的合理性,有利于教学目标的达成。(5)实施数学体验式教学建议:教师应以数学问题驱动教学,注意数学问题的设置;应根据不同的课型,知识点内容的本质特征,灵活选取教学样态;应鼓励学生积极参与交流表达;应关注不同层次学生数学体验的发展。
二、高中几何綜合复习的初步探索(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、高中几何綜合复习的初步探索(论文提纲范文)
(1)职前数学教师实践知能发展的设计研究 ——以三个初中几何定理证明教学为例(论文提纲范文)
摘要 |
abstract |
第1章 导论 |
1.1 研究背景 |
1.1.1 从我国教育的战略地位到教师在教育中的核心作用 |
1.1.2 从师范教育到教师教育的重要转型 |
1.1.3 我国职前数学教师培养概要及其主要问题 |
1.1.4 初中几何证明教学的重要性及其现实教学困难 |
1.1.5 重视实践性知识和能力的教师专业发展 |
1.2 主要概念界定 |
1.2.1 职前数学教师 |
1.2.2 实践知能 |
1.3 研究目的与意义 |
1.3.1 了解职前数学教师实践知能的现状 |
1.3.2 优化高等师范院校对职前数学教师培养的方式 |
1.3.3 为数学教师实践知能的进一步研究提供参考和借鉴 |
1.4 研究问题 |
1.5 论文结构 |
第2章 文献综述 |
2.1 实践知能 |
2.1.1 实践知能相关词语的词源分析 |
2.1.2 知识的哲学理论概览 |
2.1.3 知识及其分类 |
2.1.4 实践的哲学理论概览 |
2.1.5 教师知识及其分类 |
2.1.6 教师知识的实践取向 |
2.1.7 已有实践取向的教师知识研究 |
2.2 发展职前数学教师实践性知识与能力的模式、方法与措施 |
2.3 职前数学教师数学推理与证明教学知识研究 |
2.4 几何证明教学研究 |
2.4.1 什么是推理与证明 |
2.4.2 数学推理与证明历史发展的简要轮廓 |
2.4.3 数学证明的教育价值 |
2.5 本章小结 |
第3章 数学教师实践知能的理论框架 |
3.1 已有“知能”研究文献述评 |
3.2 数学教师实践知能的概念和结构 |
3.2.1 顾泠沅先生和鲍建生教授关注实践知能的缘起及基本研究思路 |
3.2.2 数学教师实践知能概念及其结构发展的简要脉络 |
3.2.3 已有数学教师实践知能概念及其结构述评 |
3.2.4 数学教师实践知能研究的展望 |
3.2.5 数学教师实践知能的理论基础 |
3.2.6 本研究的数学教师实践知能定义及其框架 |
3.2.7 对数学教师实践知能框架的进一步细化 |
第4章 研究方法与研究设计 |
4.1 研究对象 |
4.2 初中几何定理证明教学三个定理的选定 |
4.3 实践知能发展干预性课程的教学 |
4.3.1 干预课程的教学目标 |
4.3.2 干预课程的教学内容 |
4.3.3 干预课程的教学方法与教学措施 |
4.4 研究方法 |
4.4.1 设计研究概述及其与本研究的关系 |
4.4.2 本研究的研究问题及其子问题对应的研究方法 |
4.5 研究流程 |
4.5.1 设计研究的研究流程 |
4.5.2 第一轮、第二轮研究研究流程 |
4.6 研究工具 |
4.6.1 职前数学教师实践知能问卷调查表(前后测)的形成 |
4.6.2 职前数学教师实践知能变化情况访谈提纲的形成 |
4.7 问卷调查和访谈的具体实施 |
4.7.1 职前数学教师实践知能问卷调查的实施 |
4.7.2 职前数学教师实践知能访谈的实施 |
4.8 研究数据的收集 |
4.9 研究数据的分析方式 |
4.10 研究的信度、效度与伦理 |
4.10.1 研究的信度 |
4.10.2 研究的效度 |
4.10.3 研究的伦理 |
第5章 第一轮研究结果 |
5.1 职前数学教师实践知能的现状 |
5.1.1 职前数学教师对三角形内角和定理等三个定理及其证明的掌握 |
5.1.2 职前数学教师实践知能中知识基础的现状 |
5.1.3 职前数学教师实践知能中教学过程的现状 |
5.1.4 职前数学教师实践知能中支持系统的现状 |
5.2 职前数学教师在教学理论学习时对三个定理教学的分析 |
5.2.1 职前数学教师对青浦经验的四条数学教学原理的学习和理解 |
5.2.2 职前数学教师应用脚手架理论对三个证明教学的分析 |
5.2.3 职前数学教师学习弗赖登塔尔的教学理论时对三个定理教学的分析 |
5.2.4 小结 |
5.3 职前数学教师实践知能的变化 |
5.3.1 整体上实践知能的前后测差异情况 |
5.3.2 职前数学教师在实践知能各个子成分的变化 |
5.3.3 通过对个别研究对象的访谈看研究对象实践知能的变化 |
第6章 第二轮研究结果 |
6.1 职前数学教师实践知能的现状 |
6.1.1 职前数学教师对三角形内角和定理等三个定理及其证明的掌握 |
6.1.2 职前数学教师实践知能中知识基础的现状 |
6.1.3 职前数学教师实践知能中教学过程的现状 |
6.1.4 职前数学教师实践知能中支持系统的现状 |
6.2 职前数学教师在教学理论学习中对三个定理教学的分析 |
6.2.1 职前数学教师对青浦经验的四条数学教学原理的学习和理解 |
6.2.2 职前数学教师应用脚手架理论对三个证明教学的分析 |
6.2.3 职前数学教师学习弗赖登塔尔的教学理论时对三个定理教学的分析 |
6.3 职前数学教师对三个定理教学设计案例的学习和研讨 |
6.3.1 职前数学教师对三角形内角和定理教学设计案例的学习和研讨 |
6.3.2 职前数学教师对勾股定理教学设计案例的学习和研讨 |
6.3.3 职前数学教师对垂径定理教学设计案例的学习和研讨 |
6.3.4 案例学习、思考和研讨对职前数学教师理解三个定理教学的意义 |
6.4 职前数学教师实践知能的变化 |
6.4.1 整体上实践知能的前后测差异情况 |
6.4.2 职前数学教师实践知能各个子成分的变化 |
6.4.3 通过对个别研究对象的访谈看研究对象实践知能的变化 |
第7章 对两轮研究的总结 |
7.1 职前数学教师实践知能的现状 |
7.1.1 职前数学教师对三个定理内容及其证明掌握的现状 |
7.1.2 职前数学教师实践知能的现状 |
7.2 教学理论的学习、讨论和分析对掌握三个定理教学的价值 |
7.3 教学案例对职前数学教师理解三个定理教学的意义 |
7.4 两轮研究问卷数据合并后职前数学教师实践知能的变化 |
7.4.1 整体上实践知能的前后测差异情况 |
7.4.2 两轮问卷调查数据合并后职前数学教师实践知能各个子成分的变化 |
7.4.3 从两轮研究中访谈个别研究对象而发现研究对象实践知能的变化 |
第8章 研究结论与启示 |
8.1 研究结论 |
8.2 启示与建议 |
8.2.1 研究启示 |
8.2.2 建议 |
8.3 有待进一步研究的问题 |
8.4 研究的主要贡献 |
8.5 研究局限 |
参考文献 |
附录 |
附录1 :职前数学教师对其他同学三个定理证明的讨论提纲 |
附录2 :研究职前数学教师实践知能变化情况访谈提纲 |
附录3 :职前数学教师从业信心宣告书 |
附录4 :职前数学教师数学教学实践知能问卷调查表 |
附录5 :三角形内角和定理、勾股定理、垂径定理教学设计案例 |
1.三角形内角和定理教学设计案例 |
2.勾股定理教学设计案例 |
3.垂径定理教学设计案例 |
附录6 :职前数学教师三个定理证明教学设计案例学习思考提纲 |
附录7 :职前数学教师三个定理证明教学设计案例研讨讨论提纲 |
附录8 :职前数学教师干预性课程教学满意度问卷调查表 |
作者简历及在学期间所取得的科研成果 |
1.个人简历 |
2.参与或主持科研项目 |
3.发表论文 |
致谢 |
(2)认知效率视角的数学教科书质量评价指标建构与应用研究 ——以中、美、英高中数学教科书比较为例(论文提纲范文)
中文摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景和目的 |
1.2 研究的问题 |
1.3 概念界定 |
1.4 研究的范围 |
第2章 研究综述 |
2.1 数学教科书研究状况 |
2.2 教科书比较相关研究 |
2.2.1 国外数学教科书比较研究状况 |
2.2.2 国内数学教科书比较研究状况 |
2.3 教科书质量评价比较相关研究 |
2.3.1 国内对教科书质量评价及评价标准的研究 |
2.3.2 国外对教科书质量评价及评价标准的研究 |
2.3.3 国际上主要教科书评价指标体系和工具简介 |
第3章 研究设计 |
3.1 研究的思路 |
3.2 研究方法与工具 |
3.2.1 研究方法的选择 |
3.2.2 研究工具的选择及使用 |
3.3 评价专家的选择 |
3.4 教学实验设计 |
第4章 认知效率视角数学教科书质量评价指标建构的理论分析 |
4.1 认知效率视角下数学教科书评价框架的理论基础 |
4.1.1 建构主义教学理论主要观点 |
4.1.2 进步主义教育思想及其教学观 |
4.2 对教科书评价体系的一级指标建构的启示 |
第5章 认知效率视角的数学教科书质量评价指标建构 |
5.1 教科书评价模型设计 |
5.2 调查问卷的设计 |
5.3 问卷调查的实施 |
5.4 教科书评价初始模型指标权重确定 |
5.5 教科书评价指标的修订 |
5.5.1 “学习目标”评价标准确定 |
5.5.2 “学生基础”评价标准确定 |
5.5.3 “学习动机”评价标准确定 |
5.5.4 “知识结构”评价标准确定 |
5.5.5 “探究反思”评价标准确定 |
5.5.6 “学习评价”评价标准确定 |
5.5.7 “学习环境”评价标准确定 |
第6章 认知效率视角的教科书质量评价比较 |
6.1 “学习目标”指标的比较 |
6.2 “学生基础”指标的比较 |
6.3 “学习动机”指标的比较 |
6.4 “知识结构”指标的比较 |
6.5 “探究反思”指标的比较 |
6.6 “学习评价”指标的比较 |
6.7 “学习环境”指标的比较 |
6.8 中、美、英高中数学教科书整体质量评价结果比较 |
第7章 教科书质量教学验证实验 |
7.1 教学实验过程及结果 |
7.2 教学实验结果分析 |
第8章 中美英数学教科书比较结果分析讨论 |
8.1 中、美、英教科书“学习目标”指标比较结果分析 |
8.2 中、美、英教科书“学生基础”指标比较结果分析 |
8.3 中、美、英教科书“学习动机”指标比较结果分析 |
8.4 中、美、英教科书“知识结构”指标比较结果分析 |
8.5 中、美、英教科书“探究反思”指标比较结果分析 |
8.6 中、美、英教科书“学习评价”内容比较结果分析 |
8.7 中、美、英教科书“学习环境”指标比较结果分析 |
第9章 研究结论 |
9.1 数学教科书质量评价指标体系建构分析 |
9.1.1 评价指标的建构应依托多元化的教育理论 |
9.1.2 认知效率视野中考量跨国教科书评价标准的建构更加公允 |
9.1.3 兼收并蓄地建构更加包容和广阔的教科书质量评价标准 |
9.1.4 基于技术的量化质性研究相结合建构和使用教科书评价指标 |
9.1.5 将数学文化和数学史作为评价指标的因素 |
9.1.6 将非智力因素作为教科书评价指标中的重要因素 |
9.1.7 努力体现出创新精神培养及因材施教的教育观 |
9.2 高质量高中数学教科书质量主要特征 |
9.2.1 高质量教科书重视学习者全方位素质的发展 |
9.2.2 问题解决是高质量教科书对高效率学习的核心牵引力 |
9.2.3 高质量教科书重视合作学习、情境教学、数学应用、数学交流 |
9.2.4 重视非智力因素对学习的作用是高质量教科书的重要特点之一 |
9.2.5 数学课程内容的综合化是高质量教科书发展的大趋势 |
9.2.6 促进理解性数学学习是高质量教科书共同的目标 |
9.2.7 结构化知识图谱构建是高质量教科书共同特点 |
9.3 中美英高中数学教科书的总体差异分析 |
9.3.1 中国教科书书面知识覆盖广度不比美国教科书大 |
9.3.2 将数学知识融入宽视野且多层次问题链中是美国教科书特点之一 |
9.3.3 美国教科书更明显趋于培养学生服务于未来生活目的 |
9.3.4 英国分类编写高中数学教科书可能影响认知效率 |
9.3.5 不同文化背景下的数学教科书差异对数学学习效率影响较小 |
9.3.6 中国数学教科书在继承基础上兼容并蓄模式值得保留 |
第10章 对本研究的反思 |
10.1 本研究的创新点和不足 |
10.1.1 本研究的创新点 |
10.1.2 本研究的不足之处 |
10.2 反思和建议 |
10.2.1 辩证看待量化研究结论的可靠性和有限性 |
10.2.2 完整理解和辩证运用相关教育理论构建评价指标 |
10.2.3 选择性吸收美国教育改革结论和实践经验 |
10.2.4 教科书改革应是充分论证和一定阶段教学实验基础上的改革 |
附录1 爱德思(Edexcel)考试委员会各数学模块及主要内容 |
附录2 教科书评价标准指标权重问卷 |
附录3 教科书评价标准指标问卷 |
附录4 数学教科书评价指标及其内涵 |
附录5 问卷指标共同度 |
附录6 英国教育部A水平大纲对学生(16-18)的学习要求 |
附录7 内华达州教材评价标准指标(2015年前) |
附录8 贝尔的教科书评价标准 |
附录9 英国SMP14-16岁CSE(或GCSE)数学教科书内容 |
外文文献 |
中文文献 |
在读期间发表的学术论文及研究成果 |
发表的学术论文 |
参编著作 |
主持、参与的科研项目 |
获奖 |
致谢 |
(3)中国当代中学数学课程发展的历程及其启示(论文提纲范文)
摘要 |
Abstract |
目录 |
第一章 引论 |
一、研究的背景及意义 |
(一) 数学教育学科建设的需要 |
(二) 基础教育数学课程改革与发展的需要 |
(三) 中国数学教育走向世界的需要 |
二、有关概念及范围的界定 |
(一) 当代 |
(二) 中学 |
(三) 数学课程 |
三、研究问题的表述 |
第二章 文献述评 |
一、文献收集的基本思路 |
二、收集到的主要文献及其述评 |
(一) 中国官方的课程文件 |
(二) 中学数学教材 |
(三) 数学课程研究的文献 |
三、文献述评的总结 |
第三章 研究方法与过程 |
一、研究方法 |
(一) 历史研究法 |
(二) 文献法 |
(三) 比较法 |
(四) 文本分析法 |
(五) 访谈法 |
二、研究过程 |
三、论文的结构 |
第四章 中国当代中学数学课程发展的历程 |
一、中国近现代中学数学课程发展的简要回顾 |
(一) 学习外国数学课程时期(1862—1928) |
(二) 探索本土化数学课程时期(1929—1949) |
二、选择数学课程发展道路时期(1949—1957) |
(一) 继承和改造原有中学数学课程时期(1949—1951) |
(二) 全面学习苏联数学课程时期(1952—1957) |
三、探索中国数学课程体系时期(1958—1991) |
(一) 探索和尝试建立中国数学课程体系时期(1958—1965) |
(二) 数学课程发展遭遇挫折时期(1966—1976) |
(三) 继续探索中国数学课程体系时期(1977—1991) |
四、建立中国数学课程体系时期(1992—2000) |
(一) 制定九年义务教育全日制初级中学数学教学大纲,编写"六·三"、"五·四"制初级中学数学实验教科书 |
(二) 制定全日制普通高级中学数学教学大纲,编写普通高级中学数学实验教科书 |
第五章 中国当代中学数学课程发展的特点 |
一、从课程目标看数学课程发展的特点 |
(一) 课程目标体系发展的特点 |
(二) 课程目标内容发展的特点 |
(三) 结论 |
二、从课程内容看数学课程发展的特点 |
(一) 中学数学课程中知识领域变化的特点 |
(二) 中学数学课程中知识单元变化的特点 |
(三) 结论 |
三、从课程选择性看数学课程发展的特点 |
(一) 从教学大纲(课程标准)层面看数学课程选择性的特点 |
(二) 从教科书层面看数学课程选择性的特点 |
(三) 结论 |
四、从课程编排方式看数学课程发展的特点 |
(一) 从宏观层面看数学课程内容编排方式的特点 |
(二) 从微观层面看数学课程内容编排方式的特点 |
(三) 结论 |
第六章 中国当代中学数学课程发展的历史对当今数学课程改革的启示 |
一、中学数学课程目标的发展变化对当今数学课程改革的启示 |
(一) 课程目标的表述应继承重视"结果"的传统,"结果"目标与"过程"目标并重 |
(二) 课程目标的表述应具体明确,将学段目标、年级目标、知识领域目标、知识单元目标、知识点目标结合起来 |
二、中学数学课程内容的发展变化对当今数学课程改革的启示 |
(一) 数学课程内容的选择应处理好稳定与发展的关系 |
(二) 数学课程内容的处理应恰当把握理论与实践的联系 |
(三) 数学课程内容现代化应与学生接受能力、教师的教学水平相适应 |
三、中学数学课程选择性的发展变化对当今数学课程改革的启示 |
(一) 应关注地区差异,分类设置课程,编写区域化教科书 |
(二) 数学课程的选择性应处理好理想与现实的关系 |
四、中学数学课程内容编排方式的发展变化对当今数学课程改革的启示 |
(一) 数学课程的综合化要以主线统领,各知识领域内容相对集中,不宜太分散 |
(二) 几何内容编排应兼顾传统,采用实验几何与论证几何结合的方式为宜 |
结束语 |
参考文献 |
附录 |
后记 |
在学期间公开发表论文及著作情况 |
(4)问题驱动的高中数学课堂教学设计理论与实践(论文提纲范文)
摘要 |
Abstract |
第一章 引言 |
1.1 问题的提出 |
1.2 相关文献研究综述 |
1.2.1 新中国中学数学教育研究发展概述 |
1.2.2 国外当代中学数学教育改革历程 |
1.2.3 我国目前高中数学课堂教学存在的问题 |
1.3 研究的目的与意义 |
1.3.1 与问题驱动教学设计相关的研究综述 |
1.3.2 研究的理论基础 |
1.3.3 研究的意义 |
1.3.4 研究的目的 |
1.3.5 研究的创新之处 |
1.4 研究思路与方法 |
1.4.1 研究思路 |
1.4.2 研究方法 |
第二章 问题驱动的高中数学课堂教学理论 |
2.1 何为数学的再创造? |
2.2 何为问题驱动的数学教学? |
2.3 如何实现问题驱动的数学教学 |
2.4 我们应该教什么样的数学 |
2.4.1 思辨、演绎、算法并重的数学课堂教学 |
2.4.2 培养直觉能力的数学教学 |
第三章 从数学教育的本质看高中数学课堂教学核心要素 |
3.1 数学教育的本质 |
3.1.1 数学的本质 |
3.1.2 数学教育的本质 |
3.2 问题驱动的高中数学课堂教学核心要素 |
3.3 案例分析 |
3.4 体现学科特点和教学要求的教学评价量表 |
第四章 问题驱动的高中数学课堂教学实践 |
4.1 问题驱动的高中数学概念课教学 |
4.1.1 概念课案例1 |
4.1.2 概念课案例2 |
4.1.3 概念课案例3 |
4.2 问题驱动的高中数学原理课教学 |
4.2.1 原理课案例1 |
4.2.2 原理课案例2 |
4.3 问题驱动的高中数学解题课教学 |
4.3.1 问题驱动的习题课教学设计 |
4.3.2 教学评析 |
第五章 反思与展望 |
5.1 研究成果 |
5.1.1 问题驱动的数学教学对学生数学价值观念的改变 |
5.1.2 问题驱动的数学教学对学生数学学习成绩的影响 |
5.1.3 问题驱动的数学教学对教师教育观念的改变 |
5.1.4 开创了一线教学实践者和理论研究工作者的合作新模式 |
5.1.5 研究的不足 |
5.2 展望 |
参考文献 |
附录 |
致谢 |
攻读学位期间的学术成果 |
(5)小学数学问题链设计与实践研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
(一)提问的内容不明确 |
(二)提问的方式不科学 |
(三)提问的时机不恰当 |
二、研究目的与意义 |
(一)研究目的 |
(二)研究意义 |
三、研究综述 |
(一)国外研究现状与发展趋势 |
(二)国内研究现状与发展趋势 |
四、研究方法 |
(一)案例分析法 |
(二)文献研究法 |
(三)行动研究法 |
五、主要内容 |
(一)关键问题 |
(二)主要内容 |
六、论文框架 |
(一)推进途径 |
(二)解决方法 |
(三)论文框架 |
第二章 小学数学课堂教学“问题链”的特征以及理论基础 |
一、概念界定 |
(一)问题 |
(二)数学问题 |
(三)问题链 |
二、理论基础 |
(一)“最近发展区”理论 |
(二)“问题解决”理论 |
(三)问题教学理论 |
三、小学数学课堂教学中的“问题链”形式 |
(一)引入性问题链 |
(二)差异性问题链 |
(三)诊断性问题链 |
四、设计小学数学课堂中“问题链”的影响因素 |
(一)知识主体 |
(二)学习主体 |
(三)教学主体 |
五、设计小学数学课堂中“问题链”的一般原则与策略 |
(一)“问题链”设计主要原则 |
(二)“问题链”设计的其他原则 |
第三章 第一轮行动研究:问题链教学初探 |
一、教学实践的总体设计 |
(一)教学实施的设计 |
(二)研究方案设计 |
二、教学设计 |
(一)选题缘由 |
(二)深入分析 |
(三)教学设计 |
三、教学实施 |
四、教学反思 |
(一)教学效果 |
(二)教学中存在的问题 |
第四章 第二轮行动研究:调整与改进 |
一、教学方案再设计 |
(一)优化教学设计理念 |
(二)合理安排教学内容 |
(三)细分巩固练习层次 |
二、教学实施 |
(一)教学过程 |
(二)学生作业展示 |
三、教学反思 |
(一)教学情况反思 |
(二)问题链设计反思 |
第五章 总结与展望 |
一、研究结论 |
(一)问题链教学有其独特意义 |
(二)问题链设计有其独特原则 |
(三)问题链设计有其独特理念 |
二、研究启示 |
(一)人际交往的重要性 |
(二)主问题间的关联性 |
(三)设计与实践的平衡 |
三、进一步研究的问题 |
参考文献 |
致谢 |
读硕期间发表论文目录 |
(6)数学教学目标在中小学数学课堂教学中的应用研究(论文提纲范文)
摘要 |
Abstract |
术语及符号说明 |
第1章 绪论 |
1.1 研究的背景 |
1.1.1 有效课堂教学的需要 |
1.1.2 教师教学评价及教师专业化发展的需要 |
1.1.3 学生学习评价及学生全面发展的需要 |
1.2 核心名词界定 |
1.3 研究的内容和意义 |
1.3.1 研究的内容 |
1.3.2 研究的意义 |
1.4 研究的思路 |
1.4.1 研究的计划 |
1.4.2 研究的技术路线 |
1.5 论文的结构 |
第2章 文献综述 |
2.1 文献搜集的途径 |
2.2 教育目标概说 |
2.2.1 教育目标的源流与演进 |
2.2.2 行为主义心理学与行为目标 |
2.2.3 目标教学法 |
2.2.4 学案导学法 |
2.3 数学教学目标的研究综述 |
2.3.1 数学教学目标的研究综述 |
2.3.2 数学教学目标——三维教学目标研究综述 |
2.4 文献评述 |
2.5 小结 |
第3章 研究设计 |
3.1 研究目的 |
3.2 研究对象 |
3.3 研究方法 |
3.3.1 文献法 |
3.3.2 调查法 |
3.3.3 课堂观察法 |
3.3.4 案例研究法 |
3.3.5 教育评价法 |
3.4 研究工具 |
3.4.1 教师调查问卷 |
3.4.2 访谈提纲 |
3.4.3 教学案例使用说明 |
3.5 研究的伦理 |
3.6 小结 |
第4章 调查研究 |
4.1 调查目的 |
4.2 调查过程 |
4.3 调查数据的收集与编码 |
4.3.1 数据的编码与录入 |
4.3.2 数据的分析 |
4.4 调查数据分析 |
4.4.1 调查的结果 |
4.4.2 访谈的结果 |
4.5 调查结论 |
4.5.1 数学教学目标的认识 |
4.5.2 数学教学目标的设计 |
4.5.3 数学教学目标的实施 |
4.6 小结 |
第5章 教学目标的设计 |
5.1 数学教学目标设计的原则与方法 |
5.1.1 良好陈述的目标的标准 |
5.1.2 良好陈述的目标的结构及呈现方式 |
5.2 数学教学目标设计的技术与步骤 |
5.2.1 教学目标陈述的技术 |
5.2.2 教学目标设计的步骤 |
5.3 数学教学目标设计的案例 |
5.3.1 案例: 亿以内数的认识 |
5.3.2 案例:数学广角——田忌赛马 |
5.3.3 案例:两位数乘两位数的计算练习课 |
5.3.4 案例:圆的切线判定(复习课) |
5.3.5 其它教学目标修改的案例 |
5.4 小结 |
第6章 教学案例与讨论 |
6.1 教学案例评价体系的构建 |
6.1.1 案例收集整理 |
6.1.2 案例分析 |
6.1.3 教学案例评价体系 |
6.2 教学案例设计举例 |
6.2.1 案例:大数的认识 |
6.2.2 案例:三角形的内角和 |
6.2.3 案例:解一元一次方程(二)——去括号 |
6.2.4 案例:方程的根与函数的零点 |
6.3 提高数学课堂教学效益的建议 |
6.3.1 有效教学的基础理论 |
6.3.2 数学教学目标优化的建议 |
6.4 对数学教学目标与核心素养的讨论 |
6.5 小结 |
第7章 结论与思考 |
7.1 研究的结论 |
7.1.1 数学教学目标设计与实施的现状 |
7.1.2 数学教学目标设计与实施的策略 |
7.2 研究的反思 |
7.3 可以继续研究的问题 |
7.4 结束语 |
参考文献 |
附录A 教师问卷调查表 |
附录B 教师访谈提纲 |
附录C 优质课教学设计 |
附录D 调查期间照片 |
攻读硕士期间发表的论文和研究成果 |
致谢 |
(7)高三圆锥曲线复习教学研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪言 |
1.1 研究背景 |
1.1.1 学习圆锥曲线的重要性 |
1.1.2 课程标准对圆锥曲线的要求 |
1.1.3 高考考试的要求 |
1.2 核心名词界定 |
1.2.1 圆锥曲线 |
1.2.2 CPFS结构 |
1.2.3 教学研究 |
1.3 研究的内容和意义 |
1.3.1 研究的内容 |
1.3.2 研究的意义 |
1.4 研究的思路 |
1.4.1 研究计划 |
1.4.2 研究的技术路线 |
1.5 论文的结构 |
第二章 文献综述 |
2.1 文献收集途径 |
2.2 有关数学复习课的教学研究 |
2.3 有关圆锥曲线的教学研究 |
2.4 有关圆锥曲线复习教学研究 |
2.5 有关CPFS结构理论在数学教学中的研究 |
2.6 文献评述 |
第三章 理论基础 |
3.1 复习教学的理论基础 |
3.1.1 学习金字塔理论 |
3.1.2 弗赖登塔“再创造”理论 |
3.1.3 建构主义理论 |
3.2 CPFS的相关理论 |
3.2.1 认知主义理论 |
3.2.2 人本主义理论 |
3.2.3 奥苏贝尔有意义学习理论 |
第四章 研究设计 |
4.1 研究的目的 |
4.2 研究对象的选取 |
4.3 研究方法的确定 |
4.4 研究工具的说明 |
第五章 圆锥曲线复习教学现状的调查与教学准备 |
5.1 “圆锥曲线学情”学生问卷调查分析 |
5.1.1 学生对教材内容掌握情况的分析 |
5.1.2 解题方法分析 |
5.1.3 听课习惯分析 |
5.1.4 复习方法分析 |
5.1.5 复习效果分析 |
5.1.6 学生问卷调查小结 |
5.2 圆锥曲线复习教学教师问卷调查分析 |
5.2.1 教师复习备考研究分析 |
5.2.2 教师复习教学方法分析 |
5.2.3 教师问卷调查小结 |
5.3 问卷调查小结 |
5.4 CPFS理论在圆锥曲线复习教学中应用方法的建构 |
5.4.1 CPFS结构理论在圆锥曲线概念复习教学中的应用 |
5.4.2 CPFS结构理论在圆锥曲线命题复习中的应用 |
5.4.3 CPFS结构理论在解答圆锥曲线综合题复习教学中的应用 |
第六章 高三圆锥曲线复习教学实验研究 |
6.1 实验目的与假设 |
6.2 实验设计 |
6.3 实验过程 |
6.4 基于CPFS结构理论的圆锥曲线复习课堂实录 |
6.4.1 圆锥曲线的概念复习课堂教学实录 |
6.4.2 圆锥曲线的命题复习课堂教学实录 |
6.4.3 圆锥曲线综合复习课堂教学实录 |
6.5 实验结果分析 |
6.5.1 实验组和对照组的前测(入学考试成绩)的对比和分析 |
6.5.2 实验组和对照组的中测数据对比和分析 |
6.5.3 实验组和对照组的后测成绩对比和分析 |
6.5.4 实验组和对照组的前、中、后测数据之间的对比和分析 |
6.5.5 实验组和对照组前、中、后测圆锥曲线成绩对比分析 |
6.6 实验结论 |
第七章 结论与反思 |
7.1 研究结论 |
7.2 圆锥曲线复习教学建议 |
7.3 研究反思 |
参考文献 |
附录 A:高三圆锥曲线复习课学习现状调查问卷 |
附录 B: 高三圆锥曲线复习教学的调查问卷 |
附录 C:高三年级学生入学考试数学试卷(理科) |
附录 D:云南省2019届高三第一次复习统测数学(理)试题 |
附录 E:2019年普通高等学校招生全国统一考试 |
攻读学位期间发表的论文和研究成果 |
致谢 |
(8)基于大观念的高中数学章首课教学设计(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 研究背景 |
1.1.1 数学学科核心素养的提出 |
1.1.2 章首课教学现状 |
1.2 研究问题和意义 |
1.2.1 研究问题 |
1.2.2 研究意义 |
1.3 研究思路与方法 |
2 文献综述 |
2.1 研究现状 |
2.1.1 大观念研究现状 |
2.1.2 高中数学章首课研究现状 |
2.2 相关概念的界定 |
2.2.1 大观念 |
2.2.2 章首课 |
2.2.3 基于大观念的章首课教学设计 |
3 基于大观念的高中数学章首课教学设计要求与策略 |
3.1 章首课教学设计要求 |
3.1.1 突出先行组织者的作用 |
3.1.2 体现大观念的核心地位 |
3.1.3 包含丰富的知识生长点 |
3.2 章首课教学设计策略 |
3.2.1 找准起点,精选内容 |
3.2.2 整合目标,明确主线 |
3.2.3 巧设问题,阶段评价 |
4 基于大观念的高中数学章首课教学设计过程及方法 |
4.1 教学起点分析 |
4.1.1 章节整体知识结构分析 |
4.1.2 学生认知起点分析 |
4.2 教学目标分析 |
4.2.1 显性目标分析 |
4.2.2 隐性目标分析 |
4.2.3 发展目标分析 |
4.3 教学内容的选择与整合 |
4.3.1 教学内容的选择 |
4.3.2 教学内容的整合 |
4.4 教学过程设计 |
4.4.1 核心概念主线的教学过程设计 |
4.4.2 中心问题主线的教学过程设计 |
4.4.3 思想方法主线的教学过程设计 |
4.5 学习效果评价 |
4.5.1 章首课学习阶段评价 |
4.5.2 本章具体学习阶段评价 |
4.5.3 高中后续学习阶段评价 |
5 基于大观念的高中数学章首课教学设计案例 |
5.1 核心概念主线的《数列》章首课教学设计 |
5.2 中心问题主线的《统计》章首课教学设计 |
5.3 思想方法主线的《解析几何》复习章首课教学设计 |
6 研究结论及反思 |
6.1 研究结论 |
6.2 教学建议 |
6.3 不足与展望 |
参考文献 |
致谢 |
(9)西藏职前初中数学教师基于数学史的专门内容知识个案研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究缘起 |
1.2 研究背景 |
1.3 研究问题 |
1.4 研究意义 |
1.5 相关概念界定 |
1.6 论文的框架结构 |
第2章 文献综述 |
2.1 藏族地区中小学数学教育研究现状 |
2.2 数学史融入数学教育的必要性 |
2.3 HPM研究的现状 |
2.4 学科内容知识的研究 |
2.5 HSCK理论框架的研究 |
第3章 研究设计与方法 |
3.1 研究对象 |
3.1.1 现状和态度研究对象 |
3.1.2 个案研究的对象 |
3.2 研究流程 |
3.3 研究方法 |
3.3.1 个案研究 |
3.3.2 问卷调查 |
3.3.3 访谈 |
3.4 研究工具 |
3.4.1 数学史融入数学教学现状与态度问卷 |
3.4.2 PT-HSCK问卷 |
3.5 数据处理与分析 |
3.5.1 数据编码 |
3.5.2 量化数据及其分析 |
3.5.3 质性数据及其分析 |
第4章 PT-HSCK理论框架的建构 |
4.1 PT-HSCK理论框架建构的动机 |
4.2 基于模糊Delphi法的PT-HSCK理论框架建构 |
4.2.1 评估指标 |
4.2.2 专家反馈资料之适度检验 |
4.2.3 初步重要的评估指标之筛选 |
4.2.4 相对重要程度之阈值 |
4.3 PT-HSCK的九种知识成分 |
4.4 PT-HSCK的五级水平划分 |
4.5 HPM干预框架 |
第5章 干预前现状与态度调查研究 |
5.1 西藏数学史融入数学教学的现状与态度 |
5.1.1 西藏数学史融入数学教学现状的调查 |
5.1.2 西藏在职初中数学教师态度的调查 |
5.2 西藏职前初中数学教师态度的调查 |
5.3 PT-HSCK的现状调查 |
第6章 职前初中数学教师的HPM干预 |
6.1 HPM干预的前期准备 |
6.2 HPM干预案例一:无理数的概念 |
6.2.1 史料阅读阶段 |
6.2.2 HPM讲授阶段 |
6.2.3 HPM教学设计阶段 |
6.2.4 HPM干预后的访谈与作业单反馈 |
6.3 HPM干预案例二:二元一次方程组 |
6.3.1 史料阅读阶段 |
6.3.2 HPM讲授阶段 |
6.3.3 HPM教学设计阶段 |
6.3.4 HPM干预后的访谈与作业单反馈 |
6.4 HPM干预案例三:平行线的判定 |
6.4.1 史料阅读阶段 |
6.4.2 HPM讲授阶段 |
6.4.3 HPM教学设计阶段 |
6.4.4 HPM干预后的访谈与作业单反馈 |
6.5 HPM干预案例四:平面直角坐标系 |
6.5.1 史料阅读阶段 |
6.5.2 HPM讲授阶段 |
6.5.3 HPM教学设计阶段 |
6.5.4 HPM干预后的访谈与作业单反馈 |
6.6 HPM干预案例五:全等三角形应用 |
6.6.1 史料阅读阶段 |
6.6.2 HPM讲授阶段 |
6.6.3 HPM教学设计阶段 |
6.6.4 HPM干预后的访谈与作业单反馈 |
6.7 HPM干预案例六:一元二次方程(配方法) |
6.7.1 史料阅读阶段 |
6.7.2 HPM讲授阶段 |
6.7.3 HPM教学设计阶段 |
6.7.4 HPM干预后的访谈与作业单反馈 |
第7章 干预结果及其变化分析 |
7.1 职前数学教师的总体变化分析 |
7.2 藏族职前数学教师的变化分析 |
7.3 汉族职前数学教师的变化分析 |
7.4 藏族与汉族职前数学教师的对比分析 |
第8章 研究结论与启示 |
8.1 研究结论 |
8.1.1 西藏数学史融入数学教学以及PT-HSCK的现状与态度 |
8.1.2 建立了理论框架以及干预框架 |
8.1.3 HPM干预对西藏职前初中数学教师的影响 |
8.2 研究启示 |
8.3 研究局限 |
8.4 研究展望 |
参考文献 |
附录 |
附录1 :西藏初中阶段数学史融入数学教学现状问卷(学生用) |
附录2 :西藏初中阶段数学史融入数学教学现状问卷(教师用) |
附录3 :西藏初中阶段数学史融入数学教学态度问卷 |
附录4 :PT-HSCK测试问卷 |
攻读学位期间发表的学术论文 |
致谢 |
(10)核心素养下数学体验式教学样态的构建(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 研究背景 |
1.1.1 课程标准对学习体验的关注 |
1.1.2 数学体验是发展学生核心素养的重要载体 |
1.1.3 现实教学对回归体验课堂的需要 |
1.2 研究现状 |
1.2.1 国外研究综述 |
1.2.2 国内研究现状 |
1.2.3 文献述评 |
1.3 研究问题与方法 |
1.4 研究意义 |
1.5 研究思路与创新 |
2 理论探析 |
2.1 数学体验式教学的内涵与发展 |
2.1.1 数学体验式教学的内涵 |
2.1.2 数学体验式教学的发展 |
2.2 教学样态的内涵与功能 |
2.2.1 教学样态的内涵与功能 |
2.2.2 数学体验式教学样态的内涵与功能 |
2.3 核心素养下数学体验式教学样态的构建 |
2.3.1 教学样态的结构要素 |
2.3.2 教学样态的构建原则 |
2.3.3 教学样态的基本框架 |
2.3.4 核心素养下数学体验式教学设计框架 |
2.4 教学样态的设计模型 |
3 实践研究 |
3.1 研究设计 |
3.1.1 研究目的 |
3.1.2 研究对象 |
3.1.3 研究过程 |
3.1.4 数据处理 |
3.2 教学实施(一) |
3.2.1 教学设计案例 |
3.2.2 效果分析 |
3.2.3 教学样态的修正 |
3.3 教学实施(二) |
3.3.1 教学设计案例 |
3.3.2 效果分析 |
3.3.3 教学样态的修正 |
4 结论与思考 |
4.1 结论 |
4.2 思考 |
参考文献 |
附录 |
附录一 |
附录二 |
附录三 |
附录四 |
附录五 |
附录六 |
附录七 |
致谢 |
四、高中几何綜合复习的初步探索(论文参考文献)
- [1]职前数学教师实践知能发展的设计研究 ——以三个初中几何定理证明教学为例[D]. 李海. 华东师范大学, 2019(02)
- [2]认知效率视角的数学教科书质量评价指标建构与应用研究 ——以中、美、英高中数学教科书比较为例[D]. 王奋平. 南京师范大学, 2020(02)
- [3]中国当代中学数学课程发展的历程及其启示[D]. 吕世虎. 东北师范大学, 2009(11)
- [4]问题驱动的高中数学课堂教学设计理论与实践[D]. 张蜀青. 广州大学, 2019(01)
- [5]小学数学问题链设计与实践研究[D]. 周郁. 喀什大学, 2020(07)
- [6]数学教学目标在中小学数学课堂教学中的应用研究[D]. 王敏雪. 云南师范大学, 2017(01)
- [7]高三圆锥曲线复习教学研究[D]. 郑晓萍. 云南师范大学, 2019(06)
- [8]基于大观念的高中数学章首课教学设计[D]. 栗晶晶. 河北师范大学, 2020(07)
- [9]西藏职前初中数学教师基于数学史的专门内容知识个案研究[D]. 牟金保. 华东师范大学, 2020(12)
- [10]核心素养下数学体验式教学样态的构建[D]. 杨燕芬. 贵州师范大学, 2019(03)