一、CHENGDU INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文文献综述)
Lisaia Daria(达丽娅)[1](2019)在《俄罗斯城市可持续发展及其对中国城市的启示研究》文中研究指明城市可持续发展是我们地球繁荣未来的一个重要方面。根据2005年联合国世界峰会的成果,可持续发展的概念包含三个基本要素:社会、经济和环境。社会经济发展问题是国家政策的核心。从方法和途径到解决(具体)问题的方案取决于国家的繁荣和国民的经济生活水平。面对严峻的全球竞争,城市居住模式的管理以及寻求组织和管理人力、国土和生产资源的最佳解决方案是社会经济发展的途径之一。目前国家最高一级的国土开发规划和管理流程的演变正在进行,并与其他各级政府的规划系统进行协调。根据在2017年5月8日至12日举行的联合国人类住区规划署理事会第二十六届会议的报告,这是在城市(市政)层面提高国家政策执行效率和改善城市环境质量的关键要求之一。国家政策发展的另一个重要要求是将传统经济转变为知识经济,并带领该国走向世界技术领先,这是最可持续的经济发展方式。建立国家的创新基础设施是实现这些任务的必要条件之一。在此背景下,对世界上最大的两个国家(俄罗斯和中国)的城市发展经验的研究正在成为城市规划、设计和建筑广阔领域专家的宝贵知识来源。本文的研究目标是明确俄罗斯和中国社会经济政策的优先事项并对其在国土和城市规划层面的实施机制进行比较分析,这两者是国家可持续发展的重要条件。全文分为五个部分,共八章。其中第一部分(第1章)对课题相关的文献进行综述和分析,并制定研究目标、研究对象、研究假设和研究方法。第二部分(第2-3章)介绍第一项研究成果,即俄罗斯和中国城市可持续发展的比较分析,并对可持续城市规划和城市化进程两个主题进行详细描述与对第一项研究的结果进行讨论。第三部分(第4-7章)介绍第二项研究成果,即俄罗斯的案例研究,相关主题包括:俄罗斯城市可持续发展的社会经济问题;俄罗斯的创新基础设施;从科学定居点到斯科尔科沃创新中心的苏联科学城市发展历史回顾;斯科尔科沃创新中心的城市规划理念。第四部分(第8章)对第二项研究的结果进行讨论,探讨城市发展在国家可持续发展过程中的作用。第五部分介绍结论并对后续的科研工作提出建议。论文作者对俄罗斯和中国的历史,以及两国在20世纪和当下建设现代国家的过程中所经历的困难道路深表敬意和理解。尽管在经济、社会、文化和地缘上存在差异,两个国家都是在现在和未来为和平与稳定做出巨大努力的强大的现代国家。
Hin-yuen Tsang(曾献源)[2](2020)在《低温热液矿床地质与地球化学研究 ——以中国贵州天柱金矿和尼日利亚Mika铀矿为例》文中提出本文以两个低温热液型矿床-即贵州天柱金矿与尼日利亚Mika的铀矿为例,系统研究其区域地质-构造特征,通过元素-同位素地球化学分析测试,确定了其成岩时代及其成矿的物理-化学条件,建立了成矿地质模型,为区域成矿及找矿勘察提供科学依据。贵州天柱造山型金矿的原始沉积物是长英质火成源区,后经造山改造叠加而成。矿石中具有大颗粒金,品位较富,共伴生金属少的特点。矿体定位受区域背斜构造控制。区域地层受后期雪峰造山运动的改造,提供了大量的成矿热液,为区内金的富集成矿提供了物理-化学条件。年代学研究表明地层中的岩石形成于800Ma的新元古代,根据地质-地球化学资料推断,金矿区大地构造环境应该是新元古时期的大陆边缘或俯冲带边缘环境,该时期岩火山作用十分发育,海床布满黑白烟囱,持续的岩浆喷发,在海水中形成富含硅、铁、铁等离子的热水溶液,含金物质经过地质作用,形成预富集,为后期金矿成矿奠定了物质基础。本研究采用地球化学主元素判别函数图图解,判别岩石源区性质及所形成的大地构造环境;通过研究稀土元素与流体包裹体来分析成矿物质来源及成矿物理化学条件;采用LA-ICP-MS锆石测定矿体赋存岩系的成岩年龄。LA-ICP-MS锆石年代学研究,发现下江群清水江组的凝灰质与砂质板岩和含金石英脉中分选的锆石有相似的年龄分布区间,推测含金石英脉内的锆颗粒可能源自周围的凝灰质及砂质板岩,它们的成岩时代大体上可以追溯到新元古代时的长英质火成源区。成矿流体是在加里东期造山运动(雪峰造山事件)时期变质作用条件下的脱挥发性组分下形成。尼日利亚勘探铀矿无异将为该国带来经济效益。本文针对尼日利亚Mika地区勘探铀矿勘察工作,我们先后在现场开挖了九条探槽,采集大批新鲜的样品,在野外开展放射性测量,据此发现并推断两条轴矿矿脉的展布特征:主要的矿脉向西延伸,走向348°,倾角42°;令一条矿脉走向306°,陡倾角。我们在原地发现沥青铀矿,为进一步深入勘探提供了重要线索。在室内从岩相学的分析获得,成矿母岩花岗岩受构造变形影响,晶质铀矿和玉髓在后期充填在花岗岩的构造裂隙中,形成细矿脉状矿化。伽马射线强度显示,原生铀矿品位1.5%,次生铀品位0.1%。原地辐射测试显示Th和K2O为47.3-3654ppm和4.26-6.26%范围。在勘探中,我们发现在西北-东南方向有一个高辐射区,大体为800x35m范围,最高达到1200cpm,背景辐射约30cpm。通常Mika地区的铀矿品位约0.03%-0.12%。铀矿勘探采用4频道伽马谱仪与伽马剂量计测量,据此编制了U矿勘查区放射性异常分布图,同时在实验室采用低本底高纯锗伽马谱仪分析样品的天然核素,发现了高辐射点范围,并圈地定出有利的勘查目标区,为该区的深部铀矿勘查提供了科学依据,我们认为这个地区铀矿潜力巨大,特别是深层的铀矿资源有待进一步探测和开发。
王东辉,倪化勇,李鹏岳,郝明[3](2019)在《城市地下空间资源综合利用实践——以成都市地质环境图集(2017)数据集为例》文中研究指明在全面收集地质和工程勘察资料基础上,系统梳理了成都市地下空间资源综合利用需要防范关注的7类地质问题以及需要统筹保护的4类地质资源。根据城市地下空间资源综合利用约束性地质要素(地质问题、地质资源)和地质结构在垂向上的差异,将成都市0~200 m地下空间划分为0~30 m、30~60 m、60~100 m、100~200 m 4个层位,在此基础上,提出了成都市地下空间分区、分层开发利用建议,编制了《支撑服务成都市地下空间资源综合利用地质环境图集》。图集范围覆盖成都市中心城区、高新西区、高新南区、国际生物城、天府新区成都直管区、天府空港新城、简州新城、淮州新城等重点地区,包括39张图件和1个地质调查报告。图集为成都市城市地下空间综合利用、城市空间优化拓展、城市功能品质提升以及国土空间开发、空间转型升级和城市集约、绿色、可持续发展提供了地质依据,对于全国其他城市开展同类图集编制具有示范和借鉴意义。
JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu[4](2021)在《New innovations in pavement materials and engineering:A review on pavement engineering research 2021》文中研究说明Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges. In the past 10 years, the pavement infrastructure strongly supports the rapid development of the global social economy. New theories, new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem. Because of actual coupled behaviors of traffic and environmental conditions, predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis. In order to summarize the current and determine the future research of pavement engineering, Journal of Traffic and Transportation Engineering(English Edition) has launched a review paper on the topic of "New innovations in pavement materials and engineering: A review on pavement engineering research 2021". Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering, this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world. The content includes asphalt binder performance and modeling, mixture performance and modeling of pavement materials,multi-scale mechanics, green and sustainable pavement, and intelligent pavement.Overall, this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.
SUN Tengjiao,LUO Xiaoping,QING Hairuo,KOU Xueling,SHENG Zhongming,XU Guosheng,ZUO Yinhui[5](2020)在《Characteristics and Natural Gas Origin of Middle-Late Triassic Marine Source Rocks of the Western Sichuan Depression, SW China》文中指出A scientific exploration well(CK1) was drilled to expand the oil/gas production in the western Sichuan depression, SW, China. Seventy-three core samples and four natural gas samples from the Middle–Late Triassic strata were analyzed to determine the paleo-depositional setting and the abundance of organic matter(OM) and to evaluate the hydrocarbon-generation process and potential. This information was then used to identify the origin of the natural gas. The OM is characterized by medium n-alkanes(n C15–n C19), low pristane/phytane and terrigenous aquatic ratios(TAR), a carbon preference index(CPI) of ~1, regular steranes with C29 > C27 > C28, gammacerane/C30 hopane ratios of 0.15–0.32, and δDorg of-132‰ to-58‰, suggesting a marine algal/phytoplankton source with terrestrial input deposited in a reducing–transitional saline/marine sedimentary environment. Based on the TOC, HI index, and chloroform bitumen "A" the algalrich dolomites of the Leikoupo Formation are fair–good source rocks; the grey limestones of the Maantang Formation are fair source rocks; and the shales of the Xiaotangzi Formation are moderately good source rocks. In addition, maceral and carbon isotopes indicate that the kerogen of the Leikoupo and Maantang formations is type Ⅱ and that of the Xiaotangzi Formation is type Ⅱ–Ⅲ. The maturity parameters and the hopane and sterane isomerization suggest that the OM was advanced mature and produced wet–dry gases. One-dimensional modeling of the thermal-burial history suggests that hydrocarbon-generation occurred at 220–60 Ma. The gas components and C–H–He–Ar–Ne isotopes indicate that the oilassociated gases were generated in the Leikoupo and Maantang formations, and then, they mixed with gases from the Xiaotangzi Formation, which were probably contributed by the underlying Permian marine source rocks. Therefore, the deeply-buried Middle–Late Triassic marine source rocks in the western Sichuan depression and in similar basins have a great significant hydrocarbon potential.
CHEN Baoguo,ZHANG Jiuchen,YANG Mengmeng[6](2016)在《The Present Research and Prospect of Chinese Geosciences History》文中研究说明It has been over a hundred years since the birth of research on Chinese geosciences history, which was accompanied by the continuous progress of Chinese geosciences. For hundreds of years, it has grown out of nothing to brilliant performance by several generations of Chinese geologists committing their hearts and minds with the spirit of exert and strive without stop to promote the process of China’s industrialization and to produce the significant impact on serving the society. The study of Chinese geosciences history reflects objectively and historically the history of geosciences in China, which has recorded, analyzed and evaluated the dynamic process sitting in the background and clue of the history of Chinese geosciences development. The study of the history of geological science has roughly experienced two stages in China. The first stage is the study of individual researchers. It spanned approximately 70 years from the early 20th century to the end of the 1970s. The research contents were mainly based on the evolution of geological organizations, the development and utilization of individual mineral species, the history of deposit discovery and the research of geological characters. The main representatives are Zhang Hongzhao, Ding Wenjiang, Weng Wenhao and Li Siguang, Ye Liangfu, Huang Jiqing, Yang Zhongjian, Xie Jiarong, Gao Zhenxi, Wang Bingzhang and etc. The most prominent feature of this period is the accumulation of a very valuable document for the study of the history of China’s geological history and lays a foundation for the exchange of geological science between China and foreign countries. The second stage is organized group study. It took around 60 years from the 1920s to 1980s. It includes the history of Chinese geology, the history of geological organizations, the history of geological disciplines, the history of geological education, the history of geological philosophy, the history of Chinese and foreign geological science communication, the history of geologists and etc. The most chief feature of this stage is the birth of academic research institute―the establishment of the Commission on the History of Geology of the Geological Society of China.
ZOU Guangfu,PAN Zhongxi,ZHUANG Zhonghai,ZHU Tongxing,LI Jianzhong,FENG Xintao[7](2013)在《Phanerozoic Paleomagnetism Characteristics of the Qomolangma Area in Tibet》文中进行了进一步梳理This paper conducts systematic test research on the 2920 paleomagnetic directional samples taken from Ordovician-Paleogene sedimentary formation in the north slope of Qomolangma in south of Tibet and obtains the primary remanent magnetization component and counts the new data of paleomagnetism the times. Based on the characteristic remanent magnetization component, it calculates the geomagnetic pole position and latitude value of Himalaya block in Ordovician-Paleogene. According to the new data of paleomagnetism, it draws the palaeomagnetic polar wander curve and palaeolatitude change curve of the north slope of Qomolangma in Ordovician-Paleogene. It also makes a preliminary discussion to the structure evolution history and relative movement of Himalaya bloc. The research results show that many clockwise rotation movements had occurred to the Himalaya block in northern slope of Qomolangmain the process of northward drifting in the phanerozoic eon. In Ordovician-late Cretaceous, there the movement of about 20.0° clockwise rotation occurred in the process of northward drifting. However, 0.4° counterclockwise rotation occurred from the end of late Devonian epoch to the beginning of early carboniferous epoch; 6.0° and 8.0° counterclockwise rotation occurred in carboniferous period and early Triassic epoch respectively, which might be related with the tension crack of continental rift valley from late Devonian period to the beginning of early carboniferous epoch, carboniferous period and early Triassic epoch. From the Eocene epoch to Pliocene epoch, the Himalaya block generated about 28.0° clockwise while drifting northward with a relatively rapid speed. This was the result that since the Eocene epoch, due to the continuous expansion of mid-ocean ridge of the India Ocean, the neo-Tethys with the Yarlung Zangbo River as the main ocean basin closed to form orogenic movement and the strong continent-continent collision orogenic movement of the east and west Himalayas generated clockwise movement in the mid-Himalaya area. According to the calculation of palaeolatitude data, the Himalaya continent-continent collusion orogenic movement since the Eocene epoch caused the crustal structure in Indian Plate-Himalaya folded structural belt-Lhasa block to shorten by at least 1000 km. The systematic research on the paleomagnetism of Qomolangma area in the phanerozoic eon provides a scientific basis to further research the evolution of Gondwanaland, formation and extinction history of paleo-Tethys Ocean and uplift mechanism of the Qinghai-Tibet Plateau.
贺少伟[8](2021)在《西南科技大学校园网页新闻汉英翻译实践报告》文中研究说明在我们国家优秀文化对外传播越来越广的基础上,高校官方的英文网站也顺应趋势,成为外界了解国内高校的重要窗口,在对外交流中起到了举足轻重的作用。而笔者认为西南科技大学校园新闻翻译,与其他院校类似,均存在拘泥于原文的问题,虽然将原文作者的意思表达了出来,但是对于目标读者来说信息冗杂,无法一目了然的知道核心内容,更有由于文化视域差别导致的理解偏差存在。本报告以笔者在西南科技大学外国语学院MTI中心的新闻翻译实践为基础,运用翻译模因论指导翻译实践,试图解决上述问题,并以此创作翻译实践报告。通过分析新闻文本的特点,笔者选用国内发展较快的翻译模因论作为理论指导,结合翻译项目中的具体案例,对源文本进行了详细的分析,得出源文本作为新闻所具有的时效性、宣传性以及和英语之间的不同,如时态语态等问题。此外,笔者引用源文本中的案例,围绕笔认为在校园新闻翻译过程中需要解决的三个方面的问题进行分析:一是当时态在目的语表述过程中发生转变时,如何通过模因论指导选择翻译方法;二是分析通过模因论如何选择翻译方法来使得译出语符合英语语言语法特点;第三是分析在此翻译过程中如何运用模因论选择翻译方法来清晰的表述源语言的文本信息。最后笔者提出了相应的翻译策略,即运用省译法、解释性翻译法和顺句翻译法来解决时态转变带来的翻译问题;运用分、合译法和倒译法在翻译过程中适应目标语言的语法特点;运用编译法在译文中更清晰合适的表达源语言想传达出的信息。通过分析以及相应的翻译方法的选择,笔者能够较为有效解决翻译过程中的难题,诸如译文需要符合英语读者的需要和译文的表达方式等问题,从而提高了汉英翻译的可读性和准确性。最后是笔者对整个翻译过程中所学所得,如需要进行充分的准备工作和译后校对,更要熟悉翻译理论并指导实践,以及出现的问题和不足之处的总结,以及对校园新闻翻译提出的要注意译员身份的中立以及翻译过程中对文化冲突的理解等建议,希望能够有所帮助。
YAO Jianxin,BO Jingfang,HOU Hongfei,WANG Zejiu,MA Xiulan,LIU Fengshan,HU Guangxiao,JI Zhansheng,WU Guichun,WU Zhenjie,LI Suping,GUO Caiqing,LI Ya[9](2016)在《Status of Stratigraphy Research in China》文中认为Scientific research and productive practice for earth history are inseparable from the accurate stratigraphic framework and time framework. Establishing the globally unified, precise and reliable chronostratigraphic series and geological time series is the major goal of the International Commission on Stratigraphy(ICS). Under the leadership of the ICS, the countries around the world have carried out research on the Global Standard Stratotype-section and Points(GSSPs) for the boundaries of chronostratigraphic systems. In the current International Chronostratigraphic Chart(ICC), 65 GSSPs have been erected in the Phanerozoic Eonothem, and one has yet been erected in the Precambrian Eonothem. Based on the progress of research on stratigraphy especially that from its subcommissions, the ICS is constantly revising the ICC, and will publish a new International Stratigraphic Guide in 2020. After continual efforts and broad international cooperation of Chinese stratigraphers, 10 GSSPs within the Phanerozoic Eonothem have been approved and ratified to erect in China by the ICS and IUGS. To establish the standards for stratigraphic division and correlation of China, with the support from the Ministry of Science and Technology, the National Natural Science Foundation of China and the China Geological Survey, Chinese stratigraphers have carried out research on the establishment of Stages in China. A total of 102 stages have been defined in the "Regional Chronostratigraphic Chart of China(geologic time)", in which 59 stages were studied in depth. In 2014, the "Stratigraphic Chart of China" was compiled, with the essential contents as follows: the correlation between international chronostratigraphy and regional chronostratigraphy of China(geologic time), the distributive status of lithostratigraphy, the characteristics of geological ages, the biostratigraphic sequence, the magnetostratigraphy, the geological events and eustatic sea-level change during every geological stage. The "Stratigraphical Guide of China and its Explanation(2014)" was also published. Chinese stratigraphers have paid much attention to stratigraphic research in south China, northeast China, north China and northwest China and they have made great achievements in special research on stratigraphy, based on the 1:1000000, 1:250000, 1:200000 and 1:50000 regional geological survey projects. Manifold new stratigraphic units were discovered and established by the regional geological surveys, which are helpful to improve the regional chronostratigraphic series of China. On the strength of the investigation in coastal and offshore areas, the status of marine strata in China has been expounded. According to the developing situation of international stratigraphy and the characteristics of Chinese stratigraphic work, the contrast relation between regional stratigraphic units of China and GSSPs will be established in the future, which will improve the application value of GSSPs and the standard of regional stratigraphic division and correlation. In addition, the study of stratigraphy of the Precambrian, terrestrial basins and orogenic belts will be strengthened, the Stratigraphic Chart of China will be improved, the typical stratigraphic sections in China will be protected and the applied study of stratigraphy in the fields of oil and gas, solid minerals, etc. will be promoted. On the ground of these actions, stratigraphic research will continue to play a great role in the social and economic development of China.
汪相[10](2018)在《白云鄂博超大型稀土—铌—铁矿床的成矿时代及成因探析——兼论P—T之交生物群灭绝事件和“阿蒙兴造山运动”》文中提出白云鄂博矿床是世界上最大的稀土矿床,同时也是一个特大型铌矿和大型铁矿,其成矿时代及成因至今仍有多种不同认识。本研究从东部接触带(菠萝头山)3号铌矿体内的金云母岩中获得残留锆石和热液独居石,测得其U-Pb年龄分别为269.5±3.1 Ma和249±13 Ma;从巴音敖包伟晶岩中获得热液锆石,测得其U-Pb年龄为248.9±2.5 Ma。结合阿尔泰—天山—北山—内蒙古—大兴安岭—小兴安岭造山带中的成矿年龄资料,笔者推测,在248%251 Ma白云鄂博地区发生了一次强烈的热液活动,该热液活动的时间可以代表白云鄂博矿床的成矿年龄。基于绝大多数稀有金属热液矿床都是与花岗质岩浆活动关联的,本研究对白云鄂博地区出露的两类花岗岩进行了岩相学、矿物学、地球化学和锆石学分析,从而确定白云鄂博花岗岩基中的黑云母二长花岗岩(主体相)为同碰撞花岗岩,其定位年龄为269.8±2.0 Ma;而白云鄂博花岗岩基中的二云母碱长花岗岩(补体相)为碰撞后花岗岩,其定位年龄为250.5±6.0 Ma。根据二云母碱长花岗岩的成岩年龄等于白云鄂博矿床的成矿年龄,以及大量的野外地质现象和区域地质资料,笔者认为:(1)该二云母碱长花岗岩为白云鄂博矿床的成矿母岩,它的岩浆直接来自地壳深部岩浆房;(2)该岩浆房就是同碰撞花岗岩浆的岩浆房,这意味着留存在该岩浆房中的巨量花岗岩浆经历了近20 Ma的分离结晶作用,从而在岩浆房上部聚集了富含成矿物质的残余花岗岩浆;(3)当构造环境由挤压转为拉张时,该残余花岗岩浆沿着张性断裂被动侵位。由于快速上升引起压力和温度的骤降,富含稀有金属(稀土和铌)、卤素(氟)和碱金属的硅质热液从残余花岗岩浆中分离出来;(4)这种硅质热液沿断裂构造率先进入白云鄂博群H8白云岩岩层,与碳酸盐发生交代反应,其稀土和铌金属元素沉淀成矿;同时,H8白云岩岩层中的菱铁矿和铁白云石分解,释放出Fe2+和[CO3](2-),前者(Fe2+)经近距离迁移后沉淀成铁矿,后者([CO3]2-)与少量稀土—铌元素结合成金属—碳酸络合物,呈脉状穿插在H8白云岩中,或迁移至H8白云岩的外围。该认识首次将白云鄂博地区的构造、成岩和成矿有机地统一起来,从而阐释了一个致白云鄂博矿床形成的能量和物质的运移过程;同时,该认识可以整合多种流行的白云鄂博矿床成因认识("正常或热水沉积说"、"火成碳酸岩说"、"热液交代说"等等)中的合理因素;笔者认为,它是一个全面、系统而又新颖的白云鄂博矿床的成矿模式。
二、CHENGDU INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、CHENGDU INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文提纲范文)
(1)俄罗斯城市可持续发展及其对中国城市的启示研究(论文提纲范文)
摘要 |
ABSTRACT |
CHAPTER Ⅰ Introduction |
1.1 Research background |
1.2 Research goal and objectives |
1.3 Literature review |
1.3.1 Concept of sustainable development |
1.3.2 Social-Economic aspects of regional planning and urban development in Russia |
1.4 Materials and methods |
1.4.1 Research framework |
1.4.2 Materials and methods |
CHAPTER Ⅱ Concept of Sustainable Development |
2.1 Sustainable development |
2.1.1 Phenomenon 'climate change' |
2.1.2 Urbanization |
2.1.3 Relationship between climate change and urbanization |
2.1.4 International level commitments |
2.1.5 Conclusion |
2.2 Sustainable urban planning in Russian Federation |
2.2.1 Introduction |
2.2.2 Sustainable development in Russia |
2.2.3 Russian town-planning legislative base |
2.2.4 Russian national green building technical legislative base |
2.2.5 GIS Technology into the Russian town-planning practice |
2.2.6 Conclusion |
2.3 Sustainable urban planning in People's Republic of China |
2.3.1 Introduction |
2.3.2 Sustainable development in China |
2.3.3 Chinese urban planning legislative base National Garden City |
2.3.4 Chinese national green building technical legislative base |
2.3.5 Conclusion |
References |
CHAPTER Ⅲ Transformation of the Scientific Views on the Process of Urbanization |
3.1 Process of urbanization in Russian Federation |
3.1.1 Introduction |
3.1.2 Three waves of Russian urbanization |
3.1.3 First wave of urbanization1860s- |
3.1.4 Second wave of urbanization1926- |
3.1.5 Third wave of urbanization in1950s |
3.1.6 Conclusion |
3.2 Process of urbanization in People's Republic of China |
3.2.1 Introduction |
3.2.2 Three great historical transformations of China |
3.2.3 First historical transformation(1911) |
3.2.4 Second historical transformation(1949) |
3.2.5 Third historical transformation(1978) |
3.2.6 Conclusion |
References |
3.3 Results of the comparative analysis of sustainable urban development in Russian Federation and People's Republic of China |
3.3.1 Introduction |
3.3.2 Has comparative analysis value? |
3.3.3 What is the valuable experience of both countries in the modern urban development? |
3.3.4 Conclusion |
CHAPTER Ⅳ Socio-economic aspects of regional planning and urban development in Russian Federation |
4.1 Introduction |
4.2 Literature review |
4.3 Historical background |
4.4 All-Russia forum‘Strategic Planning in the Regions and Cities of Russia’ |
4.5 Inquire into the relationship between priorities of sustainable development,strategic planning and Russian socio-economic policy |
4.5.1 Strategic planning system of the Russian Federation |
4.5.2 Spatial Development Strategy of the Russian Federation to 2025 |
4.5.3 Interrelation of the documents of strategic and territorial planning of Russian Federation |
4.5.4 Russian state policy of innovation development |
4.6 Conclusion |
References |
CHAPTER Ⅴ Historical overview of the Soviet science cities development |
5.1 Introduction |
5.2 Historical overview of the science cities development1917-1980s |
5.2.1 Urban design trends in the science settlements creation,1930s |
5.2.2 Urban design trends in science cities establishment after the Great Patriotic War.The beginning period of the Cold War |
5.2.3 Urban design trends in the science cities establishment in1960-1970.The period of the formulation of a standard approach to design and construction |
5.2.4 Summing up the results of the Soviet period of the construction of the science cities of1930s-1980s |
5.3 Urban design trends in the science cities establishment in1990s |
5.4 Urban design trends in the science cities establishment after2010s |
5.5 Conclusion |
References |
CHAPTER Ⅵ Russian innovation infrastructure |
6.1 Introduction |
6.2 National innovation system of the Russian Federation |
6.3 Innovation Infrastructure:territorial level |
6.3.1 Innovation special economic zones |
6.3.2 Innovation and industrial clusters' |
6.4 Innovation infrastructure physical level:technoparks and business incubators |
6.4.1 Technoparks |
6.4.2 Technopark-leaders of the II National Russian Technoparks Ranking-2016 |
6.5 Conclusion |
References |
CHAPTER Ⅶ CASE OF STUDY:Skolkovo Innovation Center |
7.1 Introduction |
7.1.1 Skolkovo Innovation Center |
7.2 Aim of creating Skolkovo Innovation Center |
7.3 Types of infrastructure of the Skolkovo Innovation Center |
7.4 Results of international competition for Skolkovo IC master plan concept |
7.4.1 Finalist of international competition for Skolkovo IC Masterplan OMA |
7.4.2 Winner of international competition for Skolkovo IC master plan- AREP |
7.5 Structure of Skolkovo IC Town Planning Board |
7.6 Development strategy and documents of Skolkovo IC master plan |
7.7 Skolkovo IC infrastructure construction financial program |
7.8 Transport accessibility to Skolkovo IC |
7.9 Key institutions facilities of the Skolkovo IC |
7.9.1 Skoltech- Skolkovo Institute of Science and Technology |
7.9.2 Research and development centres of the Skolkovo IC District D |
7.9.3 Skolkovo Technopark building |
7.9.4 Business Center Amaltea(BC Gallery) |
7.9.5 IT-Cluster Business Park of the Skolkovo IC |
7.9.6 Transmashholding Corporate Research Center |
7.9.7 Hypercube the First Building of Skolkovo IC |
7.9.8 Skolkovo Business Center(MatRex) |
7.9.9 Sberbank Technopark |
7.10 Social infrastructure facilities of Skolkovo IC |
7.11 Housing facilities of Skolkovo IC |
7.11.1 Central Zone Z |
7.11.2 South District D |
7.11.3 Technopark District D |
7.12 Skolkovo IC landscape design |
7.13 Conclusion |
CHAPTER Ⅷ Russian town-planning science in the context of socio-economic transformations |
8.1 Introduction |
8.2 Definition of the term"gradostroitelstvo" |
8.3 Historical overview of the town-planning science in Russia |
8.3.1 Socialist town-planning1917- |
8.3.2 Socialist town-planning1933- |
8.3.3 Socialist town-planning1941- |
8.3.4 Socialist town-planning1941- |
8.4 Theoretical foundations and unique traditions of town-planning science in Russia |
8.5 Russian fundamental research in the field of town-planning |
8.6 Course of town-planning in the Russian education system |
8.6.1 The town-planning faculty of the Moscow Architectural Institute(State Academy)MARHI |
8.6.2 Vysokovsky Graduate School of Urbanism |
8.6.3 Strelka Institute for Media,Architecture and Design |
8.6.4 MARCH Architecture School |
8.6.5 Summarizing the analysis of four urban planning schools in Russia |
8.7 Applied town-planning science |
8.7.1 Methods of town-planning analysis |
8.7.2 Interdisciplinary methods of town-planning analysis |
8.8 Conclusion |
References |
CONCLUSION |
SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY AND PRACTICE |
APPENDIX Ⅰ |
APPENDIX Ⅱ |
APPENDIX Ⅲ |
APPENDIX Ⅳ |
APPENDIX Ⅴ |
APPENDIX Ⅵ |
APPENDIX Ⅶ |
APPENDIX Ⅷ |
APPENDIX Ⅸ |
APPENDIX Ⅹ |
APPENDIX ⅩⅠ |
APPENDIX ⅩⅡ |
ACKNOWLEDGEMENTS |
SCIENTIFIC ACHIVEMENTS |
Appreciate |
(2)低温热液矿床地质与地球化学研究 ——以中国贵州天柱金矿和尼日利亚Mika铀矿为例(论文提纲范文)
ABSTRACT |
摘要 |
Chapter 1 Introduction |
1.1 Low-T hydrthermal/epithermal deposits |
1.2 Background and motivation |
1.3 Thesis outline |
Chapter 2 Low-T hydrothermal/Epithermal systems |
2.1 Definition |
2.2 Classification of epithermal deposits |
2.3 Characters of igneous rocks associated with epithermal deposits |
2.4 Examples of epithermal gold deposits and uranium deposits |
2.5 How to form a giant epithermal precious metal deposit |
Chapter 3 The turbidite-hosted gold deposit in Tianzhu, Guizhou |
3.1 Geological background of the Guizhou gold deposits |
3.2 Regional Geology |
3.2.1 Introduction |
3.2.2 Strata |
3.2.3 Mineralization |
3.2.4 Features of the ore deposits |
3.3 Sampling and analytical methods |
3.4 Results |
3.5 Discussion |
3.5.1 Age of rocks from Qingshuijiang Formation |
3.5.2 Source and tectonic settings of rocks |
3.5.3 Source of the sulfur and gold |
3.5.4 Genesis and age of these gold deposits |
3.5.5 Mechanism of Gold Enrichments |
3.5.6 Comparisons between Tianzhu and similar gold deposits |
3.6 Summmary |
Chapter 4 Geology and geochemistry of Mika uranium region, Northeastern Nigeria |
4.1 Introduction of the Mika uranium exploration site |
4.2 History of geological exploration |
4.3 Physiography and climate |
4.4 Regional geology |
4.5 Local geology |
4.6 Uranium mineralization |
4.7 The first survey and its radiometric and gamma dose measurement |
4.8 Uranium Prospects |
4.9 Petrography |
4.10 Sample test |
4.11 Summary |
Chapter 5 Formation of Low-temperature hydrothermal deposits:A comparison study |
5.1 Foramtions of the low-temperature hydrothermal deposits |
5.2 Comparisons between the Tianzhu Au deposit and Mika U deposit |
Chapter 6 Conclusions |
Acknowledgements |
References |
Appendix |
(3)城市地下空间资源综合利用实践——以成都市地质环境图集(2017)数据集为例(论文提纲范文)
1 引言 |
2 数据采集和处理方法 |
2.1数据基础 |
2.2数据处理过程 |
2.2.1数据准备 |
2.2.2数据整理过程 |
2.2.3图集编制过程 |
3数据样本描述 |
3.1数据格式 |
3.2图层内容 |
3.3数据属性 |
4数据质量控制和评估 |
5结论 |
1 Introduction |
2 Methods for Data Acquisition and Processing |
2.1 Data Basis |
2.2 Data Processing |
2.2.1 Data Preparation |
2.2.2 Data Collation |
2.2.3 Atlas Preparation |
3 Description of Data Samples |
3.1 Data Formats |
3.2 Contents of Map Layers |
3.3 Data Attributes |
4 Data Quality Control and Assessment |
5 Conclusion |
(4)New innovations in pavement materials and engineering:A review on pavement engineering research 2021(论文提纲范文)
1. Introduction |
(1) With the society development pavement engineering facing unprecedented opportunities and challenges |
(2) With the modern education development pavement engineering facing unprecedented accumulation of scientific manpower and literature |
2. Asphalt binder performance and modeling |
2.1. Binder damage,healing and aging behaviors |
2.1.1. Binder healing characterization and performance |
2.1.1. 1. Characterizing approaches for binder healing behavior. |
2.1.1. 2. Various factors influencing binder healing performance. |
2.1.2. Asphalt aging:mechanism,evaluation and control strategy |
2.1.2. 1. Phenomena and mechanisms of asphalt aging. |
2.1.2. 2. Simulation methods of asphalt aging. |
2.1.2. 3. Characterizing approaches for asphalt aging behavior. |
2.1.2. 4. Anti-aging additives used for controlling asphalt aging. |
2.1.3. Damage in the characterization of binder cracking performance |
2.1.3. 1. Damage characterization based on rheological properties. |
2.1.3. 2. Damage characterization based on fracture properties. |
2.1.4. Summary and outlook |
2.2. Mechanism of asphalt modification |
2.2.1. Development of polymer modified asphalt |
2.2.1. 1. Strength formation of modified asphalt. |
2.2.1. 2. Modification mechanism by molecular dynamics simulation. |
2.2.1. 3. The relationship between microstructure and properties of asphalt. |
2.2.2. Application of the MD simulation |
2.2.2. 1. Molecular model of asphalt. |
2.2.2. 2. Molecular configuration of asphalt. |
2.2.2. 3. Self-healing behaviour. |
2.2.2. 4. Aging mechanism. |
2.2.2. 5. Adhesion mechanism. |
2.2.2. 6. Diffusion behaviour. |
2.2.3. Summary and outlook |
2.3. Modeling and application of crumb rubber modified asphalt |
2.3.1. Modeling and mechanism of rubberized asphalt |
2.3.1. 1. Rheology of bituminous binders. |
2.3.1. 2. Rheological property prediction of CRMA. |
2.3.2. Micromechanics-based modeling of rheological properties of CRMA |
2.3.2. 1. Composite system of CRMA based on homogenization theory. |
2.3.2. 2. Input parameters for micromechanical models of CRMA. |
2.3.2. 3. Analytical form of micromechanical models of CRMA. |
2.3.2. 4. Future recommendations for improving micro-mechanical prediction performance. |
2.3.3. Design and performance of rubberized asphalt |
2.3.3. 1. The interaction between rubber and asphalt fractions. |
2.3.3. 2. Engineering performance of rubberized asphalt. |
2.3.3. 3. Mixture design. |
2.3.3. 4. Warm mix rubberized asphalt. |
2.3.3. 5. Reclaiming potential of rubberized asphalt pavement. |
2.3.4. Economic and Environmental Effects |
2.3.5. Summary and outlook |
3. Mixture performance and modeling of pavement materials |
3.1. The low temperature performance and freeze-thaw damage of asphalt mixture |
3.1.1. Low temperature performance of asphalt mixture |
3.1.1. 1. Low temperature cracking mechanisms. |
3.1.1. 2. Experimental methods to evaluate the low temperature performance of asphalt binders. |
3.1.1. 3. Experimental methods to evaluate the low temperature performance of asphalt mixtures. |
3.1.1. 4. Low temperature behavior of asphalt materials. |
3.1.1.5.Effect factors of low temperature performance of asphalt mixture. |
3.1.1. 6. Improvement of low temperature performance of asphalt mixture. |
3.1.2. Freeze-thaw damage of asphalt mixtures |
3.1.2. 1. F-T damage mechanisms. |
3.1.2. 2. Evaluation method of F-T damage. |
3.1.2. 3. F-T damage behavior of asphalt mixture. |
(1) Evolution of F-T damage of asphalt mixture |
(2) F-T damage evolution model of asphalt mixture |
(3) Distribution and development of asphalt mixture F-T damage |
3.1.2. 4. Effect factors of freeze thaw performance of asphalt mixture. |
3.1.2. 5. Improvement of freeze thaw resistance of asphalt mixture. |
3.1.3. Summary and outlook |
3.2. Long-life rigid pavement and concrete durability |
3.2.1. Long-life cement concrete pavement |
3.2.1. 1. Continuous reinforced concrete pavement. |
3.2.1. 2. Fiber reinforced concrete pavement. |
3.2.1. 3. Two-lift concrete pavement. |
3.2.2. Design,construction and performance of CRCP |
3.2.2. 1. CRCP distress and its mechanism. |
3.2.2. 2. The importance of crack pattern on CRCP performance. |
3.2.2. 3. Corrosion of longitudinal steel. |
3.2.2. 4. AC+CRCP composite pavement. |
3.2.2. 5. CRCP maintenance and rehabilitation. |
3.2.3. Durability of the cementitious materials in concrete pavement |
3.2.3. 1. Deterioration mechanism of sulfate attack and its in-fluence on concrete pavement. |
3.2.3. 2. Development of alkali-aggregate reaction in concrete pavement. |
3.2.3. 3. Influence of freeze-thaw cycles on concrete pavement. |
3.2.4. Summary and outlook |
3.3. Novel polymer pavement materials |
3.3.1. Designable PU material |
3.3.1. 1. PU binder. |
3.3.1.2.PU mixture. |
3.3.1. 3. Material genome design. |
3.3.2. Novel polymer bridge deck pavement material |
3.3.2. 1. Requirements for the bridge deck pavement material. |
3.3.2.2.Polyurethane bridge deck pavement material(PUBDPM). |
3.3.3. PU permeable pavement |
3.3.3. 1. Permeable pavement. |
3.3.3. 2. PU porous pavement materials. |
3.3.3. 3. Hydraulic properties of PU permeable pavement materials. |
3.3.3. 4. Mechanical properties of PU permeable pavement ma-terials. |
3.3.3. 5. Environmental advantages of PU permeable pavement materials. |
3.3.4. Polyurethane-based asphalt modifier |
3.3.4. 1. Chemical and genetic characteristics of bitumen and polyurethane-based modifier. |
3.3.4. 2. The performance and modification mechanism of polyurethane modified bitumen. |
3.3.4. 3. The performance of polyurethane modified asphalt mixture. |
3.3.4. 4. Environmental and economic assessment of poly-urethane modified asphalt. |
3.3.5. Summary and outlook |
3.4. Reinforcement materials for road base/subrgrade |
3.4.1. Flowable solidified fill |
3.4.1. 1. Material composition design. |
3.4.1. 2. Performance control. |
3.4.1. 3. Curing mechanism. |
3.4.1. 4. Construction applications. |
3.4.1.5.Environmental impact assessment. |
3.4.1. 6. Development prospects and challenges. |
3.4.2. Stabilization materials for problematic soil subgrades |
3.4.2.1.Stabilization materials for loess. |
3.4.2. 2. Stabilization materials for expansive soil. |
3.4.2. 3. Stabilization materials for saline soils. |
3.4.2. 4. Stabilization materials for soft soils. |
3.4.3. Geogrids in base course reinforcement |
3.4.3. 1. Assessment methods for evaluating geogrid reinforce-ment in flexible pavements. |
(1) Reinforced granular material |
(2) Reinforced granular base course |
3.4.3. 2. Summary. |
3.4.4. Summary and outlook |
4. Multi-scale mechanics |
4.1. Interface |
4.1.1. Multi-scale evaluation method of interfacial interaction between asphalt binder and mineral aggregate |
4.1.1. 1. Molecular dynamics simulation of asphalt adsorption behavior on mineral aggregate surface. |
4.1.1. 2. Experimental study on absorption behavior of asphalt on aggregate surface. |
4.1.1. 3. Research on evaluation method of interaction between asphalt and mineral powder. |
(1) Rheological mechanical method |
(2) Microscopic test |
4.1.1. 4. Study on evaluation method of interaction between asphalt and aggregate. |
4.1.2. Multi-scale numerical simulation method considering interface effect |
4.1.2. 1. Multi-scale effect of interface. |
4.1.2. 2. Study on performance of asphalt mixture based on micro nano scale testing technology. |
4.1.2. 3. Study on the interface between asphalt and aggregate based on molecular dynamics. |
4.1.2. 4. Study on performance of asphalt mixture based on meso-mechanics. |
4.1.2. 5. Mesoscopic numerical simulation test of asphalt mixture. |
4.1.3. Multi-scale investigation on interface deterioration |
4.1.4. Summary and outlook |
4.2. Multi-scales and numerical methods in pavement engineering |
4.2.1. Asphalt pavement multi-scale system |
4.2.1. 1. Multi-scale definitions from literatures. |
4.2.1. 2. A newly-proposed Asphalt Pavement Multi-scale System. |
(1) Structure-scale |
(2) Mixture-scale |
(3) Material-scale |
4.2.1. 3. Research Ideas in the newly-proposed multi-scale sys- |
4.2.2. Multi-scale modeling methods |
4.2.2. 1. Density functional theory (DFT) calculations. |
4.2.2. 2. Molecular dynamics (MD) simulations. |
4.2.2. 3. Composite micromechanics methods. |
4.2.2. 4. Finite element method (FEM) simulations. |
4.2.2. 5. Discrete element method (DEM) simulations. |
4.2.3. Cross-scale modeling methods |
4.2.3. 1. Mechanism of cross-scale calculation. |
4.2.3. 2. Multi-scale FEM method. |
4.2.3. 3. FEM-DEM coupling method. |
4.2.3. 4. NMM family methods. |
4.2.4. Summary and outlook |
4.3. Pavement mechanics and analysis |
4.3.1. Constructive methods to pavement response analysis |
4.3.1. 1. Viscoelastic constructive models. |
4.3.1. 2. Anisotropy and its characterization. |
4.3.1. 3. Mathematical methods to asphalt pavement response. |
4.3.2. Finite element modeling for analyses of pavement mechanics |
4.3.2. 1. Geometrical dimension of the FE models. |
4.3.2. 2. Constitutive models of pavement materials. |
4.3.2. 3. Variability of material property along with different directions. |
4.3.2. 4. Loading patterns of FE models. |
4.3.2. 5. Interaction between adjacent pavement layers. |
4.3.3. Pavement mechanics test and parameter inversion |
4.3.3. 1. Nondestructive pavement modulus test. |
4.3.3. 2. Pavement structural parameters inversion method. |
4.3.4. Summary and outlook |
5. Green and sustainable pavement |
5.1. Functional pavement |
5.1.1. Energy harvesting function |
5.1.1. 1. Piezoelectric pavement. |
5.1.1. 2. Thermoelectric pavement. |
5.1.1. 3. Solar pavement. |
5.1.2. Pavement sensing function |
5.1.2. 1. Contact sensing device. |
5.1.2.2.Lidar based sensing technology. |
5.1.2. 3. Perception technology based on image/video stream. |
5.1.2. 4. Temperature sensing. |
5.1.2. 5. Traffic detection based on ontology perception. |
5.1.2. 6. Structural health monitoring based on ontology perception. |
5.1.3. Road adaptation and adjustment function |
5.1.3. 1. Radiation reflective pavement.Urban heat island effect refers to an increased temperature in urban areas compared to its surrounding rural areas (Fig.68). |
5.1.3. 2. Catalytical degradation of vehicle exhaust gases on pavement surface. |
5.1.3. 3. Self-healing pavement. |
5.1.4. Summary and outlook |
5.2. Renewable and sustainable pavement materials |
5.2.1. Reclaimed asphalt pavement |
5.2.1. 1. Hot recycled mixture technology. |
5.2.1. 2. Warm recycled mix asphalt technology. |
5.2.1. 3. Cold recycled mixture technology. |
(1) Strength and performance of cold recycled mixture with asphalt emulsion |
(2) Variability analysis of asphalt emulsion |
(3) Future prospect of cold recycled mixture with asphalt emulsion |
5.2.2. Solid waste recycling in pavement |
5.2.2. 1. Construction and demolition waste. |
(1) Recycled concrete aggregate |
(2) Recycled mineral filler |
5.2.2. 2. Steel slag. |
5.2.2. 3. Waste tire rubber. |
5.2.3. Environment impact of pavement material |
5.2.3. 1. GHG emission and energy consumption of pavement material. |
(1) Estimation of GHG emission and energy consumption |
(2) Challenge and prospect of environment burden estimation |
5.2.3. 2. VOC emission of pavement material. |
(1) Characterization and sources of VOC emission |
(2) Health injury of VOC emission |
(3) Inhibition of VOC emission |
(4) Prospect of VOC emission study |
5.2.4. Summary and outlook |
6. Intelligent pavement |
6.1. Automated pavement defect detection using deep learning |
6.1.1. Automated data collection method |
6.1.1. 1. Digital camera. |
6.1.1.2.3D laser camera. |
6.1.1. 3. Structure from motion. |
6.1.2. Automated road surface distress detection |
6.1.2. 1. Image processing-based method. |
6.1.2. 2. Machine learning and deep learning-based methods. |
6.1.3. Pavement internal defect detection |
6.1.4. Summary and outlook |
6.2. Intelligent pavement construction and maintenance |
6.2.1. Intelligent pavement construction management |
6.2.1. 1. Standardized integration of BIM information resources. |
6.2.1. 2. Construction field capturing technologies. |
6.2.1. 3. Multi-source spatial data fusion. |
6.2.1. 4. Research on schedule management based on BIM. |
6.2.1. 5. Application of BIM information management system. |
6.2.2. Intelligent compaction technology for asphalt pavement |
6.2.2. 1. Weakened IntelliSense of ICT. |
6.2.2. 2. Poor adaptability of asphalt pavement compaction index. |
(1) The construction process of asphalt pavement is affected by many complex factors |
(2) Difficulty in model calculation caused by jumping vibration of vibrating drum |
(3) There are challenges to the numerical stability and computational efficiency of the theoretical model |
6.2.2. 3. Insufficient research on asphalt mixture in vibratory rolling. |
6.2.3. Intelligent pavement maintenance decision-making |
6.2.3. 1. Basic functional framework. |
6.2.3. 2. Expert experience-based methods. |
6.2.3. 3. Priority-based methods. |
6.2.3. 4. Mathematical programming-based methods. |
6.2.3. 5. New-gen machine learning-based methods. |
6.2.4. Summary and outlook |
(1) Pavement construction management |
(2) Pavement compaction technology |
(3) Pavement maintenance decision-making |
7. Conclusions |
Conflict of interest |
(6)The Present Research and Prospect of Chinese Geosciences History(论文提纲范文)
1 The History and Present Situation of the Research on the History of International Geological Science |
1.1 The change of the content of the study |
1.2 Organizations and research institutes |
1.3 Publications and authors |
2 The Present Situation and Progress of the Study of the Chinese Geological Science History |
2.1 A brief account of the development of the Chinese geological science history |
2.2 Research institutes and research groups |
2.3 The guiding ideology of the research on the history of geological science |
2.4 Major progress in recent years |
2.4.1 Promote interaction between Chinese geological science and social development in China |
2.4.2 A study on the history of geological disciplines of China |
2.4.3 A study of geological characters |
Kwong Yung Kong(1863-1965) |
Woo Yang Tsang(1861-1939) |
Gu Lang(1880-1939) |
Lu Xun(1881-1936) |
Wang Chongyou(1879-1985) |
Zhang Hongzhao(1877-1951) |
Ding Wenjiang(1887-1936) |
Weng Wenhao(1889-1971) |
Li Siguang(1889-1971) |
R.Pumpelly(1837-1923) |
Richthofen,Ferdinand von(1833-1905) |
Amadeus Willian Grabau(1870-1946) |
Johann Gunnay Andersson(1874-1960) |
Prerre Teilhaya de Chardin(1881-1955) |
2.4.4 The study of history of ancient geological thoughts |
2.4.5 The study of the geological cause |
2.4.6 Research of the history of the communication of Chinese and foreign geological science |
3 Development Prospect |
4 Conclusion |
(7)Phanerozoic Paleomagnetism Characteristics of the Qomolangma Area in Tibet(论文提纲范文)
1 Introduction |
2 Geological Setting |
3 Analytical Methods |
3.1 Field sampling |
3.2 Analytical methods |
4 Magnetic Properties |
4.1 Remanent magnetization intensity |
4.2 Remanent magnetization direction |
4.3 Thermal demagnetization features |
5 Paleomagnetism Result and Its Structura Significance |
5.1 Paleomagnetism result |
5.2 Structural geology significance |
6 Conclusions |
Acknowledgements |
(8)西南科技大学校园网页新闻汉英翻译实践报告(论文提纲范文)
Abstract |
摘要 |
Chapter One Introduction |
1.1 Background of the Translation Project |
1.2 Analysis of the Source Text |
1.3 Structure of the Report |
Chapter Two Translation Processes |
2.1 Pre-translation Preparation |
2.2 Translation Procedures |
2.3 Proofreading after Translation |
Chapter Three Introduction to the Guiding Theory |
3.1 The Memetics Theory |
3.1.1 The Origin of the Memetics Theory |
3.1.2 The Development of the Memetics Theory |
3.2 The Guiding Role of Memetics Theory on Campus Web Page News Translation |
3.2.1 The Guiding Theory |
3.2.2 The Specific Process |
Chapter Four Case Study |
4.1 Translation choices under tense changes in translation |
4.1.1 The Omission |
4.1.2 The Explanatory |
4.1.3 The Syntactic Linearity |
4.2 Translation choices under grammatical features in translation |
4.2.1 The Division |
4.2.2 The Integration |
4.2.3 The Syntactic Reverse |
4.3 Translation choices under cultural communication in translation |
Chapter Five Quality Evaluation of Translations |
5.1 Self-evaluation |
5.2 Client-evaluation |
5.3 Commissioner-evaluation |
Chapter Six Conclusion |
6.1 Conclusion to the translation process |
6.1.1 Experiences accumulated in task |
6.1.2 Deficiencies in the translation process |
6.2 Suggestions for translating campus news |
Acknowledgement |
Bibliography |
Appendix A The Source Text and the Target Text |
Appendix B Certificate of Translation Practice |
Appendix C Glossary of terms |
Appendix D Translation Aids Website |
(9)Status of Stratigraphy Research in China(论文提纲范文)
1 Overview of International Stratigraphic Research |
2 Research Status of Stratigraphy in China |
2.1 Ten GSSPs erected in China |
2.2 Standards for stratigraphic division and correlation established in China |
2.3 Great achievements in special research on stratigraphy |
2.4 Abundant data for stratigraphic research acquired in national land and resources survey projects |
3 Future Development of Stratigraphy in China |
3.1 To improve the standard of regional stratigraphic division and correlation |
3.2 To establish the contrasting relationship between regional stratigraphic units and GSSPs |
3.3 To strengthen the study of the Precambrian time scale |
3.4 To strengthen the study of terrestrial basins |
3.5 To further supply and improve the Stratigraphic Chart of China |
3.6 To promote the study of stratigraphy in orogenic belts |
3.7 To protect the typical stratigraphic sections |
3.8 To reinforce the applied study of stratigraphy in the fields of oil and gas,solid minerals,etc. |
4 Conclusions |
(10)白云鄂博超大型稀土—铌—铁矿床的成矿时代及成因探析——兼论P—T之交生物群灭绝事件和“阿蒙兴造山运动”(论文提纲范文)
1 样品采集 |
2 年代学分析 |
3 成矿模式 |
3.1 动力源 |
3.2 岩浆源 |
3.3 成矿物质源 |
3.4 碰撞后花岗岩的定位 |
3.5 成矿作用 |
4 关于新成矿模式的几个关键要素 |
4.1 成矿年龄 |
4.2 成矿母岩 |
4.3 成矿机制 |
4.3.1 稀土—铌—钍矿 |
4.3.2 铁矿 |
4.3.3 脉状铌—稀土矿 |
5 两个相关的重大问题 |
5.1 P—T之交生物群灭绝事件的原因 |
5.2“阿蒙兴造山运动”术语的建议 |
6 结论 |
四、CHENGDU INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文参考文献)
- [1]俄罗斯城市可持续发展及其对中国城市的启示研究[D]. Lisaia Daria(达丽娅). 华南理工大学, 2019(01)
- [2]低温热液矿床地质与地球化学研究 ——以中国贵州天柱金矿和尼日利亚Mika铀矿为例[D]. Hin-yuen Tsang(曾献源). 中国科学技术大学, 2020(01)
- [3]城市地下空间资源综合利用实践——以成都市地质环境图集(2017)数据集为例[J]. 王东辉,倪化勇,李鹏岳,郝明. 中国地质, 2019(S2)
- [4]New innovations in pavement materials and engineering:A review on pavement engineering research 2021[J]. JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu. Journal of Traffic and Transportation Engineering(English Edition), 2021
- [5]Characteristics and Natural Gas Origin of Middle-Late Triassic Marine Source Rocks of the Western Sichuan Depression, SW China[J]. SUN Tengjiao,LUO Xiaoping,QING Hairuo,KOU Xueling,SHENG Zhongming,XU Guosheng,ZUO Yinhui. Acta Geologica Sinica(English Edition), 2020(02)
- [6]The Present Research and Prospect of Chinese Geosciences History[J]. CHEN Baoguo,ZHANG Jiuchen,YANG Mengmeng. Acta Geologica Sinica(English Edition), 2016(04)
- [7]Phanerozoic Paleomagnetism Characteristics of the Qomolangma Area in Tibet[J]. ZOU Guangfu,PAN Zhongxi,ZHUANG Zhonghai,ZHU Tongxing,LI Jianzhong,FENG Xintao. Acta Geologica Sinica(English Edition), 2013(02)
- [8]西南科技大学校园网页新闻汉英翻译实践报告[D]. 贺少伟. 西南科技大学, 2021(09)
- [9]Status of Stratigraphy Research in China[J]. YAO Jianxin,BO Jingfang,HOU Hongfei,WANG Zejiu,MA Xiulan,LIU Fengshan,HU Guangxiao,JI Zhansheng,WU Guichun,WU Zhenjie,LI Suping,GUO Caiqing,LI Ya. Acta Geologica Sinica(English Edition), 2016(04)
- [10]白云鄂博超大型稀土—铌—铁矿床的成矿时代及成因探析——兼论P—T之交生物群灭绝事件和“阿蒙兴造山运动”[J]. 汪相. 地质论评, 2018(02)