矿产研究所——研究成果

矿产研究所——研究成果

一、INSTITUTE OF MINERAL DEPOSITS——ACHIEVEMENTS OF RESEARCH(论文文献综述)

赵泽霖,李俊建,张彤,倪振平,彭翼,宋立军[1](2022)在《华北地区稀土矿床特征及找矿方向》文中研究指明在系统收集华北地区稀土矿床资料基础上,分析了华北地区稀土资源现状及稀土矿床的时间、空间分布规律。分析认为,华北地区稀土矿床成矿类型主要包括沉积变质型、火成碳酸岩浆型、岩浆热液型、伟晶岩型和离子吸附型。根据华北地区稀土矿床构造位置及控矿特征,认为华北地区古老变质基底、太古宙—古元古代陆块边缘裂谷带、中元古代陆缘裂谷带、燕山期滨西太平洋活动陆缘均是稀土矿床成矿的有利地球动力学背景。区域深大断裂、地槽发育初期的火山—沉积事件及碱性正长岩和碱性花岗岩类岩浆活动,是寻找各类稀土矿床的有利构造—沉积—岩浆条件,降雨量高、冲积平原、棕壤—褐土分布区则提供良好的稀土元素地球化学背景。

GROVESDI,张良,GROVESIM,SENERAK[2](2022)在《锂辉石:巨型花岗伟晶岩锂-铯-钽矿床中关键含锂矿物(英文)》文中提出寻找传统化石燃料的替代能源已成为全球性议题。受动力电池消费的拉动,锂资源需求急剧上升,伟晶岩型锂矿勘查热度持续攀升。虽然众多伟晶岩型锂矿地质特征尚不清晰,已有证据表明锂辉石是大多数大型-巨型伟晶岩型锂矿床的主要含锂矿物。与许多近直立的伟晶岩脉群不同,世界范围内大多数太古代伟晶岩矿脉往往呈近水平或缓倾斜在角闪岩相围岩中产出,它们往往具有复杂的三维形态并发育明显的矿物和地球化学分带。这些太古代伟晶岩脉通常形成于挤压或压剪构造体制下同变质环境中,成岩期最小主应力(σ3)近竖直。因此,伟晶岩常常侵位于近水平的构造局部引张区而形成复杂的几何学形态。压性的构造环境为富锂熔体多次脉动式注入和富含挥发分熔体垂向结晶分异提供了充足的时间;锂辉石在中高温压条件下结晶成为缓倾富锂带中最为常见的含锂矿物。

Changzhou DENG,Jiawei ZHANG,Ruizhong HU,Kai LUO,Yanan ZHU,Runsheng YIN[3](2022)在《Mercury isotope constraints on the genesis of late Mesozoic Sb deposits in South China》文中指出The late Mesozoic antimony (Sb) mineralization belt in South China hosts a large portion of the world’s Sb reserves.However,the source and mineralization processes of these Sb deposits remain controversial.Here,we measured mercury (Hg) concentrations and isotopic compositions of stibnite in the Banpo Sb-only and Woxi Sbpolymetallic ore deposits,as well as associated rocks in the Yangtze Block in order to constrain the metal sources and ore formation processes in the South China Sb mineralization belt.Stibnite samples from both deposits exhibit significant enrichment in Hg (4.23–50.6 ppm) and have higher δ202Hg values (-0.47‰to 2.03‰) than the studied Precambrian basement rocks (-1.42‰to 0.59‰),Paleozoic sedimentary rocks (-2.40‰to-0.32‰),and other natural Hg reserves (e.g.,marine and continental systems).This indicates that significant mass-dependent fractionation of Hg isotopes occurred during hydrothermal processes.Negative to slightly positive △199Hg values of-0.17‰to 0.02‰were obtained for stibnite from the studied deposits,similar to values for the Precambrian basement rocks,but different from those of the Paleozoic sedimentary rocks and data previously reported for mantle materials.This suggests that Precambrian basement rocks were the source of Hg and associated metals.Our data and the tectonic evolution of South China indicate that late Mesozoic asthenospheric upwelling,in response to the Paleo-Pacific oceanic slab foundering,generated heat that drove the circulation of fluids in the basement and crustal basinal rocks.These fluids leached Sb,Hg,and other metals from the Precambrian basement rocks and formed the world-class Sb mineralization belt in South China.

Ming-chun Song,Zheng-jiang Ding,Jun-jin Zhang,Ying-xin Song,Jun-wei Bo,Yu-qun Wang,Hong-bo Liu,Shi-yong Li,Jie Li,Rui-xiang Li,Bin Wang,Xiang-dong Liu,Liang-liang Zhang,Lei-lei Dong,Jian Li,Chun-yan He[4](2021)在《Geology and mineralization of the Sanshandao supergiant gold deposit(1200 t) in the Jiaodong Peninsula, China: A review》文中指出The Jiaodong Peninsula in Shandong Province, China is the world’s third-largest gold metallogenic area,with cumulative proven gold resources exceeding 5000 t. Over the past few years, breakthroughs have been made in deep prospecting at a depth of 500-2000 m, particularly in the Sanshandao area where a huge deep gold orebody was identified. Based on previous studies and the latest prospecting progress achieved by the project team of this study, the following results are summarized.(1) 3D geological modeling results based on deep drilling core data reveal that the Sanshandao gold orefield, which was previously considered to consist of several independent deposits, is a supergiant deposit with gold resources of more than 1200 t(including 470 t under the sea area). The length of the major orebody is nearly 8 km, with a greatest depth of 2312 m below sea level and a maximum length of more than 3 km along their dip direction.(2) Thick gold orebodies in the Sanshandao gold deposit mainly occur in the specific sections of the ore-controlling fault where the fault plane changes from steeply to gently inclined,forming a stepped metallogenic model from shallow to deep level. The reason for this strong structural control on mineralization forms is that when ore-forming fluids migrated along faults, the pressure of fluids greatly fluctuated in fault sections where the fault dip angle changed. Since the solubility of gold in the ore-forming fluid is sensitive to fluid pressure, these sections along the fault plane serve as the target areas for deep prospecting.(3) Thermal uplifting-extensional structures provide thermodynamic conditions, migration pathways, and deposition spaces for gold mineralization. Meanwhile, the changes in mantle properties induced the transformation of the geochemical properties of the lower crust and magmatic rocks. This further led to the reactivation of ore-forming elements, which provided rich materials for gold mineralization.(4) It can be concluded from previous research results that the gold mineralization in the Jiaodong gold deposits occurred at about 120 Ma, which was superimposed by nonferrous metals mineralization at 118-111 Ma. The fluids were dominated by primary mantle water or magmatic water. Metamorphic water occurred in the early stage of the gold mineralization, while the fluid composition was dominated by meteoric water in the late stage. The S, Pb, and Sr isotopic compositions of the ores are similar to those of ore-hosting rocks, indicating that the ore-forming materials mainly derive from crustal materials, with the minor addition of mantle-derived materials. The gold deposits in the Jiaodong Peninsula were formed in an extensional tectonic environment during the transformation of the physical and chemical properties of the lithospheric mantle, which is different from typical orogenic gold deposits. Thus, it is proposed that they are named "Jiaodong-type" gold deposits.

JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu[5](2021)在《New innovations in pavement materials and engineering:A review on pavement engineering research 2021》文中研究指明Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges. In the past 10 years, the pavement infrastructure strongly supports the rapid development of the global social economy. New theories, new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem. Because of actual coupled behaviors of traffic and environmental conditions, predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis. In order to summarize the current and determine the future research of pavement engineering, Journal of Traffic and Transportation Engineering(English Edition) has launched a review paper on the topic of "New innovations in pavement materials and engineering: A review on pavement engineering research 2021". Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering, this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world. The content includes asphalt binder performance and modeling, mixture performance and modeling of pavement materials,multi-scale mechanics, green and sustainable pavement, and intelligent pavement.Overall, this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.

李鹏,蔡美峰[6](2021)在《深部金属矿产资源开发面临的挑战及新见解(英文)》文中认为长期持续的大规模开采使浅部金属矿产资源日益枯竭,深部开采已成为必然。介绍了当前全球金属矿产资源深部开采现状,系统梳理深部开采面临的一系列工程挑战,重点探讨在岩爆预测与防控、深井降温制冷技术、围岩支护技术、深井提升技术及一些非传统深部开采技术等关键工程技术方面取得的一些进展和未来创新重点。同时,对深部开采技术发展战略提出一些新的见解。这些前瞻性关键创新技术的集成,将形成金属矿深部开采创新技术体系的整体框架。该技术体系将有助于实现深部金属矿产资源的安全、高效、绿色开采,保障金属矿业的可持续发展。

刘建坡,司英涛,魏登铖,师宏旭,王人[7](2021)在《中国地下金属矿山微震监测技术应用进展及展望(英文)》文中指出微震监测技术已经成为我国地下金属矿山岩体安全风险管理的重要技术手段。我国金属矿具有构造应力大、矿体形态不规则、矿体赋存条件多样、生产工序复杂的特点,相对于国外矿山及其他地下工程领域,微震监测技术在我国地下金属矿山的应用具有多样性。本文系统总结了我国地下金属矿山微震监测应用现状、应用领域及取得的相关成果,覆盖地压灾害监测与安全风险评估、回采参数优化、岩体破裂机制、采空区稳定性监测、断层滑动风险评估、矿山救援人员定位、民采盗采监测及水害造成的岩体稳定性监测等方面。此外,结合我国金属矿山开采领域信息化、无人化、智能化的发展需求,提出了我国微震监测技术在信号智能识别及精确定位算法、设备自主研发、与其他开采扰动岩体响应信息协同分析和地压灾害风险评估应用等方面的信息化、智能化发展方向。

蒋少涌,王春龙,张璐,袁峰,苏慧敏,张浩翔,刘涛[8](2021)在《伟晶岩型锂矿中矿物原位微区元素和同位素示踪与定年研究进展》文中认为锂是重要的战略性关键金属,伟晶岩型锂矿是锂资源的主要来源之一。伟晶岩的成因及锂等关键金属在花岗质岩浆-热液演化过程中是如何富集成矿的,是人们十分关注的重要科学问题。多种方法可对伟晶岩的成岩成矿年龄进行限定,除锆石外,其他副矿物和矿石矿物如磷灰石、铌铁矿族矿物、锡石等的原位微区U-Pb定年己得到广泛应用,但需根据定年矿物的共生关系、结晶学及矿物化学特征进行系统研究,合理解释所获年龄的地质意义;伟晶岩型锂矿的成岩成矿一般具有同时性,个别存在多期成矿。伟晶岩的地球化学类型主要有LCT型(富集Li-Cs-Ta)和NYF型(富集Nb-Y-F)及它们的混合类型;成因有"母体花岗岩浆的结晶分异"和"源岩直接部分熔融"两种主要模型;多种矿物学和地球化学方法可用于区分这两种成因。伟晶岩型锂矿床的成矿机制研究包括成矿元素在源区的初始富集,成矿元素在岩浆过程中的富集和沉淀,以及在岩浆-热液过程中的行为和富集作用。伟晶岩中贯通性矿物和矿石矿物的原位微区分析是研究锂等关键金属成矿过程的重要方法。

杨岳清,王登红,孙艳,赵芝,刘善宝,王成辉,郭维明[9](2021)在《矿产资源研究所“三稀”矿产研究与找矿实践70年历程——回顾与启示》文中认为稀有、稀土和稀散元素(三稀)目前已成为世界各国经济发展中的关键矿产。中华人民共和国成立以来,中国地质科学院矿产资源研究所作为中国矿床地质工作者大家庭中的成员,一直致力于三稀资源的研究和探索。一代又一代人,为国家做出了贡献。其中,对世界闻名的新疆可可托海3号脉和内蒙古白云鄂博稀有稀土矿床较早就投入了工作,他们为此付出了毕生精力;在湖南香花岭含铍条纹岩中发现了中国第一个新矿物——香花石;1970年后,在内蒙古巴尔哲、福建南平和四川大水沟稀土、稀有和分散元素等矿床发现后,也开展了深入系统的研究,特别是在中国首次发现风化壳离子吸附型稀土矿床后,对稀土元素赋存状态的确定和分布规律做出了重要贡献。进入21世纪,三稀资源被确定为关键矿产后,矿产资源研究所进一步加强了这方面的工作,不但取得了理论上的创新,而且发现了一批新的三稀矿产地,尤其是在川西甲基卡和可尔因等地投入了大量的地质、地球物理、地球化学、遥感、钻探等工作,其中钻探工作量就达11818.96 m,为把川西花岗伟晶岩型稀有金属矿集区建设成为国家大型锂矿基地作出了新贡献。对于卤水型锂及其他稀有金属矿产资源的调查研究和开发利用也一直是矿产资源研究所的重点,几十年来从未间断,在柴达木盆地西部、四川盆地东北部及江汉盆地等地近年来不断取得新进展。

晁红丽,任建德,吕际根,谢朝永,李莹琪,李瑞强,焦静华[10](2020)在《河南省三川幅1:50000地质图数据库》文中研究指明河南省三川幅(I49E013014)1:50000地质图数据库的数据源采用实测和数字填图方法获得,野外数据采集过程中实施构造–岩性填图,注重特殊地质体及非正式填图单位的表达,共采集薄片66件,全岩岩石化学样品180件,同位素测年样品19件,化学分析样品21件。图幅主要成果有:在陶湾群层型剖面上发现多门类、时限短的微体化石,确定陶湾群为奥陶纪;在陶湾群发现碱性火山岩夹层,指示奥陶纪在华北板块南缘发育伸展性盆地;确定宽坪岩群四岔口岩组、谢湾岩组内的绿片岩为板内火山岩,指示宽坪岩群主体形成于伸展性盆地;在图幅区南部填绘出志留纪碱长花岗斑岩岩墙群,限定了秦岭洋关闭的时代不晚于志留纪;将晚中生代侵入岩划分为5个侵入期次;厘定了栾川断裂带存在早古生代、早中生代、晚中生代3期活动;在区内新发现震旦纪冰积物。该数据库的数据内容分为基本要素类、综合要素类和对象类,数据量约为63.5 MB,充分反映了本图幅区的地质矿产成果资料,对该区矿产勘查与开发、地质灾害防治、秦岭造山带研究与地质科普等提供基础数据支撑。

二、INSTITUTE OF MINERAL DEPOSITS——ACHIEVEMENTS OF RESEARCH(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、INSTITUTE OF MINERAL DEPOSITS——ACHIEVEMENTS OF RESEARCH(论文提纲范文)

(1)华北地区稀土矿床特征及找矿方向(论文提纲范文)

0 引言
1 华北稀土资源现状
2 华北稀土矿成因类型
    2.1 沉积变质型稀土矿
    2.2 火成碳酸岩型稀土矿
    2.3 碱性岩浆岩型稀土矿
    2.4 伟晶岩型稀土矿
    2.5 离子吸附型稀土矿
3 成矿规律
    3.1 时间分布特征
    3.2 空间分布特征
4 控矿因素与找矿方向
    4.1 地球动力学背景与稀土金属成矿
    4.2 区域性深大断裂与稀土金属成矿
    4.3 火山—沉积作用与稀土金属成矿
    4.4 岩浆及期后热液与稀土金属成矿
    4.5 元素地球化学背景与稀土金属成矿
5 结语

(2)锂辉石:巨型花岗伟晶岩锂-铯-钽矿床中关键含锂矿物(英文)(论文提纲范文)

1 Introduction
2 Characteristics of large lithium pegmatites with economic ore grades
3 Syn-tectonic and syn-metamorphic timing of emplacement
4 Significance to formation of world-class high-grade lithium deposits
5 Spodumene as the key economic lithium mineral
6 Conclusions

(3)Mercury isotope constraints on the genesis of late Mesozoic Sb deposits in South China(论文提纲范文)

1. Introduction
2. Geological setting
    2.1 Regional geology
    2.2 Ore deposit geology
        2.2.1 Banpo Sb deposit
        2.2.2 Woxi Sb-Au-W deposit
3. Sampling and analytical methods
4. Results
    4.1 Stibnite
    4.2 Whole-rock samples
5. Discussion
    5.1 Enrichment of heavy Hg isotopes in the South China Sb mineralization belt
    5.2 Mercury isotopic MIF constraints on the source of the South China Sb mineralization belt
    5.3 Model for the formation of the Sb deposits in South China
6. Conclusions

(5)New innovations in pavement materials and engineering:A review on pavement engineering research 2021(论文提纲范文)

1. Introduction
    (1) With the society development pavement engineering facing unprecedented opportunities and challenges
    (2) With the modern education development pavement engineering facing unprecedented accumulation of scientific manpower and literature
2. Asphalt binder performance and modeling
    2.1. Binder damage,healing and aging behaviors
        2.1.1. Binder healing characterization and performance
        2.1.1. 1. Characterizing approaches for binder healing behavior.
        2.1.1. 2. Various factors influencing binder healing performance.
        2.1.2. Asphalt aging:mechanism,evaluation and control strategy
        2.1.2. 1. Phenomena and mechanisms of asphalt aging.
        2.1.2. 2. Simulation methods of asphalt aging.
        2.1.2. 3. Characterizing approaches for asphalt aging behavior.
        2.1.2. 4. Anti-aging additives used for controlling asphalt aging.
        2.1.3. Damage in the characterization of binder cracking performance
        2.1.3. 1. Damage characterization based on rheological properties.
        2.1.3. 2. Damage characterization based on fracture properties.
        2.1.4. Summary and outlook
    2.2. Mechanism of asphalt modification
        2.2.1. Development of polymer modified asphalt
        2.2.1. 1. Strength formation of modified asphalt.
        2.2.1. 2. Modification mechanism by molecular dynamics simulation.
        2.2.1. 3. The relationship between microstructure and properties of asphalt.
        2.2.2. Application of the MD simulation
        2.2.2. 1. Molecular model of asphalt.
        2.2.2. 2. Molecular configuration of asphalt.
        2.2.2. 3. Self-healing behaviour.
        2.2.2. 4. Aging mechanism.
        2.2.2. 5. Adhesion mechanism.
        2.2.2. 6. Diffusion behaviour.
        2.2.3. Summary and outlook
    2.3. Modeling and application of crumb rubber modified asphalt
        2.3.1. Modeling and mechanism of rubberized asphalt
        2.3.1. 1. Rheology of bituminous binders.
        2.3.1. 2. Rheological property prediction of CRMA.
        2.3.2. Micromechanics-based modeling of rheological properties of CRMA
        2.3.2. 1. Composite system of CRMA based on homogenization theory.
        2.3.2. 2. Input parameters for micromechanical models of CRMA.
        2.3.2. 3. Analytical form of micromechanical models of CRMA.
        2.3.2. 4. Future recommendations for improving micro-mechanical prediction performance.
        2.3.3. Design and performance of rubberized asphalt
        2.3.3. 1. The interaction between rubber and asphalt fractions.
        2.3.3. 2. Engineering performance of rubberized asphalt.
        2.3.3. 3. Mixture design.
        2.3.3. 4. Warm mix rubberized asphalt.
        2.3.3. 5. Reclaiming potential of rubberized asphalt pavement.
        2.3.4. Economic and Environmental Effects
        2.3.5. Summary and outlook
3. Mixture performance and modeling of pavement materials
    3.1. The low temperature performance and freeze-thaw damage of asphalt mixture
        3.1.1. Low temperature performance of asphalt mixture
        3.1.1. 1. Low temperature cracking mechanisms.
        3.1.1. 2. Experimental methods to evaluate the low temperature performance of asphalt binders.
        3.1.1. 3. Experimental methods to evaluate the low temperature performance of asphalt mixtures.
        3.1.1. 4. Low temperature behavior of asphalt materials.
        3.1.1.5.Effect factors of low temperature performance of asphalt mixture.
        3.1.1. 6. Improvement of low temperature performance of asphalt mixture.
        3.1.2. Freeze-thaw damage of asphalt mixtures
        3.1.2. 1. F-T damage mechanisms.
        3.1.2. 2. Evaluation method of F-T damage.
        3.1.2. 3. F-T damage behavior of asphalt mixture.
        (1) Evolution of F-T damage of asphalt mixture
        (2) F-T damage evolution model of asphalt mixture
        (3) Distribution and development of asphalt mixture F-T damage
        3.1.2. 4. Effect factors of freeze thaw performance of asphalt mixture.
        3.1.2. 5. Improvement of freeze thaw resistance of asphalt mixture.
        3.1.3. Summary and outlook
    3.2. Long-life rigid pavement and concrete durability
        3.2.1. Long-life cement concrete pavement
        3.2.1. 1. Continuous reinforced concrete pavement.
        3.2.1. 2. Fiber reinforced concrete pavement.
        3.2.1. 3. Two-lift concrete pavement.
        3.2.2. Design,construction and performance of CRCP
        3.2.2. 1. CRCP distress and its mechanism.
        3.2.2. 2. The importance of crack pattern on CRCP performance.
        3.2.2. 3. Corrosion of longitudinal steel.
        3.2.2. 4. AC+CRCP composite pavement.
        3.2.2. 5. CRCP maintenance and rehabilitation.
        3.2.3. Durability of the cementitious materials in concrete pavement
        3.2.3. 1. Deterioration mechanism of sulfate attack and its in-fluence on concrete pavement.
        3.2.3. 2. Development of alkali-aggregate reaction in concrete pavement.
        3.2.3. 3. Influence of freeze-thaw cycles on concrete pavement.
        3.2.4. Summary and outlook
    3.3. Novel polymer pavement materials
        3.3.1. Designable PU material
        3.3.1. 1. PU binder.
        3.3.1.2.PU mixture.
        3.3.1. 3. Material genome design.
        3.3.2. Novel polymer bridge deck pavement material
        3.3.2. 1. Requirements for the bridge deck pavement material.
        3.3.2.2.Polyurethane bridge deck pavement material(PUBDPM).
        3.3.3. PU permeable pavement
        3.3.3. 1. Permeable pavement.
        3.3.3. 2. PU porous pavement materials.
        3.3.3. 3. Hydraulic properties of PU permeable pavement materials.
        3.3.3. 4. Mechanical properties of PU permeable pavement ma-terials.
        3.3.3. 5. Environmental advantages of PU permeable pavement materials.
        3.3.4. Polyurethane-based asphalt modifier
        3.3.4. 1. Chemical and genetic characteristics of bitumen and polyurethane-based modifier.
        3.3.4. 2. The performance and modification mechanism of polyurethane modified bitumen.
        3.3.4. 3. The performance of polyurethane modified asphalt mixture.
        3.3.4. 4. Environmental and economic assessment of poly-urethane modified asphalt.
        3.3.5. Summary and outlook
    3.4. Reinforcement materials for road base/subrgrade
        3.4.1. Flowable solidified fill
        3.4.1. 1. Material composition design.
        3.4.1. 2. Performance control.
        3.4.1. 3. Curing mechanism.
        3.4.1. 4. Construction applications.
        3.4.1.5.Environmental impact assessment.
        3.4.1. 6. Development prospects and challenges.
        3.4.2. Stabilization materials for problematic soil subgrades
        3.4.2.1.Stabilization materials for loess.
        3.4.2. 2. Stabilization materials for expansive soil.
        3.4.2. 3. Stabilization materials for saline soils.
        3.4.2. 4. Stabilization materials for soft soils.
        3.4.3. Geogrids in base course reinforcement
        3.4.3. 1. Assessment methods for evaluating geogrid reinforce-ment in flexible pavements.
        (1) Reinforced granular material
        (2) Reinforced granular base course
        3.4.3. 2. Summary.
        3.4.4. Summary and outlook
4. Multi-scale mechanics
    4.1. Interface
        4.1.1. Multi-scale evaluation method of interfacial interaction between asphalt binder and mineral aggregate
        4.1.1. 1. Molecular dynamics simulation of asphalt adsorption behavior on mineral aggregate surface.
        4.1.1. 2. Experimental study on absorption behavior of asphalt on aggregate surface.
        4.1.1. 3. Research on evaluation method of interaction between asphalt and mineral powder.
        (1) Rheological mechanical method
        (2) Microscopic test
        4.1.1. 4. Study on evaluation method of interaction between asphalt and aggregate.
        4.1.2. Multi-scale numerical simulation method considering interface effect
        4.1.2. 1. Multi-scale effect of interface.
        4.1.2. 2. Study on performance of asphalt mixture based on micro nano scale testing technology.
        4.1.2. 3. Study on the interface between asphalt and aggregate based on molecular dynamics.
        4.1.2. 4. Study on performance of asphalt mixture based on meso-mechanics.
        4.1.2. 5. Mesoscopic numerical simulation test of asphalt mixture.
        4.1.3. Multi-scale investigation on interface deterioration
        4.1.4. Summary and outlook
    4.2. Multi-scales and numerical methods in pavement engineering
        4.2.1. Asphalt pavement multi-scale system
        4.2.1. 1. Multi-scale definitions from literatures.
        4.2.1. 2. A newly-proposed Asphalt Pavement Multi-scale System.
        (1) Structure-scale
        (2) Mixture-scale
        (3) Material-scale
        4.2.1. 3. Research Ideas in the newly-proposed multi-scale sys-
        4.2.2. Multi-scale modeling methods
        4.2.2. 1. Density functional theory (DFT) calculations.
        4.2.2. 2. Molecular dynamics (MD) simulations.
        4.2.2. 3. Composite micromechanics methods.
        4.2.2. 4. Finite element method (FEM) simulations.
        4.2.2. 5. Discrete element method (DEM) simulations.
        4.2.3. Cross-scale modeling methods
        4.2.3. 1. Mechanism of cross-scale calculation.
        4.2.3. 2. Multi-scale FEM method.
        4.2.3. 3. FEM-DEM coupling method.
        4.2.3. 4. NMM family methods.
        4.2.4. Summary and outlook
    4.3. Pavement mechanics and analysis
        4.3.1. Constructive methods to pavement response analysis
        4.3.1. 1. Viscoelastic constructive models.
        4.3.1. 2. Anisotropy and its characterization.
        4.3.1. 3. Mathematical methods to asphalt pavement response.
        4.3.2. Finite element modeling for analyses of pavement mechanics
        4.3.2. 1. Geometrical dimension of the FE models.
        4.3.2. 2. Constitutive models of pavement materials.
        4.3.2. 3. Variability of material property along with different directions.
        4.3.2. 4. Loading patterns of FE models.
        4.3.2. 5. Interaction between adjacent pavement layers.
        4.3.3. Pavement mechanics test and parameter inversion
        4.3.3. 1. Nondestructive pavement modulus test.
        4.3.3. 2. Pavement structural parameters inversion method.
        4.3.4. Summary and outlook
5. Green and sustainable pavement
    5.1. Functional pavement
        5.1.1. Energy harvesting function
        5.1.1. 1. Piezoelectric pavement.
        5.1.1. 2. Thermoelectric pavement.
        5.1.1. 3. Solar pavement.
        5.1.2. Pavement sensing function
        5.1.2. 1. Contact sensing device.
        5.1.2.2.Lidar based sensing technology.
        5.1.2. 3. Perception technology based on image/video stream.
        5.1.2. 4. Temperature sensing.
        5.1.2. 5. Traffic detection based on ontology perception.
        5.1.2. 6. Structural health monitoring based on ontology perception.
        5.1.3. Road adaptation and adjustment function
        5.1.3. 1. Radiation reflective pavement.Urban heat island effect refers to an increased temperature in urban areas compared to its surrounding rural areas (Fig.68).
        5.1.3. 2. Catalytical degradation of vehicle exhaust gases on pavement surface.
        5.1.3. 3. Self-healing pavement.
        5.1.4. Summary and outlook
    5.2. Renewable and sustainable pavement materials
        5.2.1. Reclaimed asphalt pavement
        5.2.1. 1. Hot recycled mixture technology.
        5.2.1. 2. Warm recycled mix asphalt technology.
        5.2.1. 3. Cold recycled mixture technology.
        (1) Strength and performance of cold recycled mixture with asphalt emulsion
        (2) Variability analysis of asphalt emulsion
        (3) Future prospect of cold recycled mixture with asphalt emulsion
        5.2.2. Solid waste recycling in pavement
        5.2.2. 1. Construction and demolition waste.
        (1) Recycled concrete aggregate
        (2) Recycled mineral filler
        5.2.2. 2. Steel slag.
        5.2.2. 3. Waste tire rubber.
        5.2.3. Environment impact of pavement material
        5.2.3. 1. GHG emission and energy consumption of pavement material.
        (1) Estimation of GHG emission and energy consumption
        (2) Challenge and prospect of environment burden estimation
        5.2.3. 2. VOC emission of pavement material.
        (1) Characterization and sources of VOC emission
        (2) Health injury of VOC emission
        (3) Inhibition of VOC emission
        (4) Prospect of VOC emission study
        5.2.4. Summary and outlook
6. Intelligent pavement
    6.1. Automated pavement defect detection using deep learning
        6.1.1. Automated data collection method
        6.1.1. 1. Digital camera.
        6.1.1.2.3D laser camera.
        6.1.1. 3. Structure from motion.
        6.1.2. Automated road surface distress detection
        6.1.2. 1. Image processing-based method.
        6.1.2. 2. Machine learning and deep learning-based methods.
        6.1.3. Pavement internal defect detection
        6.1.4. Summary and outlook
    6.2. Intelligent pavement construction and maintenance
        6.2.1. Intelligent pavement construction management
        6.2.1. 1. Standardized integration of BIM information resources.
        6.2.1. 2. Construction field capturing technologies.
        6.2.1. 3. Multi-source spatial data fusion.
        6.2.1. 4. Research on schedule management based on BIM.
        6.2.1. 5. Application of BIM information management system.
        6.2.2. Intelligent compaction technology for asphalt pavement
        6.2.2. 1. Weakened IntelliSense of ICT.
        6.2.2. 2. Poor adaptability of asphalt pavement compaction index.
        (1) The construction process of asphalt pavement is affected by many complex factors
        (2) Difficulty in model calculation caused by jumping vibration of vibrating drum
        (3) There are challenges to the numerical stability and computational efficiency of the theoretical model
        6.2.2. 3. Insufficient research on asphalt mixture in vibratory rolling.
        6.2.3. Intelligent pavement maintenance decision-making
        6.2.3. 1. Basic functional framework.
        6.2.3. 2. Expert experience-based methods.
        6.2.3. 3. Priority-based methods.
        6.2.3. 4. Mathematical programming-based methods.
        6.2.3. 5. New-gen machine learning-based methods.
        6.2.4. Summary and outlook
        (1) Pavement construction management
        (2) Pavement compaction technology
        (3) Pavement maintenance decision-making
7. Conclusions
Conflict of interest

(7)中国地下金属矿山微震监测技术应用进展及展望(英文)(论文提纲范文)

1 Introduction
2 Principle of microseismic monitoring technology
    2.1 Monitoring principle
    2.2 Sensor layout
    2.3 Microseismic parameters
3 Safety monitoring for mining process in underground metal mines
    3.1 Microseismic activities induced by mining disturbance
    3.2 Risk assessment and warning of rock mass hazards
    3.3 Mining parameters optimization
    3.4 Seismic source mechanism
4 Application of microseismic monitoring for other typical hazards
    4.1 Microseismic monitoring for goaf stability and rock strata movement
    4.2 Microseismic activities induced by fault slip
    4.3 Monitoring for hazards induced by groundwater
    4.4 Personnel location and rescue
    4.5 Monitoring for illegal mining
5 Prospect of microseismic technology in underground metal mines in China
    5.1 Intelligent analysis of microseismic data
    5.2 Research and development of microseismic equipment
    5.3 Integrated monitoring and analysis for multi-source information during rock massfracturing
    5.4 Intelligent risk assessment and warning for ground pressure hazards
6 Conclusions
Contributors
Conflict of interest

(8)伟晶岩型锂矿中矿物原位微区元素和同位素示踪与定年研究进展(论文提纲范文)

1 伟晶岩型锂矿成岩成矿年代的精确厘定
    1.1 适用的同位素定年方法
    1.2 成岩事件与成矿事件
    1.3 一期与多期成矿
2 成矿伟晶岩的物质来源与成岩方式
    2.1 两种不同类型的伟晶岩:LCT型和NYF型
    2.2 两种不同成因的伟晶岩:花岗质熔体结晶分异和源岩直接部分熔融
    2.3 可用于区分岩浆结晶分异和地壳深熔作用的地球化学方法
        (1)支持岩浆结晶分异成因的证据:
        (2)支持地壳深熔成因的证据:
3 伟晶岩型锂矿床的成矿机制
    3.1 成矿元素在源区的初始富集
    3.2 成矿元素在岩浆过程中的富集和沉淀机制
        3.2.1 岩浆结晶分异与多次熔体抽取过程
        3.2.2 岩浆中含锂矿物结晶的温度和压力
        3.2.3 伟晶岩结晶演化的CZR模型
        3.2.4 熔体成分控制作用
    3.3 成矿元素在岩浆-热液过程中的行为和富集作用:来自矿物学指示
        3.3.1 云母
        3.3.2 铌铁矿族矿物
        3.3.3 电气石
        3.3.4 绿柱石
        3.3.5 磷灰石
        3.3.6 石榴子石
        3.3.7 石英
        3.3.8 长石
4 结论

(9)矿产资源研究所“三稀”矿产研究与找矿实践70年历程——回顾与启示(论文提纲范文)

1“三稀”研究起步阶段
    1.1 典型矿床
        (1)新疆可可托海稀有金属矿床
        (2)内蒙古白云鄂博铌-铁-稀土矿床
    1.2 香花石和含铍条纹岩的发现
    1.3 其他地区的稀有、稀土和稀散元素工作
        (1)广东首次发现花岗岩型稀有元素矿床
        (2)江西发现多种稀有金属矿化花岗岩
2“三稀”研究全面发展阶段
    2.1 稀有金属矿产领域的重大进展
        2.1.1 对新疆3号脉及阿勒泰稀有金属成矿带有了全新的认识
        2.1.2 对福建南平富钽矿床的深入研究,显着提升了花岗伟晶岩型稀有金属成矿理论水平
        2.1.3 对香花岭含铍条纹岩的成岩成矿机制有了更清晰的认识,发现了特殊的431脉
        2.1.4 青藏高原盐湖中锂,铯等稀有金属的探寻获得重大进展
    2.2 稀土矿产领域的突破性进展
        2.2.1 对白云鄂博矿床的成因,首次提出与碳酸岩有成因联系的观点
        2.2.2 对内蒙古巴尔哲碱性花岗岩型Y-Be-Nb-Zr矿
        2.2.3 确定了川西牦牛坪等稀土矿床和在成因上有联系的碱性岩-碳酸岩是喜马拉雅期产物
        2.2.4 江西足洞离子吸附型稀土矿床的发现及其成矿机理的揭示,使稀土资源得到广泛应用,极大的提高了中国在国际市场上的地位
    2.3 首次发现具工业意义的独立稀散元素矿床
    2.4 从矿床成矿系列角度深化“三稀”成矿规律认识
3 21世纪新阶段
    3.1 地质找矿成果显着
    3.2 重点矿床的研究水平又上新台阶
        3.2.1 对川西甲基卡、可尔因伟晶岩矿田成矿作用有新认识
        3.2.2 在幕阜山伟晶岩矿田,稀有金属找矿取得重大突破,成矿作用认识也上一新台阶
        3.2.3 风化壳离子吸附型稀土矿床成矿理论研究更上一层楼
    3.3 发现了新类型矿床
    3.4 深化总结了中国稀有、稀土矿床的成矿特征和成矿规律
        3.4.1 稀有金属矿床
        (1)锂矿
        (2)铍矿
        (3)铷铯资源
        (4)铌钽矿
        (5)锆(铪)矿
        3.4.2 稀土金属矿床
        3.4.3 稀散金属矿床
4结语
    (1)稀土矿产
    (2)稀有矿产
    (3)稀散矿产

四、INSTITUTE OF MINERAL DEPOSITS——ACHIEVEMENTS OF RESEARCH(论文参考文献)

  • [1]华北地区稀土矿床特征及找矿方向[J]. 赵泽霖,李俊建,张彤,倪振平,彭翼,宋立军. 物探与化探, 2022
  • [2]锂辉石:巨型花岗伟晶岩锂-铯-钽矿床中关键含锂矿物(英文)[J]. GROVESDI,张良,GROVESIM,SENERAK. 岩石学报, 2022
  • [3]Mercury isotope constraints on the genesis of late Mesozoic Sb deposits in South China[J]. Changzhou DENG,Jiawei ZHANG,Ruizhong HU,Kai LUO,Yanan ZHU,Runsheng YIN. Science China(Earth Sciences), 2022
  • [4]Geology and mineralization of the Sanshandao supergiant gold deposit(1200 t) in the Jiaodong Peninsula, China: A review[J]. Ming-chun Song,Zheng-jiang Ding,Jun-jin Zhang,Ying-xin Song,Jun-wei Bo,Yu-qun Wang,Hong-bo Liu,Shi-yong Li,Jie Li,Rui-xiang Li,Bin Wang,Xiang-dong Liu,Liang-liang Zhang,Lei-lei Dong,Jian Li,Chun-yan He. China Geology, 2021(04)
  • [5]New innovations in pavement materials and engineering:A review on pavement engineering research 2021[J]. JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu. Journal of Traffic and Transportation Engineering(English Edition), 2021
  • [6]深部金属矿产资源开发面临的挑战及新见解(英文)[J]. 李鹏,蔡美峰. Transactions of Nonferrous Metals Society of China, 2021(11)
  • [7]中国地下金属矿山微震监测技术应用进展及展望(英文)[J]. 刘建坡,司英涛,魏登铖,师宏旭,王人. Journal of Central South University, 2021(10)
  • [8]伟晶岩型锂矿中矿物原位微区元素和同位素示踪与定年研究进展[J]. 蒋少涌,王春龙,张璐,袁峰,苏慧敏,张浩翔,刘涛. 地质学报, 2021(10)
  • [9]矿产资源研究所“三稀”矿产研究与找矿实践70年历程——回顾与启示[J]. 杨岳清,王登红,孙艳,赵芝,刘善宝,王成辉,郭维明. 矿床地质, 2021(04)
  • [10]河南省三川幅1:50000地质图数据库[J]. 晁红丽,任建德,吕际根,谢朝永,李莹琪,李瑞强,焦静华. 中国地质, 2020(S1)

标签:;  

矿产研究所——研究成果
下载Doc文档

猜你喜欢