一、二阶线性微分方程的可积性及解法(论文文献综述)
赵临龙[1](2018)在《二阶线性微分方程不变量解法的新类型》文中认为二阶线性微分方程作为高阶线性微分方程的基本方程,其可解性关系到高阶线性微分方程的降阶.目前,较常规的解法是利用二阶线性微分方程的不变量关系式,给出其可积形式.现在二阶线性微分方程不变量的可积形式基础上,再给出二阶线性微分方程的可积新类型,并且从二阶线性微分方程的求解中,显示出其解法在微分方程中的优越性.
赵临龙[2](2019)在《一类二阶线性变系数微分方程解法的探讨》文中指出二阶线性变系数微分方程大量出现在工程科学中,尽管这类方程求精确解困难,但实际问题往往有需要求解.对于二阶微分方程A(x)y″+B(x)y′+C(x)y=f (x),根据判别式Δ=A(x)φ′(x)+A(x)φ2(x)+B(x)φ(x)+C(x),将该方程化成新形式.当Δ=0时,该方程化为可解的一阶方程;当Δ≠0时,该方程化为新的二阶线性变系数微分方程,再探求其解法.
姬小龙,高育晓,刘卓军[3](2008)在《二阶线性微分方程的乘子可积性》文中指出在偏微分方程Riemann解法和微分方程裂变思想的启发下,引入了微分方程乘子函数(解)和乘子解法的概念,系统地讨论了二阶线性微分方程的乘子可积性.得到了二阶线性微分方程乘子可积的条件以及Riceati方程可积的充分必要条件,并分别给出了二阶线性微分方程和Riccati方程在乘子解下的通积分.
许美珍[4](2011)在《常微分算子理论的发展》文中研究指明常微分算子理论是以量子力学为应用背景,综合常微分方程、泛函分析、算子代数及空间理论等理论、方法发展起来的一门系统的、内容广泛的数学分支.它是解决数学物理方程以及大量科学技术应用问题的重要数学工具.常微分算子理论所研究的主要内容包括:自共轭域、谱分析、亏指数及逆谱问题等.本文在查阅了大量的原始文献和有关研究文献的基础上,利用文献分析研究与文献比较研究的方法,从以下几个方面较系统地研究了常微分算子理论的发展历程.一、通过对Sturm和Liouville的工作及其它关于记载这些成果的史料进行分析与研究,从以下几个方面探寻了常微分算子理论的源流:(1)Sturm和Liouville成果的研究背景;(2)分析Sturm和Liouville的工作;(3) Sturm-Liouville理论的意义;(4) Sturm和Liouville工作的后续发展.二、通过对20世纪早期的一些关于二阶奇异边值问题的文献进行系统分析与考察,从以下几个方面论述了Weyl(1910), Dixon (1912) Stone (1932)和Titchmarsh (1940-1950)的工作对常微分算子理论发展的贡献.我们发现Weyl和Titchmarsh的成果基本上源于经典的实分析和复分析,而Stone的研究工作是Hilbert函数空间抽象理论中自共轭算子与线性常微分方程理论结合的产物.1.1910年,Weyl不仅开创了奇异S-L微分方程的研究,而且首次考虑了微分方程的分析特征.特别是一些新概念和新成果的提出,使S-L理论在20世纪的发展步入了一个新的发展阶段,也为后来的von Neumann和Stone在微分算子理论方面的研究以及为Titchmarsh应用复变换技巧提供了思想渊源.2.1912年,Dixon第一次将系数函数p,q,w的连续性条件由Lebesgue可积条件来代替,此Lebesgue可积性条件也是现代微分算子研究中对系数要求最低的条件.3.1932年,Stone首次在Hilbert函数空问上讨论具有Lebesgue可积系数的二阶微分算子的一般理论.4. Titchmarsh应用单个复变量函数的展开理论研究了正则情形和奇异情形的S-L边值问题.三、通过分析与研究关于常微分算子自伴域描述的已有成果,系统地总结了常型和奇异常微分算子自伴域描述的发展脉络.1.高阶常型微分算子自伴域的描述问题于20世纪50年代彻底解决,1954年Coddington利用矩阵理论和共轭边条件的有关结论,给出了以边条件形式表示的自伴域,这是一个直接的描述结果;同年,Naimark给出了拟微分算子自伴域的描述;1962年,Everitt用微分方程的线性独立解来描述算子的自伴域,在系数足够光滑的条件下,这三个结论是等价的.2.通过分析奇异微分算子自伴域描述的一些重要成果,比如,Weyl-Titchmarsh自伴域,Everitt自伴域,曹之江-自伴域和孙炯-自伴域,论述了曹之江-自伴域的重要性,它是一种直接而完全的自伴域描述,使得奇异微分算子自伴域描述的问题彻底解决.四、通过分析和考察大量的关于谱分析方面的文章,主要以离散谱和本质谱的判别为核心梳理了实自伴微分算子,加权的奇异微分算子及J-自伴微分算子离散谱的判别工作和几类特定微分算子本质谱的判别结果.五、通过挖掘和考察大量的关于亏指数方面的第一手文献,系统地论述了奇异实对称微分算子和复对称微分算子在二阶和高阶情形下极限点型和圆型的判别工作
赵临龙[5](1999)在《常微分方程课程教学内容和体系的研究与实践》文中研究表明在常微分方程课程教学内容和体系的研究与实践中,对常微分方程的可积理论、常微分方程的重要思想方法及常微分方程与中学数学的关联作了深入讨论,进而构思出突出师范特色并反映现代理论成果的常微分方程课程体系框架.
刘汉泽[6](2009)在《基于李对称分析的偏微分方程精确解的研究》文中提出偏微分方程又称数学物理方程,它来源于物理学、力学等自然科学及工程技术中所提出并建立的数学模型。早期的偏微分方程有根据牛顿引力理论推导出的描述引力势的拉普拉斯(Laplace)方程和泊松(Poisson)方程,还有描述波的传播的波动方程(wave equation),描述传热和扩散现象的热传导方程(heat equation)等,这些都是古典的偏微分方程。这些方程在偏微分方程理论的发展中发挥了重要的作用,时至今日,它们仍然是偏微分方程的基础和必学内容之一。自19世纪开始,随着工业革命的兴起和科学技术的发展,相继出现了大量新的偏微分方程,其中最基本的有描述电磁场变化的麦克斯韦方程(组),描述微观粒子的薛定谔方程,以及爱因斯坦方程、杨-米尔斯方程、反应扩散方程等等。随着现代科学和技术的进步,还将会不断涌现出新的越来越多的偏微分方程,尤其是非线性的偏微分方程或方程组。其中,非线性波方程是描述自然现象的一类重要数学模型,也是非线性数学物理特别是孤立子理论最前沿的研究课题之一。通过对非线性波方程的求解和定性分析的研究,有助于人们弄清系统在非线性作用下的运动变化规律,合理解释相关的自然现象,更加深刻地描述系统的本质特征,极大地推动相关学科如物理学、力学、应用数学以及工程技术的发展。本文以李(S.Lie)对称分析为基础和工具,综合运用动力系统的分支理论与方法、潘勒维尔(Painleve)分析、幂级数法(含推广的幂级数法)、待定系数法以及一些特殊的技巧与方法,研究偏微分方程的精确解及其相关的方程与解的性质。具体而言,即首先运用李对称分析得到方程的向量场或对称,然后利用相似约化将所研究的(非线性)偏微分方程化为常微分方程。这一步对方程而言可以说实现了实质性的转化,即把一个复杂的偏微分方程,包括各种非线性的、变系数的偏微分方程转化为一个常微分方程。接下来的工作就是研究这个常微分方程的解,求出了常微分方程的解,也就相应地得到了偏微分方程的解。这就是利用对称分析研究偏微分方程精确解的基本思路。当然,对称分析的作用远不止此,它与系统的可积性的研究还有着密切的关系,对称是系统本质属性的一种描述和刻画,它在偏微分方程与可积系统的研究中有着重要的意义与作用。这些我们将在研究偏微分方程精确解的同时一并加以介绍。至于如何研究约化得到的常微分方程,则主要涉及常微分方程与动力系统的理论与方法、幂级数法以及一些特殊的技巧与方法。本文的主要内容如下:第一章绪论。本章介绍了非线性科学的主要内容以及发展现状,综述了偏微分方程,尤其是非线性波方程的发展历史、研究现状、主要研究方法以及取得的主要成果。其中重点介绍了偏微分方程研究的主要方法,特别是对称分析在研究偏微分方程中的意义与作用。概括而言,这些方法各有特点,也都有各自的适用范围,都在特定的时期、特定的条件和各自的范围内发挥了应有的作用。有的方法可以说长盛不衰,历久弥新,至今还有强大的生命力,在偏微分方程的研究中仍然发挥着重要的作用。当然,任何一种方法都不是万能的,不会也不可能指望用一种方法解决所有的问题。本章的出发点是对各种主要的方法加以总结回顾,目的不是评判哪种方法的优劣,而是通过比较和总结,更好地继承和发扬其中蕴含的优秀的思想方法,从过去经典的思想与方法中汲取营养,更好地面向未来,进一步更深入地开展对现代偏微分方程及相关非线性科学的研究。第二章理论准备。在这一章,列举了本文所涉及的一些相关知识,如李群与李代数、对称与向量场、向量场的延拓、Painleve分析简介、动力系统的分支理论与方法以及雅可比(Jacobi)椭圆函数等。限于篇幅,有些内容只列出主要概念与结论,详细内容可查阅后面的相关参考文献,此处不展开叙述。单列本章的目的是考虑到李群与对称分析的相关理论与知识比较多,通过本章,对有关的理论知识有所了解,便于后面的具体运用。第三章基于李对称分析,研究了一般的Burgers’方程。该方程是一个既有非线性项又有二阶偏导项的非线性波方程,在理论和实践中有广泛的应用价值。它在一定条件下存在不同类型的孤波解,如冲击(震荡)波、稀疏波等。在流体力学、空气动力学的许多波动问题的研究中都要用到这个方程。例如在流体力学模型方程中,有线性Burgers’方程ut+aux=μuxx和非线性Burgers’方程ut+[f(u)]x=μuxx。当f(u)=1/2u2时,后者即为ut+uux=μuxx。在一定的初、边值条件下,可以得到这两类Burgers’方程的精确解,从而了解系统相应的流体力学性质。另外,Burgers’方程和许多重要的数学物理方程有着密切的联系,在非线性科学、流体力学以及工程技术中起着重要的基础性作用。在对称分析的基础上,首先求出了方程的群不变解以及任意次的迭代解。然后,利用对称约化将原方程化为各种形式的常微分方程,进而求出方程的精确解。其中应用了幂级数法(Power series method),得到了非线性、非自治的常微分方程严格的幂级数解,从而也就得到了相应的Burgers’方程的精确解,其中包含了不少新的显式精确解。第四章研究推广的mKdV方程,众所周知,KdV方程是非常着名的浅水波方程,它起源于对水波问题的研究,KdV型方程可以描述各种浅水波的运动,在流体力学中有着广泛的应用。特别地,对于修正的KdV型方程,最近的研究发现可用于描述宇宙环境中超新星周围以及土星环的尘埃离子的波动规律,对于天体力学和大气物理的研究有着重要的意义。首先,通过对称分析得到了它的向量场。然后,由一般到特殊地得到了一些特殊而经典的KdV、mKdV方程的向量场。接下来,通过对称约化将推广的mKdV方程化为常微分方程,为下一步求解作准备。本章的一个亮点是运用了动力系统的分支理论与方法,详细全面地得到了推广的mKdV方程的显式精确解,包括幂级数解,同时还研究了系统的动力学性质。第五章研究了一类短脉冲方程的精确解。短脉冲方程也是一类非常重要的非线性波方程,可以描述一些比较特殊的波。深入研究这类方程及其各种孤波解,对于了解一些特殊的波动问题具有重要意义。同时,该方程是一个重要的非线性数学物理方程,它在工程技术以及物理学、力学的许多领域都有重要应用。此方程不同于一般的非线性演化型方程,而是一个混合型的偏微分方程,这给对称分析带来了一定的困难。本章分别运用延拓法与待定系数法,得到了该方程的所有对称。其次,本章的另一特色是在运用动力系统的分支理论与方法研究方程的精确解时,引入了参数表示法,从而圆满地解决了解的显式表示问题。本章获得的这类短脉冲方程的精确解,都是用通常的方法难以得到的。第六章研究了一类变系数债券方程。变系数偏微分方程最初主要来源于数学物理问题及大量的工程技术问题,但是,随着社会的进步和现代科学技术的不断发展,在各种经济社会领域、生物化学与环保领域、通讯信息与金融证券等领域,由于实际的需要也提出了越来越多的偏微分方程,这些方程一般形式复杂,且常常是变系数的。本章研究的变系数方程在金融数学与金融工程中经常用到,尤其是在期权定价问题的研究中,这类偏微分方程发挥着日益重要的作用。偏微分方程理论与现代经济、金融研究相结合,正成为一种重要的发展趋势。首先,对两个具体的变系数债券方程进行了对称分析,分别得出了它们的向量场。然后,又分别求出了它们的单参数群与群不变解。第三,利用相似变换分别将它们约化为常微分方程。第四,进一步求出它们的精确解。本章在内容上与前几章的主要不同之处在于,一是对称分析,由于所研究的方程是变系数的,因此,对称分析要比常系数方程复杂得多。二是在求精确解时除了幂级数法之外,还用了待定系数法等一些特殊方法,从而得到了方程的显式精确解,收到了较好的效果。三是在本章最后,我们还就一般形式的变系数债券方程进行了讨论,得出了它的对称及相应的精确解。第七章研究了三个非线性演化方程。这类方程在非线性科学与工程技术中有着重要的意义与作用,是许多波动问题和力学问题的重要理论模型,在生物数学等领域也有着重要的应用。首先运用Painleve分析得到了它们的Painleve性质,以及相应的Backlund变换、截断展开式等。然后再通过对称分析,分别得到了它们的对称,并通过比较分析了Painleve分析与对称分析的异同。接着研究它们的精确解,除了基于对称分析的精确解,我们还得到了方程的基于Painleve截断展开的精确解。这些解的获得,是单独用任何一种方法所不可能得到的,这也说明了二者结合的意义和作用。另外,通过本章的研究可以发现,对于有些即使是不可积的方程,我们仍然可以利用对称分析与Painleve分析研究它们的精确解。我们知道,在可积系统的研究中,Painleve分析的主要作用是判断系统的可积性,但通过本章可以发现它还可以用于方程求解的研究。对称分析更是如此,无论是否可积,都可以通过对称分析研究方程的精确解。总之,本文研究的对象是偏微分方程,包括各种非线性的、变系数的方程。主要目的是求出方程的解,尤其是显式的精确解。所以,本文所采用的方法与工具与一般孤子与可积系统的研究有所不同,结果也不一样,可以说各有侧重。限于论文的主题,尽管系统的对称与可积性如守恒律(CL)、Backlund变换等有着密切的联系,但对系统的可积性不作过多的讨论,目的是使论文主题更突出。另外,这些方程都是重要的数学物理方程,深入研究这些方程的解及其相关性质,如Painleve性质、可积性以及各种形式的解,尤其是各种显式精确解,对于了解系统所描述的具体问题的性质与规律,有着重要的意义与作用。最后,在总结与展望中,首先概述了本文所获得的主要研究成果;然后,总结归纳了本文的主要创新点;最后,提出了围绕偏微分方程精确解的研究有待于进一步研究与思考的方向和问题。
包霞[7](2019)在《孤立子理论在中国的发展(1978-1989)》文中认为1834年8月,英国爱丁堡大学的数学教授、优秀的造船工程师罗素在校园附近的联合运河中首次观察到孤立波。1965年,美国数学家克鲁斯卡尔和扎布斯基通过计算机模拟了孤立波的“碰撞”,发现经碰撞后的它们不会改变形状、大小和方向。于是,二人在《Physical Review Letters(物理评论快报)》上发文首次提出了“Soliton”(孤立子)这个名词,以此来强调孤立波的“粒子”性行为与特性,标志着孤立子理论的正式诞生。随着计算机技术的不断发展,人们在物理学、生物学、医学、海洋学、经济学、人口问题等诸多领域都发现了孤立子及与其密切相关的重要问题,孤立子成为非线性科学的三大普适类之一。20世纪70年代后,孤立子理论传入国内,学者们在高校科研院所里开始进行孤立子的研究,先学习国外已有理论成果,再进行有效拓展和理论创新,同时注重培养自己的研究生。这是一个积极良性互动的学习过程,在短短十年里就取得了可喜的成绩,也进一步促进了理论的传播与发展。孤立子理论在中国的研究与发展虽然之前也受到近现代数学史研究者的关注,但是在谈及20世纪数学科学的回顾时基本没有提到孤立子理论的研究与发展,更没有从数学史的角度进行系统的梳理研究,这就无法全面地反映出中国现代数学的研究全貌。因此,本文“孤立子理论在中国的发展(1978-1989)”便具有重要的理论和现实意义。在查阅了大量原始资料和现有研究文献,并采访一些老一辈学者,采用文献分析、归纳分析、调研实践等方法,对中国孤立子理论研究做了较系统的分析总结:1.结合孤立子理论的四个发展阶段,论述1834至1989年间世界孤立子理论研究的主要成果及其意义。2.考查了中国学者在国内外发表的孤立子理论研究论文和已有的研究文献,经过细致筛选,介绍了谷超豪、屠规彰、李翊神、曹策问、郭柏灵等代表性学者的求学之路及学术研究概况,同时介绍了学界其他学者的一些重要研究成果。通过分析归纳,本文首次较为全面地阐述了屠规彰等人的孤立子理论研究工作;总结了中国在孤立子理论领域的主要研究成果,包括反散射方法、B?cklund变换法、Darboux变换法、守恒律、对称及其代数结构、Lax对的非线性化、屠格式、孤子方程的规范等价分类、孤立子的实验数值研究等领域;分析了中国孤立子理论研究的特征及其贡献。3.统计了二十世纪七八十年代在国际上具有影响力的孤立子研究着作。基于中国第一部孤立子理论译着和第一部理论专着的重要性,对这两本书进行了介绍,发掘其历史价值与学术意义。4.通过对前辈的访谈和研读他们留下的手稿和研究文献,尝试梳理出中国孤立子理论研究学者开展的活动,包括全国孤立子与可积系统研讨会、国内主要科研院所的教研、参加国际学术会议,与国外学者的学术交流,从中分析这些活动对中国孤立子理论研究的影响。5.在翻阅大量文献资料的过程中,得到借鉴与启发,进一步探究孤立子理论,构造了KP型方程的新型Darboux变换和广义变系数KdV方程的Lax方程组的求解递推公式,在实践意义上实现了研究数学史的目的之一。本论文包括六章内容。第一章:孤立子理论的发展概况(至1989年)。这一章根据孤立子理论发展的四个阶段,较详细地论述了从孤立波被发现到1989年第三阶段结束的主要研究成果。第一阶段(1834-1954)包括孤立波的发现(1834)、孤立波的数学模型——KdV方程的提出(1895)、Boussinesq方程的提出(1872)、sine-Gordon方程的B?cklund变换(1885)、Cole-Hopf变换(1950,1951)等;第二阶段(1955-1970)包括FPU实验(1955)、孤立子的发现(1965)、怪波理论(1965)、反散射方法的提出(1967)、Lax对特征值问题(1968)、KP方程的提出(1970)等;第三阶段(1971-1989)包括Hirota双线性方法(1971)、光孤子的发现(1973)、延拓结构法(1975)、偏微分方程的Painlevé分析方法(1983)、Lax对的非线性化(1989)、屠格式(1989)等。第二章:孤立子理论在中国的发展概况(1978-1989)。这一章首先从国内外环境阐述了孤立子理论传入中国的起始,考查了国内第一篇关于孤立子理论研究论文的内容和意义,其次再现并阐述了中国孤立子理论研究的代表性学者屠规彰、李翊神、曹策问、郭柏灵、谷超豪等人的求学之路及学术研究概况,最后统计了在世界上具有影响力的孤立子理论着作及中国学者的译着与专着。第三章:中国孤立子理论研究学者开展的活动。本章首先介绍了国内孤立子理论主要研究团队的教研情况,并对中国第一部孤立子理论译着与第一部理论专着分别进行介绍。然后转向与国外学界的互动交流方面,介绍了去海外参加国际学术会议和访学的中国孤立子理论研究学者。第四、五章是中国孤立子理论研究学者开展的具体研究内容——非线性演化方程的孤立子解的求法和解的适定性研究及可积系统研究。首先重点讲述了国内主要研究的非线性演化方程的四种解法:B?cklund变换法(BT)、Darboux变换法(DT)、反散射方法(IST)、Hirota方法的研究背景和国内外发展概况及中国学者的主要研究成果。另外,在梳理中国孤立子理论的过程中也不断受到启发,就其中的Darboux变换法的理论研究进行了新的拓展。其次,从孤子方程的可积性判别、孤子方程的规范等价类、构造有限维可积系统的有效方法—Lax对的非线性化方法、构造无限维可积系统的有效方法——屠格式、寻找守恒律及守恒律个数的猜想证明、构造对称及其代数结构研究等六个方面,详细介绍了国内学者的探讨过程和研究成果。第六章:孤立子的实验数值研究。本章阐述了国内学者在孤立子的实验数值研究方面的突出工作:首先是,吴君汝通过实验发现了非传播的孤立波,该波后来被命名为“吴氏波”(或吴立子)。吴氏孤波的发现证实了孤立波也可能是非传播性的波,而非传播的孤立波比传播的孤立波更具稳定性和重复性,所以它的发现被认为是当代非线性波研究的重大进展。其次是郭本瑜在孤立子解的数值计算方面的工作及成果介绍。总之,本文通过文献考证和文献分析方法,考察分析了国内早期(1978-1989)孤立子理论的论着、名人传记及研究性论文,综述孤立子理论在中国的早期传播、研究与发展,认为1978—1989年这一时期我国孤立子理论研究主要处于培养人才和学习阶段,是迎接孤立子理论在中国大发展的筹备期。在此阶段出现了屠规彰的“屠格式”、曹策问的“Lax对的非线性化方法”、谷超豪的“Darboux矩阵法”等可纳入国际孤立子理论研究前沿的可喜成果且这些方法至今仍广泛应用于可积系统的构造和非线性演化方程求解,是非常有效的方法。
徐桂琼[8](2004)在《非线性演化方程的精确解与可积性及其符号计算研究》文中指出非线性演化方程是描述物理现象的一类重要数学模型,也是非线性物理特别是孤立子理论最前沿的研究课题之一。非线性演化方程精确解和可积性的研究有助于弄清物质在非线性作用下的运动规律,对相应物理现象的科学解释和工程应用将起到重要作用。在非线性演化方程的研究中,寻找方程的行波解、构造多孤子解、Painlevé可积性质的检验等经常遇到复杂的符号计算和推理,有的是人力难以完成的,因此妨碍了这些问题的深入剖析。近年来,符号计算的蓬勃发展,极大地推动了非线性演化方程的研究。非线性演化方程的研究成果不断涌现,尤其是新的求解方法层出不穷。本文以非线性演化方程为研究对象,借助于符号计算这一有效研究工具,研究了多种直接代数方法在非线性演化方程精确求解中的应用、Painlevé分析及其应用,探讨了几种直接代数方法与Painlevé可积性质之间的内在联系。主要工作如下: 第一部分研究非线性演化方程的精确求解。分别从三个方面进行研究: 研究了构造非线性演化方程孤立波解的基础性方法——混合指数方法,改进了混合指数方法的关键步骤——行波约化后常微分方程及递推关系式的求解。将传统实指数方法推广到复指数情形,从而可以获得正则孤波解、奇异孤波解及周期解在内的诸多形式的行波解。 在Riccati方法、形变映射方法、“统一代数”方法的基础上,给出了构造非线性演化方程多种行波解的广义形变映射法。该方法的基本思想是利用“秩”对行波约化后的常微分方程进行分类,对同秩类型和异秩类型的方程借助于不同的一阶可解方程,从而将非线性演化方程行波解的计算问题转化为非线性代数方程组的求解问题。利用吴文俊消元法求解非线性代数方程组,即可得到非线性演化方程的多类行波解。以耦合mKdV方程组、耦合Drinfel’d-Sokolov-Wilson方程组、变形Boussinesq方程组等为例,系统地获得了包括指数解、多项式解、有理解、三角函数解、Jacobi椭圆函数解、Weierstrass椭圆函数解、孤立波解及广义孤立波解、组合形式三角函数及孤立波解在内的多种形式的行波解。由于该方法是构造性和算法化的,可以在计算机代数系统上完成解的自动推导。 采用分步确定拟解的原则,对齐次平衡法求非线性演化方程多孤子解的关键步骤作了进一步改进。以广义Boussinesq方程和bKK方程为应用实例,说明使用该方法可有效避免“中间表达式膨胀”的问题,除获得标准Hirota形式的孤子解外,还能得到其他形式的孤子解。本文获得了这两个非线性演化方程的具有双向传播特点的孤立波解和孤立子解。 第二部分研究非线性演化方程的Painlevé可积性的检验和Painlevé分析的若干应用。主要从两个方面进行研究: 由于非线性系统的Painlevé性质与可积性之间有着十分密切的联系,因此判定一个非线性系统是否具有Painlevé性质就具有非常重要的意义。本文分析了非线性演化方程Painlevé性质的几种检验方法,并利用Kruskal方法得到了广义Hirota-Satsuma耦合方程组具有Painlevé可积性质的必要条件。WTC方法和Kruskal方法是检验非线性演化方程Painlevé性质的两种重要方法,这两种方法各有所长,本文将二者结合起来并给出了检验Painlevé性质的WTC-Kruskal算法。使用WTC-Kruskal算法,不仅可以快速判定非线性演化方程的Painlevé可积性,也为寻找新的Painlevé可积系统提供了重要途径。 研究了基于Painlevé性质的若干截断展开方法在非线性演化方程可积性质及精确解研究中的若干应用。讨论了标准截断展开方法在构造不可积系统精确解、可积系统的自B(?)cklund变换、多重孤波解和多孤子解中的应用.其次,给出了高阶截断展开法在构造非线性演化方程新型精确解中的应用,并分析了高阶截断展开法在构造非线性可积系统Lax对、Darboux变换的应用实例.最后将近年来发展起来的构造非线性演化方程行波解的几种直接代数方法统一于Painle说分析的研究框架之中. 第三部分研究符号计算在广义形变映射法和Painlev乙可积性证明中的应用.主要包括: 广义形变映射法将行波解的求解间题转化为非线性代数方程组的计算问题,推演过程往往涉及到非常繁琐的计算.本文在计算机符号系统Maple上开发了一个基于吴文俊消元法的行波解自动求解软件包NETs.该软件包可以自动输出非线性演化方程及方程组的多类行波解.NETS软件包对方程或方程组的维数没有限制,适用于多项式类型的非线性演化方程.除适用于非线性偏微分方程外,NETS还适用于非线性常微分方程.某些特殊类型的非线性演化方程,经过适当的函数变换转换为多项式类型的非线性常微分方程后,可以借助NETS实现行波解的自动推导. 基于wTC一Kruskal算法,本文在计算机符号系统Maple上开发了wkPtest软件包.该软件包可快速完成非线性偏微分方程及方程组Paiulev‘性质的自动检验.同时,当给定方程不能通过Palnlev乙检验时,软件包将返回参数满足的约束条件.此外,软件包还能输出方程的Painlev‘截断展开式.wkPtest软件包适用范围较为广泛,对方程或方程组的维数没有限制,不仅适用于常系数方程或方程组,也适用于变系数方程或方程组以及一?
刘玉堂,辛祥鹏[9](2017)在《二次Riccati方程研究综述》文中进行了进一步梳理本文首先介绍了Riccati方程的基本情况,包括研究的部分成果和重要意义.然后按国内和国际两类文献陈述了从2014年至今Riccaiti方程的研究进展.对这两类文献又从方程本身的性质、可积性、精确解、数值解、定性理论和Riccati方程的应用等角度分别介绍了国内外的研究情况.从中可以看出,求解仍是学者们研究Riccati方程工作的重点,对它的应用主要是寻求其他微分方程的精确解,实际应用方面的工作较少.
赵纬经[10](2013)在《模糊系统的泛逼近性及其应用研究》文中进行了进一步梳理模糊系统在复杂系统建模、预测和控制过程中已经得到广泛的应用,其理论基础是模糊系统具有泛逼近性。但模糊系统的泛逼近性问题尚未得到完全解决,本文就首先针对模糊系统的泛逼近性与逼近误差进行研究,然后将其应用到自治Lienard系统的逼近中去,并对模糊值函数的对偶u-可积性问题进行探讨,最后提出了一类基于中点导数值的闭Newton-Cotes数值积分公式。本文主要研究内容如下:1.针对单输入单输出的开环系统,以Lasen蕴涵算子为例,证明了重心法意义下基于CRI推理的模糊系统的泛逼近性,给出了其误差表达式与上界估计,指出该系统逼近精度达到O(△12)。通过对误差估计式的分析,进而指出影响逼近精度的“规则数”和“设计参数”这两大方面因素中,“规则数”是模糊系统具有泛逼近性的决定性因素。2.应用HX方程逼近方法与边缘线性化方法,分别应用于自治Lienard系统的求解,提出这类系统的“简化HX方法”与“简化边缘线性化方法”。提出的两种方法简化了求解步骤,降低运算的空间复杂度与时间复杂度。仿真结果表明这两种新方法均具有较高的逼近精度,是可靠的算法。通过一系列仿真实验与理论分析,得出误差随时间的推移振荡放大的原因在于Runge-Kutta方法,它使得传递的“初值”精度越来越低。为了提高Runge-Kutta法的逼近精度,首先给出了一种的“预报校正”方法,仿真结果表明此方法能够较为有效地降低误差。然后,为了进一步提高逼近精度,在外推法的基础上对参数进行摄动,提出参数摄动的外推Runge-Kutta法。最后数值实验表明参数摄动的外推Runge-Kutta法具有较高的逼近精度,而且对抑制误差的传播,具有比较明显的效果。3.针对K-拟可加模糊测度空间上的一类u-可积模糊值函数,首先应用拟加与拟乘两种算子定义了对偶K-拟可加模糊值积分,通过诱导算子K获得这种新型模糊积分的转换定理。然后,在引入拟可减算子的基础上研究了一类模糊值函数的对偶u-可积性问题,进而获得可积性判定条件及有界模糊值函数和闭区间上连续模糊值函数构成对偶u-可积的充分条件。最后,通过一个具体的实例来说明这种积分在生产预测中的实际应用。4.在重心法解模糊化的过程中,通常需要使用Riemann和或者数值积分来近似计算定积分的值。在不过多加密分割区间的情况下,获取高精度的数值积分公式成为一研究难题。基于这一目的,提出了一类基于中点导数值的闭Newton-Cotes数值积分公式,证明了它们比相应的经典闭Newton-Cotes数值积分公式提高了2个代数精度,同时给出了其误差余项。然后从数值实例的角度分析了其计算成本,即在达到相同的误差级别的情况下,所提出的方法与同阶的闭Newton-Cotes数值积分公式相比,明显节约了计算成本。并通过一些数值实例表明本文所提出的方法优于经典闭Newton-Cotes数值积分公式。最后,将提出的方法分别应用到计算物体重心和重心法解模糊化的问题中去,数值实验结果表明该方法有较高的逼近精度。
二、二阶线性微分方程的可积性及解法(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、二阶线性微分方程的可积性及解法(论文提纲范文)
(1)二阶线性微分方程不变量解法的新类型(论文提纲范文)
1 问题背景 |
2 可积新类型 |
3 应用 |
(4)常微分算子理论的发展(论文提纲范文)
中文摘要 |
ABSTRACT |
第1章 绪论 |
1.1 选题目的和意义 |
1.2 本课题研究现状 |
1.3 研究方法及创新点 |
1.4 研究内容 |
第2章 常微分算子理论的起源(1836-1910) |
2.1 边值问题 |
2.2 Sturm的简介及其主要工作 |
2.2.1 Sturm的简介 |
2.2.2 Sturm的工作 |
2.3 Liouville的简介及其主要工作 |
2.3.1 Liouville的简介 |
2.3.2 Liouville的工作 |
2.4 Sturm和Liouville合作的工作及其意义 |
2.4.1 Sturm和Liouville合作的工作 |
2.4.2 Sturm和Liouville工作的意义 |
2.5 Sturm-Liouville理论的后续发展 |
第3章 常微分算子理论早期的重要工作(1910-1950) |
3.1 Weyl的简介及其重要成果 |
3.1.1 Weyl的简介 |
3.1.2 Weyl的重要成果 |
3.2 Dixon的工作 |
3.3 Stone的工作 |
3.4 Titchmarsh的工作 |
3.4.1 正则型问题 |
3.4.2 奇异型问题 |
3.5 The Titchmarsh-Weyl的贡献 |
3.5.1 正则情形 |
3.5.2 奇异情形 |
第4章 常微分算子自伴扩张理论的发展 |
4.1 微分算式的描述 |
4.2 常型对称微分算子自伴域描述的成果 |
4.2.1 Coddington自伴域(1954) |
4.2.2 Naimark自伴域(1954) |
4.2.3 Everitt自伴域(常型) |
4.3 奇型对称微分算子自伴域描述的成果 |
4.3.1 Weyl-Titchmarsh自伴域 |
4.3.2 Everitt自伴域 |
4.3.3 曹之江-自伴域和孙炯-自伴域 |
4.3.4 自伴域描述的新进展 |
4.4 其它类型微分算子自伴域的描述 |
4.4.1 直和空间上的自伴域 |
4.4.2 J-对称微分算子的J-自伴域 |
4.4.3 向量值函数空间的自伴域 |
4.5 微分算子乘积的自伴域 |
4.6 常微分算子自伴域的几何刻画 |
4.7 Friedrichs扩张 |
第5章 常微分算子谱分析的发展 |
5.1 谱的基本概念 |
5.2 定性分析的数学思想和研究方法 |
5.2.1 定性分析的数学思想 |
5.2.2 定性分析的研究方法 |
5.3 常微分算子离散谱的判别准则 |
5.3.1 实自伴微分算子离散谱的判别 |
5.3.2 加权的奇异实自伴微分算子离散谱的判别 |
5.3.3 J-自伴微分算子离散谱的判别 |
5.4 常微分算子本质谱的判别 |
5.5 常微分算子的定量分析 |
5.5.1 常微分算子的数值解法 |
5.5.2 SLEIGN2及其它软件包的的介绍 |
5.5.3 常微分算子数值算法进展的概述 |
第6章 常微分算子亏指数理论的发展 |
6.1 亏指数的基本概念和理论 |
6.2 奇异实对称微分算子亏指数判定的成果 |
6.2.1 二阶情形的判定工作 |
6.2.2 高阶情形的判定工作 |
6.3 复系数对称微分算子亏指数的判别成果 |
6.4 亏指数的取值范围 |
6.5 算子幂的亏指数 |
第7章 常微分算子逆问题的发展 |
7.1 早期的工作(1929-1979) |
7.2 近三十年来的研究工作(1980-2010) |
结束语 |
参考文献 |
附录1:常微分算子理论发展的年表 |
致谢 |
攻读博士学位期间发表或待发表的学术论文 |
(6)基于李对称分析的偏微分方程精确解的研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 非线性科学研究的基本概况 |
1.2 孤立波与孤立子 |
1.3 偏微分方程求解方法概述 |
1.3.1 付里叶(Fourier)变换和拉普拉斯(Laplace)变换法 |
1.3.2 贝克隆(Backlund)变换和达布(Darboux)变换法 |
1.3.3 反散射方法 |
1.3.4 分离变量法 |
1.3.5 广田(Hirota)双线性法和齐次平衡法 |
1.3.6 其他方法简介 |
1.4 偏微分方程与可积系统研究 |
1.5 偏微分方程的定性和稳定性研究 |
1.5.1 偏微分方程与动力系统 |
1.5.2 偏微分方程的定性研究 |
1.5.3 偏微分方程的稳定性研究 |
1.6 李对称与相似约化研究综述 |
1.7 本文的主要工作 |
第二章 理论准备 |
2.1 引言 |
2.2 微分流形 |
2.3 李群及其李代数简介 |
2.4 不变群与向量场、向量场的延拓 |
2.5 对称与待定系数法 |
2.6 微分方程与动力系统 |
2.6.1 二维可积系统 |
2.6.2 研究非线性方程的动力系统方法 |
2.6.3 雅可比(Jacobi)椭圆函数 |
2.7 潘勒维尔(Painleve)分析简介 |
2.8 本章小结 |
第三章 Burgers'方程的对称分析与精确解 |
3.1 引言 |
3.2 方程(3.1)的对称分析 |
3.3 方程(3.1)的对称约化与精确解 |
3.3.1 Burgers'方程的迭代解 |
3.3.2 Burgers'方程的约化解 |
3.4 基于幂级数法的方程(3.1)的精确解 |
3.5 本章小结与评注 |
第四章 推广的mKdV方程的对称分析、动力系统研究和精确解 |
4.1 引言 |
4.2 推广的mKdV方程的对称分析 |
4.3 推广的mKdV方程的行波解 |
4.3.1 方程(4.1)的行波变换 |
4.3.2 系统(4.5)相图分支 |
4.3.3 方程(4.1)的精确行波解 |
4.4 推广的mKdV方程的严格幂级数解 |
4.5 本章小结与注释 |
第五章 短脉冲方程的对称分析、动力系统分析与精确解 |
5.1 引言及预备知识 |
5.2 短脉冲方程的对称分析 |
5.3 对称的待定系数法 |
5.4 短脉冲方程的精确行波解 |
5.5 短脉冲方程的精确幂级数解 |
5.6 本章小结与注释 |
第六章 变系数债券方程的对称分析与精确解 |
6.1 引言及预备知识 |
6.2 债券方程的对称分析 |
6.3 对称约化与方程的精确解 |
6.4 方程的精确幂级数解 |
6.5 进一步的讨论 |
6.6 本章小结与注释 |
第七章 非线性演化方程的Painleve分析、对称与精确解 |
7.1 引言与预备知识 |
7.2 非线性演化方程的Painleve分析 |
7.3 三个非线性演化方程的对称分析 |
7.4 非线性演化方程的对称约化与精确解 |
7.4.1 非线性演化方程的行波解 |
7.4.2 非线性演化方程的其它约化解 |
7.5 非线性演化方程的其它精确解 |
7.5.1 非线性演化方程精确的幂级数解 |
7.5.2 基于Painleve截断展式的非线性演化方程的精确解 |
7.6 本章小结与注释 |
第八章 总结与展望 |
8.1 主要研究结果 |
8.2 主要创新点 |
8.3 研究展望 |
参考文献 |
(一) 攻读博士学位期间接受发表的学术论文 |
(二) 攻读博士学位前发表的部分论文 |
致谢 |
(7)孤立子理论在中国的发展(1978-1989)(论文提纲范文)
中文摘要 |
abstract |
绪论 |
一 选题的背景与意义 |
二 本课题研究现状 |
三 史料来源 |
四 研究内容 |
五 研究方法及创新点 |
第1章 孤立子理论的发展概况(至1989 年) |
1.1 第一阶段(1834-1954) |
1.1.1 发现孤立波(1834) |
1.1.2 Boussinesq方程的提出(1872) |
1.1.3 KdV方程的提出(1895) |
1.1.4 sine-Gordon方程的B?cklund变换(1885) |
1.1.5 Cole-Hopf变换(1950,1951) |
1.2 第二阶段(1955-1970) |
1.2.1 FPU问题(1955) |
1.2.2 孤立子的发现(1965) |
1.2.3 怪波(1965) |
1.2.4 反(逆)散射方法(1967) |
1.2.5 Lax对特征值问题(1968) |
1.2.6 KP方程的提出(1970) |
1.3 第三阶段(1971-1989) |
1.3.1 Hirota双线性方法(1971) |
1.3.2 光孤子的发现(1973) |
1.3.3 延拓结构法(1975) |
1.3.4 偏微分方程的Painlevé分析方法(1983) |
1.3.5 Lax对的非线性化方法(1989) |
1.3.6 屠(Tu)格式(1989) |
第2章 孤立子理论在中国的发展概况(1978-1989) |
2.1 孤立子理论研究在中国的起始 |
2.1.1 国内孤立子理论研究的源起 |
2.1.2 第一篇关于孤立子理论的研究论文 |
2.2 中国孤立子理论研究学者 |
2.3 孤立子研究学者的重要着作及国内学者的编着译着统计 |
第3章 中国孤立子理论研究学者开展的活动 |
3.1 孤立子理论在国内科研院所的教研 |
3.2 中国第一部孤立子理论的译着与专着 |
3.2.1 《逆散射变换与孤立子理论》 |
3.2.2 《孤立子》 |
3.3 去国外交流学习 |
第4章 中国学者对非线性演化方程的求解方法和解的适定性研究 |
4.1 B?cklund变换法(BT) |
4.1.1 B?cklund变换法的发展背景 |
4.1.2 B?cklund变换在中国的研究与发展 |
4.2 Darboux变换法(DT) |
4.2.1 Darboux变换法的发展背景 |
4.2.2 Darboux变换法在中国的研究与发展 |
4.2.3 Darboux变换法的新应用 |
4.3 反散射方法(IST) |
4.3.1 反散射方法的发展背景 |
4.3.2 反散射方法在中国的研究与发展 |
4.4 Hirota双线性方法(也称广田方法) |
4.4.1 Hirota双线性方法的发展背景 |
4.4.2 Hirota方法在中国的发展 |
第5章 中国学者对可积系统的研究 |
5.1 可积性判别及可积系统的构造 |
5.1.1 方程的可积性判别 |
5.1.2 有限维可积系统的构造方法 —— Lax对的非线性化方法 |
5.1.3 无限维可积系统的构造方法——屠格式 |
5.2 孤子方程的推导及规范等价类: |
5.2.1 孤子方程的推导 |
5.2.2 孤子方程的规范等价类 |
5.3 守恒律 |
5.3.1 守恒律的研究背景 |
5.3.2 中国学者对于守恒律的研究 |
5.4 可积系统的对称及其代数结构 |
5.4.1 对称的发展背景 |
5.4.2 国内对对称约束及其代数结构的研究 |
第6章 中国学者对孤立子的数值实验研究 |
6.1 孤立子的数值实验研究背景 |
6.2 我国孤立子的数值实验研究 |
结束语 |
攻读博士期间发表的学术论文目录 |
参考文献 |
致谢 |
(8)非线性演化方程的精确解与可积性及其符号计算研究(论文提纲范文)
第一章 绪论 |
1.1 非线性演化方程精确解及可积性研究的若干工作 |
1.1.1 非线性演化方程精确解构造方法 |
1.1.2 非线性演化方程可积性质的研究 |
1.2 符号计算在非线性演化方程研究中的应用 |
1.3 本文选题和主要工作 |
第二章 非线性演化方程的行波解 |
2.1 混合指数方法 |
2.1.1 算法概述 |
2.1.2 应用实例 |
2.1.3 混合指数方法的改进及应用实例 |
2.2 广义形变映射法 |
2.2.1 方法背景 |
2.2.2 算法概述 |
2.2.3 应用实例 |
第三章 广义形变映射法在Maple系统上的实现及其应用 |
3.1 广义形变映射法在Maple系统上的实现 |
3.1.1 确定方程类型及解的阶数 |
3.1.2 导出及求解非线性代数方程组 |
3.2 NETS软件包的应用 |
3.2.1 变形Boussinesq方程组 |
3.2.2 广义Hirota-Satusum方程组 |
第四章 非线性演化方程的Painlevé性质 |
4.1 常微分方程的Painlevé性质及检验 |
4.1.1 常微分方程的Painlevé性质 |
4.1.2 常微分方程的Painlevé检验 |
4.2 偏微分方程的Painlevé性质 |
4.3 偏微分方程的Painlevé检验 |
4.3.1 WTC检验算法 |
4.3.2 Kruskal检验算法 |
第五章 非线性演化方程的Painlevé检验及其实现 |
5.1 WTC-Kruskal算法 |
5.1.1 WTC-Kruskal算法概述 |
5.1.2 WTC-Kruskal算法应用示例 |
5.2 WTC-Kruskal算法在Maple系统上的实现 |
5.2.1 系统初始化及相关模块的调用 |
5.2.2 确定首项阶数和首项系数 |
5.2.3 验证相容性条件 |
5.3 wkptest软件包的应用 |
5.3.1 几个经典的非线性演化方程 |
5.3.2 (3+1)-维非线性演化方程的Painlevé检验 |
5.3.3 耦合方程组的Painlevé检验 |
5.3.4 扩展类型方程的Painlevé检验 |
第六章 Painlevé截断展开及其应用 |
6.1 标准截断展开法及其应用 |
6.2 高阶截断展开及其应用 |
6.3 齐次平衡方法与多孤子解 |
6.3.1 算法概述 |
6.3.2 应用实例 |
6.4 几种直接代数方法与Painlevé截断展开法的联系 |
参考文献 |
博士期间科研成果 |
(9)二次Riccati方程研究综述(论文提纲范文)
1 Riccati方程的历史发展 |
2 Riccati方程的研究现状 |
2.1 国内期刊作者对二次Riccati方程的研究情况 |
2.2 国际期刊作者对二次Riccati方程的研究情况 |
2.3 对二次Riccati方程研究的预测 |
3 结束语 |
(10)模糊系统的泛逼近性及其应用研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 模糊性和模糊系统的概念 |
1.2 模糊系统的研究历史与现状 |
1.3 模糊系统的优势与质疑 |
1.4 本文主要研究内容和结构安排 |
2 模糊系统的泛逼近性及其误差估计 |
2.1 引言 |
2.2 预备知识 |
2.3 模糊系统s_n(x)的泛逼近性 |
2.4 s_n(x)对连续函数s(x)逼近的误差估计 |
2.4.1 f_n(x)对连续函数s(x)逼近的误差估计 |
2.4.2 f_n(x)对模糊系统s_n(x)逼近的误差估计 |
2.4.3 s_n(x)对连续函数s(x)逼近的误差估计 |
2.4.4 仿真结果 |
2.5 本章小结 |
3 模糊系统在自治Lienard系统逼近中的应用 |
3.1 引言 |
3.2 预备知识 |
3.3 自治Lienard系统的简化HX方法 |
3.3.1 算法的提出与证明 |
3.3.2 算法的性能分析 |
3.3.3 仿真实验 |
3.4 自治Lienard系统的简化边缘线性化方法 |
3.4.1 算法的提出与证明 |
3.4.2 算法的性能分析 |
3.4.3 仿真实验 |
3.5 误差产生的原因与误差的控制方法初探 |
3.5.1 误差产生的原因 |
3.5.2 误差与步长的关系 |
3.5.3 舍入误差累加的危害 |
3.5.4 减小误差的控制方法初探 |
3.6 参数摄动的外推Runge-Kutta法 |
3.6.1 参数摄动的外推Runge-Kutta法 |
3.6.2 数值实验 |
3.7 本章小结 |
4 模糊值函数的对偶μ-可积性及其应用 |
4.1 引言 |
4.2 预备知识 |
4.3 积分定义与转换定理 |
4.4 对偶μ-可积性的判定 |
4.5 预测中的应用 |
4.6 本章小结 |
5 基于中点导数的闭Newton-Cotes数值积分公式及其应用 |
5.1 引言 |
5.2 基于中点导数的闭Newton-Cotes数值积分公式 |
5.3 基于中点导数的闭Newton-Cotes数值积分公式的误差余项 |
5.4 复化形式的计算效率 |
5.5 数值实验结果 |
5.6 在重心法解模糊化中的应用 |
5.7 本章小结 |
结论与展望 |
创新点摘要 |
参考文献 |
攻读博士学位期间发表学术论文情况 |
致谢 |
作者简介 |
四、二阶线性微分方程的可积性及解法(论文参考文献)
- [1]二阶线性微分方程不变量解法的新类型[J]. 赵临龙. 西南民族大学学报(自然科学版), 2018(04)
- [2]一类二阶线性变系数微分方程解法的探讨[J]. 赵临龙. 河南科学, 2019(05)
- [3]二阶线性微分方程的乘子可积性[J]. 姬小龙,高育晓,刘卓军. 数学的实践与认识, 2008(04)
- [4]常微分算子理论的发展[D]. 许美珍. 内蒙古师范大学, 2011(10)
- [5]常微分方程课程教学内容和体系的研究与实践[J]. 赵临龙. 安康师专学报, 1999(01)
- [6]基于李对称分析的偏微分方程精确解的研究[D]. 刘汉泽. 昆明理工大学, 2009(12)
- [7]孤立子理论在中国的发展(1978-1989)[D]. 包霞. 内蒙古师范大学, 2019(07)
- [8]非线性演化方程的精确解与可积性及其符号计算研究[D]. 徐桂琼. 华东师范大学, 2004(04)
- [9]二次Riccati方程研究综述[J]. 刘玉堂,辛祥鹏. 聊城大学学报(自然科学版), 2017(03)
- [10]模糊系统的泛逼近性及其应用研究[D]. 赵纬经. 大连理工大学, 2013(05)