一、一本特点突出的微积分教材(论文文献综述)
邱柏驺[1](2021)在《把教材编写当作自己一生的事业》文中进行了进一步梳理同济大学编写的《高等数学》继承了樊映川等编《高等数学讲义》的优良传统,具有结构严谨、逻辑清晰、叙述详细、通俗浅显、例题丰富的优点,满足了工科类专业高等数学课程教学的需求。为了编写出一本工科高等数学精品教材,40多年来作者坚持改革、不断锤炼,《高等数学》(第七版)在2021年首届全国教材建设奖评选中荣获全国优秀教材特等奖。
王彩芬,曹荣荣,张丽,傅海伦[2](2021)在《中美微积分教材内容建构比较与启示——以“微分”为例》文中指出从数学教育心理学和教学论的角度对中美两国微积分教材进行对比研究,发现中美两国教材在内容建构方式与建构策略、目标等方面有很大的差异,差异的背后是教育理念的不同和教学价值取向的分歧.通过对中美微积分教材内容建构的比较,得出重要启示:教材内容建构的价值取向应由教材走向学材,其建构策略应围绕学生的数学思维发展和创新能力的培养为核心而展开.
吴晓红[3](2021)在《核心素养视域下高中数学新教材习题与课程标准的一致性研究 ——以北师大版和湘教版“几何与代数”内容为例》文中进行了进一步梳理基于课程标准的课程改革的背景,我国采用国家基本要求指导下的教材多样化政策,教材编写由“一纲一本”转变为“一标多本”。目前,我国基于《普通高中数学课程标准(2017年版)》的理念,编制了多个版本的高中数学新教材。因此,新教材与课程标准的要求是否一致就成为了一个急需讨论的问题。本研究拟研究的问题是:(1)如何基于数学核心素养评价框架构建本土化的高中数学新教材习题与课程标准的一致性分析框架?(2)高中数学新教材习题与课程标准的总体一致性水平如何?(3)高中数学新教材习题与课程标准在认知水平维度下的一致性水平如何?(4)高中数学新教材习题与课程标准在各数学核心素养维度下的一致性水平如何?(5)高中数学新教材习题与课程标准的数学核心素养及其水平分布有怎样的规律?本研究通过选取《普通高中数学课程标准(2017年版)》、北京教育出版社和湖南教育出版社出版的《普通高中数学教科书》必修以及选择性必修教材为研究对象。以量化分析为主,质性分析为辅的研究方式,运用文献分析、内容分析、统计分析等方法开展研究工作,得到如下的结论:(1)在总体维度下,北师大版教材习题与课程标准具有统计学意义上的显着一致性,湘教版教材习题与课程标准不具有统计学意义上的显着一致性。(2)在认知水平维度下,北师大版、湘教版与课程标准都具有统计学意义上的显着一致性,并且北师大版与课程标准的显着一致性水平较好。(3)在各数学核心素养维度下,在数学建模、直观想象、数学运算三个维度,北师大版和湘教版教材习题与课程标准都具有统计学意义上的显着一致性;在数学抽象维度,北师大版教材习题与课程标准具有统计学意义上的显着一致性,湘教版教材习题与课程标准不具有统计学意义上的显着一致性;在逻辑推理维度,北师大版和湘教版教材习题与课程标准都不具有统计学意义上的显着一致性。(4)数学核心素养分布特征方面,总体而言,两个版本教材与课程标准关于数学核心素养的考查都注重考查数学抽象、直观想象和数学运算,其次是对逻辑推理素养的考查,最后是对数学建模素养的考查。关于素养水平分布特征,总体维度下的素养水平分布较好,不同内容主题下的素养水平分布存在较大的差异。本研究为提升教材与课程标准一致性,拟从提升教材编者对课程标准的理解水平,深化高中数学课程标准的研究和修订,重视素养的均衡分布及素养高级水平考查,深入研制本土化的一致性水平分析工具四个方面提出了建议。
侯晓婷[4](2021)在《数学教育家刘薰宇的论着之研究》文中认为刘薰宇一生经历清末、民国和新中国初期三个时期,是我国现代着名的数学家、数学教育家。数学教育家关于数学教育的思想、观点、着作以及自身的人格品质等都可以作为反思当前数学教育、继承我国优良教育传统的宝贵财富。本文采用文献研究法、个案分析法和历史研究法系统研究了刘薰宇的论着。挖掘刘薰宇论着的特点及教育价值,以期对我国当代中学生、数学教育工作者、数学科普读物的撰写者有所借鉴。通过整理与研究发现其成果包括数学科普着作、数学教材和文章,均对当时和现今产生了深远影响。所编《数学趣味》《数学的园地》《马先生谈算学》等科普着作每一本都再版多次;在当时没有官方统一规定使用某种数学教科书的背景下,所编算术、代数、平面几何等科目的数学教科书,在全国范围内广泛使用;刘薰宇在不同时期发表的文章,据不完全统计有130余篇,其中关于数学教育方面的文章有24篇。刘薰宇的数学科普着作的教育价值包括:(1)注重知识与生活的联系;(2)层层深入引导,重视学习方法;(3)倡导“全人教育”;(4)数文结合,感受数学的趣味性;(5)知识传承,广受肯定。刘薰宇编写教材的教育价值包括:(1)重视“例习题中数学思想方法的渗透”;(2)习题设置层层深入,启发学生学习;(3)及时练习,重视知识的巩固。刘薰宇数学教育方面文章的教育价值包括:(1)考虑学生潜力,发展数学严谨性;(2)重视数学学习方法;(3)注重独立思考能力。
孙丹丹[5](2021)在《基于数学史网络研修的在职初中数学教师观念发展研究》文中研究说明该研究是一项在数学教育中运用数学史的实证研究,关注数学史研修对在职初中教师数学观及数学教学观的影响。为此,研究者设计实施了一项旨在发展在职初中数学教师观念的基于数学史的网络研修项目,共持续一年,包含九个主题的数学史学习及教学研讨,研究致力于分析:参与研修项目的教师的数学观和数学教学观是否有转变?如果有:(1a)教师数学观内容有何转变?(1b)教师数学观持有方式有何转变?(2a)教师数学教学观内容有何转变?(2b)教师数学教学观持有方式有何转变?(3)教师的数学观和数学教学观转变有何联系?这些转变与数学史有怎样的联系?研究收集了教师数学观及数学教学观前后测李克特问卷、数学观及数学教学观前后测开放性问卷、9个研修主题的反思单及若干教师的反思单追踪访谈、个案教师教学设计、个案教师半结构化访谈等数据,综合教师总体与教师个案两个层面来分析问题1教师数学观的变化及问题2教师数学教学观的变化,总体层面的分析可以发现教师观念转变趋势,个体层面的分析有助于深入转变细节,问题3数学史、数学观及数学教学观转变关系的探索依赖于具体情境,因此仅在个案层面回答。研究采用混合研究法分析教师总体观念转变,采用案例研究法分析教师个体观念转变。研究发现,教师数学观表现出更支持柏拉图主义和问题解决观、更否定工具主义观的趋势,教师数学教学观表现出更支持强调理解及学生中心、更否定强调表现的趋势。具体而言,教师数学观内容的转变体现在:持有更加动态的数学观;倾向认为数学思维的应用也是一种数学应用;否定数学是不相关的事实规则集合。教师数学观持有方式转变体现在阐释性、例证性、论证性、一致性的增强。教师数学教学观内容转变体现在:深化“双基”目标;重视情意及观念目标的培养;尊重及重视学生的想法;关注学生的主动参与及思考;补充调整教科书。教师数学教学观持有方式转变体现在:例示性、论证性、执行性及联结性增强,冲突性减弱。研究从数学史(横向枚举史、纵向演进史)和HPM课例实施及观摩两方面阐述了数学史网络研修对数学教师观念的影响路径。本研究理论创新在于综合信念内容及信念持有方式两个视角来探索数学史对数学教师观念系统的影响,关注了已有数学史与数学教育研究较少关注的数学教学信念,同时讨论了数学观与数学教学观之间的联系。实践创新在于设计了可推广的指向在职初中数学教师观念发展的教师教育项目,借助网络研修拓广了以数学史促进教师专业发展的辐射面,为开展“互联网+教师教育”提供参考原型。
沈中宇[6](2021)在《面向教师教育的数学知识研究 ——以S市高中数学教研员为例》文中提出百年大计,教育为本。教育大计,教师为本。教师培养的关键是教师教育,要改善教师教育的效果,教师教育者的作用无疑是至关重要的,因此,数学教师教育者在数学教师教育中发挥着重要的作用。近年来,数学教育研究者开始关注数学教师教育者的研究,其中,“面向教师教育的数学知识”(Mathematical Knowledge for Teaching Teachers,简称MKTT)理论为研究一般数学教师教育者所需要的数学知识提供了借鉴。但已有的研究中对于“面向教师教育的数学知识”仍然缺乏清晰准确的刻画,同时,相关研究主要集中在理论构建,相关的实证研究较少。基于以上原因,本文以面向教师教育的数学知识为研究主题,选取高中数学教研员作为研究对象,主要探讨以下三个研究问题:(1)构成面向教师教育的数学知识的要素有哪些?(2)高中数学教研员具备哪些面向教师教育的数学知识?(3)在数学教研活动中,高中数学教研员反映出哪些面向教师教育的数学知识?针对本研究的三个研究问题,将研究设计分为三个阶段,分别为文献分析与框架确立、问卷调查与深度访谈以及现场观察与案例分析。文献分析与框架确立阶段采用了专家论证法。首先通过文献分析梳理已有的数学教师教育者专业知识框架,接着通过对相关的成分和子类别的反复比较,构建初始的面向教师教育的数学知识框架,最后通过三轮专家论证得到最终的面向教师教育的数学知识框架。问卷调查与深度访谈阶段采用了问卷调查法和深度访谈法。其中选取了高中数学中重要的数学主题编制了调查问卷和访谈提纲,通过编码分析高中数学教研员的问卷回答和访谈实录,从而了解高中数学教研员具备的面向教师教育的数学知识。现场观察与案例分析采用了案例研究法。其中观察了不同的高中数学教研员的多次教研活动,在观察过程中对教研活动进行录音并在观测后对高中数学教研员进行访谈,对录音和访谈材料进行编码和统计,从而剖析高中数学教研员在教研活动中反映的面向教师教育的数学知识。本研究的基本结论是:1.构成面向教师教育的数学知识的要素包括4个成分与12个子类别。构成成分为学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识。学科内容知识包含的子类别为一般内容知识、专门内容知识和关联内容知识,教学内容知识包含的子类别为内容与学生知识、内容与教学知识和内容与课程知识,高观点下的数学知识包含的子类别为学科高等知识、学科结构知识和学科应用知识,数学哲学知识包含的子类别为本体论知识、认识论知识和方法论知识。2.高中数学教研员具备的面向教师教育的数学知识情况如下。(1)高中数学教研员在学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识4个成分中并不存在明显的短板;(2)高中数学教研员对不同知识成分的掌握存在一定差异,其中,在学科内容知识和教学内容知识2个方面掌握较好,而在高观点下的数学知识和数学哲学知识2个方面还有所欠缺;(3)高中数学教研员在各个知识成分中有以下具体理解:在学科内容知识方面,对于基本的概念、定理和公式的合理性以及不同概念、定理和公式之间的联系较为熟悉;在教学内容知识方面,对于学生有关特定数学内容学习的困难,不同数学内容的教授方式和相关数学内容在教科书中的编排理解较深;在高观点下的数学知识方面,能够对中学数学知识作出一定程度的推广、涉猎不同学科中数学知识的应用;在数学哲学知识方面,能够大致解释数学定义的基本作用和标准、数学研究的动力、数学证明的作用和价值以及数学的基本思想方法。(4)高中数学教研员在各个知识成分中有以下欠缺之处:在学科内容知识方面,对于定义的多元性、解释的多样性和联系的普遍性方面还有进步的空间;在教学内容知识方面,对于学生数学学习困难的细致理解、不同数学内容的深入教授和教学内容编排意图的全面考虑还有提升的余地;在高观点下的数学知识方面,从高观点理解中学数学知识、分析不同知识的联系和在不同学科中应用数学知识方面还有较多需要完善的地方;在数学哲学知识方面,还不能形成系统的理解。3.在数学教研活动中,高中数学教研员反映出的面向教师教育的数学知识情况如下。(1)高中数学教研员反映的面向教师教育的数学知识大部分属于教学内容知识和学科内容知识,小部分属于数学哲学知识和高观点下的数学知识。(2)高中数学教研员在数学教研活动中的主要知识来源为一般内容知识、内容与教学知识、学科高等知识和方法论知识。(3)高中数学教研员在数学教研活动中反映的面向教师教育的数学知识主要有:在学科内容知识方面有数学中的基本概念、定理、公式和性质及其由来、表征、证明及解释;不同数学概念、定理、公式之间的联系。在教学内容知识方面有学生对特定数学内容理解存在的困难;不同数学内容的引入、辨析、应用和小结的教学方法;特定数学内容在课程标准中的要求和在教科书中的编排。在高观点下的数学知识方面有中学数学课程中的数学概念在高等数学中的推广;高观点下不同数学概念之间的联系;数学知识在现代科学和实际生活中的应用。在数学哲学知识方面有对数学定义的认识;对数学认识过程的理解;推理论证在数学中的作用;数学研究的思想方法。本研究对于教师教育者专业标准的制订、数学教师教育者专业培训的设计和数学教师专业发展项目的规划有一定启示,后续可以在数学教师教育者的专业知识、数学教师教育者的专业发展和数学教师教育者的工作实践等方面进一步开展研究。
杨慧卿[7](2021)在《地方应用型本科高校经管类“高等数学”教材建设实践》文中进行了进一步梳理经管类"高等数学"是地方应用型本科高校量大面广的一门课程,其教材的选择应遵循"适宜教学"的原则。在"经济数学微积分"教材建设中,通过适度降低理论要求、呈现数学探究过程、多元切入、通俗的表达和多层次的习题落实以生为本的教育理念,在内容处理上体现出夯实"三基"、培养能力、落实课程思政等特色。在教材建设中要不断吸收课程建设和教学改革的成果,并借助信息化的手段实现教材的更新迭代,使教材更易教易学。
宋佳[8](2021)在《中国大陆与中国香港高中数学教科书比较研究》文中指出数学教科书是国家教育发展质量与水平的直观反映,是教授课程、传播知识、承载教学理念的重要文本。香港作为中国的特别行政区,既受传统文化熏陶又有国际视野,其基础教育成果显着,香港学生自1995年以来参加TIMSS与PISA测试成绩优异。因此研究大陆与香港数学教科书的异同,通过交流与碰撞,对两地数学教科书的编写、数学教育的发展有重要的参考价值与借鉴作用。本研究以两地课程指导文件为基准,以两地现行高中数学教科书——大陆人教版《数学A版(2019)》与香港牛津版《New Century Mathematics(Second Press)2014》为研究对象。在集合与逻辑、数与代数、图形与几何、统计与概率四领域中,分别从内容分布、广度与深度、呈现方式及数学文化等五维度进行比较研究。质性研究与量化研究相结合,首先统计了两版教科书在章、节和页数的内容分布情况,两版教科书的知识点数量及其呈现方式,用模型方法分别计算出内容广度与深度,再选取重点知识进行个案分析。其次,从教科书整体、章和节三层次对二者的编写体例与栏目设置进行比较。再次,从内容分布、主题分类、栏目设置、运用形式及表达方式等六个维度比较两版教科书中的数学文化。最后,利用SPSS对上述计算结果进行统计学检验。本文得到如下结论:1.内容分布:两版教科书的内容分布趋势均可用“大杂居,小聚居”来形容,即四个领域交叉分布于每本书,但在一本书中属于同一领域的章节是顺次编排的。2.人教版整体内容的相对广度与相对深度均大于牛津版,即人教版“广而深”,牛津版“窄而浅”。3.呈现方式:人教版注重例题分析功能、问题链驱动教学、强调数学核心素养、倡导探索课外信息技术软件、通过思维导图训练梳理能力。牛津版强调例题示范功能、善用反例教学、突出数学应用价值、利用信息技术助力课堂教学、通过表格整理渗透对比思维与归纳能力。4.数学文化:数学文化总量,牛津版远多于人教版。两版数学文化在主题分类与栏目设置的分布趋势类似。人教版对数学文化的整体运用水平高于牛津版。两版对数学文化的表达形式相似,均以文字表述为主。两版教科书各具鲜明的编写特色。人教版:1.注重培养学生阅读能力与写作能力。2.注重数学史的融入。3.注重培养学生探究与建模能力。牛津版:1.分册可拆卸,便于弹性使用教科书。2.兼顾差异性,照顾学生的不同学习需求。3.培养自主管理能力,提高终身学习意识。4.重视应用,渗透STEM教育思想。5.重视反例及归纳思想在教学中的作用。基于研究结论,对高中数学教科书编写提出如下建议:1.优化教科书的自学便利性,渗透终身学习理念。2.加强教科书的系统设计,注重学段衔接。3.弹性设置课程,灵活使用教科书。4.突出栏目设置的多样化与针对性,兼顾学生差异。5.提高数学教科书的社会价值与人文价值。6.加强国民教育,开拓国际视野。
王海青[9](2020)在《James Stewart的微积分教材立体化建设特点及其启示》文中研究表明为促进教育改革与发展,中国开始在高等教育内部推出"新工科"的高等工程教育教学改革,在基础教育中开展本土化的大学先修课程试点试验.微积分课程是高等工程教育课程体系的基础课程,也是中国大学先修课程试点的主要课程.微积分课程的教材编写与教学方法是改革的重要环节,影响着课程的实施效果.摈弃不同的教育文化背景以及价值理念,剖析美国James Stewart的经典微积分教材编撰特色与成功经验,有助于中国微积分教材的建设与相应教辅资源的开发.
张冬莉[10](2020)在《中国数学教科书中勾股定理内容设置变迁研究(1902-1949)》文中进行了进一步梳理正如约翰尼斯·开普勒(Johannes Kepler)所言:“几何学有两件伟大的瑰宝:第一件是毕达哥拉斯定理,第二件是黄金分割。”勾股定理作为平面几何中最基础的定理,它是联系数学中数与形的第一定理,导致不可公度量的发现,揭示了无理数与有理数的区别,引发了第一次数学危机。勾股定理开始把数学由计算与测量的技术转变为论证与推理的科学。千百年来人们给出勾股定理的证明至今已有五百多种,是证明方法最多的一个定理,其中蕴含了大量丰富的数学思想和技巧。自徐光启翻译欧几里得的《几何原本》以来,中国不仅对古希腊算学史有了新的认识,又更深层次地了解勾股定理在中西文化中的价值。尤其在清末民国时期,勾股定理已成为中学数学教育的核心内容之一。本研究以1902-1949年中国中学数学教科书的勾股定理内容为研究对象,以文献研究法、历史研究法、个案分析法、比较研究法等为主要研究方法,将中国中学数学教科书在1902-1949年的发展历程依照学制和课程标准的颁布,分为清末时期(1902-1911)、民国初期(1912-1922)、民国课程纲要时期(1923-1928)、民国课程标准时期(1929-1949)四个发展阶段,旨在全面、系统、深入地研究勾股定理在中国中学数学教科书中的发展特点,分析影响及其变迁的因素,力求为当今的中学数学教科书中勾股定理的编写提供借鉴和启示。本研究从如下五个部分论述,具体内容如下:一、清末时期(1902-1911)中学几何教科书的勾股定理。这一时期,学制初订,中国的中学数学教育主要以学习日本数学教育为主,几何教科书的编写主要是翻译和编译日本以及一些欧美国家的几何教科书。首先从纵向上分析在这十年中几何教科书中勾股定理内容的证明方法以及定理表述上的变迁特点;其次横向的分别选取翻译日本和美国的几何教科书进行个案分析,从教科书编撰理念、编排形式、内容设置结构等维度进行了对比分析,以便从微观上详细了解这一时期数学教科书中勾股定理的变迁特点及教育价值。二、民国初期(1912-1922)中学几何教科书的勾股定理。这一时期中国的传统教育思想理念、制度模式和知识体系在西方文明的冲击下开始了艰难的转型,同时也影响几何教科书的发展。民国初期的教育继承了清末教育改革的成果,中学数学教科书的发展也日新月异。此时,自编教科书也在逐步成熟。这一时期,虽然中国自编几何教科书,通常是参考欧美教科书并加以适当筛选和增删,但是知识内容的组织与呈现,都有了显着的改进。但是其中勾股定理内容的编排上特点并不明显,还没有彻底摆脱之前教科书中的内容和形式,仍然有清末时期几何教科书的痕迹。分别选取该时期具有代表性的教科书《共和国教科书平面几何》、《民国新教科书几何学》以及汉译本《温德华士几何学》中勾股定理内容的编排设置进行详细对比分析。三、民国课程纲要时期(1923-1928)中学数学教科书的勾股定理。1922年的“新学制”颁布后,中小学实行六三三制。无论是教学方法还是教科书的编写,都在不同程度上有所变革,凸显着美国数学教育的影响。中学教科书把代数、几何、算术和三角等内容融合在一起混合教学,将原来的几何教科书架构完全打破。中国首次采用混合编写教科书的方法,不仅能使学生明白各科之间的内在联络,而且可以建构知识的统一体系。也正是在混合教学的风靡下,勾股定理内容的编排也因此受到极大的影响,无论是在章节的设置上,还是定理证明的方法、课后习题的设置上都与以往不同。故分别选取该时期具有重要研究价值的数学教科书《布利氏新式算学教科书》、《初级混合数学》、《新学制混合算学教科书》和《现代初中教科书几何》中勾股定理内容的编排设置内容特点进行详细对比分析。四、民国课程标准时期(1929-1949)中学数学教科书的勾股定理。在此阶段我国又进行了三次数学课程标准的修订,这一时期颁布的初中和高中课程标准中都要求学习平面几何。勾股定理内容则分别出现在初中和高中教科书中,但是由于对定理掌握的目标要求不同,故所在章节不同,导致使用的证明方法、表述方法和难易程度也不同。另外1932年首次设置了实验几何课程,明确实验几何教学的目标和要求,无论是在理解几何还是实验几何中都编排了勾股定理内容。虽然重视程度和教学目标都不同,但是分别从代数和几何的角度体现了勾股定理的重要性以及在教科书中有重要的地位。故选取《复兴中学教科书》和《实验几何教科书》中勾股定理内容编排进行详细分析。在该部分中,又将1912-1949年间中学数学教科书中勾股定理内容编排变迁进行了特点分析。五、以上研究中,在简要呈现各阶段的历史文化背景的同时,适当地介绍了代表性教科书作者的生平及数学教育贡献。六、结论。首先,从宏观和微观上归纳1902-1949年中国中学数学教科书中勾股定理编排特点;其次,分析了影响1902-1949年中国中学数学教科书勾股定理编排变迁的因素;再次,阐明了1902-1949年中国中学数学教科书勾股定理证明方法编排变迁的特点;最后,总结了勾股定理的编排变迁为当今数学教科书编写提供的启示与借鉴。综上所述,本研究主要以1902-1949年为时间域,研究了中国中学数学教科书中勾股定理的编排之变迁。根据各学制、课程标准(或课程纲要)对中学数学教科书的编写背景、编撰理念的要求不同,选取各阶段具有代表性的教科书中勾股定理的编排形式、证明方法等方面进行个案分析,总结了勾股定理内容编排之特点。厘清了1902-1949年中国中学数学教科书中的勾股定理内容的编排,揭示了勾股定理编排的变迁特点和影响变迁的因素,展示了清末民国时期中学勾股定理内容的设置、编排、内容选取等诸特点对当今教科书建议和教学改革的借鉴作用。
二、一本特点突出的微积分教材(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、一本特点突出的微积分教材(论文提纲范文)
(1)把教材编写当作自己一生的事业(论文提纲范文)
一、樊映川等编《高等数学讲义》的优良传统为《高等数学》编写奠定了重要基础 |
二、编写《高等数学》(第一版)的背景和探索 |
三、《高等数学》的修订历程 |
四、结语 |
(3)核心素养视域下高中数学新教材习题与课程标准的一致性研究 ——以北师大版和湘教版“几何与代数”内容为例(论文提纲范文)
中文摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景与问题 |
1.1.1 研究背景 |
1.1.2 研究问题 |
1.2 研究目的与意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 研究思路与方法 |
1.3.1 研究思路 |
1.3.2 研究方法 |
1.4 研究内容与创新 |
1.4.1 研究内容 |
1.4.2 研究创新 |
1.5 本章小结 |
第2章 相关概念界定和文献综述 |
2.1 相关概念界定 |
2.1.1 教材 |
2.1.2 习题 |
2.1.3 课程标准 |
2.1.4 一致性 |
2.2 文献综述 |
2.2.1 高中数学教材研究现状 |
2.2.2 高中数学教材习题研究现状 |
2.2.3 数学核心素养的研究现状 |
2.2.4 数学教材与课程标准的一致性研究现状 |
2.2.5 已有研究的总结 |
2.3 本章小结 |
第3章 理论模型 |
3.1 SEC一致性分析模式 |
3.1.1 SEC一致性分析模式的理念 |
3.1.2 SEC一致性分析程序和方法 |
3.2 数学核心素养的评价框架 |
3.2.1 几个学习评价模型的分析 |
3.2.2 数学核心素养评价的框架 |
3.3 理论模型的应用 |
3.3.1 SEC一致性分析模式的应用 |
3.3.2 数学核心素养评价框架的应用 |
3.4 理论模型的融合 |
3.4.1 基于数学核心素养的SEC一致性分析模型的构建 |
3.4.2 基于数学核心素养的SEC一致性分析模型的评价 |
3.5 本章小结 |
第4章 研究设计 |
4.1 研究对象 |
4.1.1 教材与课标的选取 |
4.1.2 具体内容的选取 |
4.2 研究工具 |
4.2.1 内容主题的划分 |
4.2.2 认知水平的划分 |
4.2.3 一致性分析框架的确定 |
4.3 研究对象的编码 |
4.3.1 课程标准的编码 |
4.3.2 高中数学教材习题的编码 |
4.4 研究信度与效度 |
4.4.1 研究信度 |
4.4.2 研究效度 |
4.5 数据整理 |
4.5.1 课程标准的数据统计 |
4.5.2 高中数学教科书的数据统计 |
4.6 本章小结 |
第5章 研究结果 |
5.1 一致性系数分析 |
5.1.1 一致性系数P值的计算 |
5.1.2 临界值P0 的确定 |
5.1.3 统计学上的显着一致性判断 |
5.2 内容主题分布 |
5.2.1 总体维度下的内容主题分布 |
5.2.2 认知水平维度下的内容主题分布 |
5.2.3 数学核心素养维度下的内容主题分布 |
5.3 认知水平分布 |
5.3.1 总体的认知水平分布 |
5.3.2 认知水平维度下的认知水平分布 |
5.3.3 数学核心素养维度下的认知水平分布 |
5.4 曲面图分析 |
5.4.1 总体维度的曲面图分析 |
5.4.2 认知水平维度下的曲面图分析 |
5.4.3 数学核心素养维度的曲面图分析 |
5.5 数学核心素养及其水平分布 |
5.5.1 数学核心素养分布 |
5.5.2 数学核心素养水平分布 |
5.6 本章小结 |
第6章 研究结论、思考与建议 |
6.1 结论 |
6.1.1 总体的一致性水平特征 |
6.1.2 认知水平维度的一致性水平特征 |
6.1.3 各数学核心素养的一致性水平特征 |
6.1.4 数学核心素养及其水平分布特征 |
6.2 思考 |
6.2.1 影响课程目标的全面落实 |
6.2.2 影响学生数学核心素养的发展 |
6.2.3 影响学生实践能力和创新意识的发展 |
6.2.4 影响基础教育的公平而有质量的发展 |
6.3 建议 |
6.3.1 提升教材编者对课程标准的理解水平 |
6.3.2 深化高中数学课程标准的研究和修订 |
6.3.3 重视素养的均衡分布及素养高级水平考查 |
6.3.4 深入研制本土化的一致性水平分析工具 |
6.4 本章小结 |
第7章 不足与展望 |
7.1 研究不足 |
7.2 研究展望 |
7.3 本章小结 |
参考文献 |
附录 |
附录1 课程标准编码表 |
附录2 |
攻读硕士学位期间发表的学术论文 |
致谢 |
(4)数学教育家刘薰宇的论着之研究(论文提纲范文)
中文摘要 |
ABSTRACT |
第1章 绪论 |
1.1 问题提出 |
1.2 研究目的和意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 文献综述 |
1.4 研究方法 |
1.5 创新之处 |
第2章 刘薰宇的数学科普着作及其教育价值 |
2.1 生平简介 |
2.2 刘薰宇的数学科普着作及其现代版本 |
2.3 个案分析 |
2.3.1 《数学趣味》 |
2.3.2 《数学的园地》 |
2.3.3 《马先生谈算学》 |
2.4 教育价值 |
2.4.1 注重知识与生活联系 |
2.4.2 层层深入引导,重视学习方法 |
2.4.3 倡导“全人教育” |
2.4.4 数文结合,感受数学的趣味性 |
2.4.5 知识传承,广受肯定 |
第3章 刘薰宇编写的数学教材及其教育价值 |
3.1 刘薰宇编写的数学教材 |
3.2 数学教科书个案分析 |
3.2.1 《开明算学教本》 |
3.2.2 《开明算学教本 三角》 |
3.2.3 《开明算学教本 几何》 |
3.2.4 《开明算学教本 算术》 |
3.2.5 《开明算学教本 代数》 |
3.3 数学讲义个案分析 |
3.3.1 《开明几何讲义》内容概要 |
3.3.2 《开明几何讲义》特点分析 |
3.4 教育价值 |
3.4.1 重视“例习题中数学思想方法的渗透” |
3.4.2 习题设置层层深入,启发学生学习 |
3.4.3 重视知识的引入,促进学生知识“正迁移” |
3.4.4 及时练习,重视知识的巩固 |
第4章 刘薰宇发表的数学教育类文章及其教育价值 |
4.1 刘薰宇发表的数学教育方面的文章 |
4.2 个案分析 |
4.2.1 怎样学习数学 |
4.2.2 “思索”的展开 |
4.2.3 我对于算学的趣味 |
4.2.4 非有真凭实据勿下断语 |
4.2.5 从算术到代数 |
4.2.6 几何学习 |
4.3 教育价值 |
4.3.1 考虑学生潜力,发展数学严谨性 |
4.3.2 重视数学学习方法 |
4.3.3 注重独立思考能力 |
第5章 研究结论与展望 |
5.1 研究结论 |
5.1.1 数学科普着作 |
5.1.2 数学教材 |
5.1.3 文章 |
5.2 研究展望 |
附录1 |
附录2 |
参考文献 |
致谢 |
攻读学位期间科研成果目录 |
(5)基于数学史网络研修的在职初中数学教师观念发展研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 引论 |
1.1 背景 |
1.1.1 数学史教育价值呼吁实证研究的验证 |
1.1.2 教育改革落实亟需教师观念的调整 |
1.1.3 信息技术发展强力支撑教师网络研修的推行 |
1.2 研究问题 |
1.3 研究意义 |
1.4 论文结构概览 |
第2章 文献综述 |
2.1 数学教师观念 |
2.1.1 国内教师信念及观念研究述评 |
2.1.2 国外教师信念及观念研究述评 |
2.2 数学史与教师专业发展 |
第3章 概念框架 |
3.1 理论的作用 |
3.2 研究问题中的理论要素 |
3.3 观念及信念系统 |
3.3.1 信念内涵:信念和知识 |
3.3.2 信念结构:信念系统 |
3.4 教师的数学观 |
3.4.1 三种概观和判断 |
3.4.2 三种数学观 |
3.4.3 大纲及课标中的数学观 |
3.5 教师的数学教学观 |
3.5.1 三种数学教学观 |
3.5.2 大纲及课标中的数学教学观 |
3.6 理论视角的联系 |
3.7 研究问题的细化 |
第4章 研究设计 |
4.1 项目背景 |
4.1.1 主题选择 |
4.1.2 项目组织 |
4.2 研究方法 |
4.3 数据收集 |
4.4 研究工具 |
4.5 数据分析 |
4.6 信效度分析 |
第5章 教师观念变化趋势 |
5.1 数学观变化趋势的量化分析 |
5.2 数学观变化趋势的质性分析 |
5.2.1 数学演进 |
5.2.2 数学应用 |
5.2.3 数学本质 |
5.3 数学教学观变化趋势的量化分析 |
5.4 数学教学观变化趋势的质性分析 |
5.4.1 教学目标 |
5.4.2 教学过程及师生角色 |
5.4.3 学生学习 |
5.4.4 教学资源 |
第6章 教师观念转变案例研究 |
6.1 个案 1:孙老师 |
6.1.1 孙老师的数学观 |
6.1.2 孙老师的数学教学观 |
6.1.3 孙老师案例小结 |
6.2 个案 2:侯老师 |
6.2.1 侯老师的数学观 |
6.2.2 侯老师的数学教学观 |
6.2.3 侯老师案例小结 |
6.3 个案 3:李老师 |
6.3.1 李老师的数学观 |
6.3.2 李老师的数学教学观 |
6.3.3 李老师案例小结 |
6.4 跨案例分析 |
6.4.1 数学观 |
6.4.2 数学教学观 |
6.4.3 发展机制 |
第7章 结论 |
第8章 讨论 |
8.1 与已有研究的联系 |
8.2 可能回答的问题 |
8.3 回顾理论与方法论 |
8.4 回顾教育研究的三个方面 |
8.5 启示、局限与展望 |
参考文献 |
附录 |
附录1 研修主题示例 |
附录2 数学观及数学教学观开放问卷(研修前后) |
附录3 函数主题反思单示例 |
附录4 个案教师访谈提纲(研修后) |
附录5 《中学数学教师数学观问卷》正式问卷 |
附录6 a《中学数学教师数学教学观问卷》初测问卷 |
附录6 b《中学数学教师数学教学观问卷》正式问卷 |
作者简历及在学期间所取得的科研成果 |
致谢 |
(6)面向教师教育的数学知识研究 ——以S市高中数学教研员为例(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景 |
1.1.1 教师教育者的专业发展需要关注 |
1.1.2 数学教师教育者的研究值得重视 |
1.1.3 数学教师教育者的专业知识有待探索 |
1.2 研究问题 |
1.3 研究意义 |
1.3.1 理论意义 |
1.3.2 实践意义 |
1.4 论文结构 |
第2章 文献述评 |
2.1 数学教师教育者的专业知识 |
2.1.1 数学教师教育者的专业知识框架 |
2.1.2 数学教师教育者的专业知识测评 |
2.1.3 文献小结 |
2.2 数学教师教育者的专业发展 |
2.2.1 数学教师教育者的专业发展框架 |
2.2.2 数学教师教育者的专业发展调查 |
2.2.3 文献小结 |
2.3 数学教师教育者的工作实践 |
2.3.1 数学教师教育课堂的学习任务框架 |
2.3.2 数学教师教育课堂的学习任务实践 |
2.3.3 文献小结 |
2.4 文献述评总结 |
第3章 研究方法 |
3.1 研究设计 |
3.1.1 文献分析与框架确立 |
3.1.2 问卷调查与深度访谈 |
3.1.3 现场观察与案例分析 |
3.2 研究对象 |
3.2.1 专家论证对象 |
3.2.2 问卷调查对象 |
3.2.3 深度访谈对象 |
3.2.4 案例研究对象 |
3.3 研究工具 |
3.3.1 论证手册 |
3.3.2 调查问卷 |
3.3.3 访谈提纲 |
3.3.4 观察方案 |
3.4 数据收集 |
3.4.1 专家论证 |
3.4.2 问卷调查 |
3.4.3 深度访谈 |
3.4.4 现场观察 |
3.5 数据分析 |
3.5.1 专家论证 |
3.5.2 问卷与访谈 |
3.5.3 现场观察 |
第4章 研究结果(一):面向教师教育的数学知识框架 |
4.1 文献分析 |
4.1.1 已有框架选取 |
4.1.2 相关成分析取 |
4.1.3 相关类别编码 |
4.2 框架构建 |
4.2.1 相关类别合并 |
4.2.2 相应成分生成 |
4.2.3 初步框架构建 |
4.3 框架论证 |
4.3.1 第一轮论证 |
4.3.2 第二轮论证 |
4.3.3 第三轮论证 |
第5章 研究结果(二):高中数学教研员具备的面向教师教育的数学知识 |
5.1 学科内容知识 |
5.1.1 一般内容知识 |
5.1.2 专门内容知识 |
5.1.3 关联内容知识 |
5.2 教学内容知识 |
5.2.1 内容与学生知识 |
5.2.2 内容与教学知识 |
5.2.3 内容与课程知识 |
5.3 高观点下的数学知识 |
5.3.1 学科高等知识 |
5.3.2 学科结构知识 |
5.3.3 学科应用知识 |
5.4 数学哲学知识 |
5.4.1 本体论知识 |
5.4.2 认识论知识 |
5.4.3 方法论知识 |
5.5 总体分析 |
5.5.1 学科内容知识 |
5.5.2 教学内容知识 |
5.5.3 高观点下的数学知识 |
5.5.4 数学哲学知识 |
第6章 研究结果(三):数学教研活动中反映的面向教师教育的数学知识 |
6.1 案例1 |
6.1.1 第一轮观察:平均值不等式 |
6.1.2 第二轮观察:对数的概念 |
6.1.3 案例1 总体分析 |
6.2 案例2 |
6.2.1 第一轮观察:幂函数的概念 |
6.2.2 第二轮观察:函数的基本性质 |
6.2.3 案例2 总体分析 |
6.3 案例3 |
6.3.1 第一轮观察:幂函数的概念 |
6.3.2 第二轮观察:出租车运价问题 |
6.3.3 案例3 总体分析 |
6.4 案例4 |
6.4.1 第一轮观察:反函数的概念 |
6.4.2 第二轮观察:反函数的图像 |
6.4.3 案例4 总体分析 |
6.5 跨案例分析 |
6.5.1 学科内容知识 |
6.5.2 教学内容知识 |
6.5.3 高观点下的数学知识 |
6.5.4 数学哲学知识 |
6.5.5 案例总体分析 |
第7章 研究结论及启示 |
7.1 研究结论 |
7.1.1 面向教师教育的数学知识框架 |
7.1.2 高中数学教研员具备的面向教师教育的数学知识 |
7.1.3 高中数学教研活动中反映的面向教师教育的数学知识 |
7.2 研究启示 |
7.2.1 教师教育者的专业标准制订需要关注学科性 |
7.2.2 数学教师教育者的专业培训需要提升针对性 |
7.2.3 数学教师专业发展项目规划需要增加多元性 |
7.3 研究局限 |
7.4 研究展望 |
7.4.1 拓展数学教师教育者的专业知识研究 |
7.4.2 深入数学教师教育者的专业发展研究 |
7.4.3 延伸数学教师教育者的工作实践研究 |
参考文献 |
附录 |
附录1 论证手册(第一轮) |
附录2 论证手册(第二轮) |
附录3 论证手册(第三轮) |
附录4 调查问卷(第一版) |
附录5 调查问卷(第二版) |
附录6 调查问卷(第三版) |
附录7 调查问卷(第四版) |
附录8 调查问卷(第五版) |
附录9 访谈提纲 |
附录10 观察方案 |
作者简历及在学期间所取得的科研成果 |
致谢 |
(7)地方应用型本科高校经管类“高等数学”教材建设实践(论文提纲范文)
1 经管类“高等数学”教材的建设背景和历程 |
2 落实以生为本的教材建设理念 |
2.1 适度降低理论要求,符合学生的实际 |
2.2 呈现数学探究过程,力求符合学生的认知特点和需求 |
2.3 多元切入,力求满足学生理解方式多样化的需求 |
2.4 通俗的表达,促进学生的数学理解 |
2.5 多层次的习题,满足课程和学生的不同需求 |
3.6 配录全程微课,方便学生自学 |
3 教材内容处理特色 |
3.1 夯实“三基” |
3.1.1 削枝强干,夯实基础知识 |
3.1.2 精炼基本数学思想方法,贯穿教材始终 |
3.1.3 精选例题和习题,强化基本技能 |
3.2 培养能力 |
3.2.1 注重学法指导,加强自主学习能力培养 |
3.2.2 着力启发引导,加强思维能力培养 |
3.2.3 紧密联系经济,加强解决问题能力的培养 |
3.3 落实课程思政 |
4 经管类“高等数学”教材建设的理论支撑和实践依托 |
5 结语 |
(8)中国大陆与中国香港高中数学教科书比较研究(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 问题提出 |
1.3 研究目的与意义 |
1.3.1 研究目的 |
1.3.2 研究意义 |
1.4 文献综述 |
1.4.1 数学课程标准比较研究 |
1.4.2 数学教科书研究 |
1.4.3 香港数学教育研究 |
1.4.4 数学文化研究现状 |
1.4.5 评述 |
1.5 研究方法与思路 |
1.5.1 研究方法 |
1.5.2 研究思路 |
1.6 创新之处 |
第2章 研究设计 |
2.1 研究对象 |
2.1.1 人教A版教科书概况 |
2.1.2 牛津版教科书概况 |
2.2 研究模型 |
2.2.1 内容广度模型 |
2.2.2 内容深度模型 |
2.2.3 数学文化研究维度 |
第3章 大陆课程标准与香港课程指引比较 |
3.1 数学课程作用的比较 |
3.2 大陆课程目标与香港课程宗旨比较 |
3.3 课程框架比较 |
3.4 知识点呈现顺序比较 |
第4章 两版教科书内容分布比较研究 |
4.1 “集合与逻辑”内容分布比较 |
4.1.1 人教版高中数学教科书 |
4.1.2 牛津版高中数学教科书 |
4.1.3 比较结果分析 |
4.2 “数与代数”领域内容分布比较 |
4.2.1 人教版高中数学教科书 |
4.2.2 牛津版高中数学教科书 |
4.2.3 比较结果分析 |
4.3 “图形与几何”领域内容分布比较 |
4.3.1 人教版高中数学教科书 |
4.3.2 牛津版高中数学教科书 |
4.3.3 比较结果分析 |
4.4 “统计与概率”领域内容分布比较 |
4.4.1 人教版高中数学教科书 |
4.4.2 牛津版高中数学教科书 |
4.4.3 比较结果分析 |
4.5 两地教科书内容分布总体比较 |
第5章 两版教科书内容广度与深度比较研究 |
5.1 “集合与逻辑”领域内容广度与深度比较 |
5.1.1 两版教科书内容广度与深度比较 |
5.1.2 两版教科书内容深度案例分析 |
5.2 “数与代数”领域内容广度与深度比较 |
5.2.1 两版教科书内容广度与深度 |
5.2.2 两版教科书内容深度案例分析 |
5.3 “图形与几何”领域内容广度与深度比较 |
5.3.1 两版教科书内容广度与深度 |
5.3.2 两版教科书内容深度案例分析 |
5.4 “统计与概率”内容广度与深度比较 |
5.4.1 两版教科书内容广度与深度 |
5.4.2 两版教科书内容深度案例分析 |
5.5 两版教科书整体广度与深度比较 |
5.5.1 整体内容广度比较 |
5.5.2 整体内容深度比较 |
第6章 两版教科书呈现方式比较研究 |
6.1 人教版教科书编排体例与栏目设置 |
6.1.1 整体编排体例 |
6.1.2 章的编排体例 |
6.1.3 节编排体例 |
6.2 牛津版教科书编排体例与栏目设置 |
6.2.1 整体编排体例 |
6.2.2 章编排体例 |
6.2.3 节编排体例 |
第7章 两版教科书数学文化比较研究 |
7.1 数学文化内容分布比较 |
7.2 数学文化主题比较 |
7.2.1 数学史主题分类 |
7.2.2 其他数学文化主题分类 |
7.3 数学文化的栏目分布 |
7.4 数学文化的运用方式比较 |
7.4.1 数学史运用方式 |
7.4.2 其他数学文化运用方式 |
7.5 数学文化的表现形式比较 |
第8章 结论、建议与反思 |
8.1 结论 |
8.1.1 内容分布 |
8.1.2 内容广度与深度 |
8.1.3 编写体例与栏目设置 |
8.1.4 数学文化 |
8.1.5 两版教科书编写特色 |
8.2 建议 |
8.2.1 优化教科书的自学便利性,渗透终身学习理念 |
8.2.2 加强教科书的系统设计,注重学段衔接 |
8.2.3 弹性设置课程,灵活使用教科书 |
8.2.4 突出栏目设置的多样化与针对性,兼顾学生差异 |
8.2.5 注重数学教科书的社会价值与人文价值 |
8.2.6 加强国民教育,开拓国际视野 |
8.3 反思与展望 |
参考文献 |
附录 |
附录1 |
附录2 |
致谢 |
攻读硕士学位期间主要科研成果 |
(9)James Stewart的微积分教材立体化建设特点及其启示(论文提纲范文)
1 研究背景 |
2 James Stewart的微积分教材编撰分析 |
2.1 人性化的排版方式与细致的学习指导 |
2.2 数学与人文兼具的内容体系 |
2.3 突出数学教学核心的编写原则 |
2.4 强调由“特殊到一般”“具体到抽象”的教学方式 |
2.5 例题典型且解答详尽习题难度递进且覆盖全面 |
2.6 强大的技术支持与丰富的教辅资源 |
3 James Stewart的微积分教材立体化建设的启示 |
3.1 配备线上线下交融的教学资源以改善学习者学习体验 |
3.2 借助计算机技术降低学习难度拓宽广度和深度 |
3.3 注重通过数学思想方法和文化的渗透揭示数学的本质 |
3.4 遵循学习心理与认知规律以促进学习者的理解与掌握 |
(10)中国数学教科书中勾股定理内容设置变迁研究(1902-1949)(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 问题提出 |
1.2 研究目的与意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 文献综述 |
1.3.1 国外研究现状 |
1.3.2 国内研究现状 |
1.3.3 研究现状评述 |
1.4 研究方法与思路 |
1.4.1 研究方法 |
1.4.2 研究思路 |
1.5 创新之处 |
第2章 清末中学数学教科书中的勾股定理 |
2.1 历史背景 |
2.1.1 “癸卯学制”的中学数学教育 |
2.1.2 清末中学数学教科书编译概况 |
2.2 翻译日本的几何教科书中勾股定理内容个案分析 |
2.2.1 编译者简介 |
2.2.2 编写理念及编排形式 |
2.2.3 勾股定理内容的结构 |
2.2.4 特点分析 |
2.3 翻译美国的几何教科书中勾股定理内容个案分析 |
2.3.1 编译者简介 |
2.3.2 编写理念及编排形成 |
2.3.3 勾股定理内容的结构 |
2.3.4 特点分析 |
2.4 清末教科书中勾股定理内容的结构及其特点(1902-1911) |
2.4.1 编写理念及编排形式 |
2.4.2 勾股定理内容设置的形式 |
2.4.3 勾股定理的内容表述之变迁及特点分析 |
2.4.4 勾股定理证明方法特点及教育价值分析 |
2.5 小结 |
第3章 民国初期中学数学教科书中的勾股定理 |
3.1 历史背景 |
3.1.1 “壬子癸丑学制”的数学教育 |
3.1.2 中学数学教科书编译概况 |
3.2 《共和国教科书平面几何》中“勾股定理”内容编排概述 |
3.2.1 编者简介 |
3.2.2 编写理念及编排形成 |
3.2.3 勾股定理内容的结构 |
3.2.4 特点分析 |
3.3 《民国新教科书几何学》中的“勾股定理”内容编排概述 |
3.3.1 编译者简介 |
3.3.2 编写理念及编排形成 |
3.3.3 勾股定理内容的结构 |
3.3.4 特点分析 |
3.4 汉译本《温德华士几何学》中的“勾股定理”内容编排概述 |
3.4.1 编译者简介 |
3.4.2 编写理念及编排形成 |
3.4.3 勾股定理内容的结构 |
3.4.4 特点分析 |
3.5 小结 |
3.5.1 勾股定理证明方法无明显差异 |
3.5.2 从面积和射影角度讨论钝角和锐角三角形的不同情形 |
3.5.3 习题数量参差不齐 |
3.5.4 对几何作图的认识逐渐加强 |
第4章 课程纲要时期的中学数学教科书中勾股定理 |
4.1 历史背景 |
4.1.1 “壬戌学制”下的数学教育 |
4.1.2 中学数学教科书编纂概况 |
4.2 混合教学数学教科书中的“勾股定理” |
4.2.1 《布利氏新式算学教科书》中“勾股定理”内容编排概述 |
4.2.2 《初级混合数学》中“勾股定理”内容编排概述 |
4.2.3 《新学制混合算学教科书》中“勾股定理”内容的编排概述 |
4.3 《现代初中教科书几何》中“勾股定理”内容的编排概述 |
4.3.1 编译者简介 |
4.3.2 编写理念及编排形成 |
4.3.3 勾股定理内容的结构 |
4.3.4 特点分析 |
4.4 小结 |
4.4.1 勾股定理内容分布在多个章节中 |
4.4.2 证明方法由一到多,割补法逐渐成为主要方式 |
4.4.3 由勾股定理向任意三角形推广 |
4.4.4 习题中理解型题目与作图题目相结合 |
第5章 课程标准时期的中学数学教科书中勾股定理 |
5.1 历史背景 |
5.1.1 中学算学课程标准下的中学数学教育 |
5.1.2 中学数学教科书编译概况 |
5.2 复兴中学教科书中“勾股定理”内容编排概述 |
5.2.1 部分编撰者简介 |
5.2.2 编写理念及编排形成 |
5.2.3 勾股定理内容的结构 |
5.2.4 特点分析 |
5.3 实验几何教科书中的勾股定理—以《初级中学实验几何学》为例 |
5.3.1 编撰者简介 |
5.3.2 编写理念及编排形式 |
5.3.3 勾股定理内容的结构 |
5.3.4 特点分析 |
5.4 课程标准时期教科书中勾股定理变迁之特点分析 |
5.4.1 数学史的融入 |
5.4.2 定理证明实验法与演绎法并重 |
5.4.3 体现从特殊到一般的归纳思想方法 |
5.5 民国时期数学教科书中勾股定理内容编排变迁特点分析(1912-1949) |
5.5.1 定理证明以方法为经,以教材为纬 |
5.5.2 三角形内对锐角或钝角之三边情况贯穿于教科书中 |
5.5.3 从正方形到任意相似图形 |
第6章 结论 |
6.1 清末民国中学数学教科书中勾股定理编排特点 |
6.1.1 数学教科书中定理命名的演变 |
6.1.2 作为小节内容编排在单元中 |
6.1.3 定理表述以“形的勾股定理”为主 |
6.1.4 结构体系独特,勾股定理的推广内容丰富 |
6.1.5 自编数学教科书中勾股定理史料贯彻爱国精神 |
6.2 影响中学数学教科书中勾股定理内容编排的因素 |
6.2.1 外部因素 |
6.2.2 内部因素 |
6.3 清末民国中学数学教科书中勾股定理证明方法编排之变迁 |
6.3.1 欧几里得证法始终贯穿在教科书中 |
6.3.2 证明方法由一变多,从演绎法过渡到拼补法 |
6.3.3 中国古代“赵爽弦图”仅在课后习题中出现 |
6.3.4 实验几何时期证法主要以综合法为主 |
6.3.5 清末民国时期中学勾股定理编排中存在的问题 |
6.4 清末民国中学数学教科书中勾股定理内容变迁的启示与借鉴 |
6.4.1 编排形式与内容体系应力求严谨 |
6.4.2 勾股定理内容编排重视趣味性、启发性与探究性 |
6.4.3 实验证明和理论证明相辅相成 |
6.4.4 从勾股定理到我们的思想 |
6.5 研究的不足与展望 |
参考文献 |
致谢 |
攻读博士学位期间的科研成果 |
四、一本特点突出的微积分教材(论文参考文献)
- [1]把教材编写当作自己一生的事业[J]. 邱柏驺. 中国大学教学, 2021(11)
- [2]中美微积分教材内容建构比较与启示——以“微分”为例[J]. 王彩芬,曹荣荣,张丽,傅海伦. 数学教育学报, 2021(04)
- [3]核心素养视域下高中数学新教材习题与课程标准的一致性研究 ——以北师大版和湘教版“几何与代数”内容为例[D]. 吴晓红. 广西师范大学, 2021(09)
- [4]数学教育家刘薰宇的论着之研究[D]. 侯晓婷. 内蒙古师范大学, 2021(08)
- [5]基于数学史网络研修的在职初中数学教师观念发展研究[D]. 孙丹丹. 华东师范大学, 2021(09)
- [6]面向教师教育的数学知识研究 ——以S市高中数学教研员为例[D]. 沈中宇. 华东师范大学, 2021(08)
- [7]地方应用型本科高校经管类“高等数学”教材建设实践[J]. 杨慧卿. 滁州学院学报, 2021(02)
- [8]中国大陆与中国香港高中数学教科书比较研究[D]. 宋佳. 内蒙古师范大学, 2021(08)
- [9]James Stewart的微积分教材立体化建设特点及其启示[J]. 王海青. 数学教育学报, 2020(04)
- [10]中国数学教科书中勾股定理内容设置变迁研究(1902-1949)[D]. 张冬莉. 内蒙古师范大学, 2020(07)