RMI原理在工程数学中的应用

RMI原理在工程数学中的应用

一、RMI原则在工科数学中的应用(论文文献综述)

刘奕[1](2020)在《5G网络技术对提升4G网络性能的研究》文中研究指明随着互联网的快速发展,越来越多的设备接入到移动网络,新的服务与应用层出不穷,对移动网络的容量、传输速率、延时等提出了更高的要求。5G技术的出现,使得满足这些要求成为了可能。而在5G全面实施之前,提高现有网络的性能及用户感知成为亟需解决的问题。本文从5G应用场景及目标入手,介绍了现网改善网络性能的处理办法,并针对当前5G关键技术 Massive MIMO 技术、MEC 技术、超密集组网、极简载波技术等作用开展探讨,为5G技术对4G 网络质量提升给以了有效参考。

李燕[2](2019)在《工科大学中数学课程教学方法的思考》文中研究表明在当前教育改革背景下,很多本科高等院校尤其是工科类高校朝着应用型高等院校转型,这对大学数学基础类课程的教学改革是一个不小的挑战。基于在南京邮电大学本科生概率统计和随机过程教学中的教学实践,提出一些工科高校中数学类课程的教学思考。

王刚[3](2018)在《大学工科数学教学中数学建模思想的应用》文中进行了进一步梳理在高校环境中所开展的工科数学教育能够夯实学生的数学能力,为学生专业上和未来就业的发展提供坚实的知识辅助。但当前高校在开展工科数学教育时,常会面临学生无法理解抽象知识点的现象。故应用数学建模思想来改变现状便成为多数数学教师均会使用的方式。针对此,以工科数学作为研究背景,对数学建模思想在工科数学中的渗透途径进行了简单分析。

孟桂芝,赵辉,王树忠[4](2017)在《基于现代信息技术的工科数学教学质量提升策略》文中研究指明在信息化教育的背景下,利用现代信息技术开展工科数学教学具有重要的现实意义。文章提出了在工科数学教学过程中结合现代信息技术,更新教师教学观念,优化教学模式,改进教学手段,完善考核方式等提升工科数学教学质量的策略,并进一步指出在工科数学教学中运用现代教育技术应注意的问题。实践表明,这些措施均有利于提高工科数学的教学质量。

朱琳[5](2017)在《基于发生教学法的线性空间概念的教学研究》文中指出线性代数是大学本科最基础性的一门重要课程,在生物化学、计算机技术、经济学、医学等其它领域有着广泛的应用。与其它课程不同,线性代数中充斥着大量的定义、定理、证明,学生往往还没有充分理解好一个概念,新的概念和定义、定理纷至沓来。然而,很多学生表示,即使不理解概念,也能套用运算和证明的框架来进行解题。因此,理解学生在概念学习中遭遇的困难,并以此改进教学策略,在线性代数的教学研究中显得尤为重要。线性代数的主要研究对象是线性空间及其上的线性变换,可以说,线性空间是线性代数中的核心内容。在通常的教学中,线性空间的概念以形式化的抽象语言呈现,为学生的学习带来很大困难。本研究重点关注线性空间概念的教学,试图探究学生对线性空间概念的理解,揭示学生学习时的困难,并以此来指导教学策略的设计,旨在不同情境下都能让学生建构起对线性空间及其相关概念的理解。本研究的研究问题为:(1)学生是如何理解线性空间概念的?学生在理解线性空间概念的过程中,会遭遇哪些困难?(2)发生教学法指导下的线性空间概念教学是怎样的?是否能有效促进学生对线性空间概念的理解?本研究首先在文献研究、专家访谈和学生问卷调查的基础上,构建了初始的研究模型,包括分析学生概念理解的发生演变模型和概念认知模型,以及发生教学法指导下的教学设计模型。然后,研究者对沪上一所教育部直属985高校的大学生进行了两个学期的教学实践,按照分析与准备、设计与实施、结果与评价、反思与修正四个部分展开,通过问卷调查、质性访谈、课堂观察等方法,对初始模型进行验证和修正,形成研究成果。本研究的结论为:(1)绝大部分学生属于概念意象和概念定义的弱关联型;仅有少部分学生能够达到"对象"和"图式"的心理认知阶段;学生对概念的理解容易受到三维空间的限制、容易受到旧有认知的干扰。(2)学生在学习抽象的线性空间概念时,容易遭遇包括抽象的困难、直觉的迷失、对术语理解的困难和概念之间缺乏关联的困难。(3)发生教学法下指导下的教学,可以基于历史发生分析、知识逻辑分析、心理认知分析、社会文化分析四种视角分析的基础,按照必要性、直观性、关联性、应用性、系统性五个原则进行设计,依照why-what-how to learn-how to use(简称WWHH)四个步骤进行教学。(4)发生教学法的教学实践下,可以丰富学生的概念意象,使得学优生完成从程序到对象、图式阶段的提升,实现从概念定义和概念意象的弱关联到灵活转换型的转变:中等生实现从行动阶段到程序阶段的转变;学差生实现从概念定义和概念意象的分离型向弱关联型的提升,有效促进了学生对线性空间概念的理解。本研究的价值在于,首先,关注具体的数学概念学习过程,利用APOS的发生演变理论、概念意象和概念定义、概念图理论,在实证的基础上多方面、多角度地对学生概念的理解水平、对概念理解的发展变化予以描述和分析。其二,在发生教学法的理论指导下,构建了适合于本土国情、适合于大学生认知特点、适合线性代数教学的教学设计实施模型。不仅可以研究学生的学,还可以指导教师的教,具有理论意义和实践意义。

潘玉荣,贾朝勇[6](2014)在《工科数学教育应加强数学实验课的教学》文中研究表明数学实验课是一门从实际问题出发,通过建立数学模型,借助数学软件,解决问题的实验课程,它是工科数学教育的重要组成部分,也是培养工程技术人才具备的数学素质不可或缺的一个重要环节,笔者认为工科院校要从人的因素即学校领导、教师和学生切实重视和加强数学实验课程的教学.

青天福,贾利新,祝清顺[7](2013)在《素质教育下大学工科数学教材编写探索》文中研究说明在课程学者的倡导下,"用教材教"成了教育界的一大热门话题.然而素质教育下的自主学习强调:学生才是教学主体,提出"用教材学",需要编写能够指导学生自主学习的教材,在适应大学生自学数学的教材编写上进行了有益的探索.

张民悦,黎锁平,杨胜良[8](2013)在《工科《概率论与数理统计》课程的教改研究》文中认为数学不仅是支撑其他科学的工具,现代数学的原理和方法与计算机结合将成为21世纪中威力无穷的数学技术。论述了《概率论与数理统计》课程在工科院校中的作用;总结了工科《概率论与数理统计》课程的现状及存在的问题;研究了工科《概率论与数理统计》课程的教学内容、教学方法与教学手段的改革创新;提出了工科《概率论与数理统计》课程在教改中应注重的基本问题和教改的主要方向。

伍毅,史本广,党健[9](2013)在《构建知识点扩展性教学法打造工科数学教学新平台》文中提出以改革工科数学教学模式为切入点,在初步探索和实践的基础上,提出了对构建知识点扩展性教学法,打造工科数学教学新平台,进一步改革和完善工科数学教学的新思路与措施,以期提高教学效果。

高雪芬[10](2013)在《一元微积分概念教学的设计研究》文中提出大众化背景下,大学生入学时的能力普遍降低,学生层次越来越不均衡,这已经成为世界高等教育面临的一个主要问题。另一方面,基础教育课程改革的推进使得中学的课程设置发生了巨大的变化,这种变化也对大学的课程设置提出了新的要求。大众化教育以及高中课改的背景使得大学微积分教学中的问题日益突出,很多大学生会进行求导、积分运算,但是对概念中蕴含的思想并不理解,对概念间的关系认识模糊。所以,发现学生在微积分概念上的认知困难并进行有针对性的教学设计是微积分教学改革的关键。本论文以一元微积分作为载体,选取极限、导数、微分、中值定理、定积分等内容作为研究的切入点,研究了2个问题:(1)大学生对微积分中的基本概念具有什么样的概念意象,存在哪些概念误解?(2)如何设计微积分的概念教学,以加深学生对概念的理解,提高其运用基本概念的能力?本研究构建了微积分概念教学原则,并对一所理工院校大一上学期三个教学班的微积分课程进行了教学设计与教学实验,主要采用了设计研究、问卷调查、访谈、课堂观察、准实验对照等研究方法,有3位教师以及255位学生参加了概念教学班的教学实践。研究包括3个阶段:(1)准备和设计:根据现有文献及教学经验总结出学生所遇到的常见错误与问题以及每个案例教学设计的要点(设计原型),设计出概念的前/后测试卷,对测试时间、教学时间作出安排。(2)教学实践:针对前测中发现的问题,对原有的教学设计(设计原型)进行修正,并实施概念教学。(3)回顾分析:任课教师撰写教学反思,并对概念教学设计原则进行修正;依据修正后的原则,开始下一轮的教学设计。在研究的最后,我们进行了教学设计的效果检验,主要通过三条路径:(1)以具体案例的前后测对比,进行教学班纵向的比较;(2)以学校统一安排的期中期末考试进行横向的比较;(3)在学期末,对学生进行调查,了解学生对概念教学的认可情况。通过研究得到以下结论:其一,大学生对微积分基本概念的概念意向是片面的,甚至有些是错误的。(1)在学习极限的定义前,大学生不会用严格的语言来界定极限,有一些同学用静态的观点来看待极限,认为极限就是“n趋于无穷大(x趋于x0)时,数列(函数)等于a”。(2)大多数学生在看到导数时首先想到的是函数曲线在某点切线的斜率;学生主要从斜率的角度来理解导数,而非从变化率的角度来理解。(3)学生对通过导数来求微分这种“操作性的知识”认识深刻,但是对微分的几何意义和线性近似的思想认识存在混乱。(4)部分学生知道定积分是面积,但是不清楚究竟是哪个区域的面积;知道定积分概念中的分割与近似代替的过程,但是部分学生不清楚对哪个量进行分割:一些学生单纯地认为dx是积分号的一部分,而忽略了其“微分”的实际意义。其二,我们构建了微积分概念教学原则,并进行了相应的教学设计与教学实验。微积分概念教学原则如下:(1)通过本原性(历史上的,本质的)问题引入数学概念,借助历史发展阐述数学概念;(2)借助几何直观或生活中的直观例子帮助同学理解概念;(3)注重概念间关系的阐述。针对前测中的问题,每个案例的设计重点如下:极限的教学设计重在通过直观的方式帮助同学熟悉、理解并会运用形式化的语言;导数的教学设计重在阐明概念所蕴含的“变化率”思想;微分的设计重点在于突出概念间的联系,帮助学生在头脑中形成概念图;中值定理的设计重点在于通过历史上的定理形式来让学生体会到概念的严格化过程:定积分是过程性概念的典型代表,其设计要点在于在教学中帮助学生将定积分的概念解压缩,从而将定积分概念迁移到未知情境中。研究的创新之处在于:在国内首先比较系统地研究了学生对一元微积分基本概念的理解,并剖析了学生的概念意象;针对这些概念意象与学生的概念误解进行了教学设计与为期一个学期的教学实践。研究呈现了微积分概念教学的原始设计、对学生概念意象及概念误解的调查、教学设计的修正、教学设计的实施、教学效果反馈的全过程,其理论意义在于为微积分教学研究提供实证性的依据,为后续研究的开展做一些基础性的工作。实践价值在于可帮助大学教师了解学生的概念理解情况,为教师提供具体的教学策略和教学设计参考,也可为大学的教材编写者提供素材。

二、RMI原则在工科数学中的应用(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、RMI原则在工科数学中的应用(论文提纲范文)

(1)5G网络技术对提升4G网络性能的研究(论文提纲范文)

引言
1 4G网络现处理办法
2 4G网络可应用的5G关键技术
    2.1 Msssive MIMO技术
    2.2 极简载波技术
    2.3 超密集组网
    2.4 MEC技术
3 总结

(2)工科大学中数学课程教学方法的思考(论文提纲范文)

一、工科数学教学方法研究背景
二、工科数学教学方法思考探索
    (一)概念的引入要通俗易懂
    (二)抓住教学内容的本质,因“才”施教
    (三)注意数学思想的渗透
    (四)明确培养专业人才,将专业特色贯穿于教学中

(3)大学工科数学教学中数学建模思想的应用(论文提纲范文)

一、试论在高校工科数学教学进程中应用数学建模思想的实际价值
二、简述大学工科数学教学中数学建模思想的应用途径
    (一) 以概念教学作为渗透途径
    (二) 以定理教学为主进行渗透

(4)基于现代信息技术的工科数学教学质量提升策略(论文提纲范文)

一、更新教学观念, 重视现代教育技术的应用
二、优化教学模式, 加强信息化教学
三、改革教学手段, 与多媒体教学有机结合
四、完善考核方式, 构建在线考试模式
     (一) 合理吸收传统教学的优势
     (二) 注重师生间的沟通

(5)基于发生教学法的线性空间概念的教学研究(论文提纲范文)

内容摘要
ABSTRACT
1. 绪论
    1.1 研究背景
    1.2 研究问题
    1.3 研究目的与意义
    1.4 论文结构
2. 文献综述
    2.1 高等代数思维的特点
    2.2 概念学习理论
        2.2.1 什么是概念?
        2.2.2 概念教学的原则
        2.2.3 概念意象与概念定义
        2.2.4 APOS理论
        2.2.5 概念图理论
    2.3 线性代数教与学的研究
        2.3.1 学生理解的困难与原因
        2.3.2 教学研究与设计
        2.3.3 我国的线性代数课程发展与研究现状
    2.4 本章小结
3. 理论基础
    3.1 发生教学法的原理
    3.2 发生教学法的教学原则
    3.3 发生教学法的实证研究
4. 研究过程与方法
    4.1 时间进程与研究流程
    4.2 研究对象
        4.2.1 学校
        4.2.2 课程与教材
        4.2.3 教师及研究人员
        4.2.4 学生
        4.2.5 专家
    4.3 研究方法
    4.4 数据收集
5. 前期准备阶段
    5.1 对学生的问卷调查
        5.1.1 学生对向量的概念意象
        5.1.2 学生对线性空间的概念意象
        5.1.3 学生对线性代数学习的态度和信念
    5.2 专家访谈的结果
        5.2.1 线性代数的学科特点
        5.2.2 线性代数的核心内容
        5.2.3 专家对线性空间、向量的概念意象
        5.2.4 学生学习中的困难和问题
        5.2.5 对线性代数和线性空间的教学建议
    5.3 初始模型的建立
        5.3.1 概念教学的原则
        5.3.2 教学设计的步骤
        5.3.3 概念认知模型
        5.3.4 发生演变模型
6. 研究的第一阶段
    6.1 分析与准备
        6.1.1 历史视角分析
        6.1.2 知识的逻辑结构分析
        6.1.3 学生的心理认知分析
        6.1.4 社会-文化视角分析
    6.2 设计与实施
        6.2.1 教学内容与顺序
        6.2.2 核心概念的教学设计
        6.2.3 教学实施过程
    6.3 结果与评价
        6.3.1 学生对线性相关/线性无关的理解
        6.3.2 学生对基的理解
        6.3.3 学生对线性空间的理解
        6.3.4 学生对向量的理解
        6.3.5 教学前后学生的理解对比
    6.4 反思与修正
7. 研究的第二阶段
    7.1 分析与准备
    7.2 设计与实施
        7.2.1 教学顺序
        7.2.2 核心概念的教学设计
        7.2.3 教学实施过程
    7.3 结果与评价
        7.3.1 学生对线性相关/线性无关的理解
        7.3.2 学生对基的理解
        7.3.3 学生对线性空间的理解
        7.3.4 学生对向量的理解
    7.4 教学反思
8. 研究结论与启示
    8.1 研究结论
        8.1.1 学生对概念的理解
        8.1.2 学生遭遇的困难
        8.1.3 发生教学法下教学效果的有效性
        8.1.4 教学框架的可行性
    8.2 研究启示与局限
    8.3 进一步研究展望
参考文献
附录1 学期末问卷调查
附录2 第一阶段研究后测问卷
附录3 第二阶段研究后测问卷1
附录4 第二阶段研究后测问卷2
攻读博士期间发表的论文
后记

(6)工科数学教育应加强数学实验课的教学(论文提纲范文)

1 工科数学开设数学实验课的目的和意义
2 数学实验课是培养工科学生具备良好数学素质的重要环节
3 工科数学教育应重视和加强数学实验课程教学

(8)工科《概率论与数理统计》课程的教改研究(论文提纲范文)

一、工科《概率论与数理统计》课程的作用
二、工科《概率论与数理统计》课程的现实状况
三、工科《概率论与数理统计》课程的教学内容改革
四、工科《概率论与数理统计》课程的教学方法改革
五、工科《概率论与数理统计》课程的教学手段改革

(9)构建知识点扩展性教学法打造工科数学教学新平台(论文提纲范文)

1 工科数学教学中存在的问题及成因分析
    1.1 教育体系方面存在的问题及成因
    1.2 教师教学方面存在的问题及成因
    1.3 学生学习方面存在的问题及成因
2 构建工科数学知识点扩展性教学的探索
    2.1 工科数学知识点扩展性教学的内在涵义
    2.2 工科数学知识点扩展性教学的支撑平台
        2.2.1 打造引导兴趣的平台
        2.2.2 创新教学方式新平台
        2.2.3 推进分层教学平台建设
    2.3 工科数学知识点扩展性教学的实施原则

(10)一元微积分概念教学的设计研究(论文提纲范文)

摘要
ABSTRACT
第1章 引论
    1.1 研究的背景
        1.1.1 高等教育大众化的影响
        1.1.2 课程改革背景的诉求
        1.1.3 对微积分教学现状的反思
    1.2 研究的问题
    1.3 研究的意义
    1.4 论文的结构
第2章 文献综述
    2.1 大学数学教育研究概览
        2.1.1 上世纪80年代关于高等数学的研究
        2.1.2 《高等数学思维》
        2.1.3 《大学数学教育研究》
        2.1.4 《大学数学的教与学》
        2.1.5 美国的微积分课程改革运动
        2.1.6 中国的工科数学改革
    2.2 大学与高中的衔接
        2.2.1 大学与高中的衔接的困难及其表现
        2.2.2 导致大学与高中衔接困难的因素
        2.2.3 大学与高中衔接的解决策略
        2.2.4 大学与高中衔接的理论模型
    2.3 高等数学思维相关理论综述
        2.3.1 概念意象与概念定义
        2.3.2 过程性概念
        2.3.3 数学的三个世界
        2.3.4 APOS理论
        2.3.5 再谈“压缩”
    2.4 微积分概念教学
        2.4.1 直观的方法
        2.4.2 历史发生的方法
        2.4.3 “基于概念”的学习环境
第3章 研究方案与设计
    3.1 研究方法
        3.1.1 教育设计研究法
        3.1.2 为什么要用教育设计研究法
    3.2 研究对象及研究参与者
        3.2.1 学校
        3.2.2 教师
        3.2.3 学生
        3.2.4 课程与教材
        3.2.5 研究人员
    3.3 研究思路与流程
        3.3.1 微积分概念教学原则
        3.3.2 案例选取
        3.3.3 研究流程
    3.4 研究工具
        3.4.1 调查问卷与测试
        3.4.2 访谈
        3.4.3 课堂观察与视频分析
        3.4.4 准实验研究
    3.5 数据收集与处理
        3.5.1 数据收集日程
        3.5.2 数据收集工具
        3.5.3 数据处理分析
    3.6 研究的效度与伦理
        3.6.1 信度与效度
        3.6.2 伦理
第4章 研究结果总述
    4.1 预研究
        4.1.1 2010年1月对大一学生的调查
        4.1.2 2010年5月对大一学生的访谈——关于微分概念误解
        4.1.3 2010年9月对大一新生的测试
        4.1.4 预研究小结
    4.2 概念教学设计原则的提出与发展
        4.2.1 “基于概念”的教学环境
        4.2.2 概念教学原则的提出与第一次修正
        4.2.3 概念教学原则的第二次修正
    4.3 概念教学设计原型
    4.4 学期初前测
    4.5 概念教学的总体效果
        4.5.1 从常规的期中期末考试成绩来看
        4.5.2 从期末的调查来看
        4.5.3 教学效果小结
第5章 设计研究案例
    5.1 极限的教学设计
        5.1.1 关于极限的研究综述
        5.1.2 大学生对极限的概念意象
        5.1.3 对极限的教学设计与实施
        5.1.4 极限小结
    5.2 导数的教学设计
        5.2.1 关于导数的研究综述
        5.2.2 导数前测
        5.2.3 导数的教学设计
        5.2.4 反馈
        5.2.5 导数小结
    5.3 微分的教学设计
        5.3.1 关于微分概念的研究综述
        5.3.2 大学生对微分概念的理解
        5.3.3 微分的教学设计
        5.3.4 课堂反思
        5.3.5 微分小结
    5.4 中值定理的设计研究
        5.4.1 关于中值定理的研究综述
        5.4.2 中值定理的教学设计
        5.4.3 课堂效果分析
        5.4.4 第二轮教学实践
        5.4.5 中值定理小结
    5.5 定积分的教学设计
        5.5.1 关于定积分的研究综述
        5.5.2 定积分前测与教学设计要点
        5.5.3 定积分概念的设计
        5.5.4 定积分后测
        5.5.5 定积分后测与前测的对比
        5.5.6 从任课教师教学反思看课堂实施情况
        5.5.7 定积分小结
第6章 研究结论与展望
    6.1 研究结论
        6.1.1 学生对微积分基本概念的概念意象
        6.1.2 微积分概念教学原则的构建
        6.1.3 微积分基本概念以及中值定理的教学设计
        6.1.4 概念教学的总体效果
    6.2 研究建议
    6.3 反思与展望
        6.3.1 本研究的创新性
        6.3.2 本研究的不足
        6.3.3 后续研究展望
中文文献
英文文献
附录一 学期初前测
附录二 导数前测
附录三 导数后测定积分前测
附录四 定积分后测
附录五 学期末调查
攻读博士期间发表的论文与主持的相关科研项目
致谢

四、RMI原则在工科数学中的应用(论文参考文献)

  • [1]5G网络技术对提升4G网络性能的研究[J]. 刘奕. 数码世界, 2020(04)
  • [2]工科大学中数学课程教学方法的思考[J]. 李燕. 现代职业教育, 2019(34)
  • [3]大学工科数学教学中数学建模思想的应用[J]. 王刚. 现代职业教育, 2018(27)
  • [4]基于现代信息技术的工科数学教学质量提升策略[J]. 孟桂芝,赵辉,王树忠. 黑龙江教育(高教研究与评估), 2017(06)
  • [5]基于发生教学法的线性空间概念的教学研究[D]. 朱琳. 华东师范大学, 2017(09)
  • [6]工科数学教育应加强数学实验课的教学[J]. 潘玉荣,贾朝勇. 赤峰学院学报(自然科学版), 2014(03)
  • [7]素质教育下大学工科数学教材编写探索[J]. 青天福,贾利新,祝清顺. 河南教育学院学报(自然科学版), 2013(02)
  • [8]工科《概率论与数理统计》课程的教改研究[J]. 张民悦,黎锁平,杨胜良. 教育教学论坛, 2013(26)
  • [9]构建知识点扩展性教学法打造工科数学教学新平台[J]. 伍毅,史本广,党健. 河南工业大学学报(社会科学版), 2013(02)
  • [10]一元微积分概念教学的设计研究[D]. 高雪芬. 华东师范大学, 2013(10)

标签:;  ;  ;  ;  ;  

RMI原理在工程数学中的应用
下载Doc文档

猜你喜欢