微积分中值定理

微积分中值定理

一、微积分学中值定理(论文文献综述)

刘盛利[1](2012)在《中国微积分教科书之研究(1904-1949)》文中研究表明清政府于1904年颁布并实施《癸卯学制》后,揭开中国教育的新篇章,高等数学教育亦进入新的时代。作为高等数学基础知识的微积分教科书建设是亟需解决的问题。在新型教育体制下,微积分教科书的编写、出版内容体系的变迁等情况如何?以此为切入点,以文献研究法为主,以比较法、图表法、个案分析法为辅,对中国在1904~~1949年间中文版微积分教科书进行梳理,呈现该时期微积分教科书之发展经纬。首先,论述了选题目的与意义、国内外研究现状、研究思路和拟创新之处。目前,中国关于微积分教科书发展史的研究尚显薄弱,在已有的研究成果中,有的主题比较宽泛,针对性不强;有的从宏观上综述各门教科书的发展情况,而没有详细论述某一门学科教科书的发展过程。本文从宏观上爬梳1904~1949年间中国微积分教科书之沿革,再从微观上分析其内容变化与编写特点。其次,将1904~1949年划分为四个阶段,分别阐述每个时间段中国微积分教科书之发展概况及其编写特点。其中1904~1911年以潘慎文(Alvin Pierson Parker,1850~1924)与谢洪赉(1872~1916)合译的《最新微积学教科书》为案例,1912~1922年以匡文涛翻译、根津千治著的《微积分学讲义》为案例,1923~1934年以熊庆来的《高等算学分析》为案例,1935~1949年以李俨的《微积分学初步》为案例,详细分析研究其编排形式、内容特点、名词术语的采用等。最后,以微分与导数、积分、微分中值定理为对象,横向分析研究其在1904~1949年微积分教科书中的发展历程,厘清其在不同时期不同称谓的演变情况。拟创新之处如下:第一,基于第一手资料之研究,以数学史和数学教育史为视角,从宏观上梳理中国1904~1949年间微积分教科书之发展历程,从微观上分析研究每个时间段中国微积分教科书之编写特点。第二,探究中国微积分教科书编写的宗旨、指导思想及其制约因素。厘清中国微积分教科书所蕴含的文化变革与思想方法之完善历程。第三,在纵向梳理微积分教科书之基础上,以微分与导数、微分中值定理及积分为切入点,横向研究其在教科书中之沿革情形,说明这些知识点在叙述上更加严密,在逻辑推理上更加科学。

余惠霖[2](2011)在《数学文化价值取向下微积分学中的哲学思想》文中提出微积分学的产生及发展体现了唯物主义认识论和唯物辩证法,微积分学中也蕴涵着丰富的哲学思想,应从数学文化教育的角度出发,揭示微积分学中对立统一、量变与质变、否定之否定的哲学思想,阐述微积分学中的辩证规律,体会哲学的教育价值取向。

高雪芬[3](2013)在《一元微积分概念教学的设计研究》文中研究指明大众化背景下,大学生入学时的能力普遍降低,学生层次越来越不均衡,这已经成为世界高等教育面临的一个主要问题。另一方面,基础教育课程改革的推进使得中学的课程设置发生了巨大的变化,这种变化也对大学的课程设置提出了新的要求。大众化教育以及高中课改的背景使得大学微积分教学中的问题日益突出,很多大学生会进行求导、积分运算,但是对概念中蕴含的思想并不理解,对概念间的关系认识模糊。所以,发现学生在微积分概念上的认知困难并进行有针对性的教学设计是微积分教学改革的关键。本论文以一元微积分作为载体,选取极限、导数、微分、中值定理、定积分等内容作为研究的切入点,研究了2个问题:(1)大学生对微积分中的基本概念具有什么样的概念意象,存在哪些概念误解?(2)如何设计微积分的概念教学,以加深学生对概念的理解,提高其运用基本概念的能力?本研究构建了微积分概念教学原则,并对一所理工院校大一上学期三个教学班的微积分课程进行了教学设计与教学实验,主要采用了设计研究、问卷调查、访谈、课堂观察、准实验对照等研究方法,有3位教师以及255位学生参加了概念教学班的教学实践。研究包括3个阶段:(1)准备和设计:根据现有文献及教学经验总结出学生所遇到的常见错误与问题以及每个案例教学设计的要点(设计原型),设计出概念的前/后测试卷,对测试时间、教学时间作出安排。(2)教学实践:针对前测中发现的问题,对原有的教学设计(设计原型)进行修正,并实施概念教学。(3)回顾分析:任课教师撰写教学反思,并对概念教学设计原则进行修正;依据修正后的原则,开始下一轮的教学设计。在研究的最后,我们进行了教学设计的效果检验,主要通过三条路径:(1)以具体案例的前后测对比,进行教学班纵向的比较;(2)以学校统一安排的期中期末考试进行横向的比较;(3)在学期末,对学生进行调查,了解学生对概念教学的认可情况。通过研究得到以下结论:其一,大学生对微积分基本概念的概念意向是片面的,甚至有些是错误的。(1)在学习极限的定义前,大学生不会用严格的语言来界定极限,有一些同学用静态的观点来看待极限,认为极限就是“n趋于无穷大(x趋于x0)时,数列(函数)等于a”。(2)大多数学生在看到导数时首先想到的是函数曲线在某点切线的斜率;学生主要从斜率的角度来理解导数,而非从变化率的角度来理解。(3)学生对通过导数来求微分这种“操作性的知识”认识深刻,但是对微分的几何意义和线性近似的思想认识存在混乱。(4)部分学生知道定积分是面积,但是不清楚究竟是哪个区域的面积;知道定积分概念中的分割与近似代替的过程,但是部分学生不清楚对哪个量进行分割:一些学生单纯地认为dx是积分号的一部分,而忽略了其“微分”的实际意义。其二,我们构建了微积分概念教学原则,并进行了相应的教学设计与教学实验。微积分概念教学原则如下:(1)通过本原性(历史上的,本质的)问题引入数学概念,借助历史发展阐述数学概念;(2)借助几何直观或生活中的直观例子帮助同学理解概念;(3)注重概念间关系的阐述。针对前测中的问题,每个案例的设计重点如下:极限的教学设计重在通过直观的方式帮助同学熟悉、理解并会运用形式化的语言;导数的教学设计重在阐明概念所蕴含的“变化率”思想;微分的设计重点在于突出概念间的联系,帮助学生在头脑中形成概念图;中值定理的设计重点在于通过历史上的定理形式来让学生体会到概念的严格化过程:定积分是过程性概念的典型代表,其设计要点在于在教学中帮助学生将定积分的概念解压缩,从而将定积分概念迁移到未知情境中。研究的创新之处在于:在国内首先比较系统地研究了学生对一元微积分基本概念的理解,并剖析了学生的概念意象;针对这些概念意象与学生的概念误解进行了教学设计与为期一个学期的教学实践。研究呈现了微积分概念教学的原始设计、对学生概念意象及概念误解的调查、教学设计的修正、教学设计的实施、教学效果反馈的全过程,其理论意义在于为微积分教学研究提供实证性的依据,为后续研究的开展做一些基础性的工作。实践价值在于可帮助大学教师了解学生的概念理解情况,为教师提供具体的教学策略和教学设计参考,也可为大学的教材编写者提供素材。

张景中,冯勇[4](2009)在《微积分基础的新视角》文中进行了进一步梳理微积分是大学数学教学的难点,也是数学机械化研究的重点.如能将其初等化,不仅能解决微积分学教学的难点,同时也能为微积分学的机械化研究提供另一条切实可行的途径.目前国内外学者在微积分初等化方面做了一些工作,但他们所给出的微分与积分定义中的不等式都来源于极限定义所采用的不等式.本文提出了一个函数差商是另一个函数的中值的概念,这个概念刻画了原函数与导数的本质特征.在此基础上,得到了强可导和一致可导的充分必要条件并给出了积分系统更直观的定义.由此,简单完整地建立起了基于初等数学的微积分系统,为微积分系统机械化作了必要的准备;另外,本文的结果也显示了微积分学中许多常用定理的成立不依赖于实数理论的建立.

刘潇[5](2018)在《从翻译的主体间性析西南财经大学教学大纲英译》文中研究说明翻译活动中存在作者、译者和读者等不同的主体,各主体之间并非独立存在而是相互依存的关系。翻译的主体间性打破了传统翻译理论所主张的主次关系,转向平等互补关系。教学大纲英译作为中国高校对外宣传的一个重要组成部分,近年来翻译需求激增。教学大纲英译的过程,将教师(作者)、译者和读者(学生)等主体紧密联系在一起。此文本类型的翻译体现出典型的主体间性特征,翻译是否能实现各主体间的有效沟通,是翻译成败的关键。本报告是一篇关于西南财经大学六门本科课程教学大纲(包括:数学分析I、中外文学经典选讲、马克思主义基本原理概论、高等数学(下)、一元微积分、统计学)英译的实践报告。该项目受上述课程任课教师委托,在翻译过程中,主要遇到三方面的翻译困难,即名词术语、书名和汉语无主句的英译。笔者从中国高校对外宣传的大背景出发,以主体间性为理论指导,运用观察法和描述分析法等研究方法对上述三方面的问题进行了具体分析并采取了相应翻译策略。笔者在翻译过程中旨在建立上述各主体间的平等对话,以实现教学大纲内容的有效转换。实践中,笔者针对名词术语英译提出了结合语言语境原则、针对中文书名英译采取了“约定俗成”原则、针对汉语无主句英译采用了补充主语、使用形式主语“it”和使用祈使句等翻译策略。本报告的研究对象仅为西南财经大学六门本科课程教学大纲的英译,因此所涵盖的大纲量少,还不足以在国内高校教学大纲英译方面具有典型代表性,但本报告总结的翻译方案和翻译方法,可以在一定程度上为高校教学大纲英译提供思路。

田仕芹[6](2017)在《建设性后现代视野下高等数学课程问题与改进策略研究》文中进行了进一步梳理《高等数学》是高等院校理工、农、林、医、经管等学科的基础课程,具有很强的系统性、抽象性、逻辑性和应用性,其教学质量的高低直接影响到学生数学素质的提高和相关专业课程的学习。目前,高等数学教材内容与学生所学专业的联系不够紧密;教师课堂教学行为存在照本宣科、知识本位、预定程序、自导自演等现象;学生在学习过程中,存在初等数学思维向高等数学思维的转变困难、学习方法与策略不当等问题。综观国内外对高等数学课程的研究,已有研究大多以传统的课程和教学理论为指导,对解决当前高等数学课程存在的许多矛盾,有一定的局限性;定性的研究多于定量的研究,在定量研究方面,对高等数学课程现状缺乏有针对性的调查统计数据;对高等数学课程的研究有待深入和细化。建设性后现代哲学在有机、整合思维框架下构建一种超越现代性的世界观,建设性后现代教育学家关注课程理解和课程对人心灵的启迪与解放,倡导课程的开放性、多元性、过程性,有力地推动了现代课程理念的变革与创新。建设性后现代哲学与教育思想虽不能为高等数学课程提供具体的模式,但是它可以促使高等数学教育工作者积极反思和自我批判,获得对高等数学教学实践的深层次理解,化高等数学课程的现实困惑为课程新进步的实际开端。建设性后现代教育思想的核心观点可概括为:(一)教育要培养文化与专门知识兼备的人才,提倡课程目标预设与生成的有机结合。(二)建设性后现代教育倡导复杂性思维和一切有利于催生建设性后现代教育世界的思维方式。(三)强调教育过程必须保持有张力的节奏,经验在师生对话性交互作用中转变,意义在阐释与理解中建构,能力在回归性反思中发展,教师应成为有责任和智慧的舞伴和导师。(四)将课程理解为达成个体经验转变的过程,倡导用“自组织”作为基本假设设计非线性的开放性课程,强调评价应成为共同背景之中以转变为目的的协调过程。本研究采用文献法、观察法、比较法、调查法(访谈法和问卷调查法),通过对高等数学课程大纲、教材、教师、学生的调查,分析高等数学课程存在的问题及原因。调查发现,高等数学课程目标方面存在的主要问题是:不同院校或专业的高等数学课程目标趋同、高等数学课程目标过于宽泛、重预设轻生成、重知识轻情感、表述不清。高等数学课程内容方面存在的主要问题是:数学理论与数学应用比例失调、重数学知识而轻数学思想方法、缺乏与相关专业课程的融合、呈现形式单一。高等数学课程实施中存在的主要问题是:课堂教学以教师为中心、教学内容拘泥于课本知识、教学过程缺乏师生间的对话与交流、实践教学环节薄弱。高等数学课程评价方面存在的主要问题是评价方式、主体和内容单一,缺乏对评价结果的分析和反馈。产生上述问题的原因主要是高等数学课程的价值取向偏失、外部需求在高等数学教育领域的反映具有滞后性、教师的观念更新缓慢。针对高等数学课程存在的问题及问题产生的原因,在建设性后现代视野下探讨高等数学课程的改进策略。一是设计预设性与生成性相结合的多元化高等数学课程目标。二是构建KTAC一体化的高等数学课程内容体系(K-数学知识、T-数学思想、A-数学应用、C-数学文化)。三是开展过程教学,主要包括促进高等数学教学系统的自组织性,在节奏性对话教学中发展学生智慧,在展现数学思维过程中培育学生的创造性思维。四是实施多元动态评价,学生参与评价,全面评价学生的数学素质,注重过程评价。五是教师树立过程教育理念,通过反思转变观念,借助研究提升经验。基于建设性后现代哲学与教育思想对高等数学课程问题与改进策略进行研究,有助于高等数学课程理论的丰富和完善,又有助于高等数学课程研究的深入和细化,同时为指导和改善高等数学教学实践提供借鉴,为高等数学课程改革的具体落实提供一定参考,促进高等数学与学科教学的有效对接、高等数学教学质量的提高以及学生的发展。

胡茂林[7](2017)在《介值定理的一种推广》文中研究说明利用区间套定理将闭区间上连续函数的介值定理推广到了更加一般的情况,给出了闭区间上仅有第一类间断点的函数的介值定理.推广后的介值定理包含了原定理的情况,在原定理的条件下仍是原定理的结论.

杜彪[8](1962)在《微积分学中值定理》文中认为 在数学分析的学习和研究过程中,微积分学中值定理,象一条紅綫一样貫串始終,联系着它的概念、理論和应用:成为数学分析基础理論的核心。我們把它敘述为“微积分学中值定理”(我們这样称呼它): 若1°函数f(x)在区間[a,b]上連續; 2°函数F(x)是f(x)在[a,b]上的一个原函数;

王金隆[9](2020)在《清末民国时期微积分教科书的内容发展与符号传播(1859-1934)》文中研究表明数学符号是数学科学中使用的意义高度概括、形式高度集中的抽象语言。数学符号是在数学概念、公式、命题、推理、逻辑关系等整个数学过程中,所形成的一种特殊的数学语言。数学符号并不是孤立的传播,往往需要借助教科书这一载体。所以对符号的研究应该始于对教科书内容的发展分析。中国第一部微积分教科书《代微积拾级》于1859年出版,故将本研究的起始时间定为1859年。1859-1906年,共出版二十多部微积分教科书。1906-1934年,也出版了二十部微积分教科书。内容丰富、理论严谨的教科书《高等算学分析》于1934年出版,故将本研究的终止时间定为1934年。本研究主要采用文献研究法、对比分析法。笔者首先通过微积分教科书的研究文章、数学史专著书籍,查询、梳理清末民国微积分教科书的书目。之后通过孔夫子书店、古籍网、大学数字图书馆国际合作计划,在导师的帮助下,查询、收集、整理、分析清末民国时期微积分教科书30余部,从中选取可以代表清末、民国初期、民国中期三个时期的6部微积分教科书作为研究对象。在论文中,对这6部微积分教科书从编写理念、目录、习题设置、名词术语作详细的对比,分析清末民国时期微积分教科书内容的发展情况。本论文主要以1859-1934年出版的微积分教科书为基础,从以下2个方面进行研究:(1)清末—民国微积分教科书内容的发展。选取清末至民国时期具有代表性的6部微积分教科书,从编写理念、目录、习题设置、名词术语的对比为基础,从编写理念、内容丰富程度、习题难易水平、理论严谨性四个维度分析,呈现微积分清末民初微积分教科书内容的发展情况。(2)以6部微积分教科书中的符号为基础,参考其他微积分教科书,梳理、分析元素符号、运算符号、特殊符号早期国外的传播情况,整理、分析清末民国时期国内最早以何等形式出现在微积分教科书中,借此分析中国清末民国时期微积分符号西化历程。通过对微积分内容发展、微积分符号传播的研究,可以丰富微积分传播史。

余惠霖[10](2011)在《微积分学中若干问题的数学化归方法》文中指出从数学文化教育的角度,分析和讨论微积分学中若干问题的数学化归方法。

二、微积分学中值定理(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、微积分学中值定理(论文提纲范文)

(1)中国微积分教科书之研究(1904-1949)(论文提纲范文)

中文摘要
ABSTRACT
1 绪论
    1.1 研究缘起及意义
    1.2 研究现状
        1.2.1 线装书之研究
        1.2.2 教科书之研究
        1.2.3 高等教育之研究
        1.2.4 思想史之研究
    1.3 研究方法
        1.3.1 文献研究法
        1.3.2 比较研究法
        1.3.3 个案分析法
        1.3.4 图表法
    1.4 研究范围与思路
    1.5 拟创新之处
2 清末时期(1904~1911)
    2.1 高等教育概况
        2.1.1 时代背景
        2.1.2 清末学制之制定
    2.2 清末微积分教科书之汇总
    2.3 案例分析——以《最新微积学教科书》为例
        2.3.1 《最新微积学教科书》作者及译者简介
        2.3.2 《最新微积学教科书》内容简介
        2.3.3 《最新微积学教科书》之特点
        2.3.4 《最新微积学教科书》之思想体系
    2.4 小结
3 民国初期(1912~1922)
    3.1 背景概况
        3.1.1 主要教育思潮
        3.1.2 学制演进
        3.1.3 中国大学数学系概况
    3.2 微积分教科书之概述
    3.3 案例分析——以《微积分学讲义》为例
        3.3.1 内容概要
        3.3.2 名词术语
        3.3.3 特点分析
    3.4 小结
4 民国中期(1923~1934)
    4.1 时代背景
    4.2 微积分教科书之概述
    4.3 案例分析——以《高等算学分析》为例
        4.3.1 作者简介
        4.3.2 出版背景及内容简介
        4.3.3 名词术语与数学符号
        4.3.4 插图配置
        4.3.5 习题设置
        4.3.6 特点分析
    4.4 自编微积分教科书与译本之比较
        4.4.1 编写目的之比较
        4.4.2 内容之比较
        4.4.3 逻辑推理之比较
    4.5 小结
5 民国晚期(1935~1949)
    5.1 时代背景
    5.2 微积分教科书之概述
        5.2.1 商务印书馆出版之微积分教科书
        5.2.2 中华书局出版之微积分教科书
        5.2.3 其它书局出版之微积分教科书
    5.3 案例分析——以《微积分学初步》为例
    5.4 小结
6 微积分教科书中部分核心内容之沿革
    6.1 导数与微分之沿革
    6.2 积分之沿革
    6.3 微分中值定理之沿革
    6.4 小结
7 结语
    7.1 微积分教科书发展之特点
    7.2 进一步研究的问题
参考文献
附录1 张方洁译《奥氏初等微积分学》之目录
附录2 周梦麟译《微积分学》之目次
附录3 何衍璿,李铭槃,苗文绥合编《微积概要》之目录
附录4 孙光远,孙叔平《微积分学》之目次
攻读博士学位期间科研统计
致谢

(2)数学文化价值取向下微积分学中的哲学思想(论文提纲范文)

一、微积分学的产生及发展体现了唯物主义认识论和唯物辩证法
二、从微积分学中的对立统一规律, 认识事物发展之间的普遍联系
三、从微积分学中的质量互变规律, 认识事物不断变化和发展的过程
四、从微积分学中的否定之否定规律, 认识事物不断自我完善发展的过程

(3)一元微积分概念教学的设计研究(论文提纲范文)

摘要
ABSTRACT
第1章 引论
    1.1 研究的背景
        1.1.1 高等教育大众化的影响
        1.1.2 课程改革背景的诉求
        1.1.3 对微积分教学现状的反思
    1.2 研究的问题
    1.3 研究的意义
    1.4 论文的结构
第2章 文献综述
    2.1 大学数学教育研究概览
        2.1.1 上世纪80年代关于高等数学的研究
        2.1.2 《高等数学思维》
        2.1.3 《大学数学教育研究》
        2.1.4 《大学数学的教与学》
        2.1.5 美国的微积分课程改革运动
        2.1.6 中国的工科数学改革
    2.2 大学与高中的衔接
        2.2.1 大学与高中的衔接的困难及其表现
        2.2.2 导致大学与高中衔接困难的因素
        2.2.3 大学与高中衔接的解决策略
        2.2.4 大学与高中衔接的理论模型
    2.3 高等数学思维相关理论综述
        2.3.1 概念意象与概念定义
        2.3.2 过程性概念
        2.3.3 数学的三个世界
        2.3.4 APOS理论
        2.3.5 再谈“压缩”
    2.4 微积分概念教学
        2.4.1 直观的方法
        2.4.2 历史发生的方法
        2.4.3 “基于概念”的学习环境
第3章 研究方案与设计
    3.1 研究方法
        3.1.1 教育设计研究法
        3.1.2 为什么要用教育设计研究法
    3.2 研究对象及研究参与者
        3.2.1 学校
        3.2.2 教师
        3.2.3 学生
        3.2.4 课程与教材
        3.2.5 研究人员
    3.3 研究思路与流程
        3.3.1 微积分概念教学原则
        3.3.2 案例选取
        3.3.3 研究流程
    3.4 研究工具
        3.4.1 调查问卷与测试
        3.4.2 访谈
        3.4.3 课堂观察与视频分析
        3.4.4 准实验研究
    3.5 数据收集与处理
        3.5.1 数据收集日程
        3.5.2 数据收集工具
        3.5.3 数据处理分析
    3.6 研究的效度与伦理
        3.6.1 信度与效度
        3.6.2 伦理
第4章 研究结果总述
    4.1 预研究
        4.1.1 2010年1月对大一学生的调查
        4.1.2 2010年5月对大一学生的访谈——关于微分概念误解
        4.1.3 2010年9月对大一新生的测试
        4.1.4 预研究小结
    4.2 概念教学设计原则的提出与发展
        4.2.1 “基于概念”的教学环境
        4.2.2 概念教学原则的提出与第一次修正
        4.2.3 概念教学原则的第二次修正
    4.3 概念教学设计原型
    4.4 学期初前测
    4.5 概念教学的总体效果
        4.5.1 从常规的期中期末考试成绩来看
        4.5.2 从期末的调查来看
        4.5.3 教学效果小结
第5章 设计研究案例
    5.1 极限的教学设计
        5.1.1 关于极限的研究综述
        5.1.2 大学生对极限的概念意象
        5.1.3 对极限的教学设计与实施
        5.1.4 极限小结
    5.2 导数的教学设计
        5.2.1 关于导数的研究综述
        5.2.2 导数前测
        5.2.3 导数的教学设计
        5.2.4 反馈
        5.2.5 导数小结
    5.3 微分的教学设计
        5.3.1 关于微分概念的研究综述
        5.3.2 大学生对微分概念的理解
        5.3.3 微分的教学设计
        5.3.4 课堂反思
        5.3.5 微分小结
    5.4 中值定理的设计研究
        5.4.1 关于中值定理的研究综述
        5.4.2 中值定理的教学设计
        5.4.3 课堂效果分析
        5.4.4 第二轮教学实践
        5.4.5 中值定理小结
    5.5 定积分的教学设计
        5.5.1 关于定积分的研究综述
        5.5.2 定积分前测与教学设计要点
        5.5.3 定积分概念的设计
        5.5.4 定积分后测
        5.5.5 定积分后测与前测的对比
        5.5.6 从任课教师教学反思看课堂实施情况
        5.5.7 定积分小结
第6章 研究结论与展望
    6.1 研究结论
        6.1.1 学生对微积分基本概念的概念意象
        6.1.2 微积分概念教学原则的构建
        6.1.3 微积分基本概念以及中值定理的教学设计
        6.1.4 概念教学的总体效果
    6.2 研究建议
    6.3 反思与展望
        6.3.1 本研究的创新性
        6.3.2 本研究的不足
        6.3.3 后续研究展望
中文文献
英文文献
附录一 学期初前测
附录二 导数前测
附录三 导数后测定积分前测
附录四 定积分后测
附录五 学期末调查
攻读博士期间发表的论文与主持的相关科研项目
致谢

(5)从翻译的主体间性析西南财经大学教学大纲英译(论文提纲范文)

Abstract
摘要
Chapter One Introduction
    1.1 Background of the Translation Task
    1.2 Purpose and Significance of the Report
    1.3 Methodology of the Research
    1.4 Structure of the Report
Chapter Two Literature Review
    2.1 Theoretical Framework
        2.1.1 Definintion of Intersubjectivity
        2.1.2 A Paradigm Shift of Translation Research
    2.2 Previous Studies on Intersubjectivity of Translation
    2.3 Previous Studies on College Syllabus Translation
Chapter Three Preparation beforeTranslation
    3.1 Linguistic Features of the SourceTexts
    3.2 Collection of the Parallel Texts
    3.3 Creation of a Glossary of Terms
    3.4 Collection of Book Title Translation
Chapter Four Case Analysis
    4.1 Noun Term Translation and Linguistic Context
        4.1.1 NounTerm Translation in Syllabus Terms
        4.1.2 Noun Term Translation in Discipline Terms
    4.2 Book Title Translation and the Established Principle
    4.3 Translation Strategies of Chinese Zero-subject Sentence
        4.3.1 Subject Supplement
        4.3.2 Supplement of the dummy subject “it”
        4.3.3 Application of “Imperative Sentence”
Chapter Five Conclusion
    5.1 Major Findings of the Research
    5.2 Limitations of the Research
    5.3 Suggestions for Future Research
Bibliography
Appendix I A glossary of Syllabus Terms
Appendix Ⅱ A Glossary of Discipline Terms
Appendix Ⅲ Source Text
Appendix Ⅳ Target Text
Acknowledgements
在读期间科研成果目录

(6)建设性后现代视野下高等数学课程问题与改进策略研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    一、研究缘起
        (一)高等数学课程现状引发的思考
        (二)开放的数学教育哲学研究背景
        (三)建设性后现代主义对高等数学课程研究的意义
    二、研究的目的与意义
        (一)研究目的
        (二)研究意义
    三、研究的内容与方法
        (一)研究的主要内容
        (二)研究的基本思路与方法
        (三)研究的创新之处
    四、有关概念界定
        (一)课程 高等数学课程
        (二)建设性后现代主义
        (三)其他有关概念
第二章 文献综述
    一、高等数学课程研究综述
        (一)国外高等数学课程研究综述
        (二)国内高等数学课程研究综述
    二、建设性后现代思想相关研究综述
        (一)国外相关研究综述
        (二)国内相关研究综述
第三章 建设性后现代哲学与教育思想
    一、建设性后现代哲学
        (一)怀特海及其过程哲学
        (二)大卫·格里芬及其后现代精神
    二、建设性后现代教育思想的核心观点
        (一)建设性后现代教育目的
        (二)建设性后现代教育思维
        (三)建设性后现代教育实践
        (四)建设性后现代课程思想
第四章 高等数学课程现状调查
    一、高等数学课程现状调查方案设计与实施
        (一)课程大纲与教材的调查设计
        (二)调查问卷设计与样本选取
        (三)访谈提纲设计与样本选取
        (四)课堂观察
    二、高等数学课程现状调查结果
        (一)对课程大纲的调查结果
        (二)对教材的调查结果
        (三)对教师的调查结果
        (四)对学生的调查结果
第五章 高等数学课程存在的问题及原因分析
    一、高等数学课程存在的问题
        (一)课程目标趋同、宽泛、轻生成与情感、表述不清
        (二)课程内容结构不协调
        (三)课程实施以教师为中心、教学内容局限、教学方法单一、实践环节薄弱
        (四)课程评价主体、内容、方式单一
    二、高等数学课程存在问题的原因分析
        (一)高等数学课程的价值取向偏失
        (二)外部需求在高等数学教育领域的反映具有滞后性
        (三)教师的观念更新缓慢
第六章 建设性后现代视野下高等数学课程的改进策略
    一、设计预设性与生成性相结合的多元化课程目标
        (一)注重预设性目标与过程性目标的结合
        (二)设计多维度、多层次的高等数学课程目标
    二、构建KTAC一体化高等数学课程内容体系
        (一)体现数学知识的确定性、不确定性和过程性
        (二)渗透数学思想
        (三)突出数学应用
        (四)融入数学文化
    三、开展过程教学
        (一)促进高等数学教学系统的自组织
        (二)在节奏性对话教学中发展学生智慧
        (三)在展现数学思维过程中培养学生的创造性思维
    四、实施多元动态的发展性评价
        (一)学生参与评价
        (二)全面评价学生的数学素质
        (三)注重过程评价
    五、教师树立过程教育理念
        (一)在反思中转变观念
        (二)在研究中提升经验
结论
    一、主要研究结论
    二、研究局限与展望
参考文献
附录
攻读博士学位期间所取得的研究成果
致谢

(7)介值定理的一种推广(论文提纲范文)

0 引言
1 介值定理的推广及其证明
2 小结

(9)清末民国时期微积分教科书的内容发展与符号传播(1859-1934)(论文提纲范文)

摘要
ABSTRACT
1 绪论
    1.1 选题缘由
    1.2 研究背景
        1.2.1 历史背景
        1.2.2 文献综述
    1.3 研究对象与研究问题
        1.3.1 研究对象
        1.3.2 研究问题
    1.4 研究方法
    1.5 研究意义与创新点
2 清末—民国初期微积分教科书内容的发展
    2.1 编写理念的对比
        2.2.1 解析几何部分
        2.2.2 微分部分
        2.2.3 积分部分
        2.2.4 其他基础知识——极限与不定式
    2.2 目录对比
    2.3 习题设置的对比
        2.3.1 数量和位置
        2.3.2 习题类型
        2.3.3 答案的设置
        2.3.4 习题的选取和难度分析
    2.4 名词术语的对比
        2.4.1 函数部分
        2.4.2 积分部分
        2.4.3 微分部分
        2.4.4 解析几何部分
    2.5 小结
        2.5.1 编写理念适宜
        2.5.2 基本内容增加
        2.5.3 习题难度提升
        2.5.4 理论更加严谨
3 民国初期-民国中期微积分教科书内容的发展
    3.1 编写理念比较
        3.2.1 解析几何部分
        3.2.2 微分部分
        3.2.3 积分部分
        3.2.4 其他主要补充部分——函数和级数
    3.2 目录对比
    3.3 习题设置对比
        3.3.1 数量和位置
        3.3.2 习题类型和占比
        3.3.3 答案的设置
        3.3.4 习题的选取和难度比较
    3.4 名词术语的对比
        3.4.1 函数部分
        3.4.2 积分部分
        3.4.3 微分部分
        3.4.4 解析几何部分
    3.5 小结
        3.5.1 编写理念适宜
        3.5.2 基本内容增加
        3.5.3 习题难度提升
        3.5.4 理论更加严谨
4 微积分符号的西化历程
    4.1 清末民国6部微积分教科书符号
    4.2 元素符号(数量符号)的西化过程
        4.2.1 表示数字的符号
        4.2.2 表示未知数的符号
        4.2.3 表示常数的符号
        4.2.4 表示几何图形的符号
    4.3 运算符号的西化过程
        4.3.1 基本四则运算符号
        4.3.2 其他运算符号
    4.4 特殊符号的西化过程
        4.4.1 极限符号
        4.4.2 函数符号
        4.4.3 正和负、()、{}、[]
        4.4.4 增量符号
        4.4.5 无穷符号
        4.4.6 分数符号
5 研究结果与研究展望
    5.1 研究结果
        5.1.1 微积分教科书内容发展情况概述
        5.1.2 微积分符号的西化历程
    5.2 研究展望
参考文献
附录1
附录2
致谢

(10)微积分学中若干问题的数学化归方法(论文提纲范文)

1 一元微积分学中若干问题的数学化归方法
    1.1 极限问题的化归方法
        1.1.1 化归为两个重要极限
        1.1.2化归为不定型0/0或∞/∞极限
    1.2 导数问题的化归方法
        1.2.1 微分中值定理中的化归
        1.2.2 导数应用问题的化归
    1.3 积分问题的化归方法
        1.3.1 不定积分的化归
        1.3.2 定积分的化归
2 多元微积分中若干问题的数学化归方法

四、微积分学中值定理(论文参考文献)

  • [1]中国微积分教科书之研究(1904-1949)[D]. 刘盛利. 内蒙古师范大学, 2012(07)
  • [2]数学文化价值取向下微积分学中的哲学思想[J]. 余惠霖. 广西社会科学, 2011(08)
  • [3]一元微积分概念教学的设计研究[D]. 高雪芬. 华东师范大学, 2013(10)
  • [4]微积分基础的新视角[J]. 张景中,冯勇. 中国科学(A辑:数学), 2009(02)
  • [5]从翻译的主体间性析西南财经大学教学大纲英译[D]. 刘潇. 西南财经大学, 2018(02)
  • [6]建设性后现代视野下高等数学课程问题与改进策略研究[D]. 田仕芹. 哈尔滨师范大学, 2017(05)
  • [7]介值定理的一种推广[J]. 胡茂林. 淮阴师范学院学报(自然科学版), 2017(03)
  • [8]微积分学中值定理[J]. 杜彪. 数学通报, 1962(10)
  • [9]清末民国时期微积分教科书的内容发展与符号传播(1859-1934)[D]. 王金隆. 四川师范大学, 2020(01)
  • [10]微积分学中若干问题的数学化归方法[J]. 余惠霖. 柳州职业技术学院学报, 2011(02)

标签:;  ;  ;  ;  ;  

微积分中值定理
下载Doc文档

猜你喜欢