土壤水分特性、水的导电性和土壤中铜离子的平衡吸附研究——一种用于土壤科学的实用设备及其使用说明

土壤水分特性、水的导电性和土壤中铜离子的平衡吸附研究——一种用于土壤科学的实用设备及其使用说明

一、A STUDY ABOUT SOIL WATER CHARACTERISTIC,CONDUCTIVITY OF WATER AND EQUILIBRIUM ADSORPTION OF CUPRIC ION IN SOIL——A UTILITY EQUIPMENT USED IN SOIL SCIENCE AND ITS ILLUSTRATION OF USE(论文文献综述)

JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu[1](2021)在《New innovations in pavement materials and engineering:A review on pavement engineering research 2021》文中认为Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges. In the past 10 years, the pavement infrastructure strongly supports the rapid development of the global social economy. New theories, new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem. Because of actual coupled behaviors of traffic and environmental conditions, predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis. In order to summarize the current and determine the future research of pavement engineering, Journal of Traffic and Transportation Engineering(English Edition) has launched a review paper on the topic of "New innovations in pavement materials and engineering: A review on pavement engineering research 2021". Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering, this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world. The content includes asphalt binder performance and modeling, mixture performance and modeling of pavement materials,multi-scale mechanics, green and sustainable pavement, and intelligent pavement.Overall, this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.

王洛发(MOHAMMED AWAD ABEDALWAFA MUKHTAR)[2](2019)在《纳米纤维基比色生物传感器的制备及其抗生素检测应用》文中研究指明抗生素因具有选择性抑制或杀灭其它菌种微生物的能力,而被广泛应用于医疗、农业及畜牧养殖业,尤其是随着集约化畜牧业的发展,使用抗生素己成为保障畜牧业持续健康发展所必不可少的核心环节。由于科学知识的缺乏和经济利益的驱使,养殖业成为了四环素、氨基糖苷等各类兽用抗生素滥用的重灾区。抗生素滥用的直接后果是导致其在动物源性食品中的残留,后经食物链在人体内蓄积,引发过敏和变态反应、损伤神经系统、抑制骨髓造血机能、导致耐药菌株感染等危害。当前,抗生素耐药性细菌已蔓延至全球各地,如不采取行动对滥用进行干预,人类将“无药可救”。世界卫生组织也将抗生素滥用视为国际关注的重大问题之一,对相关重点抗生素的每日摄入量(Acceptable daily intake,ADI)和最大残留限量(Maximum residue limit,MRL)做出了规定,以期管控动物源性食品及环境中的抗生素残留。现有的抗生素检测方法有高效液相色谱、毛细管电泳法、电化学分析仪及微生物分析法等,尽管上述方法灵敏度高、选择性好且检出限低,但也面临仪器昂贵、检测成本高、操作繁琐及测定时间长等不足,无法充分满足大批样品的现场过筛需求。因此,研发灵敏度高、选择性好且携带方便的抗生素残留检测新技术,将其用于交货时间短、批量大、批次多的动物源性食品样本检测,已成为当今国际食品安全、医疗卫生领域广泛关注的紧迫课题之一。比色生物传感器因其操作简便、成本低廉、结果直观的特点成为了抗生素残留检测研究领域的新热点,促使科研人员从液相和固相这两种介质入手对抗生素比色检测进行了大量研究。然而,现有液相检测体系通常都存在抗干扰能力不足、试剂储存条件苛刻、便携性差等问题;固相体系虽然在一定程度上提升了便携性和稳定性,但所获得的比色传感器仍存在灵敏度低、裸眼检测极限无法满足实际应用需求的缺陷。(1)本文针对上述关键问题进行了系统的研究和探索,依托静电纺纳米纤维膜的较高比表面积、丰富的孔结构、可控的堆积密度等优点,首次提出了基于静电纺纳米纤维的抗生素检测试纸,填补了静电纺纤维材料在抗生素传感器应用研究领域的空白,成功制备出了裸眼检测极限符合WHO对MRL限定标准的试纸材料。所取得的主要研究成果总结如下:以比表面积为11.39 m2/g的聚丙烯腈纳米纤维膜(PAN NFM)为比色传感试纸的模板基材,通过在其表面修饰羧甲基纤维(CMC)功能层,结合PAN NFM独特的孔道结构,使其具有优异的镍离子(Ni2+)吸附功能。进而基于Ni2+与土霉素间强烈的络合作用构建出可对不同浓度土霉素产生由浅绿至黄色的比色信号响应的试纸。所制得试纸条的裸眼检测为5 nM,响应时间为2 min,并具有良好的选择性及可重复使用性能(重复使用10个循环)。(2)结合药理学理论研究结果可知其他类金属离子如铁离子(Fe3+)、铜离子(Cu2+)也可与四环素(TC)类抗生素发生络合效应,因此本文受前述比色传感系统的启发,力图通过构建可吸附Fe3+、Cu2+的纳米纤维基模板材料的策略,进而设计出可对TC产生比色响应的试纸条。在Fe3+吸附模板材料的设计上,本文采用海藻酸盐(SA)对PAN NFM进行涂覆,利用SA与Fe3+发生配位络合组装形成TC响应表面(FAPAN)。而Cu2+吸附模板材料的设计则是采用乙二胺(EDA)对多孔PAN NFM进行修饰得以实现,组装获得的TC响应表面为CEPAN。研究结果表明,所设计的FAPAN测试条具备快速响应(10 min),裸眼检测限低(5μg/kg),抗干扰性能优异和可重复使用的综合特性,通过结合iPhone APP读取色度参数可获得TC浓度与颜色变化间的参数关联。然而,CEPAN试纸却无法对TC产生裸眼可视的颜色响应。(3)此外,本文还基于具有超高摩尔吸光系数的纳米金颗粒(AuNPs)开发了非酶式三聚氰胺-金纳米颗粒(M@Au)结合物探针比色系统,并成功将其应用于甲硝唑(MTZ)的比色检测。首先,首先以HAuCl4为金源,采用柠檬酸钠还原法成功制备出了平均直径为20.1±1.76 nm的AuNPs。通过将三聚氰胺标记于Au NP表面制成非酶MA@AuNPs探针。通过静电纺丝技术制备聚酰胺(PA6)纳米纤维膜,随后将非酶(M@Au)固载于PA6 NFM上。随后的传感测试表明,纳米纤维可在有效提升纳米金探针固定量的同时,促进了甲硝唑在纤维膜中的质能传递作用,使得该比色体系对甲硝唑的裸眼检测极限为2 nM,已能满足现有抗生素的严格检测标准。(4)选取卡那霉素为代表性目标抗生素物质,提出了非团聚式的适配体-AuNPs生物结合物探针系统,采用体外预筛选的卡那霉素核酸适配体作为响应原件以期提高体系的选择性,所选用的显色原件为平均粒径为17.5 nm的AuNPs采用经典Frens柠檬酸钠还原法合成。探针固载模板采用谷氨酸接枝的静电纺丝醋酸纤维素(CA)纳米纤维膜(G-CA)。G-CA NFM表面的羧酸基团为Apt@Au探针的有效固载提供位点,构建出夹心结构的比色响应平台。由于体系中存在卡那霉素时会引发Apt构象发生变化,导致Apt@Au探针解体,从而产生出由粉色至无色的比色信号响应。该生物试纸条可对2.580 nM的卡那霉素产生颜色响应,裸眼检出限可达2.5 nM。除优异的选择性,可重复使用性和长期可储存性外,该试纸条还可用于实际食品中抗生素的检测。

Kipkorir Peter[3](2019)在《采用插层和掺杂策略改性水滑石及其光催化还原CO2性能研究》文中指出在化石燃料资源短缺和环境污染两大问题的威胁之下,可持续能源的开发和减少温室气体排放日益迫切。利用CO2作为原料,采用光催化还原CO2生产高附加值化学品,实现碳循环,是一条符合经济利益的可行道路。由于具有类似的氧化还原电位和高的热力学稳定性,CO2催化还原反应和H2O裂解反应存在着激烈的竞争。此外,光催化反应的效率往往受到低的电荷传输、快速的载流子复合和有限的光捕获能力等因素的限制。进一步地,光催化CO2还原反应过程还涉及水分子活化和多电子转移,其产物的选择性不易控制。因此,亟需发展一种高效的CO2还原光催化剂。在已报道的光催化剂中,水滑石具有优异的性能,有望在光催化反应中展现出广阔的应用前景。水滑石的结构和水镁石(Mg(OH)2)类似,具有典型的二维层状结构、可调变的主体层板元素和层间客体阴离子等结构特征。通过调变其主体层板和层间阴离子可以提高其稳定性、光性能、电性能,从而为设计和构筑CO2还原光催化剂提供了一条有效途径。本论文利用独特的改性水滑石作为光催化剂,在可见光下实现C02还原制备高附加值化学品。具体的研究内容如下:第一章对CO2性质和还原过程的基本原理、LDHs性质、结构、合成、表征和应用进行了综述。第二章发展了一系列硝酸根和碳酸根插层的NiAl-LDH,CoAl-LDH和MgAl-LDH。首次深入研究了 LDHs的层间改性对C02光催化还原性能的影响。与CO32-阴离子插层的水滑石相比,NO3-阴离子插层的水滑石的光催化性能有所提高。其中,NiAl-NO3对CH4和CO的选择性分别为6.07%和83%,而对NiAl-C03对CH4和CO的选择性分别为0.49%和66%。原因有可能归结于,N03-阴离子插层后水滑石层间的高度增高,暴露了更多的表面羟基基团和活性金属位点,打破反应底物和产物的扩散限制。XAS和UV-Vis DRS等多种表征证实经过层间改性后,氧空位的浓度和可见光吸收能力提高,并证实N03-阴离子插层的水滑石在光催化CO2还原中的优越性。本工作通过拓宽水滑石层间高度和层间阴离子的改性,提高光催化CO2还原性能,为拓宽光催化剂打开了新的思路。第三章探讨了水滑石主体层板掺杂稀土元素对光催化CO2还原性能的影响。稀土元素具有连续填充的f轨道,强的配位能力,独特的电学、光学和磁学特性,在催化领域具有广泛的应用。在本章的工作中,我们使用共沉淀法在MgAl-LDH主体层板上掺杂不同含量的Ce,并探讨不同掺杂量的水滑石的光催化C02还原性能。和未掺杂的水滑石相比,掺杂量为 7.5%的水滑石(Mg6Al1.85Ce0.15-LDH,记为 Ce-0.15 LDH)对 CO 的选择性从11.5%提升到41.5%。由于稀土元素本身具有强的离域电子及由此带来的强的电性能,Ce的掺杂提高了水滑石载流子的传输效率、提高催化剂在可见光区域对光的吸收,从而提高光催化C02还原性能。值得注意的是,Ce的掺杂量为7.5%时达到性能最优,原因可能是在该催化剂中载流子的传输和复合率达到了一个平衡。本章工作为开发低成本的高效光催化CO2还原催化剂提供了借鉴。

黄启亮[4](2019)在《Electrochemical Study of Fe-Cr Allovs under Carbon Dioxide Envir-Onment》文中研究说明In the exploitation,gathering and transportation processes of oil and gas field,casing and tubing are confronted with the severe corrosion environment.Particularly,the material may be in direct contact with carbon dioxide(CO2),hydrogen sulfide(H2S)and corrosive anions of produced-free water,which will inevitably cause various degrees of corrosion and huge economic losses,and even catastrophic failure.Simultaneously,Fe-Cr alloys are as a kind of material with strong corrosion resistance and it remains to be investigated whether the excellent corrosion resistance can be exhibited under the complex corrosion environments.In addition,the corrosion behaviors and mechanisms are worth researching.In this work,the corrosion behaviors of various Fe-Cr alloys were investigated by using weight loss and in-situ electrochemical measurements,such as open circuit potential(OCP),potentiodynamic polarization and electrochemical impedance spectroscopy(EIS).In addition,the morphologies and the compositions of corrosion products were characterized by the ex-situ surface analysis techniques,such as scanning electron microscopy(SEM)and energy disperse spectroscopy(EDS)in the high temperature and high pressure environments including CO2-Na2SO4 and CO2-H2S-Cl-.Ultimately,the electrochemical corrosion mechanisms of Fe-Cr alloys were systematically researched and the effects of different corrosion factors were demonstrated.The specific conclusions are as follows:(1)In the CO2-Na2SO4 system,the anodic polarization regions of 3Cr and 13Cr steels principally included two passivation zones and one transpassivation zone.The passivation zone 1 was mainly contributed by FeCr2O4,Cr(OH)3 and Cr2O3,while the major contribution of the passivation zone 2 stemmed from iron oxides and high-valence chromium oxides.Besides,the transpassivation region was mainly caused by the dissolution of various oxides.Both temperature and partial pressure of CO2 could affect the corrosion behaviors of Fe-Cr alloys by changing the properties of the corrosive electrolyte and/or corrosion products.Temperature would initially exacerbate and then inhibit the corrosion of 13Cr steel with the maximum of corrosion rate at 85℃.However,the influence on the partial pressure of CO2 was antipodal and the maximum impedance value was obtained at 0.5 MPa.Furthermore,the passive film was more protective and the corrosion resistance was enhanced with the prolonging immersion time.(2)In the corrosion system of CO2-H2S-H2O-Cl-,L80-1 steel was dominated by activat,on corrosion,while the passivation characteristics was exhibited on 3Cr and other steels regardless of the ratios of CO2/H2S and the concentrations of Cl-ion.At the same time,the pr-mary and secondary orders of 5 corrosion factors for L80-1 steel were water content,partial pressure of CO2,partial pressure of H2S,temperature and concentration of chloride ion,successively.Moreover,the most severe corrosion combination was 1.5 MPa CO2,112S-absence,80℃,100000 mg/L Cl-and 90%water content.L80-1 steel mainly displayed the uniform corrosion morphologies,but the local corrosion might occur when the water content was no exceeding 30%.The uniform corrosion products were mainly carbonates,whilst the sulfides would enhance the inhomogeneity of corrosion products and even induce local corrosion.(3)In the CO2-H2S-H2O-Cl-system,the corrosion of L80-1 steel was aggravated with increasing pCO2 and dominated by the cathodic process for CO2 corrosion.As H2S concentration increased,the corrosion was retarded previously and followed by accelerated.H2S corrosion was conjointly controlled by the anodic and cathodic processes.At higher concentration,an increasing concentration of Cl-ion could suppress the corrosion of L80-1 steel,which was also mainly a hybrid control of the anode and cathode.Remarkably,a small amount of carbon dioxide and tiny bits of hydrogen sulfide could act synergistically to palliate the corrosion of L80-1 steel in an acidic chloride environment.Moreover,the corrosion of L80-1 steel was dominated by CO2 corrosion when the concentration of H2S was inferior to 195 mg/L,whilst that was controlled by H2S corrosion exceeded 195 mg/L in the coexistence of CO2 and H2S.(4)Chromium would diminish the general corrosion tendency as well as the pitting susceptibility and heighten the passivation by the formation of iron oxides and chromium oxides whether in CO2-Na2SO4 or in CO2-H2S-H2O-Cl-system.Besides,when chromium content surpassed 3 wt.%,the spontaneous passivation would occur and the corrosion rate was reduced dramatically in CO2-H2S-H2O-Cl-system.However,the chromium effect would be affected by the temperature in CO2-Na2SO4 system.In addition,the intricate influences on temperature,partial pressures of CO2 or H2S and chromium content,remain to the further research.

RAHOUI NAHLA[5](2018)在《光和pH响应阿霉素递送系统构建及NIR定量分析》文中研究表明刺激响应型药物传递体系的设计是保证药物传递时空监控的基础。为了更好地理解和预测目标体系中信息,需要精确估计系统特性。由于近红外光谱(NIRS)(750-2500 nm)的环境友好性,非侵入性和无损测量特性,同时结合准确而可靠的定量分析模型,NIRS在工业生产和学术研究过程中对材料质量评估起到了重要作用,特别是分析含有大量CH,OH,SH或NH基团的有机成分的材料。尽管近红外光谱作为分析技术已经广泛应用,但其对现代多组分药物递送系统(DDS)的定量和定性分析应用仅限于对常规药物鉴别及其定性分析。因此,本论文探索了NIRS用于分析构建的新型DDS体系和多元建模的可行性,以证明NIRS分析技术为DDS定性和定量分析提供了一种极具前景的替代方法。本文设计了三种对化学或物理双重刺激具有特异反应性,用于阿霉素(DOX)递送的初始DDS,并使用NIRS分析对设计的DDS体系的几个重要特性进行定量分析。首先基于生物相容性聚乙烯醇(PVA)设计聚合体系,DOX通过可反应基团与PVA共价连接。我们的研究结果证实,p H依赖性的DOX在酸性环境(p H=5.0,6.0)中从PVA-DOX释放速率更快,而在中性p H环境(p H=7.4)中释放速率更慢。为了进一步强调协同作用的重要性。新型p H和NIR响应由中孔二氧化硅纳米粒子核心(MSN)和聚多巴胺-金纳米粒子外壳组成,用于构建的DOX体系。该系统设计将光热等多重协同作用,在p H=5.0条件下确定了触发释放行为,在红外照射下大约15小时增加了19%,所设计的系统显示出优异的光热效应(η=49%)。更为重要的是,这证实了所设计的纳米结构具有了协同作用。另外,也研究了基于多巴胺负载纳米颗粒(PDNS)作为DOX底物来研究将三种治疗模式应用于一个系统中以增强释放效率。合成和控制Ti O2纳米粒子后,DOX通过π-π叠加负载。在NIR作用下,它们表现出良好的热稳定性和显着的光热转换效率(η=34.9%)。此外,在低p H环境下将触发DOX释放。另一方面,电子自旋共振谱(ESR)证明了由于Ti O2存在,这种纳米结构在紫外光照射下具有产生活性氧(ROS)的能力。对于第一种和第二种阐述的DDS和NIRS结合多变量分析已用于在p H=5的缓冲溶液中释放DOX。回归模型显示了实际测量值与NIRS的预测值之间的相关性。对于基于PDNS的DDS,实际分析了PDNS粒度及其分布的特征。通过NIR光谱收集样品,建立样品的光谱数据库。利用偏最小二乘法提取的三个系统的回归NIRS模型具有高精度线性,高相关系数R2>90%,光谱预处理后均方根误差(RMSE)低。经过频谱预处理,光谱特征区间选择,回归模型参数优化和异常值消除,优化的模型准确性和稳定性显着提高。论文研究具有刺激药物传递体系的设计和近红外光谱定量分析的研究对未来新型药物的开发具有重要的意义。

王晓琳[6](2017)在《碳氟表面活性剂胶束溶液及离子液体凝胶的结构、形成机理与性能研究》文中认为对表面活性剂自组装过程的探究不仅是物理化学研究领域的重要部分,也是日益发展的交叉学科中需要探究的热点和重点。利用分子自组装可以得到不同形貌的有序聚集体,基于多种相互作用的协同效应,有序结构可进一步组装成具有不同功能的材料。但是由于缺乏原位有效的检测技术,人们对于溶液中表面活性剂分子自组装的动力学过程了解得还不够深入。利用实验和理论模拟等多种手段进一步探究表面活性剂分子在不同介质中,尤其是离子液体中聚集体的形成规律,对于发展两亲分子构筑的功能材料有着重要的指导意义。另外,基于表面活性剂分子的自组装构筑多功能的凝胶材料是当下研究的热点,其中,离子液体凝胶因其优越性如良好的导电、润滑性能等,受到越来越广泛的关注。因而,基于对表面活性剂分子自组装过程的探究,本论文主要开展了两方面的研究:一部分是利用核磁共振氟谱(19FNMR)技术、透射电子显微镜等多种表征手段,同时结合分子动力学模拟的方法,研究了表面活性剂溶液中的胶束类型,揭示了胶束化过程中重要的热力学和动力学机理。另一部分是利用表面活性剂分子在质子型及咪唑型等多种离子液体中构筑了性能优异的离子液体凝胶材料,结果有助于推进对表面活性剂分子在离子液体介质中自组装过程及凝胶化规律的深入认识,同时又拓展了离子液体凝胶材料的功能性应用。论文主要由以下几个部分构成:第一章,从自组装的基本概念出发,对自组装的分类、特点及研究意义进行了总结。对表面活性剂物理化学的基础知识进行了逐条详细的介绍,包括表面活性剂的概述、溶液聚集体的形成理论、表面活性剂胶束化参数的计算及本文涉及的几类重要聚集体,其中着重介绍了胶束化过程中的热力学及动力学。总结了离子液体的性能及应用,介绍了两亲分子以其作为组装介质构筑的不同聚集体;详细综述了离子液体凝胶的构筑、性能及近期的几类重要应用。最后概括了该论文的主要研究内容及意义。第二章,以19FNMR技术为主,表面张力及冷冻蚀刻电镜(FF-TEM)为辅,探究了一种两性碳氟表面活性剂分子(C9F19CF=CHCH2N(CH3)2(CH2)3OSO3,PDSPDA)在质子型离子液体硝酸乙铵(EAN)中的胶束化过程。基于表面张力的测试结果,我们发现该胶束化过程在较低温度范围内是一个熵驱动占主导的过程,而在较高温度范围内是一个焓驱动占主导的过程。在NMR时间域内,我们成功检测到单体和胶束两种信号峰,这是由于PDSPDA分子在胶束和溶液之间交换速率较慢引起的,而胶束"寿命"的延长是多种因素的综合结果。关于离子液体介质中胶束化过程中的动力学鲜有报道,该部分工作深化了该类工作的探究。第三章,对碳氟表面活性剂胶束溶液体系中胶束化过程的动力学进行了更深入的研究。利用19F NMR技术,我们对全氟辛基磺酸四乙基铵盐(C8F17SO3N(C2H5)4,TPFOS)的水溶液进行了探测,并意外地检测到TPFOS的四种信号峰,包括一种单体信号和三种胶束信号。多种信号的同时检测归因于分子较慢的动力学交换过程。低温透射电镜(cryo-TEM)的结果表明该体系中含有三种比较特殊的胶束:球状、环状以及末端带有圆环的蠕虫状胶束。从热力学的角度分析,该体系的胶束化过程主要是由熵驱动的,表明TPFOS分子具有非常强的疏水作用。分子动力学模拟的结果显示,尺寸较大且具有一定疏水性的反离子+N(C2H5)4意外地"侵入"了胶束疏水内腔中,这不仅解释了体系中异常强烈的疏水作用,同时对于体系中的慢动力学过程给出了一个合理的解释。第四章,利用一种分子中含有一个二糖极性头的表面活性剂,十八烷基乳糖酰胺C18G2,在EAN中构筑了一种具有良好润滑性能的离子液体凝胶材料。结合小角X射线散射(SAXS)的表征和FF-TEM的观察,我们探究了 C18G2浓度及温度对体系微观结构的影响,总结了聚集体转变的规律和机理;通过差示扫描量热(DSC)和流变学的测定,揭示了该凝胶材料的热可逆转变及流变学性质。摩擦磨损测试的结果表明:该种糖类表面活性剂可以有效提升纯EAN的润滑性能。该结果为离子液体凝胶润滑材料的构筑和应用提供了理论支持。第五章,合成了一种分子中含有葡萄糖酸、氨基酸以及十六个碳原子尾链的糖表面活性剂HLG,并利用HLG在两种咪唑型离子液体中构筑了离子液体凝胶润滑材料。除了探究凝胶对温度及机械外力的刺激响应性质,我们还利用SAXS、FF-TEM、扫描电子显微镜(SEM)及X射线粉末衍射(XRD)等表征手段确定了离子液体凝胶的微观结构,揭示了聚集体形成及转变的机理。流变学的测试结果表明两种离子液体凝胶均具有良好的触变性,而SEM的观察结果显示两种样品的原始微观结构经外力剪切后发生了不同的转变。进一步的摩擦磨损测试结果证实,两种凝胶摩擦学性能的差异主要是由不同的流变学性质和外力剪切后的不同微观形貌引起的。对微观结构、流变学性质及摩擦学性质三者内部关联的揭示,为未来离子液体凝胶类润滑材料的拓展应用提供了重要的理论指导。第六章,通过两类假双子表面活性剂的自组装在EAN中构筑了离子液体凝胶,该类凝胶展现出较高的机械强度以及热力学可逆的性质。探究了自组装过程中的多种非共价相互作用,如静电作用、氢键作用及疏溶剂相互作用等的协同效应;确定了不同聚集结构的形成,并揭示了假双子表面活性剂在离子液体介质中有序结构形成和转变的机理。该工作提供了一种构筑离子液体凝胶的方法。第七章,研究了三种阳离子表面活性剂在质子型及咪唑型离子液体中的凝胶化行为。表面活性剂的阳离子部分为1-十六烷基吡啶,而阴离子分别为Br-,[FeCl3Br]-和[CeCl3Br]-,对应的表面活性剂分别被标记为HB,HBFe和HBCe,它们在离子液体中形成的有序结构均为层状相。DSC的测试结果表明离子液体的尺寸对于凝胶的相转变温度有着重要的影响,咪唑阳离子烷基侧链越短,相转变温度越高;SAXS的结果表明层状相的层间距大小取决于咪唑型离子液体的阴离子类型;而流变学测试的结果表明咪唑型离子液体凝胶的机械强度和离子液体的阴阳离子尺寸均有关联。为拓展离子液体凝胶的应用,我们利用HBCe/EAN离子液体凝胶作为前驱体,制备了尺寸不同的Ce02纳米颗粒,其展现出催化性能优良的过氧化氢酶模拟活性。

Eyob Abebe[7](2017)在《Modification of Melamine Sponge for Efficient Absorption Oil from Oily Waste Water》文中进行了进一步梳理油污染的废水对目前的环境造成了严重影响,从工业中排放到海洋中的污染废水以及海上失事船舶的漏油或泄露的其他有机污染物是导致这一现象的主要原因。原油和石油产品是至关重要的自然资源,但其泄露极大地影响了人类的生活质量。许多报道指出,石油泄漏事故对环境和社会经济产生了很多直接或间接的影响,特别是对渔业和水族,旅游和娱乐,工业和人类健康造成了直接冲击。基于这些问题,油吸附剂的制造在近年来受到广泛关注。人们付出了很多努力,进行了各种尝试以期制备更好的吸油剂。在这些论文中,重点介绍了油性废水对环境的污染及对油/水混合物分离技术的适当改善。我们更加重视油吸附材料的改性制造,从而能从水面高效的吸收油,这些改性使得吸收剂材料满足优良性能,例如超疏水性,可重复使用性,机械强度,低成本和环境兼容性。本研究通过将市售的三聚氰胺海绵分别浸渍在2%十八烷基三氯硅烷(OTS)和2%甲基三甲氧基硅烷(MTM)的甲苯溶液中来改性三聚氰胺海绵。通过扫描电子显微镜(SEM)观察得到的改性海绵。改性材料的亲水性变为超疏水性,在表面粗糙度改性和界面处引入非极性烷基(R)时,接触角测量确认为+152。改性三聚氰胺海绵对于各种有机液体表现出快速和极端的选择性吸收。对于所有尝试的有机液体,吸收能力在46g/g和164g/g之间。氯仿由于其最高密度而获得最大吸收。改性海绵在重复使用170次后,吸收效率不会降低,从而证实了其优异的可回收性。由于其低密度,高孔隙率,良好的弹性,柔韧性,可回收性,低成本,易于使用和环境友好性,所以制造的吸油材料显示出卓越的性能。是能在不同环境修复中进行油性废水处理和漏油清理的有前途的材料。

Farooq Ahmad[8](2016)在《纳米铁酸钴的水生生物和蛋白质毒性机制研究》文中指出目前CoFe2O4 纳米粒子在医学、环境和工业各方面已获得广泛的应用,使得越来越多的纳米CoFe2O4 进入环境,其过量暴露对环境和人体均具有一定风险。因此,急需对CoFe2O4 纳米粒子对人体健康和环境生物的潜在影响进行准确的评估。本文以斑马鱼(Daniorerio)和小球藻(Chlorella vulgaris)为生物模型,对纳米CoFe2O4 的水生生物毒性进行研究,内容包括纳米CoFe2O4 引起的氧化应激、遗传毒性、内分泌干扰效应、纳米CoFe2O4 的环境降解、纳米中离子释放以及生物自身对纳米CoFe2O4 的抵抗机制等;此外,本文研究了纳米CoFe2O4 与牛血清白蛋白(BSA)和酸性磷酸酶(AP)间的相互作用,探究了其热力学数据及蛋白电晕的形成。将斑马鱼胚胎置于环境剂量的纳米CoFe2O4 培养液中,分别暴露96和168hpf(hours post fertilization),暴露96和168 hpf,会引起严重的心包水肿、代谢降低、孵化延迟、尾部/脊柱弯曲以及细胞凋亡,且与CoFe2O4 呈剂量-效应与时间-效应关系。较低浓度的纳米CoFe2O4 会引起过量ROS,进而引起头部、心脏、尾部的细胞凋亡以及生物体内DNA和代谢的变化。暴露168 hpf时,甲状腺激素紊乱、纳米粒子的团聚及粒子释放会导致甲状腺轴的膜损伤、氧化应激及结构损伤。且斑马鱼幼鱼体内T3、T4激素含量升高,导致孵化延迟、眼部、头部畸形等现象。此外,ROS升高会引起8-OHd G DNA聚合物形成,引起DNA损伤,从而产生基因毒性。通过在藻细胞表面的吸附、聚集、释放Fe3+和Co2+以及造成机械损伤,纳米CoFe2O4 会损害小球藻细胞形态、膜完整性和通透性。结果也表明纳米CoFe2O4 引起的ROS会引起细胞内的氧化应激,导致CAT、GST、AP等抗氧化酶活性下降,并引起遗传突变、代谢及细胞信号传递紊乱。纳米CoFe2O4 浓度较低时对ROS含量、CAT、GST活性影响不显着。这项研究表明,诱导ROS产生是CoFe2O4 NPs的致毒方式之一,并阐明了在自然环境中可能发生于生物体和纳米颗粒之间的复杂过程。以光谱法作为手段,本文研究纳米粒子与牛血清白蛋白(BSA)、酸性磷酸酶(AP)的相互作用,探讨了纳米CoFe2O4 对蛋白质结构和功能的潜在影响作用。结果表明,纳米CoFe2O4 通过静态猝灭机制引起BSA和AP的荧光猝灭。负值热力学参数(ΔH和ΔG)说明这种静态猝灭是自发和放热的。ΔS的负值和正值,表明CoFe2O4 NPs与BSA和AP间的结合力分别为范德华力、氢键和静电作用。此外,通过TGA、DLS测试证明BSA和AP在CoFe2O4 NPs上形成了蛋白质电晕,BSA和AP在CoFe2O4 NPs表面的密集包覆,使得负的zeta电位上升。BSA和AP在CoFe2O4 NPs上的这种包覆使得磁性饱和值从50.4 emu分别下降到了46.2和45.5 emu。通过对比静态荧光猝灭和理论分析值,进一步分析BSA在CoFe2O4 NPs上形成的蛋白质电晕。利用FTIR、UV-CD、紫外可见分光光谱和三维光谱等方法证实CoFe2O4 NPs与蛋白质的结合会引起BSA和AP内部微环境改变,引起二级结构和三级结构的改变。此外,同步荧光(SFS)表明CoFe2O4 NPs明显改变了BSA和AP内部色氨酸(Trp)残基附近的微环境。通过测定BSA酯酶活性,说明CoFe2O4 NPs会引起BSA变性。本文还进一步研究了CoFe2O4 NPs对小球藻中AP活性的影响,实验分别测定了CoFe2O4 NPs浓度为0和200μM时小球藻液的表观米氏常数(Km)和活化能,表观米氏常数常数分别为0.57和26.5 m M,活化能分别为0.538和3.428 KJ mol-1。-7 Umml-1的表观Vmax值说明酶活性位点完全被NPs占据而没有给酶底物留下空间。结果表明CoFe2O4 NPs通过使AP酶展开而降低了酶活性,说明CoFe2O4 NPs会通过改变AP酶结构和代谢活性而破坏酶的活性。本文从多个层面阐述了纳米CoFe2O4 的生物毒性,为开发环境友好、安全的纳米材料提供了理论性依据。同时,提供了能更好地精确控制和分析纳米颗粒在复杂的生物和环境体系中的方法,为相关监管机构和部门制定和实施严格的法规提供了参考。

王岚(Mahmood Laghari)[9](2015)在《快速热解生物质半焦的制备及其在沙漠土壤中的应用》文中指出生物炭是在缺氧条件下生物质热解生成的碳质残余物。生物炭是一种复杂的有机材料;其特性随生产技术诸如慢速或快速热解以及制备条件如热解温度、停留时间和原料使用而变化。近年来,生物炭被证明是可用以固碳和减少温室气体从土壤到大气中的排放,从而减缓全球环境变化的一种工具。生物炭添加到农业土壤中被证实可以提高土壤肥力和作物产量,从而改良传统耕地土壤的肥力。本文旨在研究热解温度对生物炭的性质和产量的影响,不同温度产生的生物炭及其施用率对植物生长、沙漠土壤持水力和化学性质的影响。本文以不同来源的生物质锯末为原料,在五个不同的热解温度下(400,500,600,700和800℃)快速热解产生生物炭。并对不同温度和原料制得的生物炭进行了工业分析、元素分析,测定了其pH值,电导率(EC),阳离子交换量(CEC)和植物营养物质含量。此外,为了解不同生物炭的持水能力,作者进行了布鲁诺尔-埃米特-特勒(BET)表面积和孔隙率和粒径分布分析;并通过傅立叶变换红外(FTIR),X射线衍射(XRD)和扫描电子显微镜(SEM)成像的分析等手段探讨了生物炭的表面化学和表面形态特性。当热解温度从400℃增加到800℃时,生物炭产量由55%下降到15.7%,而合成气产率由25%提高到63.6%。生物液体的最大产率为在500℃热解温度下获得的28.3%。随着热分解温度从400℃增加到800℃,生物炭的pH值(6.35至9.31)、灰分含量(2.20至8.80%)、总碳量(51.71至77.46%)、固定碳(31.40至87.77%)、C/N比(64.86至161.37)和较高热值(20.40至28.71公斤MJ-1)增加的同时,碳转化效率(71.41至30.55%)、挥发性物质(VM)(72.00至20.19%),EC(2.44至0.57dS m-1)和CEC(27.50至23.60cmol kg-1)也下降。在700℃的热解温度下获得的生物炭植物必需营养物质,如磷(P),钾(K)含量最大。随着热解温度从400℃增加到800℃,该生物炭的BET表面积从3.02上升至8.93m2g-1同时生物炭的WHC从3.77显着增加到6.68g g-1。松木屑衍生生物炭的产率则为51%,而生物炭呈酸性,pH为4.21。该生物炭有54.32%的碳,其中19.23%为固定碳,灰分含量为3.27%,C/N比高达72.84。表面性质如比表面积和WHC则与锯末衍生生物炭基本相同。在本研究中,作者分别选取了了来自中国库布其沙漠和巴基斯坦的塔尔沙漠的沙土作为测试材料。不同温度下制备获得的生物炭(即400、500、600、700和800℃)以1%(质量比)掺杂比与库布其沙漠土壤混合成团,不同的处理被分别命名为T-400,T-500,T-600,T-700和T-800。同时,本文还研究了不同生物炭施用率对库布其沙漠或塔尔沙漠土壤的影响,施用率分别为0,15,22和45吨每公顷,这些处理方法分别被指定为KB-0,KB-15KB-22和KB-45或TR-0,TR-15,TR-22和TR-45。本文还选取高粱作为试验作物,进行了为期八周的植物生长实验。通过测定植株高度和收获植物后高梁的干物质产量来监测不同生物炭对植物生长的改良效果。为探讨添加不同生物炭对沙漠土壤水力特性的影响,作者测试计算了生物炭对沙漠土壤的持水能力(WHC)、水分保持能力(WRC)、水力传导系数和水本身效率(WUE)等参数。在植物生长实验的同时,作者也对不同生物炭对沙漠土壤化学性质的影响进行了分析。在T-400和T-700作用下,高粱产率分别增长了19%和32%,在上述施用条件下,生物炭减少了土壤柱纵向的水分消耗,因而分别提高了52%和74%的WHC。土壤导水率降低了15%和42%,而WRC分别提高了16%和59%。因此在T-400和T-700下,高粱净水分利用效率分别提高了52%和74%。此外,生物炭还改善了土壤总碳,CEC和植物营养素的含量。与不施加生物质半焦对比,在施用不同量的生物质半焦的情况下(KB-15,KB-22,KB-45,TR-15,TR-22和TR-45),土壤的涵养水能力分别增加了11%,22%,30%,10%,14%和27%;土壤的保水性能分别增加了17%,28%,50%,16%,27%和66%;但是其渗透率分别下降为0%,30%,37%,4%,7%和16%;pH分别降低了0.33,0.61,0.92,0.38,0.79和0.95;土壤中总碳含量增加了7%,11%,25%,6%,8%和20%:总钾的含量增加了25%,37%,56%,31%,41%和74%;总磷的含量增加了40%,70%,83%,30%,68%,和73%。在土壤中分别施加KB-15,KB-22,TR-15和TR-45的生物质半焦,高粱的干产率分别增加了16%,19%,18%和22%,水分利用率分别增加了25%,40%,27%和41%。然而,在分别施用KB-45和TR-45这两种半焦时,高粱的干产率分别下降了24%和27%,水分利用率也分别下降了6%和8%。因此,在土壤中施加量为15-22t/ha的生物质半焦,有利于改善土壤的水力特性,同时高梁的干产率和水分利用率也得到了增加。然而,在生物质半焦施用量比较高时(45t/ha),植物的生长和干产率都有所下降,其主要的原因是增加了土壤的C/N比值以及失去了一些植物生长的微量营养物质,比如Cu, Fe和Mn。因此,在45t/ha的生物质半焦施用量时,高粱的水分利用率有所下降。总结本文结论,为生产高品质的适于土壤改良的生物炭,生物质快速热解反应器的温度应该不应超过700℃。以加入由木屑制成的快速热解生物炭能显着改善沙漠土壤的品质、促进植物生长。与低温热解产生的生物炭相比,较高的热解温度下产生的生物炭沙土改良性能更好。对150毫米厚度的沙土,生物炭施用比率为15到22t ha-1湿有利于改良沙土品质。

喻恺[10](2012)在《铋酸钠基钙钛矿型功能材料的可见光催化/直接氧化降解典型有机水相染料研究》文中提出可溶性有机染料的广泛生产和使用不可避免的导致了水体环境中的染料污染,对人类和生态健康产生潜在威胁。面对不断涌现的环境问题,当务之急是采取有效措施消除降解有机染料废水中的污染物。传统的降解技术处理有机水相染料污染效率较低,因此开发高效的处理技术正迅速成为一大研究热点。本论文建立了铋酸钠可见光光催化,铋银氧化物直接氧化与可见光催化/直接氧化联用降解水体有机染料等方法。这些基于铋酸钠型功能材料的降解方法成本低、简单易行,同时实现了对典型有机水相染料的高效、深度降解。以罗丹明B作为模式染料研究铋酸钠的可见光催化活性以及罗丹明B的降解行为。1g/L铋酸钠在可见光照射下30分钟内将20mg/L罗丹明B溶液完全脱色,假一级反应速率常数为0.124min-1。染料溶液紫外可见吸收光谱在降解过程中有一定蓝移,最大吸收峰波长从554nm降至534nm。铋酸钠加热温度显着影响其光催化反应活性,未加热的铋酸钠样品活性最高。重复5次降解罗丹明B溶液结果显示铋酸钠有较高的光催化稳定性。检测出罗丹明B所有脱乙基产物与多种小分子产物。其中两种脱乙基同分异构体产物生成量区别很大,推测原因为降解过程中罗丹明B分子两侧电子密度不同所致。在铋酸钠可见光催化降解过程中罗丹明B主要有两种竞争性反应路径:破坏生色团与脱乙基过程。利用二水铋酸钠与硝酸银采用水相共沉淀方法首次合成铋银氧化物(BSO),并基于BSO提出了快速直接氧化降解罗丹明B染料的方法。结果显示,在仅需混合BSO与罗丹明B溶液的条件下,20mg/L罗丹明B降解假一级反应速率常数k=0.5594min-1,同时形成多种小分子分解产物。该反应在常温常压下进行,无需任何外加能源。BSO能够被多次重复利用降解罗丹明B溶液而没有显着失活。当铋酸钠与硝酸银重量比为2/1的时候,合成的BSO活性最好。BSO表征结果显示在罗丹明B降解反应过程中银元素被还原为零价银;初始二水铋酸钠的主体钙钛矿结构变为Bi2O2CO3结构;晶格氧含量减少,活性/吸附氧含量增加。反应过程中有单重态氧生成,其作为主要活性物质直接导致了染料分子的降解。开发了基于BSO直接氧化与基于铋酸钠可见光催化的联用方法,大幅提高了有机染料的降解效果。以结晶紫染料为目标化合物研究发现,在铋酸钠光催化降解过程中,染料溶液最大吸收波长由584nm蓝移至576nm;而在BSO直接氧化过程中,最大吸收波长由584nm红移至592nm。由于产生的自由基种类不同,结晶紫的降解路径差异很大。脱甲基过程在光催化反应中显着发生而在直接氧化反应中并不显着。另外,基于相同铋酸钠量的直接氧化对结晶紫溶液脱色效率比可见光催化效率高,并且染料浓度越大降解效率差别越大。通过对比联用的和单一使用的直接氧化与可见光催化方法降解效果发现,应用联用方法130mg/L结晶紫溶液在30分钟内矿化率达到37%,相同使用量的BSO或铋酸钠在相同时间内直接氧化或光催化降解相同浓度的结晶紫溶液,矿化率只有18%和15%。应用联用方法降解多种不同浓度不同类型染料都达到了更高的矿化率。在联用过程中,开始的直接氧化过程主要起快速脱色作用,使后续的可见光催化过程效率得到实质性提高,从而最终达到染料溶液矿化率提高100%的效果。该新型联用方法效率高,成本低特别适用于高浓度染料溶液的深度矿化。此外,开发出铜掺杂铋酸钠(CSB)材料,并基于该材料发展了一种快速简单的染料降解方法。应用此方法降解孔雀石绿染料溶液发现,在0.2g二水铋酸钠合成的CSB作用下,15分钟内30mg/L孔雀石绿溶液脱色率达到95%,并生成多种小分子降解产物。当铋酸钠与硝酸铜两者重量比相同时,合成的CSB活性最好。该方法在常温常压下应用,无需任何外加能源。对CSB的表征研究结果表明铜元素主要分布于材料表面。该材料作用方式与BSO作用方式相似,可以进一步发展为更低成本的替代性材料。

二、A STUDY ABOUT SOIL WATER CHARACTERISTIC,CONDUCTIVITY OF WATER AND EQUILIBRIUM ADSORPTION OF CUPRIC ION IN SOIL——A UTILITY EQUIPMENT USED IN SOIL SCIENCE AND ITS ILLUSTRATION OF USE(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、A STUDY ABOUT SOIL WATER CHARACTERISTIC,CONDUCTIVITY OF WATER AND EQUILIBRIUM ADSORPTION OF CUPRIC ION IN SOIL——A UTILITY EQUIPMENT USED IN SOIL SCIENCE AND ITS ILLUSTRATION OF USE(论文提纲范文)

(1)New innovations in pavement materials and engineering:A review on pavement engineering research 2021(论文提纲范文)

1. Introduction
    (1) With the society development pavement engineering facing unprecedented opportunities and challenges
    (2) With the modern education development pavement engineering facing unprecedented accumulation of scientific manpower and literature
2. Asphalt binder performance and modeling
    2.1. Binder damage,healing and aging behaviors
        2.1.1. Binder healing characterization and performance
        2.1.1. 1. Characterizing approaches for binder healing behavior.
        2.1.1. 2. Various factors influencing binder healing performance.
        2.1.2. Asphalt aging:mechanism,evaluation and control strategy
        2.1.2. 1. Phenomena and mechanisms of asphalt aging.
        2.1.2. 2. Simulation methods of asphalt aging.
        2.1.2. 3. Characterizing approaches for asphalt aging behavior.
        2.1.2. 4. Anti-aging additives used for controlling asphalt aging.
        2.1.3. Damage in the characterization of binder cracking performance
        2.1.3. 1. Damage characterization based on rheological properties.
        2.1.3. 2. Damage characterization based on fracture properties.
        2.1.4. Summary and outlook
    2.2. Mechanism of asphalt modification
        2.2.1. Development of polymer modified asphalt
        2.2.1. 1. Strength formation of modified asphalt.
        2.2.1. 2. Modification mechanism by molecular dynamics simulation.
        2.2.1. 3. The relationship between microstructure and properties of asphalt.
        2.2.2. Application of the MD simulation
        2.2.2. 1. Molecular model of asphalt.
        2.2.2. 2. Molecular configuration of asphalt.
        2.2.2. 3. Self-healing behaviour.
        2.2.2. 4. Aging mechanism.
        2.2.2. 5. Adhesion mechanism.
        2.2.2. 6. Diffusion behaviour.
        2.2.3. Summary and outlook
    2.3. Modeling and application of crumb rubber modified asphalt
        2.3.1. Modeling and mechanism of rubberized asphalt
        2.3.1. 1. Rheology of bituminous binders.
        2.3.1. 2. Rheological property prediction of CRMA.
        2.3.2. Micromechanics-based modeling of rheological properties of CRMA
        2.3.2. 1. Composite system of CRMA based on homogenization theory.
        2.3.2. 2. Input parameters for micromechanical models of CRMA.
        2.3.2. 3. Analytical form of micromechanical models of CRMA.
        2.3.2. 4. Future recommendations for improving micro-mechanical prediction performance.
        2.3.3. Design and performance of rubberized asphalt
        2.3.3. 1. The interaction between rubber and asphalt fractions.
        2.3.3. 2. Engineering performance of rubberized asphalt.
        2.3.3. 3. Mixture design.
        2.3.3. 4. Warm mix rubberized asphalt.
        2.3.3. 5. Reclaiming potential of rubberized asphalt pavement.
        2.3.4. Economic and Environmental Effects
        2.3.5. Summary and outlook
3. Mixture performance and modeling of pavement materials
    3.1. The low temperature performance and freeze-thaw damage of asphalt mixture
        3.1.1. Low temperature performance of asphalt mixture
        3.1.1. 1. Low temperature cracking mechanisms.
        3.1.1. 2. Experimental methods to evaluate the low temperature performance of asphalt binders.
        3.1.1. 3. Experimental methods to evaluate the low temperature performance of asphalt mixtures.
        3.1.1. 4. Low temperature behavior of asphalt materials.
        3.1.1.5.Effect factors of low temperature performance of asphalt mixture.
        3.1.1. 6. Improvement of low temperature performance of asphalt mixture.
        3.1.2. Freeze-thaw damage of asphalt mixtures
        3.1.2. 1. F-T damage mechanisms.
        3.1.2. 2. Evaluation method of F-T damage.
        3.1.2. 3. F-T damage behavior of asphalt mixture.
        (1) Evolution of F-T damage of asphalt mixture
        (2) F-T damage evolution model of asphalt mixture
        (3) Distribution and development of asphalt mixture F-T damage
        3.1.2. 4. Effect factors of freeze thaw performance of asphalt mixture.
        3.1.2. 5. Improvement of freeze thaw resistance of asphalt mixture.
        3.1.3. Summary and outlook
    3.2. Long-life rigid pavement and concrete durability
        3.2.1. Long-life cement concrete pavement
        3.2.1. 1. Continuous reinforced concrete pavement.
        3.2.1. 2. Fiber reinforced concrete pavement.
        3.2.1. 3. Two-lift concrete pavement.
        3.2.2. Design,construction and performance of CRCP
        3.2.2. 1. CRCP distress and its mechanism.
        3.2.2. 2. The importance of crack pattern on CRCP performance.
        3.2.2. 3. Corrosion of longitudinal steel.
        3.2.2. 4. AC+CRCP composite pavement.
        3.2.2. 5. CRCP maintenance and rehabilitation.
        3.2.3. Durability of the cementitious materials in concrete pavement
        3.2.3. 1. Deterioration mechanism of sulfate attack and its in-fluence on concrete pavement.
        3.2.3. 2. Development of alkali-aggregate reaction in concrete pavement.
        3.2.3. 3. Influence of freeze-thaw cycles on concrete pavement.
        3.2.4. Summary and outlook
    3.3. Novel polymer pavement materials
        3.3.1. Designable PU material
        3.3.1. 1. PU binder.
        3.3.1.2.PU mixture.
        3.3.1. 3. Material genome design.
        3.3.2. Novel polymer bridge deck pavement material
        3.3.2. 1. Requirements for the bridge deck pavement material.
        3.3.2.2.Polyurethane bridge deck pavement material(PUBDPM).
        3.3.3. PU permeable pavement
        3.3.3. 1. Permeable pavement.
        3.3.3. 2. PU porous pavement materials.
        3.3.3. 3. Hydraulic properties of PU permeable pavement materials.
        3.3.3. 4. Mechanical properties of PU permeable pavement ma-terials.
        3.3.3. 5. Environmental advantages of PU permeable pavement materials.
        3.3.4. Polyurethane-based asphalt modifier
        3.3.4. 1. Chemical and genetic characteristics of bitumen and polyurethane-based modifier.
        3.3.4. 2. The performance and modification mechanism of polyurethane modified bitumen.
        3.3.4. 3. The performance of polyurethane modified asphalt mixture.
        3.3.4. 4. Environmental and economic assessment of poly-urethane modified asphalt.
        3.3.5. Summary and outlook
    3.4. Reinforcement materials for road base/subrgrade
        3.4.1. Flowable solidified fill
        3.4.1. 1. Material composition design.
        3.4.1. 2. Performance control.
        3.4.1. 3. Curing mechanism.
        3.4.1. 4. Construction applications.
        3.4.1.5.Environmental impact assessment.
        3.4.1. 6. Development prospects and challenges.
        3.4.2. Stabilization materials for problematic soil subgrades
        3.4.2.1.Stabilization materials for loess.
        3.4.2. 2. Stabilization materials for expansive soil.
        3.4.2. 3. Stabilization materials for saline soils.
        3.4.2. 4. Stabilization materials for soft soils.
        3.4.3. Geogrids in base course reinforcement
        3.4.3. 1. Assessment methods for evaluating geogrid reinforce-ment in flexible pavements.
        (1) Reinforced granular material
        (2) Reinforced granular base course
        3.4.3. 2. Summary.
        3.4.4. Summary and outlook
4. Multi-scale mechanics
    4.1. Interface
        4.1.1. Multi-scale evaluation method of interfacial interaction between asphalt binder and mineral aggregate
        4.1.1. 1. Molecular dynamics simulation of asphalt adsorption behavior on mineral aggregate surface.
        4.1.1. 2. Experimental study on absorption behavior of asphalt on aggregate surface.
        4.1.1. 3. Research on evaluation method of interaction between asphalt and mineral powder.
        (1) Rheological mechanical method
        (2) Microscopic test
        4.1.1. 4. Study on evaluation method of interaction between asphalt and aggregate.
        4.1.2. Multi-scale numerical simulation method considering interface effect
        4.1.2. 1. Multi-scale effect of interface.
        4.1.2. 2. Study on performance of asphalt mixture based on micro nano scale testing technology.
        4.1.2. 3. Study on the interface between asphalt and aggregate based on molecular dynamics.
        4.1.2. 4. Study on performance of asphalt mixture based on meso-mechanics.
        4.1.2. 5. Mesoscopic numerical simulation test of asphalt mixture.
        4.1.3. Multi-scale investigation on interface deterioration
        4.1.4. Summary and outlook
    4.2. Multi-scales and numerical methods in pavement engineering
        4.2.1. Asphalt pavement multi-scale system
        4.2.1. 1. Multi-scale definitions from literatures.
        4.2.1. 2. A newly-proposed Asphalt Pavement Multi-scale System.
        (1) Structure-scale
        (2) Mixture-scale
        (3) Material-scale
        4.2.1. 3. Research Ideas in the newly-proposed multi-scale sys-
        4.2.2. Multi-scale modeling methods
        4.2.2. 1. Density functional theory (DFT) calculations.
        4.2.2. 2. Molecular dynamics (MD) simulations.
        4.2.2. 3. Composite micromechanics methods.
        4.2.2. 4. Finite element method (FEM) simulations.
        4.2.2. 5. Discrete element method (DEM) simulations.
        4.2.3. Cross-scale modeling methods
        4.2.3. 1. Mechanism of cross-scale calculation.
        4.2.3. 2. Multi-scale FEM method.
        4.2.3. 3. FEM-DEM coupling method.
        4.2.3. 4. NMM family methods.
        4.2.4. Summary and outlook
    4.3. Pavement mechanics and analysis
        4.3.1. Constructive methods to pavement response analysis
        4.3.1. 1. Viscoelastic constructive models.
        4.3.1. 2. Anisotropy and its characterization.
        4.3.1. 3. Mathematical methods to asphalt pavement response.
        4.3.2. Finite element modeling for analyses of pavement mechanics
        4.3.2. 1. Geometrical dimension of the FE models.
        4.3.2. 2. Constitutive models of pavement materials.
        4.3.2. 3. Variability of material property along with different directions.
        4.3.2. 4. Loading patterns of FE models.
        4.3.2. 5. Interaction between adjacent pavement layers.
        4.3.3. Pavement mechanics test and parameter inversion
        4.3.3. 1. Nondestructive pavement modulus test.
        4.3.3. 2. Pavement structural parameters inversion method.
        4.3.4. Summary and outlook
5. Green and sustainable pavement
    5.1. Functional pavement
        5.1.1. Energy harvesting function
        5.1.1. 1. Piezoelectric pavement.
        5.1.1. 2. Thermoelectric pavement.
        5.1.1. 3. Solar pavement.
        5.1.2. Pavement sensing function
        5.1.2. 1. Contact sensing device.
        5.1.2.2.Lidar based sensing technology.
        5.1.2. 3. Perception technology based on image/video stream.
        5.1.2. 4. Temperature sensing.
        5.1.2. 5. Traffic detection based on ontology perception.
        5.1.2. 6. Structural health monitoring based on ontology perception.
        5.1.3. Road adaptation and adjustment function
        5.1.3. 1. Radiation reflective pavement.Urban heat island effect refers to an increased temperature in urban areas compared to its surrounding rural areas (Fig.68).
        5.1.3. 2. Catalytical degradation of vehicle exhaust gases on pavement surface.
        5.1.3. 3. Self-healing pavement.
        5.1.4. Summary and outlook
    5.2. Renewable and sustainable pavement materials
        5.2.1. Reclaimed asphalt pavement
        5.2.1. 1. Hot recycled mixture technology.
        5.2.1. 2. Warm recycled mix asphalt technology.
        5.2.1. 3. Cold recycled mixture technology.
        (1) Strength and performance of cold recycled mixture with asphalt emulsion
        (2) Variability analysis of asphalt emulsion
        (3) Future prospect of cold recycled mixture with asphalt emulsion
        5.2.2. Solid waste recycling in pavement
        5.2.2. 1. Construction and demolition waste.
        (1) Recycled concrete aggregate
        (2) Recycled mineral filler
        5.2.2. 2. Steel slag.
        5.2.2. 3. Waste tire rubber.
        5.2.3. Environment impact of pavement material
        5.2.3. 1. GHG emission and energy consumption of pavement material.
        (1) Estimation of GHG emission and energy consumption
        (2) Challenge and prospect of environment burden estimation
        5.2.3. 2. VOC emission of pavement material.
        (1) Characterization and sources of VOC emission
        (2) Health injury of VOC emission
        (3) Inhibition of VOC emission
        (4) Prospect of VOC emission study
        5.2.4. Summary and outlook
6. Intelligent pavement
    6.1. Automated pavement defect detection using deep learning
        6.1.1. Automated data collection method
        6.1.1. 1. Digital camera.
        6.1.1.2.3D laser camera.
        6.1.1. 3. Structure from motion.
        6.1.2. Automated road surface distress detection
        6.1.2. 1. Image processing-based method.
        6.1.2. 2. Machine learning and deep learning-based methods.
        6.1.3. Pavement internal defect detection
        6.1.4. Summary and outlook
    6.2. Intelligent pavement construction and maintenance
        6.2.1. Intelligent pavement construction management
        6.2.1. 1. Standardized integration of BIM information resources.
        6.2.1. 2. Construction field capturing technologies.
        6.2.1. 3. Multi-source spatial data fusion.
        6.2.1. 4. Research on schedule management based on BIM.
        6.2.1. 5. Application of BIM information management system.
        6.2.2. Intelligent compaction technology for asphalt pavement
        6.2.2. 1. Weakened IntelliSense of ICT.
        6.2.2. 2. Poor adaptability of asphalt pavement compaction index.
        (1) The construction process of asphalt pavement is affected by many complex factors
        (2) Difficulty in model calculation caused by jumping vibration of vibrating drum
        (3) There are challenges to the numerical stability and computational efficiency of the theoretical model
        6.2.2. 3. Insufficient research on asphalt mixture in vibratory rolling.
        6.2.3. Intelligent pavement maintenance decision-making
        6.2.3. 1. Basic functional framework.
        6.2.3. 2. Expert experience-based methods.
        6.2.3. 3. Priority-based methods.
        6.2.3. 4. Mathematical programming-based methods.
        6.2.3. 5. New-gen machine learning-based methods.
        6.2.4. Summary and outlook
        (1) Pavement construction management
        (2) Pavement compaction technology
        (3) Pavement maintenance decision-making
7. Conclusions
Conflict of interest

(2)纳米纤维基比色生物传感器的制备及其抗生素检测应用(论文提纲范文)

ACKNOWLEDGEMENTS
DEDICATION
ABSTRACT
摘要
ABBREVIATION
CHAPTER1.INTRODUCTION AND LITERATURE REVIEW
    1.1.Introduction
    1.2.Overview of antibiotics
        1.2.1.Classification,structure,and application
        1.2.2.Status and hazards of antibiotics residues
        1.2.3.Measures to prevent antibiotics residues
    1.3.Traditional techniques for the detection of antibiotic residues
        1.3.1.HPLC
        1.3.2.Electrochemical analysis for antibiotics detection
        1.3.3.Ultraviolet(UV)detection methods
        1.3.4.Mass spectrometry(MS)
        1.3.5.Comparison of traditional antibiotic detection methods
    1.4.Colorimetric analysis and its application
        1.4.1.Overview of colorimetric analysis
        1.4.2.The basis of the colorimetric method
        1.4.3.Application of the colorimetric method in antibiotic detection
    1.5.Electrospun nanofibers and their application in sensing
        1.5.1.Introduction to electrospinning
        1.5.2.Nanostructure by electrospinning
        1.5.3.Application of electrospinning nanofibers in the sensor field
    1.6.Purpose and objective of the study
    1.7.Innovation points
    1.8.Limitation
    1.9.Background and research contents of the thesis
    1.10.References
CHAPTER2.OXYTETRACYCLINE STRIPS BASED ON NICKEL(II)IONS IMMOBILIZED NANOFIBROUS MEMBRANES
    2.1.Introduction
    2.2.Experimental
        2.2.1.Materials and reagents
        2.2.2.Preparation of PAN NFMs
        2.2.3.Surface modification of PAN NFMs
        2.2.4.Fabrication of colorimetric strips
        2.2.5.Detection of OTC
        2.2.6.Characterization
    2.3.Results and discussion
        2.3.1.Fabrication of colorimetric strips
        2.3.2.The optimization of detection conditions
        2.3.3.The sensitivity of colorimetric strips
        2.3.4.Selectivity and reversibility of colorimetric strips
    2.4.Chapter summary
    2.5.References
CHAPTER3.TETRACYCLINE STRIPS BASED ON IRON(III)AND COPPER(II)IMPREGNATED IMMOBILIZED NANOFIBROUS MEMBRANES
    3.1.Introduction
    3.2.Experimental
        3.2.1.Chemicals and materials
        3.2.2.Preparation of Fe@alginate/PAN nanofibers
        3.2.3.Preparation of Cu@EPAN nanofibers
        3.2.4.Characterization of TCs sensing performance
        3.2.5.Characterization
    3.3.Results and discussion
        3.3.1.Fe@alginate/PAN nanofibers
        3.3.2.Cu@EPAN nanofibers
    3.4.Chapter summary
    3.5.References
CHAPTER4.METRONIDAZOLE NON-ENZYMATIC COLORIMETRIC SENSORS STRIP BASED ON MELAMINE-FUNCTIONALIZED GOLD NANOPARTICLES ASSEMBLED POLYAMIDE NANOFIBERS MEMBRANES
    4.1.Introduction
    4.2.Experimental
        4.2.1.Chemicals and materials
        4.2.2.Preparation and functionalization of gold nanoparticles
        4.2.3.Preparation of the PA6 NFMs
        4.2.4.Preparation of colorimetric strips and sensing experiment
        4.2.5.Real samples preparation
        4.2.6.Characterization
    4.3.Results and discussion
        4.3.1.Sensing concept
        4.3.2.Characteristics of AuNPs and MA@AuNPs
        4.3.3.Characterization of MA@AuNPs immobilized PA6 NFMs
        4.3.4.Optimization of detection conditions
        4.3.5.The detection performance of strips
    4.4.Chapter summary
    4.5.References
CHAPTER5.KANAMYCIN COLORIMETRIC STRIPS BASED ON APTAMER-GOLD NANOPARTICLE IMMOBILIZED NANOFIBROUS MEMBRANES
    5.1.Introduction
    5.2.Experimental
        5.2.1.Chemicals and materials
        5.2.2.Preparation and bioconjugation of gold nanoparticles
        5.2.3.G-CA NFMs fabrication
        5.2.4.Apt@Au assembled G-CA NFMs and experimented for KMC detection
        5.2.5.Real samples preparation
        5.2.6.Characterization
    5.3.Results and discussion
        5.3.1.Design and principle of the proposed biosensing
        5.3.2.Apt@Au probes characterization
        5.3.3.Characterization of GA grafted CA NFMs
        5.3.4.Characterization of Apt@Au assembled GA grafted CA NFMs
        5.3.5.Biosensing performance analysis
    5.4.Chapter summary
    5.5.References
CHAPTER6.CONCLUSIONS AND RECOMMENDATIONS
    6.1.Conclusions
    6.2.Future work and recommendations
LIST OF PUBLICATIONS
APPENDIX A

(3)采用插层和掺杂策略改性水滑石及其光催化还原CO2性能研究(论文提纲范文)

摘要
ABSTRACT
Abbreviations
CHAPTER 1: Introduction
    1.1 Anthropogenic emissions and climate change
    1.2 Overview of CO_2 thermodynamic properties
    1.3 CO_2 to solar fuel reduction strategies
        1.3.1 Electrocatalytic reduction of CO_2
        1.3.2 Photothermal catalytic reduction of CO_2
        1.3.3 Photocatalytic Reduction of CO_2
    1.4 Introduction to LDHs
        1.4.1 Structure of LDHs
        1.4.2 Properties of LDHs
        1.4.3 Synthesis of LDHs
        1.4.4 LDHs interlayer modification
    1.5 Rare earth elements (REEs)
        1.5.1 Properties of REEs
        1.5.2 Applications of REEs
        1.5.3 Incorporation of REEs into LDHs
CHAPTER 2 INTERLAYER MODIFIED NiAl-LAYERED DOUBLEHYDROXIDE FOR VISIBLE LIGHT CO_2 REDUCTION
    2.1 Introduction
    2.2 Materials and methodology
        2.2.1 Chemicals and reagents
        2.2.2 Characterization and instrumentation
        2.2.3 Electrochemical measurements
        2.2.4 Synthesis of LDHs catalysts
        2.2.5 Photocatalytic tests
        2.2.6 Preparation of samples for recycling tests
    2.3 Results and discussion
        2.3.1 Powder XRD and FTIR spectroscopy
        2.3.2 LDHs Morphological properties
        2.3.3 X-ray absorption spectroscopy (XAS)
        2.3.4 X-Ray Photoelectron Spectroscopy (XPS)
        2.3.5 Photocatalytic performance
        2.3.6 Stability Studies
        2.3.7 ~(13)CO_2 isotopes reaction atmospheres
        2.3.8 UV-Vis DRS Spectroscopy and transient photocurrent intensity
        2.3.9 BET adsorption
        2.3.10 PL and EIS spectra
    2.4 Conclusion
CHAPTER 3 RARE EARTH ELEMENTS DOPED MgAl-LDH FOR VISIBLELIGHT REDUCTION OF CO_2
    3.1 Introduction
    3.2 Materials and methodology
        3.2.1 Chemicals and Reagents
        3.2.2 Characterization and instrumentation
        3.2.3 Electrochemical measurements
        3.2.4 Synthesis of Ce doped Mg_6Al_(2-x)Ce_x-LDH
        3.2.5 Photocatalytic tests
        3.2.6 Preparation of samples for recycling
    3.3 Results and discussion
        3.3.1 XRD and FTIR spectra
        3.3.2 SEM images
        3.3.3 X-Ray Photoelectron Spectroscopy (XPS)
        3.3.4 Photocatalytic performance and stability of Mg_6Al_(2-x)Ce_x-LDH
        3.3.5 Stability studies
        3.3.6 UV Visible DRS spectroscopy
        3.3.7 BET adsorption and pore-size distribution
        3.3.8 PL and EIS spectroscopy
    3.4 Conclusion
CHAPTER 4 Thesis Summary
REFERENCES
ACKNOWLEDGEMENTS
AUTHOR'S PUBLICATIONS
AUTHOR'S PROFESSIONAL SUMMARY
SUPERVISOR'S PROFESSIONAL SUMMARY
附件

(4)Electrochemical Study of Fe-Cr Allovs under Carbon Dioxide Envir-Onment(论文提纲范文)

abstract
INTRODUCTION
CHAPTER Ⅰ LITERATURE REVIEEW
    1.1 RESEARCH BACKGROUND AND SIGNIFICANCE
    1.2 CORROSION MECHANISM
        1.2.1 Effect of CO_2 and H_2S partial pressure
        1.2.2 Effect of temperature
        1.2.3 Effect of water content
        1.2.4 Effect of chloride ion
        1.2.5 Effect of alloying elements
        1.2.6 Others factors
    1.3 CORROSION PROTECTION
        1.3.1 Corrosin inhibitors
        1.3.2 Surface treatments
        1.3.3 Cathodic protection
        1.3.4 Anti-CO_2 corrosion materials
    1.4 RESEARCH PURPOSE AND CONTENT
CHAPTER Ⅱ RESEARCH DESIGN AND METHODOLOGY
    2.1 MATERIALS AND REAGENTS
        2.1.1 Research materials
        2.1.2 Reagents and gases
    2.2 INSTRUMENTS
    2.3 CORROSIVE MEDIA AND ENVIRONMENT
        2.3.1 CO_2-Na_2SO_4 system
        2.3.2 CO_2-H_2S-Cl- system
    2.4 METHODOLOGY
        2.4.1 Weight loss
        2.4.2 Electrochemical measurements
        2.4.3 Surface characterization
        2.4.4 Orthogonal experimental design and range analysis
CHAPTER Ⅲ ELECTROCHEMICAL STUDY OF FE-CR ALLOYS IN CO_2-NA_2SO_4ENVIRONMENT
    3.1 EFFECT OF TEMPERATURE ON ELECTROCHEMICAL CORROSION OF 13CR STEEL
        3.1.1 Open circuit Potential
        3.1.2 Potentiodynamic polarization
        3.1.3 Electrochemical impedance spectroscopy
    3.2 EFFECT OF CO_2 PARTIAL PRESSURE ON ELECTROCHEMICAL CORROSION OF 13CR STEEL
        3.2.1 Open circuit potential
        3.2.2 Potentiodynamic polarization
        3.2.3 Electrochemical impedance spectroscopy
    3.3 EFFECT OF EXPOSED TIME ON ELECTROCHEMICAL CORROSION OF 13CR STEEL
        3.3.1 Open circuit potential
        3.3.2 Electrochemical impedance spectroscopy
    3.4 ELECTROCHEMICAL STUDY OF 3CR AND 13CR STEEL
        3.4.1 Open circuit potential
        3.4.2 Potentiodynamic polarization
        3.4.3 Electrochemical impedance spectroscopy
    3.5 SUMMARY
CHAPTER Ⅳ ELECTROCHEMICAL STUDY OF FE-CR ALLOYS IN CO_2-H_2S-CL-ENVIRONMENT
    4.1 STUDY ON MULTIACTOR ORTHOGONAL CORROSION OF L80-1 STEEL
        4.1.1 Corrosion rate and range analysis
        4.1.2 Surface characterization
    4.2 CORROSION STUDY OF L80-1 STEELS UNDER VARIOUS RATIOS OF CO_2/H_2S
        4.2.1 Effect of CO_2 on corrosion
        4.2.2 Effect of H_2S on corrosion
    4.3 CORROSION STUDY OF L80-1 STEELSL UNDER VARIOUS CONCENTRATIONS OF CHLORIDEION
        4.3.1 Potentiodynamic polarization
        4.3.2 Electrochemical impedance spectroscopy
        4.3.3 Surface characterization
    4.4 CORROSION STUDY OF VARIOUS FE-CR ALLOYS IN CO_2-H_2S-CL~- ENVIRONMENT
        4.4.1 Corrosion rate
        4.4.2 Open circuit potential
        4.4.3 Potentiodynamic polariation
        4.4.4 Electrochemical impedance spectroscopy
        4.4.5 Surface characterization
    4.5 SUMMARY
CHAPTER Ⅴ CONCLUSIONS AND SUGGESTION
    5.1 CONCLUSIONS
    5.2 DISADVANTAGES AND SUGGESTIONS
ACKNOWLEDGEMENT
REFERENCES
PAPERS AND RESEARCH RESULTS PUBLISHED DURING THE MASTER'S DEGREE

(5)光和pH响应阿霉素递送系统构建及NIR定量分析(论文提纲范文)

摘要
Abstract
Abbreviations
Chapter 1 Introduction
    1.1 Background, Objective and the significance of the subject
    1.2 NIR theory and some physio-chemical principles
        1.2.1 Light Matter interactions, molecular vibrations and normal modes
        1.2.2 NIRS instrumentation and analysis modes
        1.2.3 NIRS analysis types (inline, on line, at line)
    1.3 The NIRS advantages and limitations
    1.4 NIRS Vs other vibrational spectroscopic methods
    1.5 NIRS and chemometrics
        1.5.1 Linear regression method
        1.5.2 Non-linear regression method
        1.5.3 Linear regression parameters for analytical performance estimation
    1.6 Applications of NIRS for qualitative and quantitative analysis
        1.6.1 NIRS qualifications of multicomponent systems
        1.6.2 NIRS quantifications of multicomponent systems
    1.7 Applications of NIRS for monitoring of drug delivery systems
    1.8 NIRS extraction of calibration and validation model process
    1.9 The stimuli controlled delivery systems
        1.9.1 p H responsive DDS
        1.9.2 Light responsive DDS
    1.10 Main research content of the subject
    1.11 Thesis organization
Chapter 2 Experimental Materials and Methods
    2.1 Experimental materials and instruments
        2.1.1 Experimental materials
        2.1.2 Experimental instruments
        2.1.3 Model drug used in our designed DDS
    2.2 Preparation of experimental materials
        2.2.1 Preparation of p H sensitive polyvinyl alcohol- doxorubicin conjugates
        2.2.2 Preparation of PVA-DOX ester conjugates
        2.2.3 p H controlled release experiment of PVA-DOX
        2.2.4 Preparation of mesoporous silica nanoparticles
        2.2.5 Preparation of p H and NIR responsive mesoporous silica nanoparticlesbased cargos delivery system
        2.2.6 Preparation of NIR responsive polydopamine nanoparticles
    2.3 Characterization of experimental materials
        2.3.1 Structural analysis of samples
        2.3.2 Samples analysis of surface area and porosity
        2.3.3 Morphology analysis of the samples
        2.3.4 Surface chemistry analysis
        2.3.5 Responsive release properties of payloads
        2.3.6 NIR induced photothermal effect
    2.4 Tutorials on NIR spectroscopy monitoring of cargoes delivery systems andCalibration model development process
        2.4.1 Samples selection and spectra acquisition
        2.4.2 Spectral preprocessing
        2.4.3 Elimination of the non-representative samples
        2.4.4 Extraction of calibration and validation model
Chapter 3 Synthesis and Evaluation of p H sensitive PVA-DOX Conjugates andMultivariate Modelling of Release
    3.1 Introduction
    3.2 Preparation of p H responsive PVA-DOX prodrug
        3.2.1 Characterization of chemical composition of p H responsive PVA-DOXpolymer
        3.2.2 DOX loading capacity on the PVA-DOX
    3.3 p H controlled DOX release experiment from PVA -DOX
    3.4 NIR monitoring of DOX release concentration in acid ic environment
        3.4.1 DOX samples preparation
        3.4.2 Spectra Collection
        3.4.3 Data processing and calibration development
    3.5 Brief Summary
Chapter 4 NIRS Monitoring of Gold Modified Polydopamine Coated Mesoporous Silica Nano-Structures with Synergetic Chemo-Photothermal Effect
    4.1 Introduction
    4.2 Characterization of the synthesized mesoporous silica nanoparticles (MSN)
        4.2.1 Topological analysis of MSN
        4.2.2 Structural analysis of MSN
    4.3 Characterization of experiment materials (MSN@DOX, MSN@DOX -PDAand MSN@DOX-PDA-Au NPs)
        4.3.1 Surface morphology analysis
        4.3.2 Surface area and porosity analysis
        4.3.3 Chemical composition analysis
        4.3.4 Drug loading amount on the synthesized nanostructures
        4.3.5 Surface chemical composition analysis
        4.3.6 Thermal analysis
    4.4 p H Responsive release properties of the drug
    4.5 Measurement of photothermal performance
        4.5.1 NIR irradiation induced temperature elevation
        4.5.2 Study of MSN@DOX-PDA-Au NPs photothermal stability
        4.5.3 The determination of the photothermal conversion efficiency ofMSN@DOX-PDA-Au NPs
    4.6 p H and NIR synergetic effect
    4.7 NIRS monitoring
        4.7.1 DOX samples preparation
        4.7.2 Spectral data collection
        4.7.3 Spectral data preprocessing
        4.7.4 Prediction models
    4.8 Brief summary
Chapter 5 Immobilization of Titanium Oxide on Biocompatible PolydopamineNanoparticles and NIRS Modelling of Particles Size
    5.1 Introduction
    5.2 General explanation of the designed PDNS based system
    5.3 Application of near infrared spectroscopy for PDNS particle s sizequantification
        5.3.1 Characterization of the prepared PDNS at different particles size
        5.3.2 Computational modelling of PDNS particles’ size using NIRS with linearregression methods
    5.4 Surface multi-functionalization of PDNS
        5.4.1 Immobilization of Ti O2 on PDNS surface
        5.4.2 DOX loading of PDA@Ti O2
    5.5 Study of the photothermal effect
        5.5.1 Photothermal measurement of PDNS@Ti O2
        5.5.2 Comparison PTE of PDNS with MSN@DOX-PDA-Au NPs
        5.5.3 p H stimuli release of DOX
        5.5.5 NIR stimuli release of DOX
    5.6 Study of the photodynamic effect
    5.7 Brief summary
Conclusions
    The innovation of this thesis
    Perspectives
References
List of Publications
Acknowledgements
Resume

(6)碳氟表面活性剂胶束溶液及离子液体凝胶的结构、形成机理与性能研究(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 自组装
    1.2 表面活性剂物理化学
        1.2.1 表面活性剂的结构与性质
        1.2.2 表面活性剂的分类
        1.2.2.1 碳氟表面活性剂
        1.2.2.2 糖苷类表面活性剂
        1.2.3 表面活性剂溶液聚集体形成理论
        1.2.4 单一表面活性剂的表面性质
        1.2.5 表面活性剂聚集体结构
        1.2.5.1 胶束
        1.2.5.1.1 临界胶束浓度及胶束结构
        1.2.5.1.2 胶束热力学
        1.2.5.1.3 胶束动力学
        1.2.5.2 层状相
    1.3 离子液体
        1.3.1 离子液体的定义与分类
        1.3.2 离子液体的性质
        1.3.3 离子液体的应用
        1.3.3.1 润滑材料
        1.3.3.2 电化学生物传感器
        1.3.4 离子液体作为溶剂参与构筑的聚集体
    1.4 离子液体凝胶
        1.4.1 凝胶概述
        1.4.2 离子液体凝胶的分类
        1.4.3 离子液体凝胶的构筑
        1.4.3.1 有机离子液体凝胶(低分子量凝胶因子)
        1.4.3.2 有机离子液体凝胶(高分子)
        1.4.3.3 无机离子液体凝胶
        1.4.3.4 混合离子液体凝胶
    1.5 离子液体凝胶的性能与应用
        1.5.1 性能
        1.5.2 应用
    1.6 本论文的立题思想、研究内容和意义
    参考文献
第二章 两性碳氟表面活性剂PDSPDA在EAN中胶束化过程的慢动力学研究
    2.1 引言
    2.2 实验部分
        2.2.1 试剂与材料
        2.2.2 表面张力测定
        2.2.3 核磁共振氟谱(~(19)F NMR)测定
        2.2.4 冷冻蚀刻透射电子显微镜(FF-TEM)观察
        2.2.5 动态光散射(DLS)测定
    2.3 结果与讨论
        2.3.1 表面张力
        2.3.2 PDSPDA在EAN中胶束化过程的热力学分析
        2.3.3 ~(19)F NMR图谱
        2.3.4 ~(19)F NMR化学位移
        2.3.5 PDSPDA在EAN中胶束化过程的动力学分析
        2.3.6 FF-TEM观察与DLS结果
    2.4 本章小结
    参考文献
第三章 阴离子碳氟表面活性剂TPFOS在水中胶束化过程的慢动力学研究
    3.1 引言
    3.2 实验部分
        3.2.1 试剂与材料
        3.2.2 表面张力测定
        3.2.3 电导率测定
        3.2.4 流变学测定
        3.2.5 低温透射电子显微镜(cryo-TEM)观察
        3.2.6 核磁共振(NMR)测定
        3.2.7 分子动力学(MD)模拟
    3.3 结果与讨论
        3.3.1 表面张力结果与热力学分析
        3.3.2 ~(19)F NMR图谱
        3.3.3 ~(19)F NMR化学位移与动力学分析
        3.3.4 流变学性质
        3.3.5 其它表面活性剂测定结果
        3.3.6 分子动力学(MD)模拟结果与机理解释
    3.4 本章小结
    参考文献
第四章 十八烷基乳糖酰胺C_(18)G_2在EAN中离子液体凝胶的构筑及其润滑性能的研究
    4.1 引言
    4.2 实验部分
        4.2.1 试剂与材料
        4.2.2 样品的制备
        4.2.3 差示扫描量热(DSC)测定
        4.2.4 小角X射线散射(SAXS)测定
        4.2.5 冷冻蚀刻透射电子显微镜(FF-TEM)观察
        4.2.6 流变学测定
        4.2.7 摩擦磨损测定
    4.3 结果与讨论
        4.3.1 相行为
        4.3.2 DSC结果与相转变焓变值
        4.3.3 SAXS结果
        4.3.4 FF-TEM观察结果
        4.3.5 流变学性质
        4.3.6 摩擦学性质
    4.4 本章小结
    参考文献
第五章 糖表面活性剂HLG在咪唑型离子液体中凝胶的构筑及其润滑性能的研究
    5.1 引言
    5.2 实验部分
        5.2.1 试剂与材料
        5.2.2 离子液体凝胶的制备
        5.2.3 差示扫描量热(DSC)测定
        5.2.4 小角X射线散射(SAXS)测定
        5.2.5 小角X射线粉末衍射(XRD)测定
        5.2.6 冷冻蚀刻透射电子显微镜观察(FF-TEM)观察
        5.2.7 场致发射扫描电子显微镜(FE-SEM)观察
        5.2.8 流变学测定
        5.2.9 摩擦磨损测定
    5.3 结果与讨论
        5.3.1 凝胶化行为与凝胶的刺激响应性
        5.3.2 SAXS结果
        5.3.3 XRD结果
        5.3.4 室温下离子液体凝胶的微观结构
        5.3.5 高温下样品的微观结构
        5.3.6 流变学性质
        5.3.7 经剪切外力破坏后样品的微观结构
        5.3.8 摩擦学性质
    5.4 本章小结
    参考文献
第六章 基于假双子表面活性剂构筑的离子液体凝胶的结构与性能研究
    6.1 引言
    6.2 实验部分
        6.2.1 实验材料
        6.2.2 样品的制备
        6.2.3 表征方法
    6.3 结果与讨论
        6.3.1 聚集行为
        6.3.2 微观结构
        6.3.3 C_nDMAO/SA体系中微观结构的形成机理
        6.3.3.1 小角X射线散射(SAXS)结果
        6.3.3.2 推测机理
        6.3.4 C_nH_mSO_3Na/TMPDA体系中微观结构的形成机理
        6.3.4.1 X射线粉末衍射(XRD)结果
        6.3.4.2 傅里叶变换红外光谱(FT-IR)结果
        6.3.5 差示扫描量热(DSC)结果
        6.3.6 流变学性质
    6.4 本章小结
    参考文献
第七章 离子液体凝胶作为前驱体制备的CeO_2纳米颗粒及其过氧化氢酶模拟活性的研究
    7.1 引言
    7.2 实验部分
        7.2.1 试剂与材料
        7.2.2 离子液体凝胶的制备
        7.2.3 差示扫描量热(DSC)测定
        7.2.4 小角X射线散射(SAXS)测定
        7.2.5 冷冻蚀刻透射电子显微镜观察(FF-TEM)观察
        7.2.6 流变学测定
        7.2.7 CeO_2纳米颗粒的制备
        7.2.8 透射电子显微镜(TEM)及高分辨透射电子显微镜(HR-TEM)观察
        7.2.9 X射线粉末衍射(XRD)测定
        7.2.10 表面积测定
        7.2.11 X射线光电子能谱(XPS)测定
        7.2.12 紫外可见吸收光谱(UV-vis)测定
        7.2.13 氧气释放量测定
        7.2.14 光学显微镜观察
    7.3 结果与讨论
        7.3.1 凝胶化行为与DSC结果
        7.3.2 离子液体凝胶的微观结构
        7.3.3 流变学性质
        7.3.4 离子液体凝胶作为前驱体制备不同尺寸的CeO_2纳米颗粒
        7.3.5 CeO_2纳米颗粒的过氧化氢酶模拟活性
    7.4 本章小结
    参考文献
论文的创新点和不足之处
致谢
攻读博士学位期间发表论文及获奖情况
附件
学位论文评阅及答辩情况表

(7)Modification of Melamine Sponge for Efficient Absorption Oil from Oily Waste Water(论文提纲范文)

ABSTRACT
摘要
Chapter 1 Introduction
    1 Background
        1.1 Motivation
        1.2 Current overview
        1.3 Objective of the study
        1.4 Limitation of the research
        1.5 Significance of the study
        1.6 Organization of the study
Chapter 2 Literature Review
    2.1 Oily Water
    2.2 Environmental impact of oily water
    2.3 The sources and compositions of oily wastewater
    2.4 Outcome of oil spills in the marine environment
        2.4.1 Properties of oil
        2.4.2 Density (specific gravity)
        2.4.3 Boiling point and boiling range
        2.4.4 Viscosity
        2.4.5 Pour point
        2.4.6 Flashpoint
    2.5 Methods for the oily wastewater separation techniques
        2.5.2 Membrane technology
    2.6 The application of Novel material for oil/water separation
        2.6.1 Graphene material
    2.7 The application of Sponge material in oil/water separation
        2.7.1 Hydrophilicity and hydrophobicity properties
        2.7.2 Wetting behaviour
    2.8 Low-Surface-Energy Materials for Oil Sorbents
        2.8.1 Organosilicons
        2.8.2 Polymers
        2.8.3 Organic monomers
    2.9 Roughen Smooth Surfaces
        2.9.1 Etching methods
        2.9.2 Particle –Decoration methods
        2.9.3 In suit growth methods
        2.9.4 Phase separation methods
    2.10 Common modified superhydrophobic sponges
        2.10.1 Graphene Sponges
        2.10.2 Carbon nanotube (CNT) Sponges
Chapter 3 Experimental Method
    3.1 Materials and methods
    3.2 Design and data collection approach
    3.3 Characterization
        3.3.1 Scanning electron microscope (SEM)
        3.3.2 Water Contact angle measurement
    3.4 Oil absorption capacity
    3.5 Absorption rate
    3.6 Recyclability
Chapter 4 Result and Discussion
    4.1 Characterization of the melamine and modified melamine sponges
        4.1.2 Water contact angle measurement result
    4.2 Evaluation of the modified melamine sponge as oil absorption
    4.3 Absorption rate result
    4.4 Recyclability result
    4.5 Comparison of the results of this study with other sorbents
Chapter 5 Conclusion and Recommendation
    5.1 Conclusion
    5.2 Recommendation
References
Appendix A
Appendix B
Abbreviations
Acknowledgements

(8)纳米铁酸钴的水生生物和蛋白质毒性机制研究(论文提纲范文)

摘要
Abstract
Abbreviations
Preface
Chapter 1: Introduction
    1.1 Toxicology
    1.2 Nanotoxicology
    1.3 Nanomaterials
        1.3.1 Applications of Nanomaterials
    1.4 Physicochemical characterization of Nanoparticles
    1.5 Selection of Nanoparticles dosage and dose metric
    1.6 Nanoparticles reactivity
    1.7 Environmental Impact of Nanoparticles
    1.8 Interaction of Nanoparticles with cells
    1.9 Interaction of nanoparticles with membranes
    1.10 Interaction of nanoparticles with proteins and macromolecules
    1.11 Nanoparticles interaction with DNA
    1.12 In vivo Nanotoxicity- Case of Humans
    1.13 Entry routes for nanoparticles into the body and potential vulnerabilities
    1.14 Major mechanisms in in vivo toxicity
    1.15 Toxicity of Cobalt ferrite Nanoparticles
        1.15.1 Synthesis of CoFe_2O_4 NPs
        1.15.2 Toxicity of nano-CoFe_2O_4
    1.16 Test Models for Nanotoxicity investigation
        1.16.1 Zebra fish as Model Organism
        1.16.1.1 Need of Model organism
        1.16.1.2 Alternative to animal testing /3R principle
        1.16.1.3 Zebra fish Model
        1.16.1.4 Breeding and life span
        1.16.1.5 Advantages of Zebra fish
        1.16.2 Chlorella vulgaris as model organism
    1.17 Proteins Models for Interaction study
        1.17.1 Bovine serum albumin (BSA)
        1.17.2 Acid Phosphatase
Chapter 2: Physicochemical characterization of CoFe_2O_4 NPs
    2.1 Introduction
    2.2 Material and Method
        2.2.1 Purity of CoFe_2O_4 NPs
        2.2.2 Surface coating
        2.2.3 Morphology and size by FESEM-EDX
        2.2.4 X-Ray diffraction (XRD) Analysis
        2.2.5 Vibrating sample Magnetometer
    2.3 Result and discussion
        2.3.1 Purity of CoFe_2O_4 NPs
        2.3.2 Fourier Transform Infrared spectroscopy
        2.3.3 Field Emission Scanning Electron Microscope-Energy Dispersive X-Ray
        2.3.4 X-Ray powder diffraction
        2.3.5 Vibrating sample Magnetometer
    2.4 conclusion
Chapter 3: Oxidative stress and Apoptosis in Zebra fish embryo
    3.1 Introduction
    3.2 Material and Method
        3.2.1 Physicochemical properties of cobalt ferrite NPs in E3 Medium
        3.2.2 Fish husbandry and embryo collection
        3.2.3 Mortality, hatching, heart rate and malformation
        3.2.4 Cell assault Measurement
        3.2.5 Biochemical Assay
        3.2.5.1 Reactive oxygen species
        3.2.5.2 Catalase
        3.2.5.3 Lipid per oxidation
        3.2.5.4 Glutathione S-transferase
        3.2.5.5 Acid Phosphatase
        3.2.5.6 Total Protein content
        3.2.6 Interferences of CoFe_2O_4 NPs in assays
        3.2.7 Internalization of CoFe_2O_4 NPs
        3.2.8 Statistical analysis
    3.3 Results and discussion
        3.3.1 Physicochemical properties in Medium
        3.3.2 Mortality, hatching, heart rate and malformation
        3.3.3 Apoptosis Measurement
        3.3.4 Biochemical Assay
        3.3.5 Internalization of CoFe_2O_4 NPs
    3.4 Conclusion
Chapter 4: Genotoxicity and Endocrine disruptions in Zebra fish
    4.1 Introduction
    4.2 Material and Method
        4.2.1 Chemicals
        4.2.2 Shedding of Co~(+2) and Fe~(+3) ions from CoFe_2O_4 NPs
        4.2.3 Experimental design and dosing
        4.2.4 Mortality, hatching, malformation and heart rate
        4.2.5 Thyroid hormone extraction and measurement
        4.2.6 In vivo ROS measurement and Apoptosis index
        4.2.7 Lipid per oxidation and oxidative stress
        4.2.8 Genotoxicity
        4.2.9 Quantification of internalized CoFe_2O_4 NPs
        4.2.10 Statistical analysis
    4.3 Results and discussion
        4.3.1 Release of metal ions in the medium
        4.3.2 Mortality, hatching, heart rate and malformation
        4.3.3 Thyroid hormone Content
        4.3.4 In vivo ROS generation and Apoptosis
        4.3.5 MDA, CAT, mu-GST and AP
        4.3.6 Genotoxicity
        4.3.7 Quantification of internalized CoFe_2O_4 NPs
    4.4 Conclusion
Chapter 5: Interaction and Oxidative stress in Chlorella vulgaris
    5.1 Introduction
    5.2 Material and Method
        5.2.1 Physicochemical properties in Medium
        5.2.1.1 Hydrodynamic size and zeta potential in BG11Medium
        5.2.1.2 Agglomeration of CoFe_2O_4 NPs in BG11 medium
        5.2.2 Algal growth and inhibition
        5.2.3 Quantification of Chlorophyll pigments
        5.2.4 Ultra structure of Algae
        5.2.5 Interactions of CoFe_2O_4 NPs with Algae
        5.2.6 Internalization of Co~(+2) and Fe~(+3)
        5.2.7 Effect of Algae & Algal Exudates on release of Co~(+2) and Fe~(+3) from CoFe_2O_4 NPs
        5.2.8 Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy
        5.2.9 Perturbations in algal biochemistry
        5.2.10 Interferences
        5.2.11 Statistical analysis
    5.3 Results and discussion
        5.3.1 Physicochemical properties in Medium
        5.3.2 Algal growth inhibition
        5.3.3 Quantification of Chlorophyll pigments
        5.3.4 Ultra structure of Algae
        5.3.5 Interactions of CoFe_2O_4 NPs with Algae
        5.3.6 Perturbations in algal biochemistry
    5.4 Conclusion
Chapter 6: Interaction with BSA and Protein corona Formation
    6.1 Introduction
    6.2 Material and Method
        6.2.1 Materials
        6.2.2 Circular dichroism measurement
        6.2.3 Steady state Fluorescence spectroscopy
        6.2.4 Time resolved fluorescence study
        6.2.5 Synchronous and three dimensional (3D) fluorescence spectroscopy
        6.2.6 UV-spectrophotometry
        6.2.7 Fourier transforms infrared (FTIR) spectroscopy
        6.2.8 SEM-EDX and XRD
        6.2.9 Thermo gravimetric measurement
        6.2.10 Magnetization saturation
        6.2.11 Dynamic light scattering and Zeta Potential Measurements
        6.2.12 Esterase Activity Measurements
    6.3 Results and discussion
        6.3.1 Thermodynamic Study on the Interaction
        6.3.2 Conformation change
        6.3.3 Energy transfer between CoFe_2O_4 NPs and BSA
        6.3.4 Red-Edge excitation energy shifts (REES)
        6.3.5 Effects of BSA@CoFe_2O_4 NPs corona formation
        6.3.6 Influence of CoFe_2O_4 NPs on chemical stability of BSA
    6.4 Conclusion
Chapter 7: Interaction and Kinetics agitation of Acid phosphatase
    7.1 Introduction
    7.2 Material and Method
        7.2.1 Materials
        7.2.2 Steady state Fluorescence spectroscopy
        7.2.3 Circular dichroism measurement
        7.2.4 Synchronous and three dimensional (3D) fluorescence spectroscopy
        7.2.5 UV-spectrophotometry
        7.2.6 Fourier transforms infrared (FTIR) spectroscopy
        7.2.7 Thermo gravimetric measurement
        7.2.8 Magnetization saturation
        7.2.9 Dynamic light scattering and Zeta Potential Measurements
        7.2.10 Acid Phosphatase activity in Chlorella vulgaris
    7.3 Data analysis
    7.4 Results and discussion
        7.4.1 Thermodynamics of Interaction
        7.4.2 Conformation change
        7.4.3 Energy transfer between CoFe_2O_4 NPs and AP
        7.4.4 Red-Edge excitation energy shifts (REES)
        7.4.5 Adsorption of AP@CoFe_2O_4 NPs and Change in magnetic character
        7.4.6 Dynamic light scattering and Zeta potential measurement
        7.4.7 In vitro effect of CoFe_2O_4 NP on C. vulgaris acid phosphatase activity (CV-AP)
    7.5 Conclusion
Conclusion
Innovation
Perspective
References
Appendix (中文缩减版)
Acknowledgement/致谢
Publications/攻读学位期间发表的论文
Curriculum vitae/作者简历

(9)快速热解生物质半焦的制备及其在沙漠土壤中的应用(论文提纲范文)

Dedication
Co-Authorship
摘要
Abstract
Table of Contents
1 Introduction
    1.1 Background
    1.2 Current Research Status
        1.2.1 Biochar Production and Characteristics
        1.2.2 Biochar Impacts on Agricultural Soil Properties
        1.2.3 Biochar and Soil Carbon Sequestration
        1.2.4 Biochar Enhances Crop Yield
        1.2.5 Risk and Management of Biochar Application
    1.3 Research Aims and Contents
2 Preparation and Characterization of Biochar
    2.1 Materials and Methods
    2.2 Results and Discussion
    2.3 Conclusions
3 Biochar's Effect on Plant Growth and Desert Soil Quality: Influence of Pyrolysis Temperature
    3.1 Materials and Methods
    3.2 Results and Discussion
    3.3 Conclusions
4 Biochar's Effect on Plant Growth and Desert Soil Quality: Influence of Different Mixing Rates
    4.1 Materials and Methods
    4.2 Results and Discussion
    4.3 Conclusions
5 Total Summary and Suggestions for Future Work
    5.1 Total Summary
    5.2 Suggestions for Future Work
References
Acknowledgements
List of Articles Published
List of Abbreviation

(10)铋酸钠基钙钛矿型功能材料的可见光催化/直接氧化降解典型有机水相染料研究(论文提纲范文)

ABSTRACT
摘要
ACKNOWLEDGMENTS
TABLE OF CONTENTS
NOMENCLATURE
LIST OF FIGURES
LIST OF TABLES
Chapter 1 THEORY AND LITERATURE REVIEW
    1.1 Dye Pollution
    1.2 Treatment for Aqueous Dye Removal
        1.2.1 Physical methods for dye removal
        1.2.2 Biological methods for dye removal
        1.2.3 Chemical methods for dye removal
        1.2.3.1 Direct chemical oxidations
        1.2.3.2 Advanced oxidation processes
        1.2.3.3 Combined approaches
    1.3 Perovskite Oxide
        1.3.1 Ideal perovskite structure
        1.3.2 Perovskite structure family
        1.3.3 Sodium bismuthate
        1.3.3.1 Application in chemical synthesis
        1.3.3.2 Application in environment
    1.4 Objective of This Study
    1.5 References
Chapter 2 VISIBLE LIGHT-DRIVEN PHOTOCATALYTIC DEGRADATION OF RHODAMINEB OVER SODIUM BISMUTHATE
    2.1 Experimental Method
        2.1.1 Materials and reagents
        2.1.2 Photoreaction chamber
        2.1.3 Characterization
        2.1.4 Photodegradation of RhB
        2.1.5 Analytical methods
    2.2 Results and Discussion
        2.2.1 RhB degradation
        2.2.1.1 UV-Visible spectra
        2.2.1.2 Reactivity comparison
        2.2.1.3 Stability
        2.2.2 Influence factors
        2.2.2.1 SBH concentration
        2.2.2.2 Crystal water content
        2.2.3 Reaction intermediates
        2.2.4 Mechanism
    2.3 Conclusion
    2.4 References
Chapter 3 DIRECT OXIDATIVE DEGRDATION OF RHODAMINE B USING BISMUTHSILVER OXIDE
    3.1 Experimental Method
        3.1.1 Materials and reagents
        3.1.2 BSO preparation
        3.1.3 BSO characterization
        3.1.4 RhB degradation
        3.1.5 Analytical methods
    3.2 Results and Discussion
        3.2.1 BSO characterization
        3.2.2 RhB degradation
        3.2.3 Influence factors
        3.2.3.1 SBH and AgNO_3 amount
        3.2.3.2 BSO dosage
        3.2.4 BSO durability
        3.2.5 BSO corrosion
        3.2.5.1 XRD analysis
        3.2.5.2 FTIR analysis
        3.2.5.3 XPS analysis
        3.2.5.4 TEM analysis
        3.2.6 Active oxygen species analysis
        3.2.7 Mechanism
        3.2.8 Versatility
    3.3 Conclusion
    3.4 References
Chapter 4 DEGRADATION OF ORGANIC DYES VIA BISMUTH SILVER OXIDE INITIATEDDIRECT OXIDATION COUPLED WITH SODIUM BISMUTHATE BASED VISIBLE LIGHTPHOTOCATALYSIS
    4.1 Experimental Method
        4.1.1 Materials and reagents
        4.1.2. Combined process of direct oxidation and visible light photocatalysis
        4.1.2.1 Direct oxidation(DO)
        4.1.2.2 Visible light photocatalysis(PC)
        4.1.3 Analytical methods
    4.2 Results and Discussion
        4.2.1 Comparison of DO and PC
        4.2.1.1 UV-Vis spectra
        4.2.1.2 Intermediates
        4.2.1.3 Mechanisms
        4.2.1.4 Decolorization performance
        4.2.2 Combined processes
        4.2.2.1 Crystal violet
        4.2.2.2 Versatility
        4.2.2.3 Durability
        4.2.2.4 Mechanism
    4.3 Conclusion
    4.4 References
Chapter 5 PRELINIARY INVESTIGATION ON DEGRADATION OF MALACHITE GREENUSING COPPER DOPED SODIUM BISMUTHATE
    5.1 Experimental Method
        5.1.1 Materials and reagents
        5.1.2 CSB preparation
        5.1.3 CSB characterization
        5.1.4 MG degradation
        5.1.5 Analytical methods
    5.2 Results and Discussion
        5.2.1 CBS characterization
        5.2.2 MG degradation
        5.2.3 Influence factors
        5.2.3.1 Ratio of raw material
        5.2.3.2 CSB concentration
        5.2.3.3 MG concentration
        5.2.3.4 pH value
        5.2.4 CSB corrosion
    5.3 Conclusion
    5.4 References
Chapter 6 CONCLUSIONS AND PROSPECTS
    6.1 Conclusions
    6.2 Prospects
学位论文中文概述
附录 攻读博士学位期间主要成果

四、A STUDY ABOUT SOIL WATER CHARACTERISTIC,CONDUCTIVITY OF WATER AND EQUILIBRIUM ADSORPTION OF CUPRIC ION IN SOIL——A UTILITY EQUIPMENT USED IN SOIL SCIENCE AND ITS ILLUSTRATION OF USE(论文参考文献)

  • [1]New innovations in pavement materials and engineering:A review on pavement engineering research 2021[J]. JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu. Journal of Traffic and Transportation Engineering(English Edition), 2021
  • [2]纳米纤维基比色生物传感器的制备及其抗生素检测应用[D]. 王洛发(MOHAMMED AWAD ABEDALWAFA MUKHTAR). 东华大学, 2019(05)
  • [3]采用插层和掺杂策略改性水滑石及其光催化还原CO2性能研究[D]. Kipkorir Peter. 北京化工大学, 2019(06)
  • [4]Electrochemical Study of Fe-Cr Allovs under Carbon Dioxide Envir-Onment[D]. 黄启亮. 西南石油大学, 2019(06)
  • [5]光和pH响应阿霉素递送系统构建及NIR定量分析[D]. RAHOUI NAHLA. 哈尔滨工业大学, 2018(01)
  • [6]碳氟表面活性剂胶束溶液及离子液体凝胶的结构、形成机理与性能研究[D]. 王晓琳. 山东大学, 2017(08)
  • [7]Modification of Melamine Sponge for Efficient Absorption Oil from Oily Waste Water[D]. Eyob Abebe. 天津大学, 2017(09)
  • [8]纳米铁酸钴的水生生物和蛋白质毒性机制研究[D]. Farooq Ahmad. 浙江工业大学, 2016(02)
  • [9]快速热解生物质半焦的制备及其在沙漠土壤中的应用[D]. 王岚(Mahmood Laghari). 华中科技大学, 2015(07)
  • [10]铋酸钠基钙钛矿型功能材料的可见光催化/直接氧化降解典型有机水相染料研究[D]. 喻恺. 南京大学, 2012(09)

标签:;  ;  ;  ;  ;  

土壤水分特性、水的导电性和土壤中铜离子的平衡吸附研究——一种用于土壤科学的实用设备及其使用说明
下载Doc文档

猜你喜欢