一、数学中的一題多解(论文文献综述)
陈维彪[1](2020)在《基于学习迁移理论的高中数学不等式教学研究》文中研究指明通过迁移可以更好地架构不等式知识网络,培养学生的发散性思维,提高课堂教学效果和学生的逻辑推理能力.但在不等式实际教学中,学习迁移理论并没有发挥其应有的作用.因而,有必要了解学习迁移理论在不等式教学中的使用现状,制定相应的教学策略.本研究通过对学生进行问卷调查和访谈,调查学生对迁移概念的了解、迁移作用的认识以及在学习过程中使用迁移的情况;对教师进行访谈,了解教师在不等式教学中的困惑、对学习迁移理论的了解、影响迁移效果因素的看法及在教学中使用迁移的情况,分析存在的问题;接着研究学习迁移理论在不等式教学中的应用,得出学习迁移理论能提升学生不等式学习效果的结论.最后,提出基于学习迁移理论的不等式教学建议:(1)做好初高中不等式衔接教学,为高中不等式教学创造迁移基础;(2)借鉴新教材,迁移拓展不等式知识;(3)培养正迁移,纠正负迁移;(4)精心组织教学活动,培养学生的迁移意识;(5)重视变式训练,提高迁移能力;(6)对数学文化和不等式进行双向迁移,提升学生学习不等式的兴趣;(7)精心设计校本选修课程,为学生未来发展提供迁移基础.把学习迁移理论用到不等式教学过程中,系统地研究不等式知识,能提高学生学习不等式的兴趣,优化教师课堂教学活动,提高教学效果,对教师和学生的发展都有重要意义.
张桂芳[2](2013)在《小学数学解决问题方法多样化的研究》文中研究表明问题是数学科学本身的内在组成部分,解决问题方法多样化有助于学生的数学思维发展、具有重要的教育价值。我国现行义务教育数学课程标准提出了“解决问题方法多样性”的要求,数学教材和数学教学实践中也普遍存在着解决问题方法多样化教学的事实。但是10多年来,还没有见到关于数学解决问题方法多样化的系统研究,还未建立起解决问题方法多样化的相关理论。数学解决问题方法多样化教学的普遍存在与其相关研究的匮乏,形成了一个现实的矛盾。本研究尝试探索小学数学解决问题方法多样化的相关认识、考量其教学实践成效(学生在数学解决问题方法多样化方面的发展状况),为更好的实践解决问题方法多样化教学提出一些数学课程与教学的建议与对策。本研究采用文献研究法、测试调查法、学生作品分析法、统计分析法等,从定性和定量两个方面对小学数学课程与教学中的解决问题方法多样化进行探讨。由于目前还没有关于“数学问题的解决方法”以及“数学解决问题方法多样化”的明确概念,所以,研究内容主要有:(1)通过文献研究,尝试探索数学解决问题方法多样化的相关理论、形成一些初步的认识。(2)通过测试调查研究学生在解决问题方法多样化方面的认知发展,考量数学解决问题方法多样化教学的成效问题,并检验本文所获得的相关认识和结论。(3)基于这两个方面的研究,本文为如何提高解决问题方法多样化教学以及数学课程的发展提出了一些建议与对策。本研究的主要发现与结论是:“数学问题的解决方法”是指解决数学问题的具体方法,是用以解决数学问题的那些产生式系统及问题情境的内在规定性的综合体,它由两个部分构成:(1)用以解决数学问题的产生式系统(即基本数量关系的组合),这是可以显性地写在纸上的部分;(2)问题解决方法的“算理”,即问题情境对这个产生式系的内在规定性,这是隐藏在背后的部分。其中,产生式系统的直接结果就是用以获取问题解答的得数的数学算法。“数学问题的解决方法”概念包括了通常所说的“解法”(“数学解题方法”)及其背后隐含的“算理”,这是一种扩充。而“数学问题的解决方法”与“算法”是不同的概念。“数学解决问题方法多样化”是指构造多种用以解决数学问题的产生式系统。本文中“数学解决问题方法多样化”也指用多种方法解决问题来教学数学的手法。判断一个解决方法与另一个解决方法不同的依据就是两个解决方法所体现的问题情境的规定性不同,最终就体现为两种解决方法当中所体现的基本数量关系的结合方式不同,或者说是两种解决方法的数学结构不同。“数学解决问题方法多样化”与“一题多解”、“数学解决问题方法多样化”与“算法多样化”等概念并不完全等同。数学解决问题方法多样化的根源在于符合问题情境的基本数量关系的组合具有可变性,而开发多种解决方法的依据则是问题情境的内在规定性。数学解决问题方法多样化的价值和必要性。由于用多种方法解决问题的过程充满变化(变通),所以,用多种方法解决数学问题并不是一种可以自动化的技能,解决问题方法多样化对培养学生数学创造能力具有重要价值;数学解决问题方法多样化教学是必要且合理的。“学生数学解决问题方法多样化的发展”是指经过日常的数学解决问题方法多样化教学、学生所获得的对多种解决方法的理解、掌握、运用方面的发展(认知结果)。它包括学生在解决问题时能支配的解决方法的量多(多样化)和质高(对该问题整个解决方法集合的感知或认识)两个方面的综合。影响学生解决数学问题方法多样化的内部认知因素主要有:知识基础、问题的表征、数量关系组合三个方面。尝试界定的学生数学解决问题方法多样化发展的认知水平层级:水平1,不能正确解决给定的问题;水平2,能够正确解决给定的问题;水平3,能够用2种方法解决给定的问题;水平4,能够在找到的2种解决方法的基础上对这两种方法进行概括和表达它们的联系;水平5,能够用3种方法解决给定的问题。根据这个水平层级模型,本研究编制了学生解决问题方法多样化发展测试卷及相应的编码规则。测试调查研究的结果说明了,经过数学课程的学习、学生在数学解决问题方法多样化方而能够获得一定的认知发展,现行的数学解决问题方法多样化教学并非完全无效,但是效果也不是很高;学生数学解决问题方法多样化的发展在单纯算法多样化维度、数与代数领域基本数量关系多重组合维度、几何领域基本数量关系多重组合维度三个维度上的发展并不均衡;同时也验证了影响学生数学解决问题方法多样化的三个认知因素的作用,也验证了“数学问题的解决方法”概念的合理性。综合本研究的理论探索和实证研究结论,本文对小学数学课程与教学提出了这样的建议与对策:(1)数学解决问题方法多样化教学应注重学生的综合建构。(2)合理安排数学课程与教学的内容编排、引导学生数学能力发展的进程。计算技能的培养重点应放在四年级及以前;五六年级宜以代数和几何发展为要务;五六年级的教学要更注重知识内化、整体建构和对学习自我反思,促进知识内部建构。(3)基于问题情境的规定性来开发不同的解决方法。(4)重在引导学生自主开发多种解决方法。(5)重在开发新方法的过程和对多种解决方法的认识。(6)注意数学解决问题方法多样化教学的“度”。(7)从三个方面抓数学解决问题方法多样化教学:夯实知识基础、提高观察能力促问题表征、增强对多个基本数量关系的自觉跟踪和调控。本研究立图创新的地方:由于本研究是首次探索数学解决问题方法多样化的相关理论、形成一些初步的认识,辅以测查学生在解决问题方法多样化方面的认知发展,初步尝试界定“学生数学解决问题方法多样化发展的认知水平层级”和编制相应的测试卷,这些方面都是本研究的原创,具有一定的探索性。希望所获得的结论和建议能够为今后我国的小学数学课程与教学的进一步发展提供一定的参考。本研究的不足之处:(1)本研究的探索仅仅是初步的,所获得的结论也仅仅是初步的和肤浅的,还没有能够形成体系。(2)限于实际条件,本研究仅对特定区域的学生进行调查,所获得的学生数学解决问题方法多样化发展的结论、以及对小学数学课程与教学的建议,有待进行更大范围的研究验证、包括开展系列实验研究。
徐鑫[3](2020)在《通过一题多解培养初中生数学思维能力的实验研究》文中研究指明数学是思维的体操,数学对于学生思维能力的培养具有重要而独特的作用。对于学生而言,培养数学思维能力是其学习数学的关键,对于教师来说,培养学生的数学思维能力是其教学之目的。可见,中学数学教育应鼓励学生自主思考,学会分析问题,解决问题,从而提升数学思维能力。因此如何有效提升学生的思维层次日益成为研究热点之一。本文以研究初中生数学思维品质为出发点,以变式教学理论为基础,以一题多解为教学手段,以提高学生数学成绩和学习兴趣,培养学生良好的数学思维能力为目的,以期能够为初中数学教学提供参考,为教学改革提供可行的思路。基于此,本研究对如下问题进行探讨:1、一题多解是否是培养数学思维能力的一种教学途径?2、为了培养学生数学思维能力,设计怎样的一题多解的变式教学策略?3、通过一题多解的教学策略实施是否能有效培养初中生的数学思维能力?本文采用文献研究法、实验法、调查问卷法和案例分析法等方法对上述问题进行了研究,主要分为以下三部分:1、通过分析国内外关于数学思维能力培养和一题多解教学的研究成果,分别对数学思维能力和一题多解进行理论阐述,得出研究的必要性,为一题多解的应用和教学实践提供理论指导,通过文献研究和理论分析得到一题多解是可以作为培养数学思维能力的一种教学途径的结论;2、实验研究,对象为上海市某中学初二年级的两个班级,根据文献研究得到的一题多解的原则和培养初中生数学思维能力过程中存在的问题,制定并实施一题多解的变式教学策略,并对一题多解的实际教学过程进行案例分析、研究与反思;3、进行实验结果的分析与总结,得出一题多解的变式教学对培养初中生数学思维能力的作用与效果,检验一题多解教学策略的有效性。综上所述,本文的研究说明一题多解是可以作为培养数学思维能力的一种教学途径,笔者也给出了一题多解的变式教学案例示范,并且通过实验研究发现,其具有可行性和有效性。最后,笔者提出了通过一题多解培养数学思维能力的建议。
宋运明[4](2014)在《我国小学数学新教材中例题编写特点研究》文中研究表明课程是学校教育工作的核心,教材是课程的载体。教材作为一种体现国家意志的印刷品,作为教与学的重要媒介、学习活动的基本线索,在学校课堂教学中具有不可替代的作用。教材编写质量某种程度上决定着教学质量,教材是否有编写特色是衡量其编写质量的重要标志,而教材编写特色是否鲜明是衡量其编写水平的重要标志,对其易教利学程度有重要影响。然而,教材编写研究长期以来被忽视,尤其是小学数学教材编写特色研究更少,远远不能满足当今小学数学教材建设的需要。例题是小学数学教材的最重要组成部分和教学属性的集中体现,其编写特点直接影响教材质量也影响小学数学课堂教学质量,在教材编写特色中占据突出地位。本研究以例题编写特色为切入点对我国小学数学新教材(小学数学新教材是指我国自2001年实施新课改以来依据国家数学课程标准编写并经教育部审定通过的小学数学教材,下同)的编写特色进行研究。研究的问题为:我国小学数学新教材中例题编写有哪些利教利学的特点,有何凸显例题编写特点的建议?具体可以分解为4个子问题:1)如何构建小学数学新教材中例题文本分析的框架,也即是从哪些类目分析教材文本中例题的编写特点?2)在教材文本中,各版本例题编写在框架各类目上存在哪些特点?3)小学数学教师对教材文本中例题编写特点的利教利学认同度如何?4)我国小学数学新教材中例题编写有哪些利教利学的特点,有何彰显例题编写特点的建议?其中第1)和2)个问题是研究的重点,第3)个问题是研究的难点,第4)个问题是研究的归宿。研究与凸显小学数学教材的例题编写特点,对于提升小学数学教材编写质量、促进小学数学教材多样化发展、提高小学数学课堂教学水平进而促进小学生的数学学习发展乃至促进教育公平都具有重要意义。论文以我国义务教育数学课程标准为指导,借鉴有关研究成果,采用文献法、内容分析法、比较研究法、调查法和统计分析法等研究方法对人教版、西师版和苏教版四至六年级数学新教材中的例题编写特点进行了文本分析与利教利学认同度调查研究。具体而言,首先基于对课程教材政策文件、小学数学教材特别是其中例题的编写特点及其他相关(数学)教育与心理学研究成果、小学数学教材文本的综合分析,构建小学数学新教材文本中例题的分析框架。其次采用该框架对所选择的教材文本中的例题进行分析、统计,进而比较得出各版本教材例题在分析框架各个类目上的共同特点与各自特点。再次基于文本研究的典型结论制定问卷,对383名小学数学教师进行例题编写特点利教利学认同度的调查研究,采用18.0版SPSS软件对调查结果进行统计分析。最后综合上述静态和动态研究的主要结论,概括提炼我国小学数学新教材中例题编写的利教利学特点,针对存在局限提出彰显我国小学数学新教材尤其是其中例题编写特色的建议。通过研究,主要得到以下结论:其一,例题文本分析框架分为12个类目:所占篇幅,所含情境类型,所属情境倾向,所含插图类型,所含解题阶段,对知识的处理方式,所含启发方法,所含问题解决方法多样化,开放性,所含对话交流引导,所含动手操作引导,知识主题中例题间的关系。其中大多类目分为若干亚类目或若干类型,如开放性分为所含“问题”信息是否充足、答案是否唯一、是否含“提出问题”提示语三个亚类目;所属情境倾向分为农村情境倾向、中性情境和城市情境倾向三种类型。其二,在文本分析中,三版本教材例题编写的共同点:平均每道例题长度占半个正文页面多一点。属于生活情境类型的例题占比约六成,属于其他学科和动画情境类型的例题占比较低。具有中性情境的例题个数占八成以上,隶属农村情境倾向的例题占比很低。含插图例题比重占七成以上;在三个知识领域(如不特别说明,三个知识领域指数与代数、空间与图形、统计与概率三个领域,下同)中,空间与图形领域中含功能性插图例题比重最高。在波利亚解题理论的四个解题阶段中,含弄清题意阶段的例题比例最小,含拟定计划阶段的比例次小,而含执行计划阶段的比例最高,回顾阶段得到足够重视;留白例题比例约六成;执行计划阶段含关键处点拨例题比重超过含该阶段例题的两成。用以获取知识的例题比重在54.7%-86.9%之间。使用启发方法的例题比重在三成以上;寻找模式和绘图处在教材例题启发方法使用频率的前三位,而且这两种启发方法主要分布在数与代数领域。含问题解决方法多样化例题比重在15%-22%之间;在三个知识领域中,数与代数领域含有问题解决方法多样化例题比重明显高于其他两个领域。“问题”信息不充足和含“提出问题”提示语的例题很少,答案不唯一例题比重在14%-18%之间。含对话交流引导的例题比重在43%-58%之间。含动手操作引导的例题比重在15%-30%之间;四至六年级中,四年级含动手操作引导的例题比重最高。重视例题间深层结构变异与概念连接,同时注重通过例题后的“提示或小结”诱发学生的自我解释。三版本各自例题编写也有特性,如人教版例题较注重联系其他学科,西师版较重视农村情境,苏教版在问题解决多样化方面较突出等。其三,在对32个例题编写特点的利教利学认同度调查研究中,小学数学教师认同度最高的特点是:含插图例题个数比重在72.9%-80.5%之间,平均为76.2%;认同度最低的特点是:具有农村情境的例题个数比重在0.6%-10.5%之间,平均为4.5%。小学数学教师是否使用过人教版、苏教版和北师版教材对其认同度的影响较小;数学学科教龄、职称和最后学历的影响一般;学校位置(城市或农村)与是否使用过西师版教材对认同度的影响非常明显。其四,我国小学数学新教材中例题编写利教利学的共同特点有:呈现形式注重图文并茂,情境设置联系生活实际,学习方式倡导对话交流,例题功能注重新知获得,例题之间注意变式连接,活动设计强调动手操作。各版本教材例题也有一些利教利学特性,在三版本中,如西师版使用启发方法的次数最多,使用启发方法的例题个数比重最高;苏教版含回顾反思阶段的例题个数比重最高等。其五,在研究的基础上,提出了以下建议。对彰显我国小学数学新教材中例题编写特色的建议:1)全力彰显例题编写的个性化特色;2)加强空间与图形、统计与概率知识领域例题编写的教学属性;3)关注农村小学数学教学,尤其适当提高农村情境倾向例题比重;4)增强例题与动画情境、其他学科的联系;5)适度增强例题的开放性;6)适度增加含弄清题意阶段的例题比重,减少裸例题比重。对我国小学数学教材编写特色发展的建议:1)小学数学教材的内容选取和组织、难度等应多样化;2)坚持联系学生生活实际与活动化的编写思路;3)关注小学数学教材的地方特色,尤应关注农村地区、少数民族地区学生的数学学习需要:4)重视借鉴发达国家小学数学教材编写经验;5)深入挖掘教材编写特色切入点,进行理论与实验研究;6)教育行政部门应适当放宽教材审查标准,特别是对教材形式的规定。论文分为8章。分别为导论,概念界定与文献述评,研究设计,例题文本分析框架的构建,例题文本编码结果的统计与分析,例题编写特点的利教利学认同度调查研究,结论与建议,结束语。本研究创新之处:1)该研究是国内首例对小学数学教材中例题编写特点进行研究的博士论文,相关研究甚少,这也增加了研究的难度。2)以定量分析为主对小学数学教材编写特色进行研究,其中构建了例题的文本分析框架,而国内大多已有教材研究是以定性分析为主。3)提出了彰显小学数学新教材中例题编写特点的建议。本研究不足之处:1)研究者仅对三个版本的教材例题进行了研究,而对有些比较有特色的教材版本没有涉及,致使有些所得结论说服力不强。2)调查研究中,问卷需进一步改进,调查对象没有涉及小学数学教研员和高校数学教育研究者。
王权威[5](2019)在《初等数学问题自动求解中的分支推理架构及实现》文中提出随着人工智能研究的深入和现代计算机技术的发展,其对人们的生活方式和社会的组织结构都将产生深远的影响。在人工智能给人们日常生活带来便捷的同时,其在科研与教育领域也将产生变革。人工智能的发展将推进科研与教育向纵深方向发展。正是基于上述背景,本文主要研究了初等数学问题自动求解中的分支推理架构,设计和实现了一个基于分支推理的初等数学问题自动求解系统。本文的主要内容包括以下几个方面:1.初等数学问题的知识表示初等数学问题的知识表示包括初等数学中相关的实体表示、实体之间的关系表示和推理依据的表示。在本文中,我们将初等数学中所涉及的概念分类进行抽象,用面向对象的方法来表示。用Data表示原子知识,用Relation去表示多个Data或多个Relation之间的关系。推理依据的表示包括初等数学问题中的一些常识、公理、定理和推论的表示。我们为这些公理、定理、推论等数学理论建立结构一致的模型,以便计算机能够运用这些模型进行推理产生出新的知识,从而达到解题的目的。在系统中主要以编写规则的方式来实现此类模型。2.基于知识库的分支推理架构的研究在问题求解过程中,往往会涉及到一些分类讨论的情况。我们通过建立分支知识库,实现拆分“或”关系为各个单独关系,让它们分别在各自独立的知识库中进行无干扰的推理;然后再利用矛盾检测机制检验推理产生的知识,逐步减少分支或推导出分支并对分支进行合并;最终求解出问题,同时得到完整的问题求解过程。这就是分支推理。在研究分支推理架构时,我们分别对分支架构中的关键技术进行了研究与探索,包括分支的具体知识表示、分支推理架构的模块组成、分支推理策略和外部分支技术。3.基于分支推理的问题自动求解系统的实现系统中的初等数学知识以对象的方式来表示和存储,通过自然语言理解、预处理、主知识库、外部知识库、控制器、分支推理和符号计算等模块的相互配合,形成一个具有类人答题功能的完整的初等数学问题自动求解系统。并且在该系统中创造性地设计和实现了一题多解模块,使系统具有能够用多种方法求解初等数学问题中一些典型问题的功能。
王萍萍[6](2018)在《基于任务设计的发展初中生数学创造性思维的课例研究》文中进行了进一步梳理培养学生的创造性思维是数学教育的重要目标之一。目前,有关创造性思维培养的研究按照关注层面的不同,可以分为宏观、中观和微观三个层面:宏观层面关注数学学科的创造性思维的发展;中观层面关注具体学科分支(代数、几何、统计与概率)的创造性思维培养;微观层面关注具体一堂课的创造性思维教学。已有文献显示,研究者围绕数学创造性思维培养的研究大多停留在宏观层面,得到的研究结果大多具有学科一般性,而针对中观层面和微观层面的研究较少,本研究正是在这样的背景下进行的关注中观层面和微观层面的研究。研究者指出培养高层次数学能力需要相应的教学任务和相应的教学策略(Stein,2001;鲍建生,周超,2009)。基于这一观点,本研究立足于创造性思维培养的中观层面,即代数、几何、统计与概率三个数学分支,分别探讨如下三个问题:(1)初中生数学创造性思维有哪些行为表现?(2)为发展学生的数学创造性思维,有哪些有效的任务设计策略?(3)为发展学生的数学创造性思维,有哪些有效的教学策略?其中,第一个问题的回答是解决后两个问题的基础。本研究立足于中观层面,综合宏观、中观、微观三个层面展开质性研究。首先以数学宏观层面为切入点,结合不同数学分支特征,形成中观层面初步的创造性思维行为分析框架。接着以此行为分析框架为基础,初步形成中观层面创造性任务设计策略框架和教学策略框架,再根据中观层面的三个框架进行微观层面的课例研究。课例研究有两个作用,一方面展示怎样应用中观层面三个框架于具体一节课的教学;另一方面,在研究过程中反过来修正和完善中观层面的三个框架。由于本研究具有特殊的发展目标(发展创造性思维),设计课例从研究角度和教学角度同时展开,根据中观层面的三个框架,通过教材分析、学情分析,结合一线教师的意见,在一节课中选择若干创造性教学干预点进行创造性任务的设计和整节课的设计,依据框架实施教学。在课例研究过程中,修正和丰富三个框架,得出研究结果。通过“数与代数”的两个课例(《算24点》和《字母表示数》)、“图形与几何”的两个课例(《圆周角》和《一分为二》)、“统计与概率”的一个课例(《方差》)研究,得到三个数学分支以思维流畅性、灵活性、新颖性和精致性为主要特征维度的进一步细化完善的创造性思维行为分析框架(见7.1节),三个数学分支以背景、结构和认知为主要任务设计维度且兼顾创造性思维四个维度发展侧重的进一步细化完善的创造性任务设计框架(见7.2节),以及三个数学分支以氛围营造和方法引导为主要教学维度且兼顾创造性思维四个维度发展侧重的进一步细化完善的创造性任务教学框架(见7.3节)。上述研究结果是在数学中观层面和微观层面首轮课例研究下得到的,可进一步修正完善。
王雨平[7](2019)在《小学低年级数学美的教学问题与改善策略研究》文中认为数学美是数学知识体系与作为审美主体的人的意向的融合,具体表现为简洁美、对称美、和谐美和奇异美。数学美的教学有助于培养学生良好学习习惯,陶冶学生审美情操,激发学生学习兴趣和创造力,进而促进学生全面可持续发展。把数学美运用于小学低年级数学课堂教学中,是将抽象的数学知识具体化、形象化,让学生在体验数学美的过程中更好的理解知识、发展能力,是一种有效的教学途径。基于此,研究聚焦于小学教师和小学数学课堂,围绕数学美的教学如何落实这一问题展开研究。采用文献法、访谈法、观察法和案例分析法等开展调查,发现当前小学低年级数学美的教学中存在的问题,分析产生问题的原因以及探讨数学美教学的改善策略。研究主要包含以下几方面:一是在阐述了小学低年级数学教材中数学美的教育价值的基础上,从呈现形式维度,对教材中数学美进行了梳理;从呈现内容维度,分别对数学美的简洁、对称、和谐与奇异四种表现形式进行了论述。根据小学低年级学生的审美认知发展,将审美过程分为审美感知、审美经验和审美创造三个阶段,阐述了数学美形成的动态过程。二是采用半结构式访谈对小学低年级数学教师进行深度访谈,结合课堂观察发现当前小学低年级数学教师在对数学美的挖掘与教学过程中存在诸多问题,具体问题如下:小学低年级数学教师对数学美的认识存在片面化,教学准备分析不足,教学目标制定片面,教学过程组织僵化以及数学美的教学评价开展简略化等。教师自身审美能力不足、教育理念偏差、教学能力不足是产生数学美的教学问题的内因;外因通过内因起作用,学校重视程度不够、数学美学习平台缺乏及应试教育的压力是导致数学美教学问题产生的外因。三是结合具体的教学案例提出了改善小学低年级数学美教学的优化策略,主要从提高教师数学美的理论素养,优化小学低年级数学美的教学设计,学校重视数学美的教学,以及让教师在数学美的教学中由自发到自觉状态转变等途径提出具体可行的改善建议。
王艳[8](2020)在《发展逻辑推理素养的高中数学命题教学设计研究》文中研究说明逻辑推理能力一直以来都备受数学教育领域科研人员的关注。“推理能力”被列入十个核心概念、“推理论证”作为高中阶段五个数学基本能力之一,其重要程度不言而喻。《普通高中数学课程标准(2017年版)》提出数学六大核心素养,处于与课程目标并列的地位,所包含的逻辑推理素养迅速成为数学教育界的焦点话题。当下高中命题教学存在重类型强化轻来龙去脉和重结论探索轻结论运用等问题,逻辑推理素养中运用合情推理猜想,重视命题由来与探索过程,恰好可以弥补缺失,而命题引入、证明、应用以及网络体系建构能为逻辑推理素养发展提供一条良好的途径。所以两者互相促进、相辅相成,值得关注和研究,促使学生逻辑推理素养在高中命题教学中可以真正落地。本研究主要采用文献研究、访谈、课堂观察和案例分析等研究方法。首先从相关文献、理论、课标要求等,分析得出逻辑推理素养的构成要素;然后,根据命题教学特点、新课标中对逻辑推理素养内涵、评价等的描述,综合形成发展高中学生逻辑推理素养的数学命题教学要求;接下来,根据要求调查研究,整理数据分析总结出存在的问题;最后,基于研究结果,提出策略,并选取命题教学中典型内容设计教学案例。通过研究得,发展逻辑推理素养的高中命题课堂教学的要求是:命题引入中强调情境性,学生主体参与性要求;命题证明要落实知识准备性要求,证明思路、方法多样性要求,过程性要求;命题应用要达到变式多样性、现实应用性要求;命题体系构建要重视联系与整体性、交流性要求。现状调查中反映出,在实际教学中现实和科学情境较少涉及,教师对学生主体性认识不足,多样化方法综合使用的引导程度不够,不注重数学语言间转换的教学,不重视引导学生用联系和整体的观点思考命题间的关系,对学生逻辑表达、反思能力的培养意识薄弱等问题。为了解决问题,达到要求,提出相应设计策略:(1)创设真实丰富的问题情境,提升学生参与性,引入数学命题。(2)猜证结合、多样论证,强化语言转换,明确数学命题。(3)联系生活实际,加强一题多思路的引导,应用数学命题。(4)采用“关系图”、体现过程,强调命题梳理,构建数学命题体系。并以《二项式定理》、《等差数列前n项和》、《平面三公理》为例作教学设计尝试。
郭月[9](2019)在《在高中数学教学中培养学生的质疑精神与探索精神的策略研究》文中研究表明当今社会国内外学者已经开始重视科学精神的培养,部分学者也对数学精神进行了研究,但在我国中学生的教育中精神研究还存在不足.而质疑精神与探索精神的培养会影响着学生数学精神的培养,同时也影响着数学教育的方向,因此教师需要关注高中生的质疑精神与探索精神的培养,希望可以找到贴合高中数学课堂实际教学可行的培养学生的质疑精神与探索精神的策略.本文分为4个部分,第1章主要阐述了在高中数学教学中培养学生的质疑精神与探索精神的策略研究提出的背景,以及培养学生质疑精神与探索精神的目的意义,并对国内外数学精神的现状进行分析,从而确定了本文的研究内容.第2章对数学精神的理论基础进行研究,对数学精神的内涵进行了分析,确定了质疑精神与探索精神的重要性.第3章在新授课中,通过设置问题、创设情境、授课中融入数学史来培养学生的质疑精神与探索精神,选择函数问题、几何问题具体说明策略.第4章在习题课中的培养策略,结合一题多变、一题多解的例题来培养学生的质疑精神与探索精神.
徐珊威[10](2020)在《高中数学最值问题的解题研究》文中研究说明最值问题在高中数学中占据重要地位,它既是高考数学的重点考查内容之一,又是实际生活中最优化问题的重要基础。由于相关知识综合、复杂、灵活、抽象,很多学生在解题时常找不到切入点,解题方法掌握不全面,考试时,遇题有畏难情绪。本论文旨在系统地对最值问题的主要类型进行分类,并研究各类型解题通法,从而给学生提供帮助,达到更好的学习效果。从概念课、习题课与复习课的角度提出教学设计的策略,给一线教师提供参考。本论文主要做了以下五个方面的研究:第一,通过对教师访谈、学生测试调查分析了学生在一定程度上对最值问题的掌握情况,并找出学生求解时存在的主要问题。第二,通过分析教材中最值问题的分布情况并建立起最值问题的分类依据,然后整理出与最值相关的知识(包括高等数学中运用拉格朗日乘数法求条件极值的方法)。第三,通过对近五年高考全国卷最值试题的分析,归纳总结出主要考点,试题类型与题中主要蕴含的数学思想方法。第四,由上述三方面的研究确定了最值问题的主要类型和相应解法。主要类型分为:(1)函数中的最值问题(二次函数、三角函数、高次函数、不含根号的分式型函数、含根号的函数、指数函数与对数函数、不等式恒成立问题、求参数取值范围的问题、双重最值问题、函数最值的实际应用);(2)数列中的最值问题(求数列的最大(小)项、求等差数列前n项和nS的最值以及数列中的恒成立问题);(3)解析几何中的最值问题(利用几何法求最值与利用代数法求最值);(4)不等式中的最值问题(线性规划、基本不等式、绝对值不等式、柯西不等式)。第五,提出教学设计策略,并给出了概念课、习题课与复习课的三个教学设计。
二、数学中的一題多解(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、数学中的一題多解(论文提纲范文)
(1)基于学习迁移理论的高中数学不等式教学研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究的背景 |
1.1.1 不等式学习的重要性 |
1.1.2 不等式教学中的困境 |
1.1.3 学习迁移理论在不等式中的作用 |
1.2 核心名词界定 |
1.2.1 教学 |
1.2.2 教学设计 |
1.2.3 解题 |
1.2.4 迁移 |
1.3 研究的内容和意义 |
1.3.1 研究的内容 |
1.3.2 研究的意义 |
1.4 研究的思路 |
1.4.1 研究计划 |
1.4.2 研究的技术路线 |
1.5 论文的结构 |
第2章 理论基础与文献综述 |
2.1 研究的理论基础 |
2.1.1 学习迁移的概念 |
2.1.2 迁移的分类 |
2.1.3 早期的迁移理论 |
2.1.4 现代的迁移理论 |
2.2 文献综述 |
2.2.1 文献搜集 |
2.2.2 不等式的研究现状 |
2.2.2.1 不等式教材的研究现状 |
2.2.2.2 不等式解题教学的研究现状 |
2.2.2.3 不等式教学策略的研究现状 |
2.2.3 学习迁移理论的在数学中的研究现状 |
2.2.4 不等式中的迁移的研究现状 |
2.2.5 文献评述 |
2.3 小结 |
第3章 研究设计 |
3.1 研究目的 |
3.2 研究方法 |
3.2.1 文献法 |
3.2.2 问卷调查法 |
3.2.3 访谈法 |
3.2.4 痕迹分析法 |
3.2.5 案例研究法 |
3.2.6 微型实验研究法 |
3.3 研究工具及研究对象选取 |
3.4 研究伦理 |
3.5 研究的创新之处 |
3.6 小结 |
第4章 基于学习迁移理论的不等式教学现状调查 |
4.1 基于学习迁移理论的问卷分析 |
4.1.1 问卷设计 |
4.1.2 实施调查 |
4.1.3 问卷可靠性分析 |
4.1.4 学习迁移理论的问卷结果分析 |
4.1.4.1 学生学习一元一次不等式的迁移体会 |
4.1.4.2 学生对教师的迁移教学的感受 |
4.1.4.3 学生对迁移作用的观点 |
4.1.4.4 学生对解题中所涉及到迁移的体会 |
4.1.4.5 学生对数学内部及其他学科间的迁移的认识 |
4.2 基于学习迁移理论的访谈研究 |
4.2.1 访谈设计 |
4.2.2 实施访谈 |
4.2.3 访谈结果及分析 |
4.2.3.1 教师访谈记录 |
4.2.3.2 教师访谈分析 |
4.2.3.3 学生访谈记录 |
4.2.3.4 学生访谈分析 |
4.3 基于学习迁移理论的调查结论 |
4.4 小结 |
第5章 学习迁移理论在不等式教学中的应用 |
5.1 新、旧课标的不等式对比分析 |
5.1.1 内容方面 |
5.1.2 要求方面 |
5.2 不等式中的迁移 |
5.2.1 不等式知识中的迁移 |
5.2.1.1 不等关系与不等式中的迁移 |
5.2.1.2 一元二次不等式及其解法中的迁移 |
5.2.1.3 基本不等式中的迁移 |
5.2.1.4 教材其他内容的迁移 |
5.2.2 数学文化中的迁移 |
5.2.3 思想方法的迁移 |
5.3 基于学习迁移理论的不等式教学目的 |
5.4 基于学习迁移理论的不等式教学原则 |
5.5 基于学习迁移理论的不等式教学流程 |
5.6 基于学习迁移理论的不等式教学案例 |
5.6.1 实验班、对照班的选择 |
5.6.2 基于学习迁移理论的“一元二次不等式及其解法”的案例 |
5.6.2.1 基于学习迁移理论的一元二次不等式及其解法教学设计构想 |
5.6.2.2 基于学习迁移理论的一元二次不等式及其解法教学设计 |
5.6.2.3 基于学习迁移理论的一元二次不等式及其解法的教学访谈 |
5.6.3 基于学习迁移理论的“基本不等式”的案例 |
5.6.3.1 基于学习迁移理论的基本不等式教学设计构想 |
5.6.3.2 基于学习迁移理论的基本不等式教学设计 |
5.6.3.3 基于学习迁移理论的基本不等式的教学访谈 |
5.6.4 迁移教学效果分析 |
5.6.4.1 实验班解题痕迹分析 |
5.6.4.2 第10周周测分析 |
5.7 小结 |
第6章 基于学习迁移理论的不等式教学建议 |
6.1 基于学习迁移理论的不等式教学建议 |
6.1.1 做好初高中不等式衔接教学,为高中不等式教学创造迁移基础 |
6.1.2 借鉴新教材,迁移拓展不等式知识 |
6.1.3 培养正迁移,纠正负迁移 |
6.1.4 精心组织教学活动,培养学生的迁移意识 |
6.1.5 重视变式训练,提高迁移能力 |
6.1.6 对数学文化和不等式进行双向迁移,提升学生学习不等式的兴趣 |
6.1.7 精心设计校本选修课程,为学生未来发展提供迁移基础 |
6.2 小结 |
第7章 结论与反思 |
7.1 研究的结论 |
7.1.1 问卷和访谈调查分析的结果 |
7.1.2 迁移理论在不等式教学中的应用分析 |
7.1.3 不等式教学建议 |
7.2 研究的不足之处与展望 |
参考文献 |
附录A 基于学习迁移理论的调查问卷 |
附录B 学生访谈提纲 |
附录C 教师访谈提纲 |
附录D 后测题 |
攻读学位期间发表的学术论文和研究成果 |
致谢 |
(2)小学数学解决问题方法多样化的研究(论文提纲范文)
摘要 |
Abstract |
第一章 引论 |
1.1 研究的缘起 |
1.1.1 我国数学课程对“问题解决”与“用多种方法解决问题”的要求 |
1.1.2 关于数学解决问题方法多样化的课程教学实践与理论研究存在矛盾 |
1.2 研究的必要性 |
1.2.1 问题是数学本身的内在组成部分 |
1.2.2 解决问题具有重要的教育价值 |
1.2.3 解决问题方法多样化能够促进学生的数学思维发展 |
1.2.4 学生数学解决问题方法多样化发展的薄弱 |
1.2.5 关于学生数学解决问题方法多样化发展的研究匮乏 |
1.3 研究的问题 |
1.4 研究的目的及主要内容 |
1.5 研究的意义 |
第二章 研究的设计 |
2.1 确定出主要概念 |
2.2 确定研究的基础理论 |
2.3 本研究的总体规划 |
2.4 论文构架 |
2.5 研究方法 |
第三章 文献研究 |
3.1 有关数学问题解决的已有研究 |
3.1.1 数学问题解决的本质与过程的研究 |
3.1.2 数学问题表征的研究 |
3.1.3 数学题型研究及开放题研究 |
3.2 有关数学问题的解决方法的研究 |
3.2.1 数学问题解决策略的研究 |
3.2.2 数学问题的解决方法的研究 |
3.3 与“多解”有关的研究 |
3.3.1 一题多解的研究 |
3.3.2 关于一题多解与“算法多样化”的研究 |
3.3.3 变式教学研究视野中的一题多解研究 |
3.3.4 在数学中用多种方法解决问题的影响因素 |
3.4 关于数学问题解决与认知发展的已有研究 |
3.4.1 数学问题解决的思维与数学能力发展的研究 |
3.4.2 关于学生认知发展测评的理论 |
3.5 文献研究的总结 |
第四章 对小学数学解决问题方法多样化的探讨 |
4.1 数学问题的解决方法 |
4.1.1 内涵 |
4.1.2 本质 |
4.1.3 数学问题的解决方法、数学方法、解题方法(解法) |
4.1.4 数学问题的解决方法、计算方法 |
4.1.5 数学问题的解决方法的实例 |
4.1.6 数学问题的解决方法的构成 |
4.2 数学解决问题方法多样化 |
4.2.1 内涵 |
4.2.2 本质 |
4.2.3 数学解决问题方法多样化的依据和来源 |
4.2.4 数学问题的解决方法、算法 |
4.2.5 数学解决问题方法多样化、算法多样化 |
4.2.6 数学解决问题方法多样化、一题多解 |
4.2.7 数学解决问题方法(算法)多样化的“个体性”与“群体性” |
4.2.8 数学解决问题方法多样化的教学功能 |
4.2.9 解读数学解决问题方法多样化的教育价值 |
4.2.10 数学解决问题方法多样化教学的追求 |
4.3 学生数学解决问题方法多样化的发展 |
4.3.1 内涵 |
4.3.2 数学解决问题方法多样化教学的合理性与必要性 |
4.3.3 学生数学解决问题方法多样化认知的评估 |
4.4 学生数学解决问题方法多样化及其发展的影响因素 |
4.4.1 内涵及内容 |
4.4.2 三个影响解决问题方法多样化的内部认知因素 |
4.5 数学解决问题方法多样化教学的建议 |
4.5.1 数学解决问题方法多样化教学应注重学生的综合建构 |
4.5.2 注重基于问题情境的规定性来开发不同的解决方法 |
4.5.3 重在引导学生自主开发多种解决方法 |
4.5.4 重在开发新方法的过程和对多种解决方法的认知 |
4.6 小结 |
第五章 小学生数学解决问题方法多样化认知的测试调查 |
5.1 研究的目的 |
5.2 研究的思路 |
5.3 研究的工具 |
5.3.1 界定学生数学解决问题方法多样化的认知水平层级 |
5.3.2 编制测试卷 |
5.3.3 编制测试卷编码规则 |
5.3.4 测试卷的试测与修订 |
5.3.5 测试卷的效度 |
5.4 研究对象 |
5.5 施测过程 |
5.6 数据编码 |
5.7 数据处理与分析的技术路线 |
5.8 本研究的测试卷的信度 |
5.9 研究结果 |
5.9.1 总体概况 |
5.9.2 年级与性别的比较分析 |
5.9.3 学生在各维度发展的比较 |
5.10 结论和讨论 |
5.10.1 研究的结论 |
5.10.2 讨论 |
5.11 本章小结 |
第六章 总结、建议和展望 |
6.1 本研究的总结 |
6.1.1 关于数学问题的解决方法 |
6.1.2 关于数学解决问题方法多样化 |
6.1.3 关于“学生数学解决问题方法多样化的发展” |
6.1.4 关于学生数学解决问题方法多样化发展的影响因素 |
6.1.5 小学生数学解决问题方法多样化认知的测试调查 |
6.2 对小学数学解决问题方法多样化的建议与对策 |
6.2.1 实践数学解决问题方法多样化教学的必要性 |
6.2.2 提高数学解决问题方法多样化教学成效的建议与对策 |
6.3 对本研究的反思和展望 |
参考文献 |
附录 |
附录1 本次调研两县地图(图1~图2) |
附录2 《4-6年级数学解决问题方法多样化发展测试卷》 |
附录3 测试卷编码规则(评分标准) |
附录4 各题得分频率分布图(图1-图5) |
附录5 各题年级均值图(图1-图5) |
后记 |
在学期间发表的论文 |
(3)通过一题多解培养初中生数学思维能力的实验研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究的背景 |
1.1.1 数学思维能力的培养是数学教育的重要任务 |
1.1.2 一题多解——课堂教学的需要 |
1.1.3 一题多解是培养学生数学思维的催化剂 |
1.2 研究的意义 |
1.2.1 符合素质教育的要求 |
1.2.2 提供了培养数学思维能力的新思路 |
1.2.3 能够实现育人价值 |
1.3 研究问题 |
1.4 研究思路和方法 |
第2章 文献综述 |
2.1 变式教学中的一题多解 |
2.1.1 变式教学的相关研究 |
2.1.2 一题多解的相关研究 |
2.2 数学思维能力的相关研究 |
2.3 一题多解培养数学思维能力的相关研究 |
第3章 概念界定和理论基础 |
3.1 思维与数学思维的概念界定 |
3.1.1 思维与数学思维的含义 |
3.1.2 数学思维能力的分类和界定 |
3.2 初中生数学思维的特点 |
3.3 初中生数学思维能力培养中存在的问题 |
3.4 一题多解的概念界定 |
3.4.1 变式教学中一题多解的含义 |
3.4.2 一题多解的教学原则 |
3.5 理论基础 |
3.5.1 有意义的学习理论 |
3.5.2 波利亚的解题理论 |
3.5.3 最近发展区理论 |
第4章 一题多解培养数学思维能力的教学案例及设计分析 |
4.1 新授课“直角三角形全等的判定” |
4.1.1 教材分析 |
4.1.2 教学目标分析 |
4.1.3 教法、学法分析 |
4.1.4 教学过程设计及分析 |
4.1.5 教学总结及反思 |
4.2 复习课“一元二次方程的解法” |
4.2.1 教材分析 |
4.2.2 教学目标分析 |
4.2.3 教法、学法分析 |
4.2.4 教学过程设计及分析 |
4.2.5 教学总结及反思 |
第5章 通过一题多解培养数学思维的实验过程及结果分析 |
5.1 实验目的与假设 |
5.1.1 实验目的 |
5.1.2 实验假设 |
5.2 实验对象和变量 |
5.2.1 实验对象 |
5.2.2 实验变量 |
5.3 实验设计 |
5.3.1 实验时间 |
5.3.2 干扰变量控制 |
5.3.3 实验过程 |
5.3.4 思维品质测试卷的设计 |
5.3.5 调查问卷的设计和检验 |
5.4 实验结果及分析 |
5.4.1 期末统考成绩统计分析 |
5.4.2 思维品质前测试成绩分析 |
5.4.3 思维品质后测成绩分析 |
5.4.4 调查问卷结果分析 |
5.5 实验班与对照班思维品质分析 |
5.6 实验结论 |
第6章 通过一题多解培养数学思维能力的建议 |
6.1 重视数学思维能力的培养 |
6.2 提升数学思维品质的建议 |
6.3 提高“解题”质量 |
6.4 一题多解的变式教学要把握度 |
第7章 结论与反思 |
7.1 结论 |
7.2 反思 |
参考文献 |
附录一 |
附录二 |
附录三 |
致谢 |
(4)我国小学数学新教材中例题编写特点研究(论文提纲范文)
摘要 |
Abstract |
第1章 导论 |
1.1 教材功能及其在教学中的重要性 |
1.2 国内外教材编写特色发展与研究概况 |
1.3 例题在数学教材与数学课堂教学中的重要地位 |
1.4 研究问题的提出及其意义 |
1.4.1 研究问题 |
1.4.2 研究意义 |
第2章 概念界定与文献述评 |
2.1 数学教材特别是小学数学教材的相关研究 |
2.1.1 对数学教材的认识 |
2.1.2 数学教材的静态研究 |
2.1.3 数学教材的动态研究 |
2.2 小学数学教材编写特点的相关研究 |
2.2.1 对小学数学教材编写特点的认识 |
2.2.2 小学数学教材编写特点的相关研究 |
2.3 样例的相关研究 |
2.3.1 对样例、例题及样例学习的认识 |
2.3.2 样例内特征设计 |
2.3.3 样例间特征设计 |
2.3.4 样例与问题间特征设计 |
2.4 数学教材中例题的相关研究 |
2.4.1 数学教材中例题的重要性 |
2.4.2 数学教材中例题的文本分析 |
2.4.3 数学教材中例题的使用及其教学 |
第3章 研究设计 |
3.1 研究目标 |
3.2 研究思路 |
3.3 研究方法 |
3.4 研究对象 |
第4章 例题文本分析框架的构建 |
4.1 我国数学课程与例题编写相关的主要特点 |
4.1.1 数学课程标准中与例题编写相关的主要内容 |
4.1.2 数学教学与例题编写相关的主要特点 |
4.1.3 数学教育测评中学生表现与例题编写相关的主要特点 |
4.2 例题文本分析框架的构建 |
4.2.1 例题所占篇幅 |
4.2.2 例题所含情境类型 |
4.2.3 例题所属情境倾向 |
4.2.4 例题所含插图类型 |
4.2.5 例题所含解题阶段 |
4.2.6 例题对知识的处理方式 |
4.2.7 例题所含启发方法 |
4.2.8 例题所含问题解决方法多样化 |
4.2.9 例题的开放性 |
4.2.10 例题所含对话交流引导 |
4.2.11 例题所含动手操作引导 |
4.2.12 知识主题中例题间的关系 |
4.3 例题文本分析框架的实施方法 |
第5章 例题文本编码结果的统计与分析 |
5.1 例题文本编码结果的统计与分析 |
5.1.1 例题所占篇幅 |
5.1.2 例题所含情境类型 |
5.1.3 例题所属情境倾向 |
5.1.4 例题所含插图类型 |
5.1.5 例题所含解题阶段 |
5.1.6 例题对知识的处理方式 |
5.1.7 例题所含启发方法 |
5.1.8 例题所含问题解决方法多样化 |
5.1.9 例题的开放性 |
5.1.10 例题所含对话交流引导 |
5.1.11 例题所含动手操作引导 |
5.1.12 知识主题中例题间的关系 |
5.2 例题文本分析的主要结论 |
5.2.1 三版本教材的例题编写共同点 |
5.2.2 三版本教材各自的例题编写特色 |
第6章 例题编写特点的利教利学认同度调查研究 |
6.1 调查过程 |
6.1.1 问卷调查的目的 |
6.1.2 问卷的基本情况 |
6.1.3 样本的选取 |
6.2 调查结果的统计分析 |
6.2.1 统计分析的整体图景 |
6.2.2 例题编写特点利教利学认同度的差异检验 |
6.3 调查研究的主要结论 |
第7章 结论与建议 |
7.1 我国小学数学新教材中例题编写的利教利学特点 |
7.1.1 呈现形式注重图文并茂 |
7.1.2 情境设置联系生活实际 |
7.1.3 学习方式倡导对话交流 |
7.1.4 例题功能注重新知获得 |
7.1.5 例题之间注意变式连接 |
7.1.6 活动设计强调动手操作 |
7.2 对彰显我国小学数学新教材中例题编写特色的建议 |
7.2.1 全力彰显例题编写的个性化特色 |
7.2.2 加强空间与图形、统计与概率知识领域例题编写的教学属性 |
7.2.3 关注农村小学数学教学,尤其适当提高农村情境倾向例题比重 |
7.2.4 增强例题与动画情境、其他学科的联系 |
7.2.5 适度增强例题的开放性 |
7.2.6 适度增加含弄清题意阶段的例题比重,减少裸例题比重 |
7.3 对我国小学数学教材编写特色发展的建议 |
7.3.1 对我国小学数学教材编写特色发展的建议 |
7.3.2 我国小学数学教材编写特色发展新成效探析——以西师版为例 |
第8章 结束语 |
参考文献 |
附录 |
攻读博士学位期间科研成果 |
后记 |
(5)初等数学问题自动求解中的分支推理架构及实现(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究工作的背景与意义 |
1.2 国内外研究历史及现状 |
1.3 论文的主要研究内容 |
1.4 论文的结构安排 |
第二章 相关理论与技术 |
2.1 知识表示 |
2.1.1 一阶谓词逻辑 |
2.1.2 产生式系统 |
2.2 规则库和规则流 |
2.2.1 规则和规则库 |
2.2.2 规则流 |
2.3 知识库 |
2.4 问题求解认知模型 |
2.5 相关工具 |
2.5.1 Drools推理引擎 |
2.5.2 Maple符号计算工具 |
2.6 本章小结 |
第三章 初等数学问题的知识表示 |
3.1 实体表示 |
3.1.1 几何实体 |
3.1.2 代数实体 |
3.1.3 实体属性 |
3.2 关系表示 |
3.2.1 几何关系 |
3.2.2 代数关系 |
3.3 结论表示 |
3.3.1 实体属性类结论 |
3.3.2 实体关系类结论 |
3.4 规则表示 |
3.5 本章小结 |
第四章 初等数学问题自动求解中分支推理架构的研究 |
4.1 初等数学问题概述 |
4.2 分支推理架构中的关键技术 |
4.2.1 分支的具体知识表示 |
4.2.2 分支推理架构的模块组成 |
4.2.3 知识库的分支推理策略 |
4.2.4 外部分支技术 |
4.3 初等数学问题自动求解系统的研究 |
4.3.1 解题预处理的研究 |
4.3.2 自动推理技术的研究 |
4.3.3 自动停机技术的研究 |
4.3.4 类人答题过程自动生成技术的研究 |
4.4 本章小结 |
第五章 基于分支推理的问题自动求解系统设计与实现 |
5.1 概况 |
5.1.1 系统需求分析 |
5.1.2 系统总体架构 |
5.2 问题求解的详细设计与实现 |
5.2.1 解题预处理 |
5.2.2 符号计算引擎 |
5.2.3 规则推理 |
5.2.4 分支推理 |
5.2.5 辅助推理 |
5.3 自动停机的设计与实现 |
5.4 一题多解的设计与实现 |
5.5 类人答题过程输出的设计与实现 |
5.5.1 自然语言描述实体和关系 |
5.5.2 求解步骤编号 |
5.5.3 步骤的逻辑重构 |
5.5.4 特殊规则的过滤 |
5.6 本章小结 |
第六章 系统测试与分析 |
6.1 系统测试 |
6.1.1 系统求解问题展示 |
6.1.2 分支推理求解问题测试 |
6.1.3 一题多解测试 |
6.2 测试结果分析 |
6.3 本章小结 |
第七章 总结与展望 |
7.1 全文总结 |
7.2 研究中的不足和展望 |
致谢 |
参考文献 |
攻读硕士期间参与获奖情况 |
(6)基于任务设计的发展初中生数学创造性思维的课例研究(论文提纲范文)
摘要 |
Abstract |
第1章 引言 |
1.1 研究背景 |
1.1.1 发展创造性思维是人的发展赋予教育的必然使命 |
1.1.2 发展创造性思维是数学教育的本质属性 |
1.1.3 发展数学创造性思维需要落实于课堂教学 |
1.2 研究问题 |
1.3 研究意义 |
1.4 概念界定 |
1.4.1 数学创造性思维 |
1.4.2 教学任务 |
1.5 论文结构 |
第2章 文献综述 |
2.1 创造力领域的相关研究 |
2.1.1 创造力研究的基本理念 |
2.1.2 创造力的聚合理论 |
2.1.3 创造性思维研究 |
2.1.4 创造力教学研究 |
2.1.5 创造性思维评价研究 |
2.1.6 小结 |
2.2 数学中的创造性思维研究 |
2.2.1 思维、数学思维与数学创造性思维 |
2.2.2 数学创造性思维的多角度理解 |
2.2.3 数学创造性思维的影响因素研究 |
2.2.4 数学创造性思维教学研究 |
2.2.5 数学创造性思维评价研究 |
2.2.6 初中学生数学创造性思维的发展特点研究 |
2.2.7 小结 |
第3章 研究方法 |
3.1 研究思路 |
3.2 研究过程 |
3.2.1 总体研究阶段 |
3.2.2 创造性思维行为分析框架的初步构建 |
3.2.3 创造性任务设计策略及教学策略框架的初步构建 |
3.2.4 课例研究的过程 |
3.3 研究工具 |
3.3.1 学生测试卷和访谈工具 |
3.3.2 教师的问卷和访谈工具 |
3.3.3 课堂观察记录表 |
3.4 数据收集 |
第4章 “数与代数”课例研究 |
4.1 “数与代数”学习与创造性思维的发展 |
4.1.1 “数与运算”学习与创造性思维的发展 |
4.1.2 “代数”学习与创造性思维的发展 |
4.2 本章研究思路 |
4.2.1 研究思路 |
4.2.2 初步构建的“数与代数”创造性思维分析框架 |
4.2.3 初步的“数与代数”创造性任务设计策略框架和教学策略框架 |
4.2.4 课例的选择 |
4.3 课例一:《算24 点》 |
4.3.1 设计前的调研 |
4.3.2 第一次教学设计及教学简析 |
4.3.3 第二次教学设计及教学分析 |
4.3.4 课例小结 |
4.4 课例二:《字母表示数》 |
4.4.1 设计前的调研 |
4.4.2 第一课时教学设计 |
4.4.3 第一课时教学分析及反馈 |
4.4.4 第二课时教学情况简述 |
4.4.5 课例小结 |
4.5 “数与代数”课例研究小结 |
4.5.1 修正的“数与代数”创造性任务设计策略框架 |
4.5.2 修正的“数与代数”创造性任务教学策略框架 |
4.5.3 修正的“数与代数”创造性思维行为分析框架 |
第5章 “图形与几何”课例分析 |
5.1 “图形与几何”学习与创造性思维的发展 |
5.2 本章研究思路 |
5.2.1 研究思路 |
5.2.2 初步构建的“图形与几何”创造性思维分析框架 |
5.2.3 初步的“图形与几何”创造性任务设计策略框架和教学策略框架 |
5.2.4 课例的选择 |
5.3 课例(一):《圆周角》 |
5.3.1 设计前的调研 |
5.3.2 教学设计 |
5.3.3 教学分析 |
5.3.4 课后访谈及调查分析 |
5.3.5 课例小结 |
5.4 课例(二):《一分为二》 |
5.4.1 设计前的调研 |
5.4.2 教学设计 |
5.4.3 教学分析及反馈 |
5.4.4 课例小结 |
5.5 “图形与几何”课例研究小结 |
5.5.1 修正的“图形与几何”创造性任务设计策略框架 |
5.5.2 修正的“图形与几何”创造性任务教学策略框架 |
5.5.3 修正的“图形与几何”创造性思维行为分析框架 |
第6章 “统计与概率”课例分析 |
6.1 “统计与概率”学习与创造性思维的发展 |
6.2 本章研究思路 |
6.2.1 研究思路 |
6.2.2 初步构建的“统计与概率”创造性思维分析框架 |
6.2.3 初步的“统计与概率”创造性任务设计策略框架和教学策略框架 |
6.2.4 课例的选择 |
6.3 课例:《方差》 |
6.3.1 设计前的调研 |
6.3.2 教学设计 |
6.3.3 教学分析及反馈 |
6.3.4 课例小结 |
6.4 “统计与概率”课例小结 |
6.4.1 修正的“统计与概率”创造性任务设计策略框架 |
6.4.2 修正的“统计与概率”创造性任务教学策略框架 |
6.4.3 修正的“统计与概率”创造性思维行为分析框架 |
第7章 研究结果与讨论 |
7.1 初中生数学创造性思维的行为表现框架 |
7.1.1 基于课例的研究结果 |
7.1.2 行为分析框架的共性提炼 |
7.2 初中生数学创造性任务设计策略框架 |
7.3 初中生数学创造性任务教学策略框架 |
7.4 研究的反思 |
7.4.1 本研究的创新之处 |
7.4.2 本研究的不足 |
7.4.3 后继研究展望 |
参考资料 |
中文文献 |
英文文献 |
附录 |
附录1 第一阶段参与设计与讨论的部分课例简表 |
附录2 培养中小学生数学创造性思维的调查问卷 |
附录3 《圆周角》前测卷 |
附录4 《圆周角》后测卷 |
附录5 《算24 点》课后学生访谈提纲 |
附录6 课堂观察记录表 |
后记 |
作者简历及在学期间科研成果 |
(7)小学低年级数学美的教学问题与改善策略研究(论文提纲范文)
摘要 |
ABSTRACT |
引言 |
(一)研究缘起 |
1.数学美符合小学生成长的需要 |
2.新课标对小学数学美教学的新诉求 |
3.当前小学数学教学问题亟待解决呼唤数学美 |
(二)研究意义 |
1.理论意义 |
2.实践意义 |
(三)文献综述 |
1.国内相关研究现状 |
2.国外相关研究现状 |
(四)概念界定 |
1.数学美 |
2.小学数学美渗透 |
(五)研究内容和研究方法 |
1.研究内容 |
2.研究方法 |
一、关于小学低年级数学教材中数学美的理论探析 |
(一)小学低年级数学教材中数学美的教育价值 |
1.培养学生良好学习习惯 |
2.启迪学生思维能力和创新能力 |
3.陶冶学生审美情操 |
(二)小学低年级数学教材中数学美的提炼与分析 |
1.数学美在小学低年级数学教材中的呈现方式 |
2.数学美在小学低年级数学教材中的呈现内容 |
(三)小学低年级学生的审美过程 |
1.审美感知阶段 |
2.审美经验阶段 |
3.审美创造阶段 |
二、小学低年级数学美的教学现状调查结果 |
(一)调查目的 |
(二)调查对象 |
(三)调查内容与实施 |
1.访谈内容与实施 |
2.课堂观察内容与实施 |
(四)调查结果的分析与讨论 |
1.小学低年级数学教师对数学美的认知情况 |
2.小学低年级数学教师对数学美教学的实施情况 |
3.小学低年级数学教师在数学美教学中遇到困难的情况 |
三、小学低年级数学美教学中存在的问题及原因 |
(一)小学低年级数学美的教学中存在的问题 |
1.小学低年级数学教师对数学美的认识片面化 |
2.小学低年级数学教师对数学美的教学准备分析不足 |
3.小学低年级数学教师对数学美的教学目标制定片面 |
4.小学低年级数学教师对数学美的教学过程组织僵化 |
5.小学低年级数学教师对数学美的教学评价开展简略化 |
(二)小学低年级数学美的教学中存在问题的原因 |
1.小学低年级数学美的教学中存在问题之内在原因 |
2.小学低年级数学美的教学中存在问题之外在原因 |
四、改善小学低年级数学美教学问题的策略 |
(一)多举并措提高教师数学美的理论素养 |
1.教师树立科学数学美的教学理念 |
2.教师自主学习数学美的相关知识 |
(二)优化小学低年级数学美的教学设计 |
1.精心挖掘教材中的数学美 |
2.制定全面的数学美教学目标 |
3.充分利用信息技术进行数学美的教学 |
4.提高数学美的教学评价质量 |
(三)学校要重视数学美的教学 |
1.建立多样化的数学美教学的激励机制 |
2.提供多种学习数学美教学的途径 |
3.加强数学美教学的管理 |
(四)让教师在数学美的教学中由自发到自觉状态转变 |
1.在创设问题情境中展示数学美 |
2.在引导学生建立模型中运用数学美 |
3.在激励学生解释与运用知识中创造数学美 |
结语 |
参考文献 |
附录 |
附录A 小学低年级数学美的教学——教师访谈提纲 |
附录B 数学美的教学课例赏析1 |
附录C 数学美的教学实录片段赏析2 |
致谢 |
(8)发展逻辑推理素养的高中数学命题教学设计研究(论文提纲范文)
中文摘要 |
英文摘要 |
1 绪论 |
1.1 研究背景 |
1.1.1 核心素养登上时代舞台,亟待学科落实 |
1.1.2 逻辑推理素养切合创新性人才培养,与命题教学联系紧密 |
1.1.3 逻辑推理素养急需学科落实、新课标下命题教学亟待变革 |
1.2 研究问题 |
1.3 研究意义 |
1.4 研究思路和方法 |
1.4.1 研究思路 |
1.4.2 研究方法 |
2 文献综述 |
2.1 逻辑推理的相关研究 |
2.1.1 逻辑思维与逻辑思维能力 |
2.1.2 逻辑推理能力 |
2.1.3 逻辑推理素养 |
2.2 数学命题的相关研究 |
2.2.1 数学命题 |
2.2.2 数学命题的教学 |
2.3 发展逻辑推理素养的高中数学命题教学的相关研究 |
3 核心概念的界定和研究的理论基础 |
3.1 核心概念的界定 |
3.1.1 逻辑推理素养的内涵 |
3.1.2 逻辑推理素养的外延 |
3.2 研究的理论基础 |
3.2.1 波利亚的合情推理模式 |
3.2.2 情境认知理论 |
3.2.3 布鲁纳、萨奇曼发现——探究学习理论 |
3.2.4 奥苏贝尔有意义学习理论 |
4 发展逻辑推理素养对高中数学命题教学的要求 |
4.1 发展逻辑推理素养对命题引入的要求 |
4.1.1 问题情境性要求 |
4.1.2 学生主体参与性要求 |
4.2 发展逻辑推理素养对命题证明的要求 |
4.2.1 逻辑推理知识准备性要求 |
4.2.2 证明思路、方法多样性要求 |
4.2.3 过程性要求 |
4.3 发展逻辑推理素养对命题应用的要求 |
4.3.1 变式多样性要求 |
4.3.2 现实应用性要求 |
4.4 发展逻辑推理素养对命题体系构建的要求 |
4.4.1 联系与整体性要求 |
4.4.2 交流、反思性要求 |
5 高中数学命题教学中逻辑推理素养发展现状调查分析 |
5.1 学生逻辑推理素养水平测试 |
5.1.1 测试目的及对象 |
5.1.2 测试工具 |
5.1.3 测试的实施 |
5.1.4 测试结果分析 |
5.2 教师访谈 |
5.2.1 访谈目的及对象 |
5.2.2 访谈提纲 |
5.2.3 访谈结果及分析 |
5.3 课堂观察 |
5.3.1 观察目的及对象 |
5.3.2 观察提纲 |
5.3.3 观察的过程 |
5.3.4 课堂观察结果分析 |
5.4 高中数学命题教学中逻辑推理素养发展现状结果分析 |
6 发展逻辑推理素养的高中数学命题教学设计的策略 |
6.1 创设真实丰富的问题情境,提升学生参与性,引入数学命题 |
6.2 猜证结合、多样论证,强化语言转换,明确数学命题 |
6.2.1 运用猜想-论证式探索模式,培养学生发现与提出问题的能力 |
6.2.2 选择变化多样的论证方法,提升学生逻辑推理能力 |
6.2.3 强化数学语言间的逻辑转换,增强学生逻辑表达能力 |
6.3 联系生活实际,加强一题多思路的引导,应用数学命题 |
6.3.1 设计和寻求典型的生活实际应用,夯实学生数学推理知识 |
6.3.2 利用对一题多种思路的引导,增强学生解决问题的能力 |
6.4 采用“关系图”、体现过程,强调命题梳理,构建数学命题体系 |
6.4.1 采用“概念-命题关系图“建构命题体系,培养学生联系与整体性逻辑思维能力 |
6.4.2 注重命题体系构建的过程性,逐渐完善学生的命题网络 |
6.4.3 强调课堂小结中学生对命题间关系的梳理,提升学生的逻辑交流与反思能力 |
7 发展逻辑推理素养的高中数学命题教学设计的案例及分析 |
7.1 案例1:《二项式定理(第1课时)》 |
7.1.1 案例呈现 |
7.1.2 案例分析 |
7.2 案例2:《等差数列前n项和(第1课时)》 |
7.2.1 案例呈现 |
7.2.2 案例分析 |
7.3 案例3:《平面三公理》 |
7.3.1 案例呈现 |
7.3.2 案例分析 |
8 研究结论与反思 |
8.1 研究结论 |
8.2 研究反思 |
8.2.1 研究不足 |
8.2.2 研究展望 |
参考文献 |
附录 A:高中生逻辑推理素养构成要素调查问卷 |
附录 B:高中生数学逻辑推理素养水平测试题 |
附录 C:访谈内容 |
附录 D:作者攻读硕士学位期间发表论文及科研情况 |
致谢 |
(9)在高中数学教学中培养学生的质疑精神与探索精神的策略研究(论文提纲范文)
中文摘要 |
Abstract |
第1章 绪论 |
1.1 问题提出的背景 |
1.2 研究目的和意义 |
1.3 国内外研究现状分析 |
1.3.1 国外现状分析 |
1.3.2 国内现状分析 |
第2章 理论基础 |
2.1 数学精神的形成 |
2.2 数学精神主要内涵 |
2.2.1 数学理性精神 |
2.2.2 数学求真务实精神 |
2.2.3 数学合作与独立思考精神 |
2.2.4 数学质疑精神 |
2.2.5 数学探索精神 |
2.2.6 数学创新精神 |
2.3 质疑精神与探索精神对人类发展的作用 |
第3章 质疑精神与探索精神的培养策略 |
3.1 在新授课中的培养策略 |
3.1.1 巧妙的设置问题使学生产生质疑——以函数问题为例 |
3.1.2 创设教学情境激发学生探索的乐趣——以几何问题为例 |
3.1.3 融入数学史激发学生的探索精神 |
3.2 在习题课中的培养策略 |
3.2.1 通过一题多变培养学生质疑精神与探索精神 |
3.2.2 通过一题多解培养学生质疑精神与探索精神 |
第4章 结语 |
参考文献 |
致谢 |
(10)高中数学最值问题的解题研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究的背景 |
1.1.1 最值问题在高中数学中的重要性 |
1.1.2 新课程标准与考试大纲对数学最值的具体要求 |
1.1.3 最值问题分类研究解法的必要性 |
1.2 核心名词界定 |
1.3 研究的内容和意义 |
1.3.1 研究的内容 |
1.3.2 研究的意义 |
1.4 研究的思路 |
1.4.1 研究计划 |
1.4.2 研究的技术路线 |
1.5 本论文的结构 |
第2章 文献综述 |
2.1 文献搜集的途径 |
2.2 国内外研究现状 |
2.2.1 高中数学最值问题的研究现状 |
2.2.2 其它最值问题的研究现状 |
2.3 文献评述 |
2.3.1 高中最值问题解题的研究成果 |
2.3.2 高中最值问题解题研究的不足之处 |
2.3.3 本论文解题研究的思路 |
2.4 理论基础 |
2.4.1 波利亚解题理论 |
2.4.2 模式识别理论 |
2.4.3 最近发展区理论 |
2.4.4 奥苏贝尔的有意义学习理论 |
2.4.5 现代认知迁移理论 |
2.4.6 建构主义理论 |
2.4.7 数学思想方法 |
2.5 小结 |
第3章 研究设计 |
3.1 研究目的 |
3.2 研究方法的选取 |
3.3 研究工具的说明 |
3.3.1 学生测试卷设计 |
3.3.2 教师访谈提纲设计 |
3.4 研究的伦理 |
第4章 高中生最值问题的学习情况调查 |
4.1 调查的目的 |
4.2 调查对象 |
4.3 学生测试的分析 |
4.3.1 学生测试的情况 |
4.3.2 学生解题的出错分析 |
4.4 学生测试的结果 |
4.5 教师访谈 |
4.5.1 访谈教师的选取 |
4.5.2 个案的资料 |
4.5.3 访谈结果与分析 |
4.5.4 关于教师访谈的总结 |
4.6 小结 |
第5章 高中最值问题的分析 |
5.1 教学中的最值问题 |
5.1.1 高中数学的主要内容 |
5.1.2 教材中的最值问题 |
5.2 高考中的最值问题 |
5.2.1 题型的分值分析与题量统计 |
5.2.2 最值试题的考点与数学思想方法分析 |
5.3 高中最值问题的主要类型与解法 |
5.3.1 函数中的最值问题 |
5.3.2 数列中的最值问题 |
5.3.3 解析几何中的最值问题 |
5.3.4 不等式中的最值问题 |
5.4 小结 |
第6章 最值相关的教学设计 |
6.1 教学设计策略 |
6.1.1 概念课的教学设计策略 |
6.1.2 习题课的教学设计策略 |
6.1.3 复习课的教学设计策略 |
6.2 “函数的最大(小)值与导数”概念课的教学设计 |
6.3 “函数的最大(小)值与导数”习题课的教学设计 |
6.4 “最值的求解”高三复习课的教学设计 |
6.5 小结 |
第7章 结论与思考 |
7.1 研究的主要结论 |
7.2 研究反思 |
7.2.1 研究的创新之处 |
7.2.2 研究的不足与展望 |
参考文献 |
附录A 最值问题测试卷 |
附录B 教师访谈提纲 |
攻读学位期间发表的论文和研究成果 |
致谢 |
四、数学中的一題多解(论文参考文献)
- [1]基于学习迁移理论的高中数学不等式教学研究[D]. 陈维彪. 云南师范大学, 2020(01)
- [2]小学数学解决问题方法多样化的研究[D]. 张桂芳. 西南大学, 2013(02)
- [3]通过一题多解培养初中生数学思维能力的实验研究[D]. 徐鑫. 上海师范大学, 2020(07)
- [4]我国小学数学新教材中例题编写特点研究[D]. 宋运明. 西南大学, 2014(04)
- [5]初等数学问题自动求解中的分支推理架构及实现[D]. 王权威. 电子科技大学, 2019(01)
- [6]基于任务设计的发展初中生数学创造性思维的课例研究[D]. 王萍萍. 华东师范大学, 2018(02)
- [7]小学低年级数学美的教学问题与改善策略研究[D]. 王雨平. 河南大学, 2019(01)
- [8]发展逻辑推理素养的高中数学命题教学设计研究[D]. 王艳. 重庆师范大学, 2020(05)
- [9]在高中数学教学中培养学生的质疑精神与探索精神的策略研究[D]. 郭月. 牡丹江师范学院, 2019(02)
- [10]高中数学最值问题的解题研究[D]. 徐珊威. 云南师范大学, 2020(01)