一、求解线性矩阵方程的初等变换法(论文文献综述)
夏远梅[1](2021)在《关于利用初等变换法求解线性方程组的教学研究与探讨》文中进行了进一步梳理线性方程组的求解是《线性代数》这门课的核心问题.利用初等变换法求解线性方程组是这门课的重点,也是易错点,对这一部分的内容进行教学研究具有十分重要的作用.针对学生利用初等变换法求解线性方程组存在的问题,利用初等行变换,初等列变换,增广矩阵以及线性方程组有解(齐次线性方程组有非零解,非齐次线性方程组有解)的条件及结构等数学工具以及雨课堂这一线上教学软件对本部分教学内容进行教学改革,真正以学生为本,帮助学生熟练掌握利用初等变换法求解线性方程组,以提升学生的逻辑思维能力和计算能力以及解决实际问题的能力.
周小辉,王刚[2](2021)在《在应用型人才培养下线性代数的教学研究——以计算机专业为例》文中认为针对计算机专业大学生,文中论述了在AI人才培养背景下线性代数课程新的教学模式,即,将C++程序设计与线性代数相结合的课程教学.通过教学方案的设计,案例展示以及考核方式等方面,探讨了这种新型课程教学的模式.最后,根据调查研究,分析了针对计算机专业特色的线性代数新型教学模式的教学启示.
闫伟文,白庆月[3](2021)在《逆矩阵的教学设计》文中进行了进一步梳理线性代数作为代数学的分支,具有重要的理论和实际应用价值。矩阵是研究线性代数的重要工具,矩阵中的逆矩阵在求解线性方程组中起着举足轻重的作用。逆矩阵既是线性代数的教学重点,又是教学难点。本文从理论与实践两个角度探讨逆矩阵的教学设计,以此达到提高学生数学应用能力的目的。
王魁良[4](2021)在《Haar小波数值方法及其在力学问题中的应用》文中指出小波分析是近几十年快速发展起来的一种数学工具,已经被运用于微分方程的数值求解。结构分析和工程力学中的问题多是以微分方程的形式来表征的,这类方程往往有高维、高阶和非线性等难点,所以需要有效的数值方法来求解。本研究小组之前提出的一种基于Coiflet小波的积分配点方法,具有非常高的精度。但由于支撑集为[0,17]的Coiflet小波不具有解析表达式,其函数值和积分只能通过一系列相对复杂的计算在二分点处求取,增加了复杂度和计算量,这在一定程度上限制了该方法的使用。而Haar小波形式简单,相关的计算容易,作为一种具有显式表达式的小波,同时还具有规范正交性、紧支撑等性质。本文针对求解精度上要求不是特别高的问题,基于Haar小波构造了积分配点方法。首先通过Haar小波的函数展开定理,分析了用小波积分的方法求解微分方程的原理和可行性。然后给出了方程中各项用函数的最高阶偏导数通过Haar小波及其积分表示的表达式以及边界条件的处理方法。最后给出了使用配点法离散方程和求解离散后得到的代数方程的方法,以及待求函数的重构。为了检验该方法的性能,对于静力学的边值问题,我们选取一维Bratu方程和方板弯曲方程作为算例。其中Bratu方程采用了不同的表示非线性强弱的参数,方板弯曲问题包括小挠度和大挠度两种情形分别对应的线性和非线性方程,以及不同类型的载荷。通过对这些具有不同参数和特点的方程进行求解并进行误差分析,我们发现所构造的Haar小波积分配点法具不受方程阶数和非线性强弱影响的稳定的二阶收敛精度,误差也在可观的范围内。对于动力学的初边值问题,我们选取流体力学中经典的槽道流和方腔流作为算例,用Haar小波积分配点法结合人工压缩算法求解了二维原始变量粘性不可压缩流动的N-S方程。其中将时间作为与空间坐标等价的变量处理,也给出了将边界条件纳入初始条件的处理方法。计算表明,使用较少的节点即可模拟出较好的流场结果,证明了该方法在求解动力学问题中复杂非线性方程的可行性。
王俊伟,杨俊玲,刘丽秋[5](2021)在《矩阵论教学过程中的逆矩阵解法探讨》文中研究指明矩阵论课程以线性代数课程为基础,是控制科学与工程学科等研究生做基础应用研究的必修课程,课程内容比较抽象和难以理解,尤其是对于求解线性方程时,求逆矩阵时遇到很多问题且容易出错。文章以求解逆矩阵的初等变换法和三角分解法两种解法为背景,在本科生和研究生的教学中通过介绍两种求逆矩阵的不同解法,达到拓展学生的解题思路和提高课堂教学的效果。
王翠翠[6](2020)在《线性代数课程矩阵初等变换应用的几点探究》文中研究说明矩阵初等变换是线性代数课程的基础性内容,文章通过对初等变换的内涵进行解析,分别从矩阵运算、向量组运算和方程组求解三个方面探究矩阵初等变换的应用,并结合实例对其应用过程进行分析。
方诗卉[7](2020)在《基于Nyquist阵列理论的电力系统宽频带振荡分析及控制》文中提出近年来,新能源、直流等电力电子设备的大量接入,大幅改变了电力系统的动态特性,使得电力系统表现出了复杂的动态行为和动态现象,加剧了发生宽频带振荡的风险。宽频带振荡问题作为电力系统稳定分析与控制亟需解决的突出问题,已经严重威胁了电力系统的安全稳定运行。因此,对其进行深入的研究有着重要的理论与现实意义。目前,针对电力系统宽频带振荡问题的传统时域和频域分析与控制方法,具有各自的优点,但同时也存在各自的局限性。其中,时域分析方法存在着计算困难、仿真时间长、难以分析与判断参数的影响、控制结构设计复杂、实际工程应用困难等局限性;而频域分析方法常用于单变量系统,难以对实际系统中高比例电力电子设备接入下的电力系统稳定性进行判定和定量分析,且传统的控制方法一般针对特定频带的动态稳定问题。因此,本文应用Nyquist阵列理论来系统地分析电力系统宽频带振荡的新问题,研究电力系统宽频带振荡控制的设计方法,使其更加适用于电力系统宽频带振荡问题的稳定性分析与控制。本文将多变量频域分析理论中的Nyquist阵列理论引入电力系统宽频带振荡分析,以双馈风电并网系统、交直流混联系统及双馈风电经LCC-HVDC外送系统作为典型的电力系统宽频带振荡问题研究对象。首先,推导了电力系统宽频带振荡分析系统模型中的前向传递函数矩阵和反馈增益传递函数矩阵,将系统转化为多变量系统的一般结构,再基于Nyquist阵列理论对系统的对角优势特性进行判别。针对对角优势系统,绘制前向传递函数矩阵的盖尔(Gershgorin)带,可以直观地分析系统的稳定特性;针对非对角优势系统,可以通过伪对角化法设计附加阻尼控制器对系统加以控制,使得系统具有对角优势特性后再进行稳定分析。最后通过与特征值计算和时域仿真结果进行对比,验证所提出方法的有效性。本文对电力系统宽频带振荡问题的研究既具有理论价值,又具有工程实用价值。从理论层面而言,Nyquist阵列理论的应用从系统对角优势的新角度认识和理解电力系统宽频带振荡问题,研究电力系统出现的新行为与新现象,从而充实了电力系统稳定与控制的分析理论体系。从工程应用层面而言,Nyquist阵列理论的应用凭借着其计算量小、仿真快、分析直观、物理意义清晰等优势,为电力系统稳定分析与控制提供了新的指导思路,从而保障了高比例电力电子设备接入的大型互联电力系统的安全稳定运行。
陈勇[8](2020)在《面向电力系统稳态分析应用的异构并行技术研究》文中指出电力系统分析是电力系统规划设计、调度控制的决策基础和科学依据,是保障电力系统安全稳定运行的基本手段之一。电力系统分析以数字模型代替实际电力系统,用数值计算方法对系统的运行特性进行实验和研究。随着电力系统规模的增大,系统元件模型日益复杂,对系统机理研究越来越精细,电力系统分析的规模和复杂度空前增长,迫切需要利用并行计算技术提升电力系统分析应用效率。与此同时,高性能计算硬件技术得到飞速发展,以GPU为代表的专用加速器成为最具吸引力的高性能处理部件。利用CPU-GPU异构体系结构所具备的大规模并行性来提升电力系统分析效率成为了当前的一个研究热点。电力系统分析应用在CPU-GPU异构平台上的并行实现常面临两方面的挑战,一是在节点层面(单个节点内部),必须充分利用异构体系结构特点深入挖掘算法多层次并行性,高效利用GPU的存储层次,或者容易造成应用性能低下;二是在系统层面(节点和节点之间),随着GPU集群规模的扩大,异构系统难以编程的问题日益突出,需要为开发者提供简单高效的异构并行编程模型和方法。针对以上挑战,选取电力系统稳态分析中最为常用的潮流分析、静态安全分析、调度计划静态安全校核等三类应用,结合CPU-GPU异构平台,对应用程序并行化中的若干异构并行技术进行深入研究。电力系统潮流分析问题是通过牛顿-拉夫逊法转化为稀疏线性方程组的迭代求解,其中稀疏矩阵分解是求解过程中最为耗时的部分。为消除稀疏矩阵运算带来的计算和访存不规则性,在节点层面提出一种基于CPU-GPU的大规模稀疏矩阵分解多波前并行方法,将稀疏矩阵的分解转化为大量稠密矩阵运算任务在CPU-GPU上的高效并行执行。针对节点内多任务稠密矩阵乘法运算,在CPU-GPU间设计基于阈值判断的最优化任务划分模型,利用多线程模型和无锁环形任务队列实现了任务协同执行和数据交换机制,提升了CPU-GPU多任务整体执行性能;在GPU内提出设备内核函数空间划分的任务抢占式多执行单元(Task Execution Unit,TEU)并行处理方法,该方法实现了一种全新的任务线程组织方式,支持多个矩阵乘法运算在一个内核函数中并行执行,同时在执行中进一步对矩阵乘法运算进行多层次存储访问优化,显着提升了GPU计算吞吐率。实验结果表明,在2万条母线规模电网算例上,基于以上技术实现的CPU-GPU潮流分析并行程序,相较于CPU多线程程序达到了3.95倍的加速比。电力系统灵敏度分析法是静态安全分析中最为常用的一种方法。针对GPU灵敏度法低维矩阵运算带来的线程空转所造成的计算效率不高的问题,在节点层面从提高线程并行度和计算强度的角度设计GPU低维矩阵运算算法线程映射策略,利用横向和纵向合并技术提出低维矩阵乘法、低维矩阵求逆、低维矩阵向量乘法各自在GPU上的高效合并并行执行方法,在执行过程中为提升GPU访存效率实现了片上内存数据重用、全局存储器访问合并、存储体冲突消除、寄存器分块等访存优化。实验结果表明,在6000条母线规模电网算例上,基于以上技术实现的GPU灵敏度法静态安全分析并行程序,相较于CPU多线程程序达到了1.8~1.9倍的加速比。电力系统调度计划静态安全校核多采用MPI(Message Passing Interface)、Open MP(Open Multi-Processing)、CUDA(Compute Unified Device Architecture)等编程模型混合的方式实现多算例任务在GPU集群上的并行执行。为了克服混合编程模型可编程性和性能方面的不足,在系统层面基于全局数组(Global Arrays,GA)设计与实现一种异构并行内存编程模型CUDA-GA,包括GA异构接口扩展、基于可靠UDP通信机制的底层通信库优化、异构并行执行框架等实现,并利用CUDA-GA以任务预分配法实现了调度计划静态安全校核在GPU集群上的并行算法。实验结果表明,CUDA-GA可以有效提升异构程序的可编程性和运行性能,基于CUDA-GA实现的调度计划静态安全校核并行程序,相较于MPI+CUDA方法整体计算用时缩短了20%~30%。综上所述,围绕电力系统稳态分析应用的计算效率和可编程性,提出了基于CPU-GPU的稀疏矩阵分解多波前并行方法、GPU低维矩阵运算并行方法、以及异构并行内存编程模型等,实现了电力系统稳态分析高效异构并行算法。研究成果在国家电网实际生产运行中落地应用,为保障电网安全稳定运行发挥了重要作用。
张芳英,朱睦正[9](2020)在《矩阵初等变换在高等代数中的应用及教学研究》文中进行了进一步梳理矩阵的初等变换是高等代数课程的重要组成部分,其思想贯穿于高等代数的始终,在矩阵的理论研究中占有非常重要的地位.本文主要讨论了矩阵初等变换在高等代数中矩阵的秩、矩阵的逆、线性方程组的解、二次型标准化和标准正交基等方面的应用,并就矩阵初等变换的教学进行了一些探讨,有利于进一步理解矩阵初等变换的思想,提升灵活应用矩阵初等变换法简化或解决实际问题的能力,夯实专业理论基础.
王臣玺[10](2020)在《BATS码及其应用研究》文中研究说明随着通信技术的发展,支持数据高速传输的无线多跳网络将逐渐替代传统的单跳网络,成为未来无线通信网络的主流。在无线传输的过程中,噪声、干扰、衰减等因素使多跳网络中每条链路上都会出现数据包丢失的情况,影响传输的可靠性。而自动请求重传、传统纠删码、网络编码都不能有效地解决上述问题。BATS码是一种基于喷泉码和随机线性网络编码的级联码,其继承了喷泉码的无速率、编译码复杂度低等特点的同时,还拥有了网络编码的高吞吐量特性,能较好地保证数据在多跳网络中传输的可靠性。因此,对多跳网络中的BATS码展开理论研究以及应用设计具有十分重要的意义。本文首先对BATS码涉及到的基础理论知识进行了简单地介绍,随后详细地介绍了BATS码的编译码原理以及度分布设计方法,分析了BATS码应用到多跳网络中的优良性能。然后,通过仿真依次分析了各个编码参数、度分布、译码算法等因素对BATS码性能的影响。随后,本文针对BATS码自身存在的两个不足——传输开销大和短码码字性能差,提出了相应的优化设计方法。其中,为了提高BATS码短码传输的可靠性,本文针对有/无反馈信道的应用场景分别设计了基于重要信息反馈的BATS码和基于编码统计的BATS码。两种方案的优化原理几乎相同,通过将度值最大的信息包传输到译码端,推动置信度传播算法的译码进程,从而提高源信息成功恢复的概率。针对传输开销大的问题,本文提出了一种基于伪随机序列的BATS码优化方案,通过固定伪随机序列发生器的初值实现编码信息的同步,从而避免了对编码信息的传输,提高了传输的有效性。最后,本文将BATS码与图像编码相结合,提出了一种基于滑窗BATS码和小波SPIHT编码的图像传输方案,通过将SPIHT编码产生的压缩数据流以滑窗的形式进行BATS码的编译码,实现高QoE的图像传输。通过仿真分析发现BATS码编码的随机性可能导致图像传输的可靠性得不到保证。对此,本文对方案中BATS码的滑窗结构进行了改进,提出了一种基于编码统计的滑窗BATS码,通过增大未参与编码的压缩数据包的编码概率,提高译码端压缩数据包的有效恢复概率,从而实现图像的可靠传输。
二、求解线性矩阵方程的初等变换法(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、求解线性矩阵方程的初等变换法(论文提纲范文)
(2)在应用型人才培养下线性代数的教学研究——以计算机专业为例(论文提纲范文)
1 引言 |
2 教学模式的设计 |
2.1教学方案的设计 |
2.2 课程考核的改善 |
2.3 方案实施的保障性措施 |
3 C++语言融入线性代数课程的若干教学案例 |
3.1 C++语言融入克拉默法则(Cramer's Rule) |
3.2 C++语言融入非齐次线性方程组解的结构 |
3.3 C++程序求解矩阵方程AX=B |
4 教学效果的调查与分析 |
(3)逆矩阵的教学设计(论文提纲范文)
一、从理论角度———数学的思想方法设计 |
(一)通过类比思想导入概念 |
(二)通过具体到抽象的思想得到矩阵可逆的一般结论[5] |
(三)通过特殊到一般的思想引出伴随矩阵求逆 |
(四)通过方程思想[7]得到初等变换法求逆 |
二、从实践角度———逆矩阵的实际应用设计 |
(一)逆矩阵在密码学中的应用 |
(二)逆矩阵的数学实验操作 |
(4)Haar小波数值方法及其在力学问题中的应用(论文提纲范文)
中文摘要 |
Abstract |
第一章 绪论 |
1.1 小波理论的发展历史 |
1.2 小波方法的应用 |
1.2.1 小波方法在信号分析领域中的应用 |
1.2.2 小波方法在微分方程求解中的应用 |
1.3 研究背景及意义 |
1.3.1 计算力学现有方法 |
1.3.2 选题的意义 |
1.4 本文的主要工作 |
第二章 多分辨分析及Haar小波基础 |
2.1 多分辨分析和基函数 |
2.2 Haar小波 |
2.2.1 Haar小波函数及其积分 |
2.2.2 有限区间上Haar小波逼近公式 |
2.3 本章小结 |
第三章 初边值问题的小波积分配点法 |
3.1 有限区域上初边值问题的积分形式 |
3.1.1 一维问题的积分形式 |
3.1.2 多维问题的积分形式 |
3.2 小波积分配点法的构造 |
3.2.1 Haar小波积分配点法的统一格式 |
3.2.2 方程的离散及待求变量的重构 |
3.3 代数方程组的求解方法 |
3.3.1 牛顿迭代法 |
3.3.2 矩阵运算的MPI并行计算程序 |
3.4 本章小结 |
第四章 力学问题应用举例 |
4.1 一维Bratu方程 |
4.2 方板的弯曲问题 |
4.3 原始变量粘性不可压缩流动N-S方程组 |
4.3.1 时间项的处理方法 |
4.3.2 人工压缩算法介绍 |
4.3.3 二维槽道层流 |
4.3.4 二维顶盖驱动方腔流动 |
4.4 本章小结 |
第五章 结论与展望 |
参考文献 |
致谢 |
(5)矩阵论教学过程中的逆矩阵解法探讨(论文提纲范文)
1 绪论 |
2 课程教学内容介绍 |
2.1 文章定义和定理介绍 |
2.2 初等变换法求A-1 |
2.3 三角分解法求A-1 |
3 结语 |
(6)线性代数课程矩阵初等变换应用的几点探究(论文提纲范文)
一、引言 |
二、矩阵的初等变换 |
三、矩阵初等变换的应用 |
(一)矩阵运算中的应用 |
1. 求解矩阵标准形。 |
2. 求解逆矩阵。 |
3. 求解矩阵方程。 |
4. 求矩阵的秩。 |
(二)向量组运算中的应用 |
1. 判定向量组线性表示及线性相关性问题。 |
2. 求解向量组的秩与极大线性无关组。 |
(三)线性方程组中的应用 |
1. 求解齐次线性方程组。 |
2. 求解非齐次线性方程组。 |
四、结束语 |
(7)基于Nyquist阵列理论的电力系统宽频带振荡分析及控制(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 课题背景及意义 |
1.2 国内外研究现状 |
1.2.1 宽频带振荡分析方法 |
1.2.2 宽频带振荡控制方法 |
1.2.3 Nyquist阵列理论应用 |
1.3 本文主要工作 |
1.3.1 研究思路 |
1.3.2 章节安排 |
第2章 用于电力系统宽频带振荡分析的数学模型 |
2.1 双馈风电并网系统仿真模型 |
2.1.1 风力机及传动系统模型 |
2.1.2 双馈感应发电机模型 |
2.1.3 背靠背变流器模型 |
2.1.4 控制器模型 |
2.1.5 传输网络模型 |
2.2 交直流混联系统仿真模型 |
2.2.1 锁相环模型 |
2.2.2 整流侧换流器及其控制器模型 |
2.2.3 逆变侧换流器及其控制器模型 |
2.2.4 传输网络模型 |
2.3 双馈风电经LCC-HVDC外送系统仿真模型 |
2.4 小结 |
第3章 电力系统宽频带振荡分析系统的对角优势特性及稳定判别 |
3.1 多变量频域分析中的Nyquist阵列理论 |
3.1.1 Nyquist阵列理论的对角优势判据 |
3.1.2 对角优势阵的稳定判据 |
3.2 电力系统宽频振荡的对角优势与稳定判别方法 |
3.2.1 双馈风电并网系统 |
3.2.2 交直流混联系统 |
3.2.3 双馈风电经LCC-HVDC外送系统 |
3.3 小结 |
第4章 电力系统宽频带振荡分析系统的控制器设计 |
4.1 非对角优势系统的控制器设计 |
4.1.1 非对角优势系统的控制器设计 |
4.1.2 预补偿器的设计方法 |
4.2 基于Nyquist阵列理论的电力系统宽频带振荡分析及控制流程 |
4.3 小结 |
第5章 算例分析 |
5.1 基于Nyquist阵列理论的电力系统宽频带振荡分析及控制流程的算例说明 |
5.1.1 算例1: 对角优势且稳定系统 |
5.1.2 算例2: 对角优势且不稳定系统 |
5.1.3 算例3: 非对角优势系统稳定性判断 |
5.2 双馈风电并网系统 |
5.2.1 算例1: 对角优势系统且稳定 |
5.2.2 算例2: 对角优势系统且不稳定 |
5.2.3 算例3: 非对角优势系统稳定性判断 |
5.3 交直流混联系统 |
5.3.1 算例1: 对角优势系统且稳定 |
5.3.2 算例2: 对角优势系统且不稳定 |
5.3.3 算例3: 非对角优势系统稳定性判断 |
5.4 双馈风电经LCC-HVDC外送系统 |
5.4.1 算例1: 对角优势系统且稳定 |
5.4.2 算例2: 对角优势系统且不稳定 |
5.4.3 算例3: 非对角优势系统稳定性判断 |
5.5 小结 |
第6章 结论与展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
附录A 3.2节中Q(s)和F推导的相关说明 |
附录B 双馈风电并网系统参数表 |
附录C 交直流混联系统参数表 |
附录D 双馈风电经LCC-HVDC外送系统参数表 |
致谢 |
个人简历、在学期间发表的学术论文与研究成果 |
(8)面向电力系统稳态分析应用的异构并行技术研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 引言 |
1.2 研究背景 |
1.3 国内外研究现状 |
1.4 本文研究内容 |
1.5 本文组织结构 |
2 基于CPU-GPU的电力系统潮流分析异构并行技术 |
2.1 引言 |
2.2 潮流分析并行求解问题分析 |
2.3 稀疏线性方程组多波前并行求解算法任务分解 |
2.4 CPU-GPU协同任务调度 |
2.5 GPU内任务调度与执行 |
2.6 实验评测 |
2.7 本章小结 |
3 基于GPU的电力系统静态安全分析异构并行技术 |
3.1 引言 |
3.2 静态安全分析并行求解问题分析 |
3.3 基于GPU的灵敏度法静态安全分析并行算法任务分解 |
3.4 基于GPU的低维矩阵运算并行算法 |
3.5 实验评测 |
3.6 本章小结 |
4 基于GPU集群的电力系统调度计划静态安全校核异构并行技术 |
4.1 引言 |
4.2 调度计划静态安全校核并行求解问题分析 |
4.3 基于异构平台的并行内存编程模型实现 |
4.4 基于GPU集群的调度计划静态安全校核并行算法实现 |
4.5 实验评测 |
4.6 本章小结 |
5 全文总结与工作展望 |
5.1 本文工作总结 |
5.2 下一步工作展望 |
致谢 |
参考文献 |
附录1 攻读博士学位期间发表的学术论文 |
附录2 攻读博士学位期间申请的发明专利 |
附录3 攻读博士学位期间参与的主要科研项目 |
(9)矩阵初等变换在高等代数中的应用及教学研究(论文提纲范文)
1 矩阵初等变换在高等代数中的应用 |
1.1 求矩阵(向量组)的秩 |
1.2 求逆矩阵 |
1.3 求解线性方程组 |
1.4 解矩阵方程 |
1.5 化二次型为标准形 |
1.6 化基为标准正交基 |
2 矩阵初等变换的教学建议 |
2.1 讲明原理,说清方法 |
2.2 紧扣矩阵初等变换本质,强调“列向量,行变换”[6] |
2.3 多做练习,加深理解 |
3 总结 |
(10)BATS码及其应用研究(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 研究背景与意义 |
1.1.1 研究背景 |
1.1.2 研究意义 |
1.2 国内外研究现状 |
1.3 本论文的主要工作与创新 |
1.4 本论文的结构与安排 |
第二章 BATS码的基本原理 |
2.1 引言 |
2.2 基础知识 |
2.2.1 删除信道 |
2.2.2 有限域 |
2.2.3 喷泉码 |
2.2.4 随机线性网络编码 |
2.3 BATS码的编译码原理 |
2.3.1 BATS码的编码原理 |
2.3.2 BATS码的译码原理 |
2.3.3 BATS码的编码度分布设计 |
2.4 BATS码在多跳网络中的可行性分析 |
2.5 BATS码的性能仿真分析 |
2.5.1 不同有限域下的BATS码性能仿真分析 |
2.5.2 不同码长下的BATS性能仿真分析 |
2.5.3 不同编码度分布下的BATS性能仿真分析 |
2.5.4 不同译码算法下的BATS码性能仿真分析 |
2.6 本章小结 |
第三章 BATS码的优化设计 |
3.1 引言 |
3.2 基于重要信息反馈的BATS码优化设计方案 |
3.2.1 重要信息的选择 |
3.2.2 基于重要信息反馈的BATS码方案设计 |
3.2.3 方案性能仿真与分析 |
3.3 基于编码统计的BATS码优化设计方案 |
3.3.1 方案设计 |
3.3.2 方案性能仿真与分析 |
3.4 基于伪随机序列的BATS码优化设计方案 |
3.4.1 伪随机序列及其生成 |
3.4.2 基于线性同余发生器和梅森旋转发生器的BATS码方案设计 |
3.4.3 方案性能仿真与实现 |
3.5 本章小结 |
第四章 基于滑窗BATS码和小波SPIHT编码的图像传输方案设计 |
4.1 引言 |
4.2 基于小波变换的SPIHT图像编码技术 |
4.2.1 小波变换 |
4.2.2 SPIHT算法 |
4.3 基于滑窗BATS码和小波SPIHT编码的图像传输方案设计 |
4.3.1 滑窗BATS码的设计 |
4.3.2 图像传输方案设计 |
4.3.3 方案性能仿真与分析 |
4.4 基于滑窗BATS码和小波SPIHT编码的图像传输改进方案设计 |
4.4.1 改进方案设计 |
4.4.2 方案性能仿真与分析 |
4.5 本章小结 |
第五章 全文总结与展望 |
5.1 全文总结 |
5.2 后续工作展望 |
致谢 |
参考文献 |
攻读硕士学位期间取得的成果 |
四、求解线性矩阵方程的初等变换法(论文参考文献)
- [1]关于利用初等变换法求解线性方程组的教学研究与探讨[J]. 夏远梅. 数理化解题研究, 2021(21)
- [2]在应用型人才培养下线性代数的教学研究——以计算机专业为例[J]. 周小辉,王刚. 高等数学研究, 2021(04)
- [3]逆矩阵的教学设计[J]. 闫伟文,白庆月. 大学, 2021(19)
- [4]Haar小波数值方法及其在力学问题中的应用[D]. 王魁良. 兰州大学, 2021(09)
- [5]矩阵论教学过程中的逆矩阵解法探讨[J]. 王俊伟,杨俊玲,刘丽秋. 科技风, 2021(08)
- [6]线性代数课程矩阵初等变换应用的几点探究[J]. 王翠翠. 教育教学论坛, 2020(47)
- [7]基于Nyquist阵列理论的电力系统宽频带振荡分析及控制[D]. 方诗卉. 中国电力科学研究院, 2020(04)
- [8]面向电力系统稳态分析应用的异构并行技术研究[D]. 陈勇. 华中科技大学, 2020
- [9]矩阵初等变换在高等代数中的应用及教学研究[J]. 张芳英,朱睦正. 河西学院学报, 2020(02)
- [10]BATS码及其应用研究[D]. 王臣玺. 电子科技大学, 2020(07)