一、海洋平台简化模型与系统参数的试验修正(论文文献综述)
吴昊天[1](2021)在《基于永磁风机并网技术的微电网优化运行研究》文中进行了进一步梳理能源是人类社会发展的重要要素,在降低温室气体二氧化碳排放已经成为全球共识的情况下,作为清洁能源的风能是各国开发的重点领域之一。将风能转化为可以利用的电能涉及到了风力发电技术。风力发电技术包括风力机的设计、变频技术、电机电子技术和芯片控制技术等。现阶段,因风力发电具有很高的间歇性和不稳定性,为了最大限度地利用风能资源,降低风电对电网带来的不利影响,电力电子化的风电并网及相关系统的优化运行控制正在成为人们研究的热点,其中基于柔性直流输电技术的多端直流微电网系统和基于大容量储能技术的交流微电网系统是风电并网和风能利用的两种有效途径。本文围绕永磁直驱风机的拓扑结构及数学模型、永磁风机的交流并网控制策略、永磁风机交流接入的交流微电网优化运行研究、永磁风机直流并网控制策略、永磁风机直流接入的多端直流微电网优化运行研究等问题展开研究,主要创新工作如下:(1)永磁风机的交流并网控制策略改进本文基于“不可控整流器+Boost升压斩波电路+三相电压型PWM逆变器”的永磁风机拓扑结构,深入阐述了机侧的最大功率跟踪控制(MPPT)原理和网侧的双闭环控制原理;针对机侧的最大功率跟踪控制,提出了“转速外环电流内环”的双闭环控制策略;针对网侧主流的“电压外环电流内环”双闭环并网控制策略,通过对控制算法的改进,提高永磁风机的交流并网控制性能,达到以下三个交流并网的目标:1)减少电流谐波,提高动态响应速度;2)实现有功量与无功量的解耦,达到单位功率因数并网和直流母线电压的稳定输出;3)提高系统的控制精度、抗干扰能力和鲁棒性。(2)基于永磁风机交流并网的交流微电网优化运行本文基于含有风电、可调度分布式发电(柴油发电机)、储能系统和局部负荷的交流微电网,根据当前新的主流智能算法,提出一种新的高效的电力管理方法,并采用适当的预测技术来处理微电网中风能和电能消耗的不确定性。提出的能源管理优化目标旨在使微电网在燃料、运行和维护以及主电网电力进口方面的支出最小化,同时最大限度地利用微电网对上游电网的能源输出。本文立足于交流微电网的优化运行研究,以最优运行成本为控制目标,提出了一种基于混合启发式群优化算法的交流微电网优化运行控制策略。首先,依据各分布式发电单元的运行特性建立各分布式发电单元的等效数学模型,进而清晰地表述交流微电网的运行控制过程和各种模态的切换;其次,在建立各等效模型的基础之上,建立交流微电网优化运行的目标函数;再次,依据各分布式单元的特性列出目标函数的约束条件;此外,运用本文提出的混合启发式群优化算法,在约束条件下求解该交流微电网的目标函数,得出各分布式电源的具体出力和投切状态;最后,将本文提出的运行控制策略在一个具体案例上进行仿真,同时与传统PS算法的仿真结果进行对比,进行仿真分析。(3)基于柔性直流输电技术的永磁风机直流并网控制策略本文基于VSC换流站的控制策略分析,提出了一种基于VSC-HVDC的永磁风机直流并网的控制策略;首先,建立了一个三端的永磁风机直流并网系统,包括永磁风机侧和两个交流侧;然后,基于三端直流并网系统提出了一种三层控制策略,包括系统级、换流站级和换流器阀级。对于风机侧的换流站控制,利用改进PR控制可以无静差跟踪的特点,将传统的定交流电压单环控制改造为“电压外环PR-电流内环解耦”的双闭环控制,解决了风机侧交流电压畸变时,VSC换流站对称性故障穿越的难题。(4)基于永磁风机直流并网的多端直流微电网优化运行控制本文立足于风电机组参与功率调节时直流微电网试验平台的优化运行,以微电网智能多代理技术和隔离型双向全桥DC-DC储能技术为基础,设计一种新的并网运行优化控制策略。首先,建立了六端直流微电网系统的模型,研究各端口的数学模型及控制策略;其次,以直流微电网的优化运行和故障穿越为控制目标,以微电网智能多代理技术和隔离型双向全桥DC-DC储能技术为基础,设计了一种新的直流微电网并网运行控制策略和一种新的直流微电网故障穿越控制策略,实现了对风力发电机组出力波动的有效控制和多端直流微电网的稳定运行,保证了直流微电网内负荷的稳定供电和成本优化;最后,在“直流微电网试验平台”上进行仿真验证和故障运行研究,验证新的直流微电网并网优化控制策略和故障穿越控制策略是否可以有效地协调和控制直流微电网的稳定运行,同时最大限度地利用风能资源。
陈晓娟[2](2021)在《考虑垂直风切变的大跨越架空导线微风振动机理研究》文中研究表明输电线路的安全运行是保障国家电力供应的重要环节,大跨越输电线路作为远距离特高压输电线路中的“咽喉”工程,由于其结构的特殊性,在低速层流风作用下极易诱发导线形成持续的微风振动,从而引起导线固定端的疲劳断股、断线和防振金具的破损失效,理解和掌握大跨越导线微风振动机理有重要的理论和应用价值。本课题全面评估大跨越导线运行环境、结构特点,关注大跨越导线的大弧垂特性,考虑平坦地形中风速分布随高度垂直切变的实际规律,提出大跨越导线微风振动的局部锁定理论,将局部锁定简化为局部激励,以局部激励下大跨越导线微风振动的波动过程为研究内容,采用波动复域分析法结合实验研究探索大跨越导线局部锁定后的波动行为以及引起整档线路稳定振动的判别条件,进而揭示大跨越导线微风振动稳定驻波形成机理。论文的主要研究内容及成果如下:(1)局部锁定理论的提出和模型描述。从大跨越导线弧垂高度大和风速随高度梯度分布的实际规律出发,指出实际作用于导线上的风速分布具有显着的垂直切变特性。提出垂直切变风场中,风载荷与大跨越导线更易形成“局部锁定”现象;将局部锁定引起的局部风载荷加强的现象简化为局部激励;从大跨越导线的结构特征出发,建立有阻尼的一维连续弦模型研究大跨越导线的横向微风振动行为。局部锁定理论的提出及局部激励下导线微风振动模型的建立为大跨越导线微风振动的机理研究奠定了理论基础。(2)大跨越导线微风振动波的传播与色散研究。将大跨越导线简化为有阻尼连续弦模型,从振动波的角度,分析了四种退化模型的复波数、相速度与频率之间的色散关系,以及等效弹性刚度和阻尼对振动波传播的影响规律。指出当激励频率大于临界频率时,导线模型的振动波为两列方向相反的传播行波;传播过程中各阶频率相速度主要由结构参数确定,弹性刚度使振动波出现色散现象;而阻尼决定了振动波在传播过程中的衰减特性,对结构的色散现象影响不大;研究结果为局部激励下导线微风振动格林函数解的研究提供理论基础。(3)局部激励下大跨越导线微风振动波的格林函数解研究。考虑到局部锁定区域相对导线整档长度而言范围较小,进一步将局部激励简化为点源激励,构建了档端无约束的无限长有阻尼导线在局部点源激励下的微风振动方程,利用积分变换法结合留数定理详细推导了模型响应的显式格林函数解,验证了小阻尼解的有效性,研究了结构参数和激励参数对波响应的影响规律。指出大跨越导线模型在简谐点源激励下的响应表现为从激励源沿导线向两侧档端传播的空间衰减的简谐行波,其行波特性与激励频率比和系统阻尼比关系密切。最后采用自主开发的图像测量技术开展导线在局部瞬时激励下的波动实验,定性验证了导线内行波的传播演化特性。(4)局部激励下大跨越导线微风振动波特性研究。构建了档端约束的有阻尼导线在档内任意位置点源激励下的微风振动方程,基于大跨越导线的小阻尼特性,获得了周期点源激励下大跨越导线波动响应表达式。依据振动波沿展向的衰减特性,将导线内的波动过程分为驻波振动、行波振动以及驻波和行波的混合振动等三种类型,提出导线波动类型发生的判别参数,给出判别参数和波动类型之间的定性关系。分析了激励位置对大跨越导线波动幅值的影响规律,指出激励位置作用在振动波的理想波峰时形成的振动波幅值显着。开展了局部风激励作用下导线的波动实验,利用视频采集结合图像处理获得导线的横向振动信号,实验结果验证了局部激励下导线的横向波动特性,包括局部激励引起整档导线的稳定驻波振动,实际导线的驻波振动不存在理想波节等,实验结果与理论分析一致。(5)附加局部外阻尼的导线系统模态阻尼比的研究。基于对大跨越导线在局部激励下的微风振动波特性的认识,提出提高系统阻尼比是抑制导线形成整档稳定驻波振动的有效手段,结合工程中大跨越导线常用防振措施的结构特点和工作原理,将典型防振措施——防振锤,简化为弹簧质量振子系统,构建了附加局部外阻尼装置的导线系统模型,计算获得了系统的复特征频率,开展了系统模态阻尼比的影响因素分析,指出局部外阻尼的等效参数和安装参数对系统阻尼比的影响规律。研究结果为大跨越导线微风振动的防振设计提供了理论基础。上述研究揭示了垂直切变风中大跨越导线局部锁定后的微风振动波演化规律,提出了大跨越导线微风振动波类型的判别参数及条件,通过理论分析指出了导线系统模态阻尼比的影响因素,发展了考虑垂直风切变的大跨越导线微风振动的局部锁定机理。
李顺利[3](2021)在《气动肌肉驱动伺服系统的运动轨迹跟踪控制研究》文中研究表明
袁宇[4](2021)在《双加热湿度传感器与总辐射传感器设计》文中研究指明常规无线探空仪通常搭载高精度温度、湿度传感器、气压计等传感器,对大气温度、湿度、压力等因素进行测量。为了克服探空仪出云、入云后,水分子以冰晶或水滴的形式覆盖在湿度传感器表面从而影响湿度测量的精度问题,本文设计了一种双加热湿度传感器;同时,为了研制高精度、低成本的总辐射传感器,本文提出了一种带有铝制防辐射罩的热电型的总辐射传感器设计。通过两种传感器对高空温度、湿度、辐射强度的测量,旨在对常规探空仪上的传感器进行改良的同时,也为日后探空仪出云、入云的判断提供一种新的思路。为了提高高空湿度测量的精度以及响应速度,本文首先设计了一种“Y”型双加热湿度传感器。使用流体动力学方法(CFD)对传感器进行仿真分析。其次利用L-M算法对加热时间进行数据拟合,结果表明,拟合方程的相关系数r2=0.9970,拟合精度较高。同时,本文提出了一种总辐射传感器设计。首先,构建传感器的三维模型,通过流体动力学方法对传感器进行传热分析,初步验证了传感器设计的可行性。接着使用L-M算法对仿真数据进行拟合,结果表明,拟合方程的相关系数r2=0.9989,拟合精度较高,并使用Kalman算法对热电偶测量的温度数据进行滤波处理,结果表明,使用Kalman算法后能有效降低温度测量误差。最后,利用低气压风洞和太阳模拟器搭建了模拟实验平台,对两种传感器分别在地面和模拟高空恶劣环境进行性能测试,将实验值与参考值进行对比。实验结果表明,对于湿度的测量,在地面标准大气压环境下,湿度测量误差平均值为2.40%RH,均方根误差为2.43%RH,测量结果较为准确,相对于地面标准湿度值而言偏干,而在低气压风洞中模拟的高空低压恶劣环境下,测量误差逐渐增大,湿度测量误差平均值为7.94%RH,均方根误差为8.05%RH;对于辐射强度的测量,总体来说,在地面或是模拟高空环境下,辐射强度测量误差相差不大,测量误差的平均值为5.66W/m2,均方根误差为9.89W/m2。经分析,设计的两种传感器均达到预期效果。
沈雪[5](2021)在《高光谱分辨率激光雷达关键技术及系统实验》文中研究说明大气气溶胶对地球的环境和气候影响显着,直接或间接地影响着人类的生产生活。开展大气气溶胶特性的高精度探测,不仅对厘清大气污染的成因、演化及传输机制有根本的指导作用,也对系统地研究气候气象有重要的科学意义。高光谱分辨率激光雷达(High-Spectral-Resolution Lidar,HSRL)具有时空分辨率高、理论探测精度准、信噪比强等优点,在气溶胶激光雷达探测领域相比典型的米散射激光雷达和拉曼激光雷达更具优势,也因此成为美国、欧洲、日本和我国竞相研发的星载激光雷达载荷。目前,大气HSRL仍然存在诸多需要攻克的关键技术和难点,围绕的一个核心问题就是“如何使HSRL高精度、稳定地探测大气光学特性”。因此,研制HSRL工程样机,并探索其性能优化方法,进而实现高精度稳定探测大气光学特性的功能,有利于推进未来研制成熟的HSRL仪器并走向广泛应用。本文从建立HSRL仿真模型出发,探究激光雷达探测机理,设计硬件系统参数,探索光谱鉴频器性能优化方法,提出仪器定标方案,开展外场实验观测与结果校验,最终总结出一套针对HSRL系统研制和大气气溶胶观测的全链路解决方案。本文主要研究内容如下:构建了基于蒙特卡罗(Monte Carlo,MC)方法的HSRL多波长多参数分析模型。为实现对HSRL从参数设计到数据反演的全过程验证,提出了激光雷达的系统响应近似模型,明确了系统响应对HSRL参数选择过程的影响,建立了基于MC仿真方法的分析模型。利用该分析模型,重点探讨了光谱鉴频器的鉴频性能及稳定性对反演精度的影响,并分析了通道增益比的波动对反演精度的影响,比较了不同波长下HSRL设计所面临的需求差异,为HSRL的系统参数设计和性能优化提供了重要依据。提出了针对HSRL光谱鉴频器的性能优化方法。鉴于光谱鉴频器的鉴频特性和稳定性能对反演精度的影响巨大,针对视场展宽迈克尔孙干涉仪(Field-Widened Michelson Interferometer,FWMI)和碘分子吸收池两类光谱鉴频器分别提出了气压调谐和碘吸收线选择两种优化设计方法。对于鉴频效果不稳定的干涉仪型光谱鉴频器,提出了利用气压调谐FWMI鉴频位置的方法,研制了 1064 nm气压调谐FWMI光谱鉴频器的原型样机,详细计算了气压调谐结构参数,并通过扫频定标实验与干涉臂长调谐FWMI进行了鉴频性能及稳定性比对,为设计鲁棒的近红外HSRL系统并推广至其他波长铺平了道路。对于在532nm处碘分子吸收池鉴频器具备多条碘吸收线的情况,提出利用带精英决策的快速非支配排序遗传算法直接对多目标规划问题进行求解的方法,比较了不同碘吸收线的鉴频性能优劣,为基于碘分子吸收池鉴频器的HSRL优化设计提供重要指导。提出了 HSRL重叠因子定标方法,完善了 HSRL参数定标和数据质量评估方案。由于激光雷达系统本身的复杂性,目前在激光雷达测量中很难对所有参数进行绝对的定标校准。为获取准确的激光雷达探测结果,本文从重叠因子定标、收发光轴对准、通道增益比评估、瑞利拟合验证、触发延迟校正、背景噪声测试等方面全面阐述了 HSRL的定标校准方法。针对地基激光雷达低空数据极大地受困于重叠因子的问题,本文面向HSRL提出了一种基于迭代优化思想的重叠因子定标方法,将获得结果与双视场HSRL系统探测的重叠因子进行比对,两者的平均相对误差为4.56%,证明可简洁、高效、精确地定标系统重叠因子。探讨了 HSRL探测结果校验方法,并对自研HSRL进行了探测数据定量比对校验。本文报道了研制成功的532 nm单波长HSRL工程样机和532 nm-1064 nm双波长HSRL原理性实验系统。两台系统与星载云和气溶胶偏振激光雷达、原位腔衰荡消光仪、微脉冲激光雷达、拉曼激光雷达以及太阳光度计等测量仪器所测结果进行定量比对,结果十分吻合。多种仪器的相互校验充分证明了自研HSRL具备高精度稳定获取大气光学特性的能力。两台系统先后在杭州、舟山和北京等地进行长时间的外场实验探测,通过对探测过程中的数据案例进行具体分析,初步探索了利用双波长气溶胶光学特性进行气溶胶类型识别的方法和应用。
王朝霞[6](2021)在《海面三维成像仿真高程反演与误差分析校正》文中提出随着经济社会的发展特别是科技水平的不断提升,占地球表面71%的海洋日益受到世界各国的重视。遥感因具有覆盖面大、观测频率高、全天时、全天候等优势,已成为海洋监测的重要手段。获取海面高程(Sea Surface Height,SSH)测量数据是海洋遥感的一个重要任务,也是掌握海洋战略环境状态和海洋灾害预警的重要信息支撑。当前海面高程测量主要采用传统雷达高度计,沿卫星运行轨迹实现一维高程测量,由于轨道间隔大,所以分辨率低、不能实现亚中尺度面积的海面高程面测量。国内外相继提出了可成像、覆盖面积大、分辨率高、实时性好、可以满足亚中尺度海洋现象观测且海陆兼容的三维成像高度计。本文以三维成像高度计为应用对象,应用计算机仿真技术,研究海面成像和高程反演算法,分析三维成像高度计高程测量的主要误差因素,并设计相应的校正方法,为提高海面高程探测精度提供算法支持。论文主要完成了以下研究工作:1.研究三维成像高度计海面成像,依据三维成像高度计的主要特征指标,提出了一种海面成像仿真算法。首先采用双尺度模型仿真海面,然后将其划分为小面元。进而基于准镜面散射机制及其基尔霍夫(Kirchhoff)近似解计算小面元的后向散射截面,通过相干叠加求得仿真区域的后向散射系数;最后根据三维成像高度计的基本原理设置系统参数,建立回波信号模型,使用距离多普勒(Range-Doppler,RD)算法和后向投影(Back-Projection,BP)算法分别进行仿真成像,得到相干复图像。在构建回波模型时,针对三维成像高度计的双天线干涉模式,进行了等效相位中心处理。成像仿真结果可为高程反演和误差分析校正提供基础图像数据。2.研究三维成像高度计图像数据处理,完成了包括图像配准、去平地效应、干涉相位滤波、相位解缠、相位-高程转换五个步骤的海面高程反演算法设计。在图像配准环节,提出了一种增强SIFT特征与相关系数相结合的算法,实现了图像的亚像素级精确配准,在配准精度和适用范围上均优于单独使用SIFT算法和相关系数法。在去平地效应环节,采用了在频域内将主频谱中心移至零频的方法。在干涉相位滤波环节,采用了中值预滤波与多方向融合线性滤波相结合的方法。在相位解缠环节,利用JVC全局最优线性分配算法生成枝切线,对经典Goldstein算法进行改进,缩短了枝切线总长度,一定程度上避免了局部无法解缠的“孤岛”问题,提升了相位解缠率和解缠精度。最后根据干涉测量原理和三维成像高度计观测几何计算海面相对高程。利用仿真海面图像进行高程反演,通过对比验证了海面成像仿真方法的可行性。3.研究影响三维成像高度计SSH测量精度的因素。设置系统参数,背景电离层、背景大气层误差以及电离层闪烁和大气湍流相位误差,进行仿真成像和高程反演,对比分析各类误差对SSH测量精度的影响,研究结果表明,具有二维空变特性的电离层闪烁和大气湍流相位误差影响最大。为校正该相位误差,提出两种校正算法:采用基于邻域像素均值自适应选点和提取波形轮廓自适应估计加窗宽度的方法改进了相位梯度自聚焦(Phase Gradient Autofocus,PGA)与图像偏移(Map Drift,MD)相结合的算法;使用果蝇全局优化算法(Fruit Fly Optimization Algorithm,FOA)在距离压缩相位历史域搜索相位误差校正量,改进了基于最小熵准则的方法。仿真验证表明,本文提出的两种相位误差校正算法都取得明显的校正效果,而基于果蝇算法和最小熵准则的方法效果更好。4.考虑系统参数误差和大气干扰对三维成像高度计海面高程测量的影响,利用以上三部分工作提出的算法,综合开展海面成像仿真、误差校正、高程反演验证。验证结果表明本文整体研究工作与提出算法的合理性和有效性。
徐沛拓[7](2021)在《海洋激光雷达系统研制及典型探测结果》文中提出海洋环境信息的感知是保障海洋环境安全的基础,尤其是在当下全球生态环境问题日益凸显、极端天气不断增多的背景下,人们对全方位、高精度的海洋观测有了更迫切的需求,激光雷达便是一种重要的海洋观测工具。本文研究了集偏振、多视场、荧光和拉曼等多种信号探测能力于一体的高性能船载海洋激光雷达,并进行了信号仿真论证和系统定标校验,同时在中国近海、千岛湖等诸多典型水域中开展了外场实验及应用研究。本文工作贯通了海洋激光雷达的模型机理、仪器研制、反演算法与应用分析,为船载激光雷达观测海洋提供了全链路的解决方案,是未来发展星载海洋激光雷达的基础,对准确估算海洋碳通量、阐明海洋环境动态变化过程和机制,以及更准确地预估未来地球气候系统的变化趋势有重要的作用。本文的主要研究内容如下:开发了一套功能完善、性能稳定、操作便捷的多功能船载海洋激光雷达系统。从发射系统、接收系统和控制系统等方面全面解析了海洋激光雷达的一般性设计原则,历经三代更新,至今已发展为一套兼具米散射激光雷达、偏振激光雷达、荧光和拉曼激光雷达以及多视场激光雷达等功能的综合性海洋激光雷达系统,满足多样化的探测需求。从激光雷达探测原理入手,给出了兼容各种体制海洋激光雷达系统的设计方案;从激光雷达数据预处理出发,厘清了水体光学参数和生物参数的反演算法。海洋激光雷达仪器可快捷地部署于科考船,通过走航观测获得一系列的水体光学特性、生物特性垂直剖面,例如颗粒物后向散射系数、漫射衰减系数、退偏比和叶绿素a浓度等。构建了以解析模型和蒙特卡洛(Monte Carlo,MC)仿真为核心的海洋激光雷达多参数多体制辐射传输正演方法。激光在水体中传输时伴随着强烈的多次散射效应,相较于单次散射近似下的普通激光雷达方程,解析模型和MC仿真将多次散射考虑在内,构建了高效准确的海洋激光雷达回波信号正演模型,前者胜在仿真效率极高,后者胜在能够模拟最为接近真实情况的激光雷达信号。基于上述仿真手段,探讨了工作高度、接收视场角、水质和水体分层等因素对激光雷达弹性散射信号的影响,分析了平行偏振通道和正交偏振通道信号的变化特点,论证了由荧光拉曼信号比反演叶绿素a浓度的可行性。建立了仪器定标以及原位数据和正演模型相结合的海洋激光雷达信号精准校验的体系。从系统响应、背景偏置、时域偏移、增益非线性等方面阐述了海洋激光雷达仪器定标的必要性及可行性,对激光器和探测器固有性质、环境光干扰等因素造成的信号失真进行定标校正。基于原位仪器同步测量的水体参数,采用激光雷达方程、MC仿真、解析模型等正演方法对不同水质和不同接收视场角下的激光雷达回波信号和激光雷达反演结果进行定量化校验。融合贯通了多种水体光学及生物特性反演方法,并应用于千岛湖、东海和南海等典型水体的探测分析。针对复杂水体探测需求,单一算法难以实现各类目标特性的准确反演,本文综合了斜率法、扰动法、Fernald法、生物光学模型法、拉曼校正荧光法等光学特性和生物特性反演方法,并结合原位仪器数据和水色卫星数据,对典型水体的生物光学特性进行了全面的对比、验证和分析。对夏季千岛湖全域水体进行了走航观测,探讨了这一典型内陆水体受局部气象事件以及地表径流的影响过程;在东海、南海进行了长距离跨度的走航观测,对浙闽粤沿海、珠江口和琼东三大区域的水体特性有了连续、全面的观测数据,并对走航过程中发现的散射层次分布特征进行了具体分析。综上,本文从系统设计、仿真论证、定标校验以及实验应用等方面全方位介绍了一套多功能船载海洋激光雷达系统的研制过程,该仪器在千岛湖、东海、南海等走航观测实验中展现出了准确性、可靠性和稳定性,本研究对推进海洋激光雷达的实用化、进一步构建全球上层海洋三维观测体系具有重要意义。
郭曦[8](2021)在《旋转采样综合孔径辐射计极坐标采样理论与定标方法研究》文中进行了进一步梳理被动微波遥感技术凭借其云雨穿透特性,具有全天时、全天候的观测能力,是大气温湿度探测领域重要的技术手段。与极地轨道卫星相比,静止轨道卫星在观测视场和时间分辨率方面具有重大优势,是实现台风、暴雨等快速变化灾害性天气现象监测与预报的理想观测平台。目前静止轨道微波大气探测在国际上仍是一项技术空白,是当今国际对地观测领域最前沿、最迫切、也最具挑战性的课题之一,对有效监测中小尺度灾害性天气系统、提高天气预报准确率具有重要意义。受限于空间分辨率指标与大口径天线的相关技术问题,采用传统真实孔径方案的微波辐射计难以实现基于静止轨道的高分辨率大气探测需求。综合孔径辐射计通过干涉式辐射测量技术将稀疏的小天线阵列合成为等效虚拟口径,能够实现观测视场内完整场景亮温的凝视成像,避免了大口径天线的制造加工、高精度机械扫描问题等难点问题,是实现静止轨道微波大气探测的有效技术途径。面向我国国民经济建设与自然灾害防治的迫切需求,国家高技术研究发展(863)计划与国家自然科学基金项目都支持了静止轨道微波大气探测的前沿研究工作。中国科学院国家空间科学中心承担了综合孔径技术方案的相关项目,针对高分辨率综合孔径辐射计系统复杂度高的技术难点,提出了基于阵列旋转分时采样体制的静止轨道综合孔径微波辐射计概念。本文紧密围绕旋转采样式综合孔径辐射计的研究任务,针对旋转采样理论与定标方案设计两大关键问题,开展了深入的研究工作。主要研究内容与创新性成果总结如下:1.针对阵列旋转分时采样体制形成的综合孔径辐射计极坐标采样网格,分别从径向和圆周向两个采样方向对可见度函数开展了傅里叶频谱分析,提出了可见度函数在径向采样方向和圆周向采样方向上的带宽理论表达,推导了依赖于观测场景特性与系统参数的极坐标采样可见度函数有效带宽估计方法。为保证可见度函数采样信号满足奈奎斯特采样定理,在不产生额外信息损失的条件下实现观测亮温重建,提出了极坐标可见度函数的采样准则,为旋转采样式综合孔径辐射计的系统设计与运行方案提供了理论依据。2.针对综合孔径辐射计分时采样体制所采用的阵列旋转与采样积分共同进行的工作模式,研究了因动态积分采样所导致的可见度函数模糊效应,建立了可见度函数旋转采样动态积分模糊理论。在小旋转采样动态积分角度的三角函数近似条件下,推导了点目标观测可见度函数动态积分采样模糊的解析表达式,从数值仿真实验角度验证了可见度函数动态积分采样轨迹与重建亮温误差伪影的对偶关系,发现了旋转采样综合孔径辐射计因阵列旋转动态积分模式产生的圆周向空间分辨率损失并提出了理论估计方法。3.在高分辨率静止轨道综合孔径辐射计难以实现传统噪声注入定标方案的背景下,提出了一种适用于等间距圆环阵列构型与阵列旋转分时采样体制的综合孔径辐射计冗余空间系统定标方法。在不依赖内部专用定标硬件或外部定标参考源的条件下,该方法可同时实现综合孔径辐射计的相位与幅度定标。其中相位定标方法在可见度函数测量相位存在自然缠绕的条件下仍可获得正确求解结果,无需额外设计相位解缠绕方法,真正意义上实现了综合孔径辐射计的相位自定标。阵列旋转采样获得的强系统冗余度确保了该方法的定标性能,为静止轨道综合孔径辐射计的定标方案设计提供了一条全新的技术路线。4.在综合孔径辐射计误差模型研究的基础上,构建了针对静止轨道毫米波大气探测仪第二代全尺度工程样机的全链路数据处理方案。从傅里叶中心切片定理的角度入手,研究了中心对称观测目标在阵列旋转分时采样体制下的可见度函数特性,并以此提出了一种基于外部噪声点源的旋转采样综合孔径辐射计相位定标与相关偏置校正方法,在地面测试环境难以获得理想远场观测目标的条件下实现了系统相位定标与相关偏置校正,完善了数据处理流程。地面试验观测结果验证了数据处理方案的有效性,为静止轨道综合孔径辐射计的工程应用奠定了技术基础。
辛世杰[9](2021)在《红外辐射基准载荷的高精度温控信息获取与处理技术》文中研究说明红外遥感技术是采集地球数据信息的重要技术手段,具有覆盖面积广、探测时间长、机动性强等诸多特点,因而被广泛应用于农业生产、土地利用、国土资源管理、大气监测以及地质灾害检测和调查等各个领域。随着技术的不断进步,气候变化观测和数值天气预报等领域对红外遥感数据提出了更高要求,特别是气候变化观测要求来自红外遥感载荷的测量数据不确定度水平优于0.1K,其10年内的稳定性要求优于0.04K。要实现如此高定量化水平的目标,不仅需要稳定可靠的红外探测设备,还需要高精度的在轨红外辐射源。其中红外探测设备的正常运行需要载荷为其提供稳定的工作环境温度,而辐射源的定标性能更是与其温度直接相关。基于上述重大应用需求,本课题研究设计了红外辐射基准载荷的高精度温控信息获取与处理系统。通过对红外辐射基准载荷的系统组成进行分析,选定其中对温控需求最高的红外辐射源作为本课题设计系统的主要控制研究对象,并研究了其基本架构及溯源链路。针对红外辐射源中的各项核心组件的需求进行了分析,并分配了该辐射源的温度不确定度。在空间应用中,由于电子器件老化及其性能易受环境温度波动的影响,现有的温度测量方法会出现非线性标定性能劣化的问题,导致测量结果出现偏差。本课题在阻值比率测温方法的基础上,提出了一种新的多参考阻值比率测温方法,实质上是将铂电阻与参考电阻的比率限定在较小的范围内,减小了当铂电阻阻值远离参考电阻阻值时,电路非线性对测温结果所造成的影响。将该方法电路与目前测温水平较高的单参考阻值比率测温电路置于恒温箱中进行比较实验,实验结果表明,在5℃~45℃的环境温度下,本方法的最大测量误差约为0.004℃,而单参考阻值比率测温电路的最大测量误差约为0.03℃。因此,该方法基本解决了非线性标定劣化的问题,无需载荷对其进行精密温控,减轻了载荷的热控成本,在环境温度变化剧烈场合中的非线性标定劣化程度更小,更加适合环境温度变化剧烈的应用场景。测量领域常用数字均值滤波器来降低测量噪声,但同时也会造成信号的失真,引入不确定度,现有滤波器评价工具难以对该滤波器对测量结果的影响进行量化。为解决该问题,本课题提出了一种数字均值滤波器不确定度评定方法,通过对温度缓变对象的温度变化率分布函数进行建模,利用该模型模拟生成温度测量序列并将其输入至滤波器中,最后利用不确定度A类评定方法来进行不确定度计算。对黑体实物进行了实验分析,得到了不确定度与采样周期、均值数目的关系曲线,该评定方法为数字均值滤波器设计提供新的考虑方向。针对红外辐射源升降温控制系统进行了热力学模型研究,提出了基于TEC散温器及驱动电压双反馈模型。相较于基于TEC驱动电压的单反馈模型而言,双反馈模型的优点在于考虑了TEC散温器温度波动对温度控制的干扰,可实现干扰的超前控制。设计了基于最长循环周期线性移位寄存器序列的温控系统模型辨识方案,采用增广最小二乘法对系统模型参数进行了辨识与分析,得到该红外辐射源升降温控制系统在制冷及加热模式下的精确数学模型。针对红外辐射源温控系统模型大时滞、非线性、参数时变的特点,研究并设计了一种简化变论域模糊PID控制器,该控制器在保证变论域优点的基础上,删减了变论域中输入变量论域变换的过程。将该控制器与普通变论域模糊PID控制器、模糊PID控制器、PID控制器进行对比实验,仿真实验表明:在不同温度控制幅度下,该控制器均无超调量,而其他控制器的超调量从3.44%至6.70%不等,同时该控制器的稳定时间也要优于其他控制器。为模拟天基应用环境,于在轨真空状态中对红外辐射源温控系统样机进行了性能测试,其温控范围为-20℃~60℃,温度稳定性优于0.027K,温度均匀性优于0.072K;对空间基准红外辐射源在10m处的亮温不确定度进行了评定,其扩展不确定度优于0.143K(k=2)。对样机上微型镓相变固定点的相变温度进行了测量,可根据该相变温度对红外辐射源上铂电阻进行校准,满足ITS-90国际温度标准定义,使得红外辐射源温度具备在轨溯源能力,对提高红外辐射基准载荷的定量化水平具有重要意义。本课题研究成果支撑了航天红外遥感温度量值溯源关键技术研究及应用项目,该项目获得了2020年度中国计量测试学会科学技术进步应用研究类一等奖。
常进云[10](2021)在《基于数字孪生的SYMS铰节点健康管理研究》文中提出海洋油气是保障我国国家安全的重要战略资源,浮式生产储卸油装置(Floating Production Storage and Offloading,FPSO)作为海洋油气开发的主力装备之一,广泛应用于我国渤海和南海海域。软刚臂单点系泊系统(Soft Yoke Mooring System,SYMS)是实现FPSO定位的重要装置,能够保证海洋平台的长期稳定工作和安全生产。由于结构的复杂性和长期承受多种海洋环境载荷的联合作用,系泊系统容易发生退化、失效等现象,一旦维护不及时会造成巨大经济损失。因此,开展具有实时评估系泊系统在位状态的数字化、智能化健康管理研究十分必要。数字孪生技术(Digital Twin,DT)是以智能传感系统为驱动,在虚拟空间中完成对实体装备的高保真映射,能够准确再现并预测海洋工程装备全生命周期的健康状态,有效避免了易损结构提前失效带来的巨大财产损失和安全风险,为海上油气生产提供安全、稳定的工作环境。本文针对FPSO软刚臂系泊系统铰节点健康管理,总结并开展了软刚臂系泊系统智能运维数字孪生方法过程关键技术研究,以五维数字孪生概念模型作为参考框架,提出了数字孪生技术驱动的软刚臂系泊系统健康管理方案。作为软刚臂系泊系统的易损结构之一,铰节点全生命周期过程中的健康运维是系泊系统安全工作的保障。本文针对软刚臂系泊系统的健康管理需求,采用BIM(Building Information Modeling)技术对FPSO海洋平台的物理和功能特性进行可视化表达和集成化管理。以原型监测数据为参照,采用响应面方法对铰节点的有限元模型进行参数识别,提高了铰节点虚拟模型的保真性。考虑铰节点的退化过程中的摩擦系数变化和载荷特征,设定了动力学仿真工况,利用铰节点高保真虚拟模型对其全生命周期不同阶段的运行状态进行模拟,采用BP神经网络建立了铰节点热点应力的预测模型,对其在位状态进行实时监控,并提出了基于铰节点健康状态的运维检修方法。最终搭建了系泊系统智能运维的可视化健康管理平台,实现了数字孪生技术在软刚臂系泊系统健康管理中的初步应用。本文工作可为数字孪生技术在海洋工程领域的应用提供支持和辅助参考。
二、海洋平台简化模型与系统参数的试验修正(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、海洋平台简化模型与系统参数的试验修正(论文提纲范文)
(1)基于永磁风机并网技术的微电网优化运行研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 课题背景及意义 |
1.2 国内外研究现状及存在的问题 |
1.2.1 永磁风机交流并网控制研究现状 |
1.2.2 基于永磁风机交流并网的交流微电网优化运行研究现状 |
1.2.3 永磁风力发电系统的直流并网控制研究现状 |
1.2.4 基于永磁风机直流并网的多端直流微电网优化运行研究现状 |
1.2.5 现有研究存在的问题 |
1.3 本文主要工作 |
第2章 永磁风机的交流并网技术研究 |
2.1 永磁风力发电系统的拓扑结构设计及相关工作原理 |
2.1.1 永磁风力发电系统的拓扑结构设计 |
2.1.2 永磁风力发电系统机侧风能最大功率跟踪(MPPT)原理 |
2.1.3 永磁风力发电系统网侧三相逆变原理 |
2.2 永磁风力发电系统机侧整流器控制及设计 |
2.2.1 永磁风力发电系统的机侧数学模型 |
2.2.2 永磁风力发电系统的机侧控制策略分析 |
2.2.3 本文永磁风力发电系统机侧控制策略分析 |
2.3 永磁风力发电系统网侧逆变器控制及设计 |
2.3.1 永磁风力发电系统的网侧数学模型 |
2.3.2 永磁风力发电系统的网侧控制策略分析 |
2.3.3 本文永磁风力发电系统网侧控制策略分析 |
2.4 系统仿真与分析 |
2.4.1 永磁风力发电系统机侧的建模及仿真分析 |
2.4.2 永磁风力发电系统网侧的建模及仿真分析 |
2.5 本章小结 |
第3章 基于永磁风机交流并网技术的交流微电网优化运行策略 |
3.1 引言 |
3.2 交流微电网系统框架及微电网等值模型 |
3.2.1 交流微电网系统框架 |
3.2.2 永磁风力发电系统等值模型 |
3.2.3 储能系统等值模型 |
3.2.4 柴油发电机模型 |
3.3 交流微电网的优化运行策略 |
3.3.1 目标函数的确定 |
3.3.2 约束条件 |
3.3.3 基于混合启发式的蚁群优化算法 |
3.4 算例仿真与分析 |
3.4.1 交流微电网参数 |
3.4.2 启发式蚁群优化算法的仿真分析 |
3.4.3 启发式蚁群优化算法与传统PS算法的比较分析 |
3.5 本章小结 |
第4章 永磁风机的直流并网技术研究 |
4.1 引言 |
4.2 永磁风机模型及水动力性能研究 |
4.2.1 永磁风力发电系统模型 |
4.2.2 永磁风电机组的水动力性能研究 |
4.3 并网VSC换流站建模与控制 |
4.3.1 风电场并网VSC换流站模型 |
4.3.2 VSC换流站控制策略 |
4.4 基于VSC的永磁风力发电直流并网系统及控制 |
4.4.1 系统构成 |
4.4.2 直流并网系统控制策略 |
4.5 系统仿真与分析 |
4.5.1 仿真系统参数 |
4.5.2 电网侧VSC换流站仿真及分析 |
4.5.3 风机侧VSC换流站仿真及分析 |
4.6 本章小结 |
第5章 基于永磁风机直流并网技术的多端直流微电网优化运行控制 |
5.1 引言 |
5.2 直流微电网拓扑结构及各换流器控制 |
5.2.1 风机侧换流器建模及控制策略 |
5.2.2 储能系统侧换流器建模及控制策略 |
5.2.3 光伏侧换流器建模及控制策略 |
5.2.4 交流并网侧换流器建模及控制策略 |
5.2.5 交流负载侧换流器建模及控制策略 |
5.2.6 直流负载侧换流器建模及控制策略 |
5.3 含永磁风机的直流微电网并网运行控制系统 |
5.3.1 直流微电网并网运行的拓扑结构 |
5.3.2 直流微电网运行控制策略 |
5.4 系统仿真及实验 |
5.4.1 仿真系统参数 |
5.4.2 并网运行仿真(降压) |
5.4.3 并网运行仿真(全压) |
5.4.4 功率平滑控制仿真及实验 |
5.4.5 削峰填谷控制实验 |
5.4.6 系统故障穿越仿真及实验 |
5.5 本章小结 |
第6章 结论与展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
攻读博士学位期间发表的论文及其它成果 |
攻读博士学位期间参加的科研工作 |
致谢 |
作者简介 |
(2)考虑垂直风切变的大跨越架空导线微风振动机理研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 课题背景及研究意义 |
1.2 大跨越架空导线研究现状 |
1.2.1 大跨越架空导线结构特征 |
1.2.2 大跨越架空导线的来流风特性 |
1.3 架空导线微风振动研究现状 |
1.3.1 微风振动研究现状 |
1.3.2 长柔圆柱体涡激振动研究现状 |
1.4 架空导线微风振动研究方法 |
1.4.1 微风振动的理论模型研究 |
1.4.2 微风振动的实验研究 |
1.4.3 微风振动的数值研究 |
1.5 本文工作 |
第2章 大跨越导线微风振动的局部锁定理论 |
2.1 引言 |
2.2 导线微风振动的基本理论 |
2.2.1 涡激振动原理 |
2.2.2 涡激振动的锁定理论 |
2.3 大跨越导线微风振动的局部锁定 |
2.4 局部锁定作用下大跨越导线微风振动模型 |
2.4.1 导线横向微风振动的数学模型 |
2.4.2 局部锁定的力学模型 |
2.4.3 局部激励下导线微风振动模型 |
2.5 本章小结 |
第3章 大跨越导线中振动波的传播与色散 |
3.1 引言 |
3.2 色散关系 |
3.3 色散方程 |
3.3.1 色散方程的推导 |
3.3.2 色散方程的物理意义 |
3.4 色散关系的根轨迹分析 |
3.4.1 无阻尼无刚度模型 |
3.4.2 无阻尼有刚度模型 |
3.4.3 有阻尼无刚度模型 |
3.4.4 有阻尼有刚度模型 |
3.5 本章小结 |
第4章 局部激励下大跨越导线微风振动的格林函数解 |
4.1 引言 |
4.2 控制方程与求解 |
4.2.1 控制方程 |
4.2.2 方程求解 |
4.2.3 解的整理 |
4.3 结果与讨论 |
4.3.1 解的简化 |
4.3.2 行波特性分析 |
4.3.3 波响应特性分析 |
4.4 算例分析 |
4.5 局部瞬时激励下导线的行波演化实验 |
4.5.1 实验系统与测量方法 |
4.5.2 波的传播演化特性分析 |
4.6 本章小结 |
第5章 局部激励下大跨越导线的微风振动波特性 |
5.1 引言 |
5.2 控制方程与求解 |
5.2.1 控制方程 |
5.2.2 方程求解 |
5.3 波动类型的判别 |
5.3.1 简化与整理 |
5.3.2 判别参数分析 |
5.4 波动类型分析 |
5.4.1 振动波的空间分布规律 |
5.4.2 振动波的时空演化特性 |
5.5 激励位置影响分析 |
5.5.1 激励作用在理想波节 |
5.5.2 激励作用在理想波腹 |
5.6 局部激励下导线波动特性实验研究 |
5.6.1 实验系统介绍 |
5.6.2 实验结果与分析 |
5.7 本章小结 |
第6章 附加局部外阻尼的导线系统模态阻尼比研究 |
6.1 引言 |
6.2 模型的建立与求解 |
6.2.1 控制方程 |
6.2.2 方程求解 |
6.2.3 特征频率的渐进解 |
6.3 系统模态阻尼比的参数分析 |
6.3.1 等效阻尼比的影响分析 |
6.3.2 等效质量的影响分析 |
6.3.3 安装位置的影响分析 |
6.3.4 频率比的影响分析 |
6.4 本章小结 |
第7章 结论与展望 |
7.1 结论 |
7.2 创新点 |
7.3 展望 |
参考文献 |
攻读博士学位期间发表的论文及其它成果 |
攻读博士学位期间参加的科研工作 |
致谢 |
作者简介 |
(4)双加热湿度传感器与总辐射传感器设计(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景与意义 |
1.2 探空仪简介与国内外研究现状 |
1.3 双加热湿度传感器国内外研究现状 |
1.4 总辐射传感器国内外研究现状 |
1.5 论文的主要研究内容 |
第二章 传感器物理模型的建立与计算流体动力学分析 |
2.1 双加热湿度传感器的选型与工作原理 |
2.2 CFD与FLUENT介绍 |
2.3 双加热湿度传感器模型建立与传热分析 |
2.3.1 双加热湿度传感器的结构设计 |
2.3.2 双加热湿度传感器的模型建立 |
2.3.3 双加热湿度传感器的网格划分 |
2.3.4 双加热湿度传感器的传热分析 |
2.4 总辐射传感器的器件选型与工作原理 |
2.5 总辐射传感器模型建立与传热分析 |
2.5.1 总辐射传感器的结构设计 |
2.5.2 总辐射传感器的模型建立 |
2.5.3 总辐射传感器的网格划分 |
2.5.4 总辐射传感器的传热分析 |
2.6 本章小结 |
第三章 硬件电路设计 |
3.1 系统电源的设计 |
3.1.1 模拟电源的设计 |
3.1.2 数字电源的设计 |
3.2 主控制器的选型及最小系统的设计 |
3.2.1 主控制器的选型 |
3.2.2 主控制器最小系统设计 |
3.3 温度采集与加热电路设计 |
3.3.1 温度采集电路设计 |
3.3.2 加热电路的设计 |
3.4 通信电路的设计 |
3.4.1 串口通信电路设计 |
3.4.2 LoRa无线通信电路设计 |
3.5 PCB布局 |
3.6 本章小结 |
第四章 系统软件设计 |
4.1 系统软件开发环境的介绍 |
4.2 温度采集程序设计 |
4.3 湿度采集程序设计 |
4.4 太阳辐射测量程序设计 |
4.5 AD7794与LoRa模块的配置 |
4.6 本章小结 |
第五章 传感器误差修正算法 |
5.1 L-M误差修正算法 |
5.1.1 L-M算法的原理 |
5.1.2 L-M算法修正辐射误差 |
5.1.3 L-M算法对加热时间的拟合 |
5.2 Kalman滤波算法修正测温误差 |
5.2.1 Kalman算法原理 |
5.2.2 Kalman算法对测温误差的修正 |
5.3 本章小结 |
第六章 实验与数据分析 |
6.1 铂电阻标定实验 |
6.2 模拟实验平台的搭建 |
6.3 实验数据分析 |
6.4 本章小结 |
第七章 总结与展望 |
7.1 总结 |
7.2 创新点 |
7.3 展望 |
参考文献 |
致谢 |
作者简介 |
(5)高光谱分辨率激光雷达关键技术及系统实验(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 绪论 |
1.1 研究背景和意义 |
1.2 激光雷达大气气溶胶探测理论基础 |
1.2.1 大气光散射特性 |
1.2.2 米散射激光雷达结构与基本原理 |
1.2.3 拉曼激光雷达结构与基本原理 |
1.2.4 HSRL结构与基本原理 |
1.3 高光谱分辨率激光雷达的发展历史及国内外研究现状 |
1.3.1 HSRL技术的提出与发展 |
1.3.2 光谱鉴频器初始探索阶段 |
1.3.3 光谱鉴频器应用阶段 |
1.3.4 光谱鉴频器性能优化阶段 |
1.4 本论文的主要研究内容及创新点 |
1.4.1 本文的主要研究内容 |
1.4.2 本文的创新点 |
2 高光谱分辨率激光雷达系统设计 |
2.1 高光谱分辨率激光雷达系统反演方法 |
2.2 高光谱分辨率激光雷达系统仿真 |
2.2.1 激光雷达系统响应匹配 |
2.2.2 激光雷达回波信号模拟 |
2.2.3 光谱鉴频器在可见光HSRL中的应用分析 |
2.2.4 光谱鉴频器在近红外光HSRL中的应用分析 |
2.2.5 定标参数稳定性讨论 |
2.3 高光谱分辨率激光雷达系统设计方案 |
2.3.1 整体结构设计 |
2.3.2 发射系统 |
2.3.3 接收系统 |
2.3.4 探测采集系统 |
2.4 本章小结 |
3 高光谱分辨率激光雷达鉴频技术研究 |
3.1 碘分子吸收池光谱鉴频器碘线选择技术 |
3.1.1 光谱鉴频特性 |
3.1.2 基于NSGA-Ⅱ多目标优化算法参数优化设计 |
3.1.3 灵敏度分析 |
3.2 气压调谐视场展宽迈克尔孙干涉仪光谱鉴频器技术 |
3.2.1 光谱鉴频特性 |
3.2.2 FWMI实际结构与气压调谐设计 |
3.2.3 FWMI稳定性评估 |
3.3 高光谱分辨率激光雷达光谱鉴频器定标与探测实验 |
3.3.1 基于碘分子吸收池的HSRL的定标实验 |
3.3.2 基于FWMI的HSRL定标实验 |
3.3.3 HSRL探测结果对比 |
3.4 本章小结 |
4 高光谱分辨率激光雷达定标校准技术研究 |
4.1 重叠因子定标 |
4.1.1 重叠因子基础理论 |
4.1.2 IGD定标方法 |
4.1.3 MC仿真验证 |
4.1.4 双视场HSRL系统实验验证 |
4.2 通道增益比定标 |
4.2.1 偏振通道增益比 |
4.2.2 分子通道增益比 |
4.2.3 瑞利拟合验证 |
4.3 其余反演所需参数的定标研究 |
4.3.1 触发延迟测试 |
4.3.2 探测采集系统动态范围测试 |
4.3.3 电路背景噪声测试 |
4.4 本章小结 |
5 高光谱分辨率激光雷达仪器验证与气溶胶探测外场实验 |
5.1 高光谱分辨率激光雷达仪器校验 |
5.1.1 比对仪器与方法 |
5.1.2 与拉曼激光雷达和太阳光度计比对结果 |
5.1.3 与CALIOP、MPL和CRD AES比对结果 |
5.2 高光谱分辨率激光雷达气溶胶探测外场实验 |
5.2.1 外场实验说明 |
5.2.2 外场实验探测结果展示 |
5.3 大气气溶胶类型识别应用 |
5.3.1 气溶胶类型识别基础 |
5.3.2 城市气溶胶探测与分类 |
5.3.3 沙尘与海洋气溶胶探测与分类 |
5.4 本章小结 |
6 总结与展望 |
6.1 本文的主要工作总结 |
6.2 下一步的工作展望 |
参考文献 |
作者简历及攻读博士学位期间的主要研究成果 |
(6)海面三维成像仿真高程反演与误差分析校正(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 选题背景与意义 |
1.2 雷达高度计海面高程测量技术研究现状 |
1.2.1 传统卫星高度计研究现状 |
1.2.2 成像雷达高度计研究现状 |
1.3 三维成像高度计仿真研究现状 |
1.3.1 系统原理及测高性能仿真研究现状 |
1.3.2 海面成像仿真相关研究现状 |
1.4 三维成像高度计高程反演技术研究现状 |
1.5 论文研究内容与结构安排 |
1.5.1 论文主要研究内容 |
1.5.2 创新点 |
1.5.3 论文结构安排 |
第二章 三维成像高度计工作原理 |
2.1 SAR成像基本原理 |
2.2 InSAR干涉测量原理 |
2.3 三维成像高度计测高原理 |
2.4 本章小结 |
第三章 海面建模和成像仿真 |
3.1 引言 |
3.2 海面建模 |
3.2.1 海面模型 |
3.2.2 海面三角剖分及轮廓计算 |
3.3 海面后向散射系数计算仿真 |
3.4 基于RD算法的海面成像仿真 |
3.4.1 信号模型 |
3.4.2 等效相位中心处理 |
3.4.3 RD算法成像 |
3.4.4 旁瓣抑制 |
3.5 基于BP算法的海面成像仿真 |
3.5.1 信号模型 |
3.5.2 BP算法成像 |
3.6 本章小结 |
第四章 海面高程反演算法 |
4.1 引言 |
4.2 干涉复图像配准 |
4.2.1 基于增强SIFT特征的像素级粗配准 |
4.2.2 基于相关系数的亚像素级精确配准 |
4.3 去平地效应 |
4.4 干涉相位滤波 |
4.5 相位解缠 |
4.5.1 相位解缠的基本原理与Goldstein枝切线算法 |
4.5.2 基于JVC算法生成枝切线的解缠方法 |
4.5.3 相位解缠实验 |
4.6 相位高程转换 |
4.7 本章小结 |
第五章 海面高程测量误差分析与相位误差校正算法 |
5.1 引言 |
5.2 系统参数误差分析 |
5.3 电离层误差分析 |
5.3.1 背景电离层误差 |
5.3.2 电离层闪烁误差 |
5.4 对流层误差分析 |
5.4.1 背景大气层误差 |
5.4.2 大气湍流误差 |
5.5 改进PGA-MD相位误差校正算法 |
5.5.1 基于改进PGA算法校正子孔径图像 |
5.5.2 MD算法拼接 |
5.6 基于果蝇算法和最小熵准则的相位误差校正方法 |
5.6.1 图像熵及果蝇算法 |
5.6.2 相位误差校正 |
5.7 本章小结 |
第六章 海面成像仿真及图像数据处理综合实验验证 |
6.1 引言 |
6.2 考虑多种误差源的海面成像仿真 |
6.3 仿真图像相位误差校正 |
6.4 高程反演验证 |
6.5 本章小结 |
第七章 总结与展望 |
7.1 本文工作总结 |
7.2 未来工作展望 |
参考文献 |
致谢 |
攻读博士学位期间发表和完成的论文 |
攻读博士期间参加的科研项目 |
(7)海洋激光雷达系统研制及典型探测结果(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 绪论 |
1.1 研究背景和意义 |
1.2 国内外研究进展 |
1.3 本论文的主要研究内容和结构安排 |
1.4 本论文的主要创新点 |
2 海洋激光雷达的总体设计 |
2.1 海洋激光雷达通用结构 |
2.2 海洋激光雷达方程 |
2.3 海洋激光雷达仪器设计 |
2.4 海洋激光雷达的数据处理 |
2.4.1 数据预处理 |
2.4.2 水体光学参数与生物参数的反演 |
2.4.3 激光雷达系统控制与数据处理软件 |
2.5 本章小结 |
3 海洋激光雷达信号的仿真分析 |
3.1 海洋激光雷达探测目标的特点 |
3.1.1 水体的主要成分 |
3.1.2 水体的光学特性 |
3.2 水下激光传输的正演模型 |
3.2.1 激光雷达信号的解析模型 |
3.2.2 激光雷达信号的MC仿真 |
3.3 海洋激光雷达信号的仿真结果 |
3.3.1 多视场弹性散射信号的仿真 |
3.3.2 偏振信号的仿真 |
3.3.3 荧光和拉曼信号的仿真 |
3.4 本章小结 |
4 海洋激光雷达仪器定标与校验 |
4.1 海洋激光雷达仪器的定标 |
4.2 海洋激光雷达回波信号的校验 |
4.2.1 不同水质下的校验结果 |
4.2.2 不同接收视场角下的校验结果 |
4.2.3 偏振信号的校验结果 |
4.3 海洋激光雷达反演光学参数的校验 |
4.3.1 不同水质下的校验结果 |
4.3.2 不同接收视场角下的校验结果 |
4.4 本章小结 |
5 在内陆水体的典型实验及分析 |
5.1 千岛湖概况及水体特性 |
5.2 千岛湖实验航次 |
5.3 观测结果的时空分布特征 |
5.3.1 光学参数的观测结果 |
5.3.2 叶绿素a浓度的观测结果 |
5.4 激光雷达与原位仪器数据对比 |
5.4.1 荧光信号与叶绿素a浓度的关系 |
5.4.2 光学特性剖面与叶绿素a浓度的关系 |
5.5 本章小结 |
6 在中国近海的典型实验及分析 |
6.1 实验区域及航次介绍 |
6.2 观测结果 |
6.2.1 浙闽粤近海观测 |
6.2.2 珠江口“S”型观测 |
6.2.3 琼东“S”型观测 |
6.2.4 石梅湾昼夜观测 |
6.2.5 与原位仪器数据的对比 |
6.3 本章小结 |
7 总结与展望 |
7.1 本论文完成的工作总结 |
7.2 下一步的工作展望 |
参考文献 |
作者简历及攻读博士学位期间主要科研成果 |
(8)旋转采样综合孔径辐射计极坐标采样理论与定标方法研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景及意义 |
1.1.1 微波遥感技术特点 |
1.1.2 静止轨道被动微波探测的意义 |
1.1.3 静止轨道被动微波探测的技术难点与挑战 |
1.2 国内外研究发展概况 |
1.2.1 综合孔径辐射计系统研究发展概况 |
1.2.2 综合孔径辐射计定标方法发展概况 |
1.3 论文的主要研究内容与结构安排 |
1.4 论文的创新性工作 |
第2章 干涉式微波辐射测量理论基础 |
2.1 微波辐射测量学基础 |
2.2 干涉式微波辐射测量基本原理 |
2.3 综合孔径辐射计亮温重建原理 |
2.4 综合孔径辐射计的系统性能指标 |
2.4.1 空间分辨率 |
2.4.2 无混叠视场 |
2.4.3 辐射灵敏度 |
2.5 本章小结 |
第3章 综合孔径辐射计旋转采样理论研究 |
3.1 引言 |
3.2 可见度函数极坐标采样理论 |
3.2.1 点目标观测旋转采样可见度函数的傅里叶分析 |
3.2.2 扩展目标观测旋转采样可见度函数的带宽估计方法 |
3.2.3 可见度函数极坐标采样准则 |
3.2.4 数值仿真实验与结果分析 |
3.3 旋转采样可见度函数动态积分模糊理论 |
3.3.1 可见度函数旋转采样动态积分理论模型 |
3.3.2 数值仿真实验与结果分析 |
3.4 本章小结 |
第4章 静止轨道等间距圆环阵列旋转采样综合孔径辐射计的相位与幅度定标方法 |
4.1 引言 |
4.2 冗余空间定标方法基本模型 |
4.3 等间距圆环阵列的冗余空间定标方程组 |
4.3.1 瞬时采样观测情景 |
4.3.2 阵列旋转采样观测情景 |
4.4 冗余空间相位定标方程组求解方法 |
4.4.1 固定位置的π模糊特性 |
4.4.2 相位求解方法 |
4.5 冗余空间幅度定标方程组求解方法 |
4.6 数值仿真实验 |
4.6.1 模拟观测场景与系统参数设置 |
4.6.2 噪声特性分析与权重函数设置 |
4.6.3 相位定标性能评估 |
4.6.4 幅度定标性能评估 |
4.6.5 幅度定标偏置研究与其校正方法 |
4.7 说明与讨论 |
4.7.1 总体定标性能 |
4.7.2 幅度定标偏置 |
4.7.3 针对真实观测场景的扩展仿真 |
4.7.4 同类方法的定标性能 |
4.8 本章小结 |
第5章 静止轨道毫米波大气探测仪数据处理方法研究 |
5.1 引言 |
5.2 数字相关系数预处理方法研究 |
5.2.1 三阶量化相关系数估计方法 |
5.2.2 IQ非正交性误差校正方法 |
5.3 综合孔径辐射计可见度函数定标方法研究 |
5.3.1 基于外部参考源的旋转采样综合孔径辐射计相位定标与相关偏置校正方法 |
5.3.2 可见度函数幅度定标 |
5.4 静止轨道毫米波大气探测仪地面试验数据处理 |
5.4.1 数据处理流程的试验验证 |
5.4.2 地面试验观测结果 |
5.5 本章小结 |
第6章 总结和展望 |
6.1 全文总结 |
6.2 研究展望 |
附录 |
A.固定位置的π缠绕特性的证明 |
A.1 由式(A.1a)和式(A.2a)构成的解集规律 |
A.2 由式(A.1b)和式(A.2b)构成的解集规律 |
B.归一化可见度幅度噪声统计规律解释 |
C.冗余空间相位定标仿真实验补充结果 |
D.冗余空间幅度定标仿真实验补充结果 |
D.1 幅度定标模型考虑不可分离幅度误差项的情况 |
D.2 幅度定标模型忽略不可分离幅度误差项的情况 |
参考文献 |
致谢 |
作者简历及攻读学位期间发表的学术论文与研究成果 |
(9)红外辐射基准载荷的高精度温控信息获取与处理技术(论文提纲范文)
摘要 |
abstract |
第1章 引言 |
1.1 研究背景及意义 |
1.1.1 遥感技术发展现状 |
1.1.2 在轨辐射定标技术瓶颈 |
1.2 在轨辐射定标基准源研究现状及技术难点 |
1.2.1 研究现状 |
1.2.2 技术难点 |
1.3 高精度温控技术研究现状及技术难点 |
1.3.1 研究现状 |
1.3.2 技术难点 |
1.4 课题主要研究内容 |
第2章 红外辐射基准载荷的高精度温控应用需求研究 |
2.1 红外辐射基准载荷系统组成及分析 |
2.1.1 系统组成 |
2.1.2 高精度温控需求分析 |
2.2 空间红外基准辐射源基本原理 |
2.2.1 空间红外基准辐射源基本架构 |
2.2.2 空间基准载荷红外辐射源溯源链路 |
2.3 红外辐射源核心组件需求分析 |
2.3.1 温度测量组件 |
2.3.2 半导体制冷器及其散温组件 |
2.3.3 红外辐射源结构设计 |
2.3.4 绝热棉及多层绝热组件 |
2.3.5 微型相变固定点单元 |
2.4 不确定度分配 |
2.4.1 基本原理 |
2.4.2 空间基准载荷红外辐射源不确定度分配 |
第3章 面向红外辐射基准载荷应用的高精度测温技术研究 |
3.1 主流测温电路原理及局限性分析 |
3.2 测量电路非线性校正原理简介 |
3.3 基于电阻比率测温结构的多参考阻值比率测温方法研究 |
3.3.1 针对非线性误差问题的研究 |
3.3.2 针对铂电阻阻值计算不连续问题的研究 |
3.4 基于同激励源及同信号路径的可扩展式电阻阵列研究 |
3.4.1 工作原理 |
3.4.2 快速判定电阻区间算法 |
3.5 数字均值滤波器的不确定度评定方法研究 |
3.5.1 现有滤波器评价工具的局限性研究 |
3.5.2 温度测量系统信号模型的研究 |
3.5.3 典型温度信号序列的构建方法 |
3.5.4 数字均值滤波器的不确定度评定算法 |
3.5.5 黑体温度特性模型验证 |
3.5.6 均值滤波器的不确定度评定测试 |
3.6 本章小结 |
第4章 基于多参考阻值比率结构的测控温系统电子学设计 |
4.1 低漂移高精度恒流源电路研究 |
4.1.1 恒流源电路基本原理及影响因素研究 |
4.1.2 低漂移高精度恒流源电路设计 |
4.2 测控温系统硬件设计 |
4.3 电路性能分析与实验 |
4.3.1 多参考阻值切换调节因子作用效果实验 |
4.3.2 温度测量稳定性等效实验 |
4.3.3 温度测量分辨能力等效实验 |
4.3.4 温度测量非线性标定劣化实验 |
4.3.5 温度测量电路校准与检定 |
4.3.6 热控驱动电路分辨能力实验 |
4.3.7 热控驱动电路输出稳定性实验 |
4.3.8 功率测量电路分辨能力实验 |
4.4 本章小结 |
第5章 红外辐射源温控系统建模与研究 |
5.1 红外辐射源升降温控制系统热力学模型研究 |
5.1.1 半导体制冷器基本原理 |
5.1.2 红外辐射源温控系统的热力学模型研究 |
5.1.3 基于TEC散温器温度及驱动电压双反馈的模型研究 |
5.1.4 基于TEC驱动电压单反馈的模型研究 |
5.1.5 单反馈模型与双反馈模型的比较 |
5.2 红外辐射源温控系统模型辨识方法研究 |
5.2.1 基于最长循环周期线性移位寄存器序列的黑体温控系统模型辨识 |
5.2.2 基于增广最小二乘法的模型参数辨识 |
5.3 本章小结 |
第6章 空间红外辐射基准源的温度控制技术研究 |
6.1 变论域模糊PID控制基本原理简介 |
6.2 针对输入变量的简化变论域研究 |
6.3 红外辐射源温控系统的控制器设计及其关键参数 |
6.3.1 模糊化和解模糊设计 |
6.3.2 模糊规则设计 |
6.3.3 模糊推理设计 |
6.3.4 基于简化变论域对模糊化环节的重设计 |
6.3.5 红外辐射源温控系统控制器关键参数 |
6.4 遗传算法对控制器关键参数的优化 |
6.4.1 基本原理 |
6.4.2 适应度函数设计 |
6.5 温控仿真结果 |
6.6 本章小结 |
第7章 空间红外辐射基准源温控系统性能测试及评估 |
7.1 红外辐射源温控性能仿真实验 |
7.1.1 红外辐射源机械结构设计 |
7.1.2 辐射源温控性能仿真与分析 |
7.2 空间红外基准辐射源性能测试 |
7.2.1 短期稳定性及均匀性实验 |
7.2.2 温控曲线波动及异常扰动分析 |
7.2.3 长期稳定性及均匀性实验 |
7.2.4 微型镓相变固定点相变温度测量 |
7.2.5 相变温度随加热功率的变化关系研究 |
7.2.6 红外辐射源空腔发射率仿真 |
7.3 空间红外基准辐射源不确定度评定 |
7.4 本章小结 |
第8章 总结与展望 |
参考文献 |
致谢 |
作者简历及攻读学位期间发表的学术论文与研究成果 |
(10)基于数字孪生的SYMS铰节点健康管理研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 海洋工程装备的原型监测技术研究 |
1.2.2 基于数据驱动的高保真模型修正方法研究 |
1.2.3 海洋工程装备疲劳损伤和剩余寿命预测方法研究 |
1.2.4 数字孪生技术研究现状 |
1.3 本文主要工作 |
1.4 本章小结 |
2 基于数字孪生的软刚臂系泊系统健康管理框架 |
2.1 引言 |
2.2 软刚臂系泊系统的五维数字孪生模型和关键技术 |
2.2.1 载荷和响应实时获取技术 |
2.2.2 多尺度建模和仿真分析技术 |
2.2.3 高保真模型修正技术 |
2.2.4 疲劳损伤和剩余寿命预测技术 |
2.2.5 智能化管理平台开发技术 |
2.3 软刚臂系泊系统数字孪生健康管理框架 |
2.3.1 软刚臂系泊系统结构组成 |
2.3.2 软刚臂系泊系统原型监测系统 |
2.3.3 软刚臂系泊系统虚拟模型的构成要素 |
2.4 本章小结 |
3 软刚臂系泊系统铰节点模型修正和参数识别研究 |
3.1 引言 |
3.2 软刚臂系泊系统铰节点有限元仿真分析 |
3.2.1 有限元法计算方法 |
3.2.2 铰节点动力学仿真 |
3.3 基于响应面的有限元模型参数识别方法 |
3.3.1 响应面算法 |
3.3.2 灵敏度分析 |
3.3.3 试验设计方法 |
3.3.4 常用的响应面类型 |
3.3.5 响应面的有效性评价 |
3.3.6 遗传寻优算法 |
3.4 软刚臂系泊系统铰节点物理参数识别 |
3.4.1 铰节点的参数识别方案 |
3.4.2 响应面构造及检验 |
3.4.3 铰节点物理参数识别结果 |
3.5 本章小结 |
4 铰节点结构健康状态映射方法研究 |
4.1 引言 |
4.2 铰节点退化过程分析 |
4.2.1 载荷特性分析 |
4.2.2 损伤特性分析 |
4.3 不同退化状态的铰节点仿真分析 |
4.3.1 健康服役状态下的铰节点有限元计算 |
4.3.2 不同退化阶段下的铰节点有限元计算 |
4.4 基于BP神经网络的铰节点热点应力实时映射 |
4.4.1 BP神经网络原理及算法概况 |
4.4.2 基于BP神经网络的铰节点热点应力映射 |
4.5 铰节点全生命周期的健康运维方案 |
4.6 本章小结 |
5 软刚臂系泊系统数字孪生健康管理平台 |
5.1 引言 |
5.2 软刚臂系泊系统BIM模型构建 |
5.2.1 BIM技术对数字化管理的适应性分析 |
5.2.2 BIM模型建立流程 |
5.2.3 软刚臂系泊系统三维数字化建模 |
5.3 可视化服务系统功能架构 |
5.4 可视化服务系统界面开发基础 |
5.4.1 开发环境介绍 |
5.4.2 开发流程 |
5.5 健康管理平台功能实现 |
5.5.1 BIM模型动态展示 |
5.5.2 运维状态监测 |
5.5.3 系泊系统性能评估 |
5.5.4 运维信息管理 |
5.6 本章小结 |
结论 |
展望 |
参考文献 |
攻读硕士学位期间发表学术论文情况 |
致谢 |
四、海洋平台简化模型与系统参数的试验修正(论文参考文献)
- [1]基于永磁风机并网技术的微电网优化运行研究[D]. 吴昊天. 华北电力大学(北京), 2021(01)
- [2]考虑垂直风切变的大跨越架空导线微风振动机理研究[D]. 陈晓娟. 华北电力大学(北京), 2021
- [3]气动肌肉驱动伺服系统的运动轨迹跟踪控制研究[D]. 李顺利. 中国矿业大学, 2021
- [4]双加热湿度传感器与总辐射传感器设计[D]. 袁宇. 南京信息工程大学, 2021(01)
- [5]高光谱分辨率激光雷达关键技术及系统实验[D]. 沈雪. 浙江大学, 2021(01)
- [6]海面三维成像仿真高程反演与误差分析校正[D]. 王朝霞. 内蒙古大学, 2021(10)
- [7]海洋激光雷达系统研制及典型探测结果[D]. 徐沛拓. 浙江大学, 2021(01)
- [8]旋转采样综合孔径辐射计极坐标采样理论与定标方法研究[D]. 郭曦. 中国科学院大学(中国科学院国家空间科学中心), 2021(01)
- [9]红外辐射基准载荷的高精度温控信息获取与处理技术[D]. 辛世杰. 中国科学院大学(中国科学院上海技术物理研究所), 2021(01)
- [10]基于数字孪生的SYMS铰节点健康管理研究[D]. 常进云. 大连理工大学, 2021(01)