一、异形柱框架结构计算模型探讨(论文文献综述)
郭相杰[1](2021)在《L形缀板式钢管混凝土组合柱框架抗震性能研究》文中研究说明近年来,国家在建设项目中优先推广应用钢结构装配式住宅,因其组合柱结构尺寸面积小可灵活布置在住宅中,在工程中具有良好的应用价值和提高社会经济效益。本文采用由中心及端部方钢管、缀板、混凝土组成的L形缀板式钢管混凝土组合柱进行框架抗震耗能能力分析,主要研究内容如下:为研究缀板式钢管混凝土组合柱抗震性能,制作并完成了两榀1/2缩尺比例的框架试件拟静力试验,两榀框架分别为格构式组合柱(缀板沿柱身等距布置,总长度占柱身长度的60%)框架和实腹式组合柱(缀板沿柱身全长布置)框架。试验过程中,两试件的破坏现象和破坏部位基本一致,该结构二层钢梁早于一层首先发生屈曲和平面外变形,直至试验结束,组合柱也未发生破坏。基于应变数据分析,中心钢管应力大小与相邻肢柱钢管应力大小相近,说明缀板传力性能良好,与各肢柱具有良好的协同作用。由于实腹式组合柱框架内填充混凝土的增加,单肢柱刚度的增大提高了组合柱承压能力,在试验数据下分析对比下,实腹式框架抗震性能优于格构式框架。基于试验研究和有限元软件结果分析两者吻合度较高的前提下,采用ABAQUS分别对两榀框架进行参数化模拟分析。考察在其不同轴压比作用下、梁柱线刚度及截面形式下框架结构的力学性能,并对比分析相同轴压比作用下两榀不同组合柱框架的抗震性能。模拟结果得出两榀框架都具有良好的延性和耗能能力。在不同轴压比作用下,框架结构随着轴压比的增加,框架极限承载能力及耗能能力有所下降,两种不同构造形式的框架都服从首先在钢梁两端发生屈曲现象,钢梁发生平面外扭转,随着水平位移增加,框架承载力逐渐降至0.85倍极限荷载;梁柱线刚度改变,对实腹式框架极限荷载有所影响,对格构式组合柱框架影响不大;通过对截面形式的对比,探究组合柱在不同形式下的力学性能,完善对框架结构的理论分析,并针对其薄弱部位进行补强。
倪韦斌[2](2021)在《装配式钢筋混凝土异形柱框架结构抗震性能足尺试验与分析》文中进行了进一步梳理异形柱结构室内柱楞不外露、美观适用,能获得较好的建筑功能并减轻结构自重;装配式结构是我国建筑业发展的重要方向之一,以混凝土结构为例,可通过工厂预制大幅减少现场湿作业,具有节能环保、装配建造高效等特点;农村新民居建设有利于改善农村基础生活环境,提升农民生活质量,对于实施乡村振兴战略具有重要意义。采用装配式混凝土异形柱框架结构有利于促进新民居建筑的设计标准化、生产工厂化、施工装配化发展,然而,由于《混凝土异形柱结构技术规程》(JGJ 149-2017)尚没有关于装配式混凝土异形柱框架结构抗震设计的有关规定,加之异形柱截面的特殊性,因此本文以某装配式新民居的研发与示范建设为背景,通过拟静力试验与数值分析,研究装配式混凝土异形柱框架结构的抗震性能,为其工程应用提供参考,具有重要意义。论文主要工作及结论如下:(1)验证了基于“等同现浇”设计的装配式混凝土异形柱框架结构抗震性能的可靠性,完成了2榀足尺比例设计的现浇整体式与预制装配式混凝土异形柱框架结构在竖向荷载作用下的拟静力试验。研究结果表明,现浇与装配试件破坏模式均为梁铰破坏机制,符合“强柱弱梁”设计原则;现浇与装配试件极限承载能力相当且均表现出良好的承载稳定性能,其中峰值荷载平均值相差7.3%,两试件承载能力退化系数稳定在0.89~1.00;与传统现浇试件相比,预制装配试件在刚度退化、耗能能力及延性等方面略优,采用浆锚连接装配式混凝土异形柱框架结构遵从现行“等同现浇”设计理念可行且偏于安全。(2)探明了轴压比对装配式混凝土异形柱框架结构抗震性能的影响,完成了2榀足尺比例设计的轴压比分别为0.14、0.28的装配式混凝土异形柱框架结构的拟静力试验。研究结果表明,“浆锚连接+节点后浇”连接方案安全可靠;轴压比增大,装配式混凝土异形柱框架结构在相同侧移下对应的抗侧承载力增大,其中屈服荷载、峰值荷载平均值分别提高约16.8%、14.5%;同时结构极限变形与耗能能力下降、延性降低,但各延性系数平均值均在3.20以上;两试件实测各层弹性层间位移角均小于《混凝土异形柱结构技术规程》(JGJ 149-2017)规定限值1/550,表明装配式混凝土异形柱框架结构存在过早开裂现象,究其原因为一榀平面框架试验时未考虑楼板、内外墙板对侧向刚度的贡献作用;就弹塑性层间位移角而言均符合规范1/50限值要求,满足“大震不倒”抗震设防要求。(3)探明了二层二跨装配式混凝土异形柱框架结构的抗震性能,完成了1榀足尺比例设计的二层二跨装配式混凝土异形柱框架结构的拟静力试验。研究结果表明,模型终极失效呈“强柱弱梁”破坏特征;模型各层弹性层间位移角均小于规范限值1/550要求,究其原因是装配式异形柱框架结构在构件拼接处过早开裂所致,建议适度放宽弹性层间位移角限值;模型一层、二层弹塑性层间位移角分别为1/25、1/48,均大于规范限值1/50,满足“大震不倒”抗震设防要求;试验模型具有良好的承载变形与耗能能力,满足延性框架要求;模型中间十字节点呈“X”型剪切裂缝且损坏较重,宜采取必要措施增强。(4)实现了基于“等同现浇”设计的装配式混凝土异形柱框架结构的静力弹塑性分析,完成了混凝土异形柱空间框架及其开间与进深方向单榀框架在SAP2000的推覆分析研究。研究结果表明,通过将混凝土异形柱原位等效为矩形柱,在SAP2000平台开展的静力弹塑性模拟结果与试验结果吻合较好,为开展同类结构的推覆分析提供了便捷、可靠手段;拓展分析表明,对于二层二跨装配式混凝土异形柱框架结构,考虑轴压影响后,极限荷载略有提高、极限变形能力缩短,但极限位移角仍满足规范限值;进一步针对新民居工程背景开展了空间结构推覆分析,结果表明空间框架模型失效呈“梁柱铰混合屈服机制”破坏模式,层间位移角满足规范要求,符合“小震不坏、大震不倒”抗震设防目标。本文创新点如下:(1)验证了采用浆锚连接的足尺装配式混凝土异形柱框架结构的抗震性能可靠性,揭示了其失效破坏机制。(2)建立了基于原位等效代换和修正截面特性的装配式混凝土异形柱框架结构的静力弹塑性分析方法。
方维远[3](2021)在《基于一种异型钢管混凝土柱的云南村镇住宅框架基本结构选型分析研究》文中提出为了推进异型钢管混凝土柱未来在云南区域的村镇住宅工程应用,本文通过对比普通异型钢管混凝土柱,提出了一种RT异型钢管混凝土柱。对两种构造形式的L型钢管混凝土柱进行了轴压试验性能的对比研究。在此基础上,课题组进一步提出了一种适用于云南区域气候和不同抗震设防相结合的异型钢管混凝土柱住宅框架基本结构体系,对该结构体系进行了结构构造选型原则及其整体结构体系分析设计方法研究。主要包括以下内容:(1)梳理了异型钢管混凝土柱的国内外研究现状,分析研究了典型异型钢管混凝土柱不同构造组成、承载力理论计算、轴压和偏压力学性能及其异型钢管混凝土柱框架结构设计,针对云南村镇住宅建筑结构需求,提出本文研究。(2)针对提出的RT异型钢管混凝土柱,进行了普通异型钢管混凝土柱和RT异型钢管混凝土柱的轴压试验对比研究,分析普通异型钢管混凝土柱及其RT异型钢管混凝土柱的破坏模式、试验后期延性、钢管应变分析和极限承载力等力学性能。(3)为了深化异型钢管混凝土柱在云南区域的工程应用,根据云南省地理地貌、区域气候和地震等条件,提出了异型钢管混凝土柱住宅框架基本结构体系的构造选型原则,并就该住宅基本结构体系的主体框架选择,基础组成,关键节点组成,考虑区域气候后围护体系的选择、连接等进行了分析研究。(4)根据云南区域气候和云南民用建筑节能设计标准,选择围护体系;根据云南民族民居建筑开间、进深特点,确定村镇住宅框架基本结构体系设计分析模型;综合考虑云南地区设防烈度与气候区域所处关系,采用有限元分析方法进行整体结构分析、比较,提出一套基于异形钢管混凝土柱的云南省村镇住宅框架基本结构体系在不同抗震设防烈度下和区域气候的抗震性能设计分析方法。
曹怀特[4](2020)在《异形柱框架—剪力墙结构抗震性能分析》文中研究指明住宅建筑中常用的结构形式很多,常用的有异形柱框架结构和剪力墙结构等,异形柱框架-剪力墙结构是这两种体系的结合,它集中了异形柱框架结构和普通剪力墙结构的优点。异形柱框架-剪力墙结构墙体布置灵活,同时墙体刚度可根据布置调整,自重较轻,抗震比较有利,同时也可以突破异形柱框架结构在高度上的限制。目前国内外的研究主要停留在对单个构件的研究上,并且多是异形柱结构的单一构件研究,在承载力方面多停留在构件截面的承载力方面,研究整体抗震性能的极少。本课题主要研究内容以高层住宅中常用的异形柱框架-剪力墙结构体系为主要研究对象,分析异形柱框架-剪力墙结构形式的的特点,并分析异形柱框架-剪力墙结构的平面结构布置、结构计算、构造的相关问题。本文以沈阳市某高层住宅为例,按照现行的最新结构专业设计规范要求,建立异形柱框架-剪力墙结构体系和短肢剪力墙结构体系计算模型,利用结构专业计算软件进行两种结构多遇地震下的静力弹性计算分析,并对计算结果进行技术性能分析,找出它们在自振周期、水平位移、地震反应力、内力指标之间的异同。通过对异形柱框架-剪力墙结构进行弹性动力时程计算,分析异形柱框架-剪力墙结构在地震作用下的结构响应,结果表明其在多遇地震下具有良好的抗震性能。使用有限元计算软件,对异形柱框架-剪力墙结构进行罕遇地震下的静力弹塑性计算分析,结果表明,高层钢筋混凝土住宅异形柱框架-剪力墙结构在大震下具有良好的抗震性能。提出适当提高异形柱框架-剪力墙结构在罕遇地震作用下弹塑性层间位移角的限值。对比异形柱框架-剪力墙结构和短肢剪力墙结构的工程经济性,给出在结构设计时高层住宅建筑的结构体系选择建议,供结构设计参考。
汪彬[5](2020)在《基础组合隔震对异形柱框架结构地震动力响应影响研究》文中研究指明钢筋混凝土异形柱框架结构是柱肢与墙体等厚的轻型结构,避免室内柱角凸出改善了建筑使用功能,近年来在住宅建筑中得到了广泛的应用。与矩形柱相比,异形柱受几何特性的影响,异形柱框架结构整体抗震性能存在一定的局限性,阻碍了在地震高烈度区的推广和应用。基础组合隔震是将不同类型隔震装置组合进而有效利用各支座优势的一种隔震技术,将基础组合隔震技术应用到异形柱框架结构,可以有效地提高结构在强烈地震作用下的抗震性能。论文主要研究内容及结论如下:(1)依据规范建立8(0.2g)异形柱框架结构模型,采用减震系数法对异形柱框架结构按抗震措施降低一度隔震目标进行叠层橡胶隔震与基础组合隔震两种方案隔震设计,通过时程分析表明基础隔震结构隔震层支座应力、弹塑性位移等均能满足规范要求,实现抗震措施降低一度的隔震目标。(2)运用有限元分析软件OpenSees对异形柱框架结构传统抗震、叠层橡胶隔震和基础组合隔震在70gal、200gal和400gal地震作用下进行动力时程分析,对比研究上部异形柱框架结构地震动力响应。结果表明:叠层橡胶隔震和基础组合隔震上部异形柱结构顶层加速度、层间剪力、层间位移响应均降低50%以上,而异形柱框架结构采用基础组合隔震的隔震效果优于叠层橡胶隔震,随着地震加速度强度的增大,隔震效果更为明显,根据纤维塑性铰转角来分析梁柱节点塑性铰分布情况,异形柱框架结构进入弹塑性工作阶段延缓了塑性发展。(3)为充分发挥基础组合隔震对异形柱框架结构的隔震效果,分析了基础组合隔震隔震层摩擦承压比与滑动摩擦系数对上部异形柱框架结构地震动力响应的影响。研究结果表明:通过控制摩擦承压比决定隔震层中滑板支座的数量,随着摩擦承压比增大,上部异形柱框架结构地震动力响应先减小后增大,当摩擦承压比取值为0.1~0.3时,与纯叠层橡胶隔震相比层间位移可降低约35%~45%;滑动摩擦系数越小,基础组合隔震对异形柱框架结构隔震性能越好,上部结构地震动力响应越小。(4)在Ⅰ类、Ⅱ类、Ⅲ类场地下分别选取远场、近场脉冲和长周期地震动对异形柱框架结构隔震与非隔震进行罕遇地震作用下的动力弹塑性分析,分析结果表明:在不同场地类别地震动作用下,基础组合隔震上部异形柱框架结构弹塑性最大位移角均满足规范指标,在Ⅰ类场地中远场地震动作用下上部异形柱框架结构弹塑性位移角减幅可达70.24%,而Ⅱ类、Ⅲ类场地中在近场脉冲、长周期地震动作用下基础组合隔震对上部异形柱框架结构隔震效果有所下降,其中长周期地震动影响最为明显,弹塑性最大位移角减幅32.62%。
周扬帆[6](2020)在《MRPC加固震损后异形柱框架节点抗震性能试验研究》文中研究说明对于钢筋混凝土框架结构而言,由于结构简洁、传力明确、可使用空间较大等优点,使其得以广泛应用;但由于早期结构设计人员的设计不当以及施工人员的施工不当,导致震区现存大量“强构件弱节点”的框架结构,故对该种框架节点震损后的加固问题便显得尤为重要了。本文针对当前国内、外对震损框架节点加固的空白区域,利用改性活性粉末混凝土(MRPC)的高延性、高强度以及高耗能等优势,分别对震损现浇异形柱框架中间节点CKJ-1、震损装配式异形柱框架中间节点AKJ-1、震损现浇异形柱框架边节点CKJ-2以及震损装配式异形柱框架边节点AKJ-2进行了震损加固处理,而后对上述4个震损加固后带板异形柱框架节点进行低周反复循环荷载试验研究。研究结果表明:(1)经过MRPC加固的震损异形柱框架节点的裂缝开展模式明显发生改变,由于钢纤维与聚丙烯纤维对混凝土的拉拔作用,使得裂缝开展的既密又细,对节点的耗能性能提升显着;但是,部分节点的破坏形式为下柱端新旧材料交界处破坏,这是因为:(1)MRPC在浇筑振捣过程中钢纤维向下沉积,使得下柱端MRPC中胶凝材料与原混凝土接触面积减少;(2)下柱端剔凿长度太短,导致其新旧材料交界处弯矩较大,从而容易开裂。(2)经过MRPC加固后各震损异形柱节点的极限承载力与极限位移较震损前节点均显着提升,CKJ-1试件、AKJ-1试件、CKJ-2试件与AKJ-2试件的极限承载力分别提升了10.23%、21.08%、26.22%与15.93%,由于AKJ-2试件铰支座处破坏导致其极限位移无法得到,故只测得CKJ-1试件、AKJ-1试件与CKJ-2试件的极限位移较震损前节点分别提升了35.16%、24.10%、21.69%。(3)采用MRPC加固的震损异形柱节点滞回特性更加优越,震损加固后节点的滞回环可以明显将震损前节点的滞回环包络,且震损加固后节点骨架曲线的“倒S”形明显呈放大趋势;对比震损加固后装配中间节点与震损前现浇中间节点的滞回环可以发现,前者基本可以将后者包络,说明经过MRPC加固后的装配节点的抗震性能可以基本达到“优于现浇”的结果。(4)MRPC对于改善震损异形柱节点的强度退化与刚度退化主要体现在加载后期,这是由于在加载后期震损区域普通混凝土的骨料分离致使强度与刚度退化明显,而MRPC中钢纤维与聚丙烯纤维对混凝土的拉拔作用使得节点震损区域相对完整、不致分离,故而震损加固后节点后期的强度与刚度退化也较震损前缓和。(5)采用MRPC加固的震损异形柱节点累积耗能远远超越了震损前节点,累积耗能提升最为显着的是CKJ-1试件,整体累积耗能约为震损前节点的2倍;除AKJ-2试件试验提前结束外,AKJ-1试件与CKJ-2试件的整体累积耗能提升幅度分别为震损前节点的1.88倍和1.73倍。(6)除AKJ-2试件铰支座处破坏导致其延性系数无法得到外,CKJ-1试件、AKJ-1试件、CKJ-2试件的延性系数分别为震损前的1.47倍、1.33倍、1.23倍。(7)由于实际状态下异形柱节点的试验条件不同于理想状态下;因此,震损加固后异形柱节点核心区受剪承载力及梁柱承载力,理论计算值均高于实际试验值。
田擎[7](2020)在《剪力墙布设对异形柱框架-剪力墙结构抗震性能影响研究》文中提出异形柱框架-剪力墙结构因其柱截面和墙截面平齐的特点而具有有室内平整美观、有效使用面积更多等优点,目前已大量应用在以住宅为代表的多高层建筑中。但由于该结构应用时间较短,在其剪力墙布设(此处主要指数量选择和竖向布置高度)和如何准确评估其抗震性能方面还存在着一些问题,针对该问题,论文做了以下内容研究:1.以刚度特征值作为衡量异形柱框剪结构中剪力墙数量的指标,选用典型的结构布置形式,通过调整剪力墙的长度来调整结构的刚度特征值,采用结构设计软件盈建科建立了八个不同刚度特征值的分析模型,比较其在地震作用下动力响应的差异,研究其合理性,从而确定了异形柱框剪结构合理的刚度特征值范围是1.503.10。2.足够多数量地震动输入的增量动力分析(IDA)能得到结构全面真实的地震响应数据;研究选用某十一层高的异形柱框剪住宅,根据前文结论调整其剪力墙数量,借用弹塑性分析软件Perform-3D对其进行了IDA分析,得到结构在不同地震条件下的位移及内力数据;并尝试使用现有的性能点确定方法来寻找结构的性能点,但结果与规范推荐值相差很大,证明了该方法对RC异形柱框剪结构的不适用性。3.建筑结构地震易损性分析可以计算结构在不同程度地震下产生某种损伤的概率;研究以IDA算得的数据为基础,建立易损性矩阵,得到工程实例在规范提出的不同强度的地震下,产生不同程度损伤的概率,证明了结构整体层面抗震性能良好;然后研究借助性能化设计软件PBSD对罕遇地震下结构主要构件的损伤情况及耗能能力做了统计,发现主要损伤及耗能均集中在梁构件上,从构件层面上证明了结构抗震性能的可靠性,同时也验证了刚度特征值范围的合理性。4.剪力墙数量是影响剪力墙竖向布置高度的重要因素,研究建立刚度特征值1.53.1之间的异形柱框剪模型,分别取消顶部一到六层剪力墙进行分析,通过对位移及内力指标变化规律进行研究,确定了上部剪力墙可取消的高度约为20%50%,然后采用弹塑性时程分析的方法对研究结果进行了验证。
曹石[8](2020)在《装配式异形束柱钢框架-支撑住宅结构体系抗震性能与设计理论研究》文中指出近年来,随着我国逐渐加快推进住宅产业化发展,装配式钢结构因其抗震性能优越以及轻质环保等诸多优点,从而得到大力推广和广泛应用。但是,当前我国应用的钢结构住宅体系尤其是应用的高层住宅钢结构体系存在着工厂制作程度较低、标准化应用较差以及围护体系落后等一系列问题,从而制约了国内装配式钢结构住宅的应用和推广。针对我国装配式钢结构住宅体系中存在的上述问题,本文基于标准化制作和设计理念提出一种新型装配式异形束柱钢框架-支撑住宅体系。该体系主要由钢异形束柱承重构件、上环下隔式梁柱节点、预制混凝土墙体大板以及叠合楼板等部件组成,其具有工厂制作化、现场焊接少、施工便捷高效以及集成化高等特点,具有良好的应用前景。但是该体系的抗震性能和部分关键设计依据尚缺乏足够的研究和理论支撑,制约了该体系的推广。因此,本文将围绕装配式异形束柱钢框架-支撑住宅结构体系的抗震性能及设计理论中的关键问题开展研究,旨在为其推广和应用奠定理论技术基础。主要研究内容和成果如下:(1)梁柱节点在本文研究结构体系中为传递力的主要部位,对结构的承载力和抗震性能有着决定性的影响。因此,本文考虑柱壁厚度、梁截面高度、柱截面形式、外肋贴板、柱连接方式以及翼缘削弱(RBS)梁截面构造等因素,遵循“强节点、弱构件”的原则,共设计了9个足尺上环下隔式异形束柱梁柱节点,并对其进行低周反复荷载试验来研究该节点在地震作用下的破坏模式、传力机制、耗能能力以及承载力等性能。结果表明,除了RBS梁截面节点的试件,其塑性发展以及破坏区域主要集中梁端,破坏模式主要包括梁端焊缝断裂和环板断裂两种;而采用RBS梁截面构造的上环下隔式梁柱节点的塑性发展则集中在RBS区域,其破坏模式为在RBS区域内翼缘受拉断裂。试验中得到的试件荷载-位移滞回曲线饱满,表明该节点具有良好的抗震性能。节点的承载力主要受到梁截面高度和柱壁厚度的影响,而外肋贴板构造、异形束柱截面形式等因素对承载力的影响很小;此外,除了试件T-6以外,试验中其余节点的转动能力均能够满足我国《建筑抗震设计规范》(GB50011-2010)的抗震设计要求。(2)通过有限元软件ANSYS建立新型上环下隔式异形束柱梁柱节点的数值模型,对试验节点进行模拟分析,并与试验结果对比来验证模型的有效性;通过该模型对节点进行全过程和关键部位的应力分析可得,环板的应力主要集中与梁直接连接的腔体区域,表明该腔体主要承受梁端传递来的弯矩,其他腔体承受的弯矩很小,可以忽略不计;梁与环板连接截面、环板与柱壁连接截面以及RBS区域过焊孔都处存在的严重的应力集中现象,与试验中的破坏截面基本一致。为弥补试验的参数不足,基于上述有限元模型进行参数分析,结果表明,环板和隔板的厚度和悬挑长度以及柱壁厚度对节点的承载力和刚度有一定影响,而轴压比的影响很小。采用屈服线理论推导出此类节点的承载力计算公式,将该公式计算得到的承载力与试验、有限元模型以及《高层民用建筑钢结构技术规程》(JGJ99-2015)的结果进行对比,表明公式计算结果与试验和有限元结果比较接近,比规程取值更加合理和准确;最后依据试验、理论和有限元模型对新型节点的研究成果给出了该类节点的构造要求和设计方法。(3)采用理论分析和数值拟合的方法,建立了上环下隔类梁柱节点的初始刚度计算公式;基于前文研究成果,并通过有限元模型数据,建立该类节点弯矩-转角(M-θ)关系分别在单调荷载作用下的计算模型和循环荷载作用下的恢复力模型;将采用上述模型的计算结果与有限元分析结果进行对比,两者结果吻合较好,表明上述模型可以用作结构的弹塑性分析。(4)针对预制混凝土墙体大板在装配式钢结构住宅中应用时与主体结构连接的问题,分别提出外挂和内嵌两种连接形式的新型墙板连接节点;对其中受力复杂的外挂墙板连接节点进行研究,并给出该连接节点的设计方法和参数取值。为了研究预制混凝土墙体大板对装配式钢结构的动力特性的影响,分别对两栋采用预制混凝土墙体大板的装配式钢结构工程的动力特性进行现场实测;试验结果表明,预制混凝土墙体大板对主体钢结构的动力特性有较大的影响,我国《高层民用建筑钢结构技术规程》(JGJ99-2015)给出的自振周期折减系数取值较大;为避免采用预制混凝土墙体大板的主体结构在抗震设计时计算得到地震荷载偏小,通过分析研究建议当预制混凝土墙体大板与结构柔性连接时,结构自振周期折减系数可取0.7~0.8,当预制混凝土墙体大板与结构刚性连接时,需将墙板做为结构构件建模来进行结构分析计算。(5)选取不同结构高度建立考虑上环下隔式梁柱节点弯矩-转角关系的装配式异形束柱钢框架-支撑住宅结构体系地震反应分析模型,通过静力弹塑性分析法和能力谱法对装配式异形束柱钢框架-支撑住宅结构体系的强度折减系数R进行分析和讨论,建议该体系的强度折减系数R可取3.6,并依据建议的系数得到修正后的水平地震影响系数最大值,可供该新型体系抗震设计参考。(6)对某一工程案例应用装配式异形束柱钢框架-支撑住宅体系进行设计,分别从结构体系和围护体系两个方面出发,详细介绍了该体系的设计流程和装配化施工过程,表明该体系具有较好的可行性和良好的应用前景。
安朋飞[9](2019)在《钢管混凝土异形柱框架结构减震隔震体系抗震性能分析》文中研究表明伴随着国家大力发展装配式建筑政策的出台,各地纷纷落实跟进,发布了地方装配式政策,积极推广装配式建筑。装配式钢结构住宅具有空间布置灵活、标准化制作、施工速度快、抗震性能优越、绿色、节能环保等优势,逐渐走进大众视野。2019年10月司法部发布《建设工程抗震管理条例》(征求意见稿),文中指出“国家鼓励在装配式建筑中应用隔震减震技术,提高抗震性能”。目前,装配式钢结构住宅中,多数采用消能减震装置提高结构的抗震性能,但对减隔震联合设计研究较少,所以本文将隔震技术引入钢管混凝土异形柱框架减震结构中,分析减隔震联合设计的可行性及优势。主要研究内容如下:1)基于ETABS结构设计分析软件,建立装配式钢管混凝土异形柱减震高层住宅体系模型,通过数值模拟,分析该结构体系在反应谱、多遇地震、罕遇地震作用下,层间位移角、层间位移、楼层剪力、剪重比、刚重比、抗倾覆等参数变化规律。2)在减震结构基础上进行隔震设计,经过多次试算,最终确定隔震支座的型号及布置方案。对该结构体系进行多遇地震、设防地震、罕遇地震作用下的抗震分析,研究层间位移角、层间位移、楼层剪力、剪重比、刚重比、抗倾覆、隔震支座耗能等参数变化规律。3)对减震结构及减隔震结构抗震性能进行对比,研究结果表明,减震结构及减隔震结构体系,满足相关规范设计要求,减隔震结构较减震结构偏“柔”,风荷载作用时楼层位移大于减震结构,表现出对风荷载更加敏感,地震波作用时隔震层耗散地震能量,减弱地震能量向上部楼层的传递,削减结构的地震加速度响应,整体隔震效果较好。
王帅[10](2020)在《装配式钢管混凝土异形柱边框架抗震性能研究》文中提出近年来,国家严抓环保的力度越来越大,装配式结构再次成为建筑行业的热点,预制混凝土结构在施工现场组装,可以节省成本、节能减排,又能缩减整体工期。异形柱结构柱肢与墙体等厚,避免了屋角处柱体突出,增加了房屋使用面积,方便了室内装修设计。两种结构优点突出,但是都具有一定的局限性。装配式钢管混凝土异形柱结构将装配式结构、异形柱结构和钢管混凝土结构结合在一起,既具备三种结构的优点,又巧妙地克服了节点连接困难,结构承载力薄弱等问题,是一种非常具有发展前景的新型结构体系。为了使钢管混凝土异形柱结构体系的研究更加完善,在课题组前期研究结果的基础上,设计了1榀两层两跨的装配式钢管砼异形柱边框架,并对其进行了拟静力试验,观察了试件的损伤过程,记录了试验过程中钢筋和钢管的屈服顺序,分析了结构的各项受力性能。研究结果显示,结构的梁端破坏严重,形成了典型的“梁铰”,破坏机制合理;框架承载能力较高,位移延性远远超过了一般异形柱结构,具有良好的塑性变形能力;框架整体和层间位移角均远远大于规定的限值,说明结构抗倒塌能力较强;框架的滞回曲线饱满,表现出了较好的耗能能力;强度衰减不明显,刚度退化较小。利用ABAQUS软件对试验中的框架进行了弹塑性数值分析,详细地分析了结构的变形情况,将计算得到的混凝土应变云图、钢筋和钢管的应力云图与试验现象进行比对,计算得到的结果与试验值比较吻合。屈服荷载以及对应的位移、破坏荷载以及对应的位移均相差极小,模拟结果的框架延性高于试验测试值,塑性铰出现顺序差别不大,破坏机制比较相似。图66幅;表16个;参79篇。
二、异形柱框架结构计算模型探讨(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、异形柱框架结构计算模型探讨(论文提纲范文)
(1)L形缀板式钢管混凝土组合柱框架抗震性能研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 选题背景与研究意义 |
1.1.1 选题背景 |
1.1.2 研究意义 |
1.2 国内外研究现状 |
1.3 异形柱研究现状 |
1.4 异形柱框架研究现状 |
1.5 本文主要研究内容 |
第2章 缀板式钢管混凝土组合柱框架试验研究 |
2.1 引言 |
2.2 试验概况 |
2.2.1 试验目的 |
2.2.2 试件设计 |
2.2.3 试件制作 |
2.2.4 材性试验 |
2.3 试验过程 |
2.3.1 试验装置 |
2.3.2 测点布置 |
2.3.3 加载制度 |
2.3.4 加载过程及现象 |
2.4 试验结果分析 |
2.4.1 滞回曲线 |
2.4.2 骨架曲线 |
2.4.3 耗能能力 |
2.4.4 承载力及延性系数 |
2.4.5 强度退化 |
2.4.6 刚度退化 |
2.4.7 应变分析 |
2.4.8 变形分析 |
2.5 本章小结 |
第3章 L形缀板式钢管混凝土组合柱框架有限元分析 |
3.1 有限元软件简介 |
3.2 ABAQUS有限元软件 |
3.2.1 有限元模型建立 |
3.2.2 本构关系 |
3.2.3 混凝土接触设置 |
3.2.4 边界条件 |
3.2.5 单元类型和网格划分 |
3.3 有限元分析与试验结果 |
3.3.1 破坏模式对比 |
3.3.2 滞回曲线对比 |
3.3.3 数据对比 |
3.4 本章小结 |
第4章 缀板式钢管混凝土组合柱框架参数化分析 |
4.1 有限元参数选取 |
4.2 轴压比的影响 |
4.2.1 耗能能力 |
4.2.2 承载能力 |
4.2.3 强度及刚度退化 |
4.2.4 应力云图 |
4.3 梁柱线刚度的影响 |
4.3.1 线刚度参数 |
4.3.2 耗能能力 |
4.3.3 强度及刚度退化 |
4.3.4 应力云图 |
4.4 截面形式的影响 |
4.4.1 柱截面参数 |
4.4.2 耗能能力 |
4.4.3 承载力及延性 |
4.4.4 强度及刚度退化 |
4.4.5 应力云图 |
4.5 本章小结 |
第5章 结论与展望 |
5.1 结论 |
5.2 展望 |
参考文献 |
攻读硕士学位期间论文发表及科研情况 |
致谢 |
(2)装配式钢筋混凝土异形柱框架结构抗震性能足尺试验与分析(论文提纲范文)
中文摘要 |
英文摘要 |
1 引言 |
1.1 研究背景及意义 |
1.1.1 研究背景 |
1.1.2 研究意义 |
1.2 装配式混凝土结构国内外研究进展 |
1.2.1 国外研究进展 |
1.2.2 国内研究进展 |
1.3 装配式混凝土异形柱结构研究进展 |
1.3.1 现浇异形柱结构 |
1.3.2 装配式混凝土异形柱结构 |
1.3.3 装配式型钢混凝土异形柱结构 |
1.3.4 异形柱结构静力弹塑性分析研究 |
1.4 研究内容与技术路线 |
1.4.1 研究内容 |
1.4.2 技术路线 |
2 试验概况 |
2.1 工程背景与模型设计 |
2.1.1 工程概况 |
2.1.2 模型设计 |
2.2 装配式混凝土异形柱框架结构拆分装配方案研究 |
2.2.1 装配式异形柱框架结构拆分原则 |
2.2.2 梁、柱构件预制单元的确定 |
2.2.3 装配式混凝土异形柱框架的拆分与装配 |
2.2.4 装配式异形柱混凝土连接节点设计 |
2.3 装配式混凝土异形柱框架结构设计与制作 |
2.3.1 试件设计 |
2.3.2 试件制作 |
2.4 装配式混凝土异形柱框架结构试验加载 |
2.4.1 加载装置及加载现场 |
2.4.2 加载制度 |
2.4.3 量测方案 |
2.4.4 材料性能试验 |
2.5 本章小结 |
3 试验结果与分析 |
3.1 试验现象 |
3.1.1 裂缝 |
3.1.2 破坏模式 |
3.2 基于等同现浇设计理念的装配式混凝土异形柱框架结构抗震性能分析 |
3.2.1 滞回曲线 |
3.2.2 骨架曲线 |
3.2.3 变形与承载力特征值 |
3.2.4 承载力退化 |
3.2.5 刚度退化 |
3.2.6 能量耗散 |
3.3 不同轴压比作用下装配式混凝土异形柱框架结构抗震性能分析 |
3.3.1 滞回曲线 |
3.3.2 骨架曲线 |
3.3.3 变形与承载力特征值 |
3.3.4 承载力退化 |
3.3.5 刚度退化 |
3.3.6 能量耗散 |
3.4 二层二跨足尺装配式混凝土异形柱框架结构抗震性能分析 |
3.4.1 滞回曲线 |
3.4.2 骨架曲线 |
3.4.3 变形与承载力特征值 |
3.4.4 承载力退化 |
3.4.5 刚度退化 |
3.4.6 能量耗散 |
3.5 浆锚节点区受力性能分析 |
3.6 本章小结 |
4 基于等效代换的静力弹塑性分析 |
4.1 静力弹塑性分析原理 |
4.1.1 基本假定 |
4.1.2 实施步骤 |
4.1.3 侧向力分布模式 |
4.2 有限元模型 |
4.2.1 塑性铰 |
4.2.2 异形柱截面等效代换原理 |
4.2.3 反应谱设计 |
4.2.4 有限元模型建立 |
4.3 抗震性能评估方法 |
4.3.1 层间位移角限值 |
4.3.2 框架结构屈服机制 |
4.4 开间向单榀混凝土异形柱框架结构推覆分析 |
4.4.1 基底剪力-顶点位移抗力曲线 |
4.4.2 框架屈服机制分析 |
4.4.3 层间位移角分析 |
4.5 进深向单榀混凝土异形柱框架结构推覆分析 |
4.5.1 基底剪力-顶点位移抗力曲线 |
4.5.2 框架屈服机制分析 |
4.5.3 层间位移角分析 |
4.6 混凝土异形柱空间框架结构推覆分析 |
4.6.1 基底剪力-顶点位移抗力曲线 |
4.6.2 框架屈服机制分析 |
4.6.3 层间位移角分析 |
4.6.4 模态分析 |
4.6.5 能力谱曲线分析 |
4.7 本章小结 |
5 讨论 |
5.1 现浇整体式与预制装配式异形柱框架结构抗震性能对比分析 |
5.2 轴压比对装配式异形柱框架结构抗震性能的影响分析 |
5.3 对装配式混凝土异形柱框架结构其它抗震性能指标的讨论 |
5.3.1 残余变形 |
5.3.2 层间不均匀性 |
5.3.3 L形柱压-弯-剪-扭复合受力 |
6 结论与展望 |
6.1 主要结论 |
6.2 研究展望 |
参考文献 |
致谢 |
攻读学位期间取得的成果及参与项目 |
(3)基于一种异型钢管混凝土柱的云南村镇住宅框架基本结构选型分析研究(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 课题背景 |
1.2 异形柱住宅特点 |
1.3 异型钢管混凝土柱的研究现状 |
1.3.1 普通异型钢管混凝土柱 |
1.3.2 方钢管组合异形钢管混凝柱 |
1.3.3 由方矩形钢管组合焊接型成的其他异形钢管混凝土柱 |
1.3.4 加劲异形钢管混凝土柱 |
1.3.5 带约束拉杆的异型钢管混凝土柱 |
1.4 异形钢框架结构研究及应用现状 |
1.5 本文研究内容 |
1.6 课题来源 |
第二章 RT异型钢管混凝土柱轴压试验性能及极限承载力研究 |
2.1 引言 |
2.2 试验内容和目的 |
2.2.1 实验内容 |
2.2.2 实验目的 |
2.3 试验设计 |
2.3.1 试件设计 |
2.3.2 试件的制作流程 |
2.3.3 材料力学性能 |
2.3.4 试验加载装置和观测布置 |
2.3.5 轴压力和极限承载力的计算 |
2.3.6 加载方案 |
2.4 试验结果及分析 |
2.4.1 试验过程和破坏形态 |
2.4.2 轴向荷载—轴向位移分析及其延性分析 |
2.4.3 轴向荷载—水平挠度曲线分析 |
2.4.4 钢管应变分析 |
2.4.5 轴压极限承载力 |
2.5 本章小结 |
第三章 云南地区异型钢管混凝土柱住宅基本结构构造选型 |
3.1 引言 |
3.2 云南地区情况 |
3.2.1 地区的资源条件 |
3.2.2 结构体系的构件选型原则 |
3.3 结构体系构造组成 |
3.3.1 主体框架结构 |
3.3.2 结构体系基础 |
3.3.3 节点形式 |
3.3.4 围护体系的选择 |
3.3.5 钢木预制踏步组合楼梯 |
3.3.6 内装系统 |
3.3.7 SSSCC村镇住宅结构体系优势 |
3.4 本章小结 |
第四章 异型钢管混凝土柱在云南村镇住宅框架基本结构分析研究 |
4.1 引言 |
4.2 SSSCC村镇住宅框架结构体系的整体设计方法 |
4.3 异型钢管混凝土柱计算模型的建立 |
4.3.1 计算基本参数 |
4.3.2 计算模型的建立 |
4.4 异型钢管混凝土整体结构的有限元分析 |
4.4.1 模态分析 |
4.4.2 振型分解反应谱分析 |
4.4.3 弹性时程分析 |
4.4.4 静力弹塑性分析 |
4.5 云南省村镇工程应用推广分析小结 |
第五章 结论与展望 |
5.1 结论 |
5.2 课题研究展望 |
致谢 |
参考文献 |
附录 攻读硕士学位期间取得成果 |
(4)异形柱框架—剪力墙结构抗震性能分析(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 研究背景 |
1.2 相关概念 |
1.2.1 异形柱框架-剪力墙结构 |
1.2.2 短肢剪力墙结构 |
1.3 国内外研究现状综述 |
1.3.1 国外研究现状综述 |
1.3.2 国内研究现状综述 |
1.4 研究目的与意义 |
1.5 研究内容与方法 |
1.5.1 研究内容 |
1.5.2 研究方法 |
2 异形柱抗震研究的基本理论及工程概况 |
2.1 异形柱结构的抗震特点 |
2.2 异形柱结构的计算分析 |
2.2.1 异形柱正截面承载力计算的基本假定 |
2.2.2 异形柱正截面承载力的计算 |
2.2.3 异形柱斜截面受剪承载力的计算 |
2.3 异形柱框架-剪力墙结构的基本性能 |
2.3.1 异形柱框架-剪力墙结构介绍 |
2.3.2 异形柱框架-剪力墙结构受力特点 |
2.4 短肢剪力墙的基本性能 |
2.4.1 短肢剪力墙结构介绍 |
2.4.2 短肢剪力墙结构受力特点 |
2.5 工程概况 |
2.5.1 工程简介 |
2.5.2 地震作用 |
2.5.3 风荷载 |
2.5.4 雪荷载 |
2.5.5 楼面荷载 |
2.5.6 构件截面 |
2.5.7 材料 |
2.6 本章小结 |
3 结构的静力弹性计算分析 |
3.1 异形柱框剪结构计算模型总体参数 |
3.2 短肢剪力墙结构计算模型总体参数 |
3.3 静力弹性分析结果 |
3.3.1 周期及振型 |
3.3.2 楼层剪力及剪重比 |
3.3.3 倾覆力矩统计 |
3.3.4 位移比与层间位移角 |
3.3.5 层间受剪承载力 |
3.3.6 侧向刚度比 |
3.3.7 刚重比 |
3.4 本章小结 |
4 结构的弹性动力时程分析 |
4.1 基本概念 |
4.2 基本原理 |
4.3 弹性动力时程分析选波 |
4.4 弹性动力时程分析的楼层剪力 |
4.5 弹性动力时程分析的位移 |
4.6 本章小结 |
5 罕遇地震下结构的静力弹塑性分析 |
5.1 基本概念 |
5.2 Pushover的分析及计算流程 |
5.3 水平荷载加载方式 |
5.3.1 均匀分布加载方式 |
5.3.2 倒三角分布加载方式 |
5.3.3 结构的目标位移 |
5.4 异形柱框剪结构X、Y向罕遇地震作用下弹塑性性能 |
5.4.1 X向结构的性能曲线及性能点 |
5.4.2 Y向结构的性能曲线及性能点 |
5.4.3 Midas(迈达斯)软件静力弹塑性分析 |
5.4.4 罕遇地震下结构的弹塑性层间位移角限值 |
5.5 本章小结 |
6 工程经济性对比分析 |
6.1 工程经济性的重要性 |
6.2 工程造价的组成 |
6.3 工程造价的计算 |
6.3.1 异形柱框剪结构施工图预算 |
6.3.2 短肢剪力墙结构施工图预算 |
6.4 本章小结 |
7 结论与展望 |
7.1 结论 |
7.2 创新点 |
7.3 展望 |
参考文献 |
作者简介 |
作者在攻读硕士学位期间获得的学术成果 |
致谢 |
(5)基础组合隔震对异形柱框架结构地震动力响应影响研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景及意义 |
1.2 异形柱框架结构研究现状 |
1.3 隔震技术研究现状 |
1.3.1 隔震结构工作原理 |
1.3.2 隔震技术研究与应用 |
1.3.3 基础组合隔震技术 |
1.4 隔震技术在异形柱结构中应用研究现状 |
1.5 论文主要研究内容 |
第2章 基础组合隔震结构动力反应分析方法研究 |
2.1 引言 |
2.2 组合隔震装置力学性能 |
2.2.1 叠层橡胶支座 |
2.2.2 弹性滑板支座 |
2.3 基础组合隔震结构分析模型 |
2.3.1 单质点基础隔震结构动力分析 |
2.3.2 多质点基础组合隔震结构动力分析 |
2.4 基于有限元的动力时程分析 |
2.4.1 OpenSees有限元软件 |
2.4.2 动力时程分析 |
2.6 本章小结 |
第3章 异形柱框架结构有限元分析模型研究 |
3.1 引言 |
3.2 基于柔度法的塑性铰梁柱单元模型 |
3.3 异形柱核心区混凝土等效约束区域划分 |
3.4 数值分析模型合理性验证 |
3.4.1 异形柱构件数值分析结果验证分析 |
3.4.2 异形柱框架结构数值分析与试验结果验证 |
3.5 本章小结 |
第4章 异形柱框架结构隔震设计及地震动力响应分析 |
4.1 引言 |
4.2 异形柱框架结构隔震设计 |
4.2.1 工程概况 |
4.2.2 隔震支座的选型与布置 |
4.2.3 时程分析地震波选取与输入 |
4.3 隔震层控制性参数分析 |
4.3.1 设计控制参数分析 |
4.3.2 结构动力反应控制参数分析 |
4.4 地震动力响应分析 |
4.4.1 振动特性分析 |
4.4.2 结构顶层加速度响应对比分析 |
4.4.3 楼层层间剪力对比分析 |
4.4.4 楼层层间位移响应对比分析 |
4.4.5 梁柱节点纤维塑性铰分布 |
4.5 本章小结 |
第5章 基础组合隔震对异形柱框架结构隔震性能影响因素分析 |
5.1 引言 |
5.2 摩擦承压比对结构隔震性能影响研究 |
5.2.1 摩擦承压比对基底剪力系数的影响 |
5.2.2 摩擦承压比对楼层层间位移的影响 |
5.2.3 摩擦承压比对隔震层最大位移的影响 |
5.3 滑动摩擦系数对结构隔震性能影响研究 |
5.4 不同场地类别对结构隔震性能影响研究 |
5.4.1 地震动记录选取 |
5.4.2 不同场地类别下结构地震动力响应分析 |
5.5 本章小结 |
第6章 结论与展望 |
6.1 结论 |
6.2 展望与不足 |
参考文献 |
致谢 |
攻读硕士学位期间已发表或录用的论文 |
(6)MRPC加固震损后异形柱框架节点抗震性能试验研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 课题背景与研究意义 |
1.2 混凝土异形柱及异形柱框架节点研究现状 |
1.2.1 国外研究现状 |
1.2.2 国内研究现状 |
1.3 装配式框架节点抗震性能研究现状 |
1.3.1 国外研究现状 |
1.3.2 国内研究现状 |
1.4 震损加固修复后框架节点研究现状 |
1.5 改性活性粉末混凝土(MRPC)的简介 |
1.6 震损修复后异形柱框架节点抗震性能研究的提出 |
1.7 本文主要研究内容 |
第2章 MRPC加固震损后异形柱框架节点试验设计 |
2.1 试验设计目的 |
2.2 MRPC的配制及其材性参数 |
2.2.1 试块的制作与养护 |
2.2.2 立方体抗压试验 |
2.2.3 轴心抗拉试验 |
2.2.4 抗折试验 |
2.3 震损异形柱框架节点试件设计 |
2.3.1 震损前异形柱框架节点试验参数 |
2.3.2 框架节点地震破坏程度评定 |
2.3.3 震损异形柱框架节点加固及裂缝修复 |
2.4 试验加载装置 |
2.5 试验加载制度 |
2.5.1 竖向荷载加载制度 |
2.5.2 水平荷载加载制度 |
2.6 试验测试内容及测点布置 |
2.6.1 测试内容 |
2.6.2 测点布置 |
2.7 本章小结 |
第3章 MRPC加固震损后异形柱框架节点试验分析 |
3.1 试验现象 |
3.1.1 CKJ-1试验现象及分析 |
3.1.2 AKJ-1试验现象及分析 |
3.1.3 CKJ-2试验现象及分析 |
3.1.4 AKJ-2试验现象及分析 |
3.1.5 下柱端新旧接合面破坏分析 |
3.2 极限位移与极限荷载 |
3.2.1 极限位移 |
3.2.2 极限荷载 |
3.3 滞回曲线与骨架曲线 |
3.3.1 滞回曲线 |
3.3.2 骨架曲线 |
3.4 强度退化与刚度退化 |
3.4.1 强度退化 |
3.4.2 刚度退化 |
3.5 耗能能力与延性系数 |
3.5.1 耗能能力 |
3.5.2 延性系数 |
3.6 震损加固后框架节点钢筋应变分析 |
3.6.1 梁纵筋应变分析 |
3.6.2 柱纵筋应变分析 |
3.6.3 核心区箍筋应变分析 |
3.7 MRPC加固震损后框架节点的施工意见 |
3.8 本章小结 |
第4章 混凝土异形柱框架节点的理论计算 |
4.1 混凝土异形柱框架节点的主要破坏形式 |
4.2 框架节点核心区的抗剪力学模型 |
4.3 震损加固后异形柱框架节点受力分析及核心区剪力计算 |
4.3.1 框架节点的受力分析 |
4.3.2 震损加固后异形柱框架节点核心区剪力计算 |
4.4 震损加固后异形柱框架节点核心区受剪承载力计算 |
4.5 震损加固后异形柱框架节点的梁柱承载能力计算 |
4.6 震损加固后异形柱框架节点承载能力分析 |
4.7 本章小结 |
第5章 结论与展望 |
5.1 结论 |
5.2 展望 |
参考文献 |
致谢 |
攻读硕士学位期间论文发表及科研情况 |
(7)剪力墙布设对异形柱框架-剪力墙结构抗震性能影响研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景 |
1.2 剪力墙数量选择 |
1.2.1 剪力墙数量研究概述 |
1.2.2 剪力墙数量选择研究现状 |
1.3 结构抗震性能分析 |
1.3.1 抗震性能分析理论 |
1.3.2 增量动力分析研究现状 |
1.3.3 建筑结构地震易损性分析研究现状 |
1.4 剪力墙布置高度 |
1.4.1 剪力墙布置高度概述 |
1.4.2 剪力墙布置高度研究现状 |
1.5 研究内容及路线 |
1.5.1 本文主要研究内容 |
1.5.2 技术路线 |
第2章 剪力墙数量对结构抗震性能的影响 |
2.1 引言 |
2.2 异形柱框剪结构概述 |
2.3 异形柱框架部分剪切刚度计算 |
2.4 剪力墙抗弯刚度影响因素 |
2.5 楼层剪力与刚度特征值的关系 |
2.6 分析模型的建立 |
2.7 计算结果分析 |
2.8 本章小结 |
第3章 基于IDA方法的地震动力响应研究 |
3.1 引言 |
3.2 IDA方法相关概念 |
3.3 工程实例选择 |
3.4 非线性分析模型 |
3.5 IDA结果及分析 |
3.6 本章小结 |
第4章 地震易损性分析与构件损伤分析 |
4.1 引言 |
4.2 地震易损性分析 |
4.3 罕遇地震下下构件损伤分布 |
4.4 罕遇地震下结构耗能分析 |
4.5 本章小结 |
第5章 剪力墙中断对结构抗震性能影响研究 |
5.1 引言 |
5.2 工作原理及计算方法 |
5.3 剪力墙中断理论 |
5.4 分析模型的的建立 |
5.5 计算结果及分析 |
5.6 弹塑性时程分析验证 |
5.7 小结 |
第6章 结论与展望 |
6.1 结论 |
6.2 不足与展望 |
参考文献 |
后记 |
攻读硕士学位期间论文发表及科研情况 |
(8)装配式异形束柱钢框架-支撑住宅结构体系抗震性能与设计理论研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 国内外钢结构住宅结构体系发展 |
1.2.1 低层钢结构住宅体系 |
1.2.2 多高层钢结构住宅体系 |
1.2.3 装配式异形束柱钢框架-支撑住宅体系 |
1.3 本文研究问题的国内外研究现状 |
1.3.1 冷弯方钢管-H型钢梁柱节点研究现状 |
1.3.2 异形柱梁柱节点研究现状 |
1.3.3 钢结构强度折减系数国内外研究现状 |
1.3.4 预制混凝土墙体大板对钢结构动力特性的影响研究现状 |
1.4 当前研究不足 |
1.5 论文研究方法和内容 |
参考文献 |
第二章 上环下隔式异形束柱梁柱节点抗震性能试验研究 |
2.1 引言 |
2.2 节点试件设计及加工 |
2.3 节点试件材性试验 |
2.4 节点试验准备 |
2.4.1 加载方案 |
2.4.2 加载制度 |
2.4.3 量测内容 |
2.5 试验现象 |
2.5.1 试件I-1 |
2.5.2 试件I-2 |
2.5.3 试件I-3 |
2.5.4 试件T-1 |
2.5.5 试件T-2 |
2.5.6 试件T-3 |
2.5.7 试件T-4 |
2.5.8 试件T-5 |
2.5.9 试件T-6 |
2.5.10 试验现象及破坏模式分析讨论 |
2.6 试验结果分析 |
2.6.1 荷载-位移滞回曲线 |
2.6.2 刚度退化 |
2.6.3 骨架曲线 |
2.6.4 延性系数 |
2.6.5 耗能能力 |
2.6.6 节点域剪切角分析 |
2.6.7 梁翼缘应力分布 |
2.6.8 环板与贯穿隔板应力分布 |
2.7 本章小结 |
参考文献 |
第三章 上环下隔式异形束柱梁柱节点数值分析及理论研究 |
3.1 引言 |
3.2 试验节点有限元模型的建立 |
3.2.1 模型中材料本构关系 |
3.2.2 单元选取及边界条件 |
3.2.3 有限元模型的求解 |
3.3 试验与有限元模型结果对比 |
3.3.1 试验过程现象对比 |
3.3.2 滞回曲线对比 |
3.3.3 骨架曲线对比 |
3.4 关键部位应力分布 |
3.4.1 梁截面应力分布 |
3.4.2 环板与隔板应力分布 |
3.5 节点域受力机理分析 |
3.5.1 I型束柱的节点域受力分析 |
3.5.2 T型束柱的节点域受力分析 |
3.6 节点构造参数的影响 |
3.6.1 柱壁厚度的影响 |
3.6.2 环板与隔板悬挑长度影响 |
3.6.3 环板与隔板厚度的影响 |
3.6.4 轴压比的影响 |
3.7 节点极限承载力计算方法 |
3.7.1 标准梁截面节点承载力计算方法 |
3.7.2 翼缘削弱式(RBS)节点承载力计算方法 |
3.8 新型节点的设计方法 |
3.8.1 环板和隔板构造要求 |
3.8.2 强柱弱梁验算 |
3.8.3 节点域验算 |
3.9 本章小结 |
参考文献 |
第四章 上环下隔式梁柱节点的弯矩-转角关系及其恢复力模型研究 |
4.1 引言 |
4.2 梁柱节点分类 |
4.3 上环下隔式梁柱节点的初始刚度 |
4.3.1 节点初始刚度的参数分析 |
4.3.2 节点初始刚度计算 |
4.4 新型梁柱节点的形状系数 |
4.5 理论模型与有限元结果对比 |
4.6 上环下隔式梁柱弯矩-转角关系恢复力模型研究 |
4.6.1 上环下隔式梁柱节点的弯矩-转角关系滞回曲线 |
4.6.2 上环下隔式梁柱节点的弯矩-转角关系骨架模型 |
4.6.3 理论和有限元结果对比 |
4.6.4 节点弯矩-转角关系刚度退化规律 |
4.6.5 节点弯矩转角关系滞回模型的建立 |
4.7 本章小结 |
参考文献 |
第五章 预制混凝土墙体大板设计及其对主体钢结构动力特性的影响 |
5.1 引言 |
5.2 装配式钢结构住宅体系常用的围护墙板特点以及存在的问题 |
5.3 预制混凝土墙体大板设计方法 |
5.3.1 预制混凝土墙体大板的设计 |
5.3.2 预制混凝土墙体大板与主体钢结构连接的设计 |
5.3.3 新型外挂墙板连接节点设计 |
5.3.4 新型内嵌墙板连接节点设计 |
5.3.5 工业化的预制混凝土墙体大板制作和装配 |
5.4 带预制混凝土墙体大板的钢结构工程动力特性现场实测 |
5.4.1 试点工程的动力特性实测 |
5.4.2 实测结果分析 |
5.4.3 有限元模型分析与试验结果对比 |
5.5 当前各国规范基本自振周期的计算结果对比 |
5.6 考虑预制混凝土墙体大板影响的结构抗震设计建议 |
5.7 本章小结 |
参考文献 |
第六章 装配式异形束柱钢框架-支撑住宅结构体系的强度折减系数研究 |
6.1 引言 |
6.2 异形束柱钢框架-支撑住宅结构体系地震反应分析模型 |
6.2.1 上环下隔式梁柱节点在ETABS中模型模拟 |
6.2.2 静力弹塑性分析(Pushover)加载模式 |
6.3 新型体系的抗震强度折减系数取值 |
6.3.1 强度折减系数的计算方法 |
6.3.2 强度折减系数的求解 |
6.3.3 结构分析分析模型 |
6.3.4 确定结构目标位移 |
6.3.5 结构影响系数和位移放大系数求解 |
6.3.6 新体系抗震设计地震作用计算建议 |
6.3.7 结构层间位移角分析 |
6.4 本章小结 |
参考文献 |
第七章 装配式异形束柱钢框架-支撑住宅体系设计及应用 |
7.1 引言 |
7.2 装配式异形束柱钢框架-支撑住宅结构体系设计 |
7.2.1 工程案例基本概况 |
7.2.2 荷载取值 |
7.2.3 抗震地震力取值建议 |
7.2.4 分析结果 |
7.3 围护体系设计 |
7.3.1 预制混凝土墙体大板设计 |
7.3.2 外挂墙板连接节点设计 |
7.3.3 内嵌墙板的连接节点设计 |
7.4 工厂化制作和装配化施工 |
7.5 装配式异形束柱钢框架-支撑住宅体系的适用范围 |
7.6 本章小结 |
参考文献 |
第八章 结论与展望 |
8.1 结论 |
8.2 本文创新点 |
8.3 建议与展望 |
附录 节点试件加工图 |
攻读博士期间发表的学术成果 |
致谢 |
(9)钢管混凝土异形柱框架结构减震隔震体系抗震性能分析(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 论文的研究背景及意义 |
1.1.1 研究背景 |
1.1.2 选题意义 |
1.2 异形柱钢结构住宅研究现状 |
1.2.1 国外异形柱研究现状 |
1.2.2 国内异形柱研究现状 |
1.2.3 国内钢结构住宅体系研究现状 |
1.3 减震及隔震技术研究现状 |
1.3.1 减震技术研究现状 |
1.3.2 隔震技术研究现状 |
1.4 研究内容 |
第2章 减震隔震结构体系基本理论分析 |
2.1 消能减震结构工作原理 |
2.1.1 减震结构的基本原理 |
2.1.2 减震装置的简介和分类 |
2.1.3 减震结构动力分析方法 |
2.2 隔震结构工作原理 |
2.2.1 隔震结构的基本原理 |
2.2.2 隔震装置的简介和分类 |
2.2.3 隔震结构动力分析方法 |
2.3 ETABS结构分析软件介绍 |
2.3.1 ETABS软件介绍 |
2.3.2 非线性分析方法 |
2.4 本章小结 |
第3章 消能减震体系抗震性能分析 |
3.1 减震结构模型 |
3.1.1 工程概况 |
3.1.2 结构构件选择 |
3.1.3 建立模型 |
3.2 地震波的选取 |
3.2.1 地震波选取原则 |
3.2.2 本文所选地震波 |
3.3 结构模态分析 |
3.3.1 振型周期和频率 |
3.3.2 振型质量参与系数 |
3.4 结构反应谱分析 |
3.4.1 反应谱分析 |
3.4.2 层间位移角 |
3.4.3 楼层位移 |
3.4.4 楼层剪力 |
3.4.5 楼层刚度比 |
3.4.6 剪重比 |
3.5 多遇地震作用下时程分析 |
3.5.1 层间位移角 |
3.5.2 楼层位移 |
3.5.3 楼层剪力 |
3.6 罕遇地震作用下时程分析 |
3.6.1 层间位移角 |
3.6.2 楼层位移 |
3.6.3 楼层剪力 |
3.6.4 抗倾覆验算 |
3.7 本章小结 |
第4章 减震隔震体系抗震性能分析 |
4.1 减隔震结构分析模型 |
4.1.1 隔震支座参数与布置方案 |
4.1.2 橡胶隔震支座在ETABS中的实现 |
4.1.3 反应谱、地震波的选取 |
4.2 结构设计结果验算 |
4.2.1 多遇地震隔震结构抗风验算 |
4.2.2 重力荷载代表值下隔震支座压应力验算 |
4.2.3 罕遇地震隔震支座最大位移校核 |
4.2.4 罕遇地震隔震支座压应力校核 |
4.2.5 罕遇地震隔震支座拉应力校核 |
4.2.6 结构整体抗倾覆验算 |
4.2.7 水平向减震系数 |
4.3 结构设计模态分析 |
4.3.1 振型周期和频率 |
4.3.2 振型质量参与系数 |
4.4 结构设计反应谱分析 |
4.4.1 层间位移角 |
4.4.2 楼层位移 |
4.4.3 楼层剪力 |
4.4.4 楼层刚度比 |
4.4.5 剪重比 |
4.5 多遇地震作用下时程分析 |
4.5.1 层间位移角 |
4.5.2 楼层位移 |
4.5.3 楼层剪力 |
4.5.4 隔震支座耗能 |
4.6 设防地震作用下时程分析 |
4.6.1 层间位移角 |
4.6.2 楼层位移 |
4.6.3 楼层剪力 |
4.6.4 隔震支座耗能 |
4.6.5 结构耗能时程 |
4.7 罕遇地震作用下时程分析 |
4.7.1 层间位移角 |
4.7.2 楼层位移 |
4.7.3 楼层剪力 |
4.7.4 隔震支座耗能 |
4.7.5 结构耗能时程 |
4.8 本章小结 |
第5章 减震结构及减隔震结构抗震性能对比 |
5.1 模态分析结果对比 |
5.2 反应谱分析结果对比 |
5.2.1 层间位移角 |
5.2.2 楼层位移 |
5.2.3 楼层剪力 |
5.3 多遇地震作用下时程分析结果对比 |
5.3.1 层间位移角 |
5.3.2 楼层位移 |
5.3.3 楼层剪力 |
5.3.4 基底剪力时程 |
5.4 罕遇地震作用下时程分析结果对比 |
5.4.1 层间位移角 |
5.4.2 楼层位移 |
5.4.3 楼层剪力 |
5.4.4 基底剪力时程 |
5.4.5 顶点位移时程曲线 |
5.4.6 顶点加速度时程曲线 |
5.4.7 静力弹塑性时程分析 |
5.5 本章小结 |
结论 |
参考文献 |
攻读硕士学位期间所发表的论文 |
致谢 |
(10)装配式钢管混凝土异形柱边框架抗震性能研究(论文提纲范文)
摘要 |
abstract |
引言 |
第1章 绪论 |
1.1 选题背景及意义 |
1.2 装配式混凝土结构的研究现状 |
1.3 异形柱框架结构研究现状 |
1.3.1 钢筋混凝土异形柱框架结构 |
1.3.2 型钢混凝土异形柱框架结构 |
1.3.3 钢管混凝土异形柱框架结构 |
1.4 研究内容 |
第2章 装配式钢管混凝土异形柱边框架的试验设计 |
2.1 试验目的 |
2.2 试验方案设计 |
2.2.1 预制试件的尺寸及配筋 |
2.2.2 装配方案的设计 |
2.3 预制试件制作 |
2.3.1 钢骨架及钢筋骨架部分 |
2.3.2 混凝土部分 |
2.4 框架的装配 |
2.5 材料力学性能测定 |
2.5.1 钢材 |
2.5.2 混凝土 |
2.5.3 灌浆料 |
2.6 试验测试项目 |
2.6.1 测试内容 |
2.6.2 测点布置 |
2.7 加载方案 |
2.7.1 加载装置 |
2.7.2 加载制度 |
第3章 试验过程与试验结果分析 |
3.1 试验过程及破坏形态 |
3.1.1 破坏过程分析 |
3.1.2 破坏机制分析 |
3.2 滞回曲线 |
3.3 骨架曲线 |
3.4 承载力及延性 |
3.4.1 承载力及位移 |
3.4.2 延性 |
3.5 耗能能力 |
3.6 位移角 |
3.7 刚度退化 |
3.8 强度衰减 |
3.9 应变分析 |
3.9.1 钢管应变 |
3.9.2 梁底部纵筋应变 |
3.9.3 节点核心区应变 |
第4章 钢管混凝土异形柱边框架的有限元分析 |
4.1 ABAQUS软件介绍 |
4.2 有限元模型的建立 |
4.2.1 定义量纲 |
4.2.2 建立部件及装配 |
4.2.3 定义材料属性 |
4.2.4 划分网格与选取单元 |
4.2.5 设置分析步 |
4.2.6 定义相互作用与边界条件 |
4.3 有限元计算结果分析 |
4.3.1 荷载-位移曲线 |
4.3.2 刚度分析 |
4.3.3 延性分析 |
4.3.4 模型的变形图 |
4.3.5 应力应变分布图 |
4.3.6 受力特性分析 |
4.3.7 塑性铰对比 |
结论 |
参考文献 |
致谢 |
导师简介 |
企业导师简介 |
作者简介 |
学位论文数据集 |
四、异形柱框架结构计算模型探讨(论文参考文献)
- [1]L形缀板式钢管混凝土组合柱框架抗震性能研究[D]. 郭相杰. 青岛理工大学, 2021(02)
- [2]装配式钢筋混凝土异形柱框架结构抗震性能足尺试验与分析[D]. 倪韦斌. 山东农业大学, 2021
- [3]基于一种异型钢管混凝土柱的云南村镇住宅框架基本结构选型分析研究[D]. 方维远. 昆明理工大学, 2021
- [4]异形柱框架—剪力墙结构抗震性能分析[D]. 曹怀特. 沈阳建筑大学, 2020(04)
- [5]基础组合隔震对异形柱框架结构地震动力响应影响研究[D]. 汪彬. 山东建筑大学, 2020(09)
- [6]MRPC加固震损后异形柱框架节点抗震性能试验研究[D]. 周扬帆. 山东建筑大学, 2020(03)
- [7]剪力墙布设对异形柱框架-剪力墙结构抗震性能影响研究[D]. 田擎. 山东建筑大学, 2020(09)
- [8]装配式异形束柱钢框架-支撑住宅结构体系抗震性能与设计理论研究[D]. 曹石. 东南大学, 2020
- [9]钢管混凝土异形柱框架结构减震隔震体系抗震性能分析[D]. 安朋飞. 河北科技大学, 2019(07)
- [10]装配式钢管混凝土异形柱边框架抗震性能研究[D]. 王帅. 华北理工大学, 2020(02)