一、SHENYANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——PUBLICATIONS(论文文献综述)
Ming-chun Song,Zheng-jiang Ding,Jun-jin Zhang,Ying-xin Song,Jun-wei Bo,Yu-qun Wang,Hong-bo Liu,Shi-yong Li,Jie Li,Rui-xiang Li,Bin Wang,Xiang-dong Liu,Liang-liang Zhang,Lei-lei Dong,Jian Li,Chun-yan He[1](2021)在《Geology and mineralization of the Sanshandao supergiant gold deposit(1200 t) in the Jiaodong Peninsula, China: A review》文中进行了进一步梳理The Jiaodong Peninsula in Shandong Province, China is the world’s third-largest gold metallogenic area,with cumulative proven gold resources exceeding 5000 t. Over the past few years, breakthroughs have been made in deep prospecting at a depth of 500-2000 m, particularly in the Sanshandao area where a huge deep gold orebody was identified. Based on previous studies and the latest prospecting progress achieved by the project team of this study, the following results are summarized.(1) 3D geological modeling results based on deep drilling core data reveal that the Sanshandao gold orefield, which was previously considered to consist of several independent deposits, is a supergiant deposit with gold resources of more than 1200 t(including 470 t under the sea area). The length of the major orebody is nearly 8 km, with a greatest depth of 2312 m below sea level and a maximum length of more than 3 km along their dip direction.(2) Thick gold orebodies in the Sanshandao gold deposit mainly occur in the specific sections of the ore-controlling fault where the fault plane changes from steeply to gently inclined,forming a stepped metallogenic model from shallow to deep level. The reason for this strong structural control on mineralization forms is that when ore-forming fluids migrated along faults, the pressure of fluids greatly fluctuated in fault sections where the fault dip angle changed. Since the solubility of gold in the ore-forming fluid is sensitive to fluid pressure, these sections along the fault plane serve as the target areas for deep prospecting.(3) Thermal uplifting-extensional structures provide thermodynamic conditions, migration pathways, and deposition spaces for gold mineralization. Meanwhile, the changes in mantle properties induced the transformation of the geochemical properties of the lower crust and magmatic rocks. This further led to the reactivation of ore-forming elements, which provided rich materials for gold mineralization.(4) It can be concluded from previous research results that the gold mineralization in the Jiaodong gold deposits occurred at about 120 Ma, which was superimposed by nonferrous metals mineralization at 118-111 Ma. The fluids were dominated by primary mantle water or magmatic water. Metamorphic water occurred in the early stage of the gold mineralization, while the fluid composition was dominated by meteoric water in the late stage. The S, Pb, and Sr isotopic compositions of the ores are similar to those of ore-hosting rocks, indicating that the ore-forming materials mainly derive from crustal materials, with the minor addition of mantle-derived materials. The gold deposits in the Jiaodong Peninsula were formed in an extensional tectonic environment during the transformation of the physical and chemical properties of the lithospheric mantle, which is different from typical orogenic gold deposits. Thus, it is proposed that they are named "Jiaodong-type" gold deposits.
SHAO Jun,LI Yinglei,WANG Deli,SONG Wanbing,WU Xinwei,LIU Hongzhang[2](2021)在《Geochemical and Nd-Hf Isotopic Constraints on the Petrogenesis of an Archean Granitoid in the Erguna Massif, NE China》文中研究指明Crystalline basement and Precambrian crustal growth of the continental massifs within the Central Asian Orogenic Belt(CAOB) are still pending problems. Our geological and geochemical investigations identified an Archean(2606 Ma) granitic pluton in the Biliya area of the Erguna Massif. The Neoarchean granitoids show high and positive in-situ zircon εHf(t)(+0.3 to +10.0), whole-rock εNd(t)(+4.8) and whole-rock εHf(t) values(+2.1). They are characterized by high Y + Ce + Zr + Nb(> 220 ppm) and Zr contents and could be classified as A-type granites. These granitoids are characterized by high Zr saturation temperatures(TZr)(796–836°C). They were derived from partial re-melting of juvenile mafic lower crust in an intracontinental back-arc extensional environment. This newly identified Neoarchean granitic pluton may represent the crystalline basement of the several continent massifs within the CAOB, and their high εHf(t)–εNd(t) values may also indicate the occurrence of lateral crustal growth events in these massifs during the Neoarchean.
JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu[3](2021)在《New innovations in pavement materials and engineering:A review on pavement engineering research 2021》文中研究指明Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges. In the past 10 years, the pavement infrastructure strongly supports the rapid development of the global social economy. New theories, new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem. Because of actual coupled behaviors of traffic and environmental conditions, predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis. In order to summarize the current and determine the future research of pavement engineering, Journal of Traffic and Transportation Engineering(English Edition) has launched a review paper on the topic of "New innovations in pavement materials and engineering: A review on pavement engineering research 2021". Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering, this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world. The content includes asphalt binder performance and modeling, mixture performance and modeling of pavement materials,multi-scale mechanics, green and sustainable pavement, and intelligent pavement.Overall, this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.
刘建民,赵国春,徐刚,邱海成,李建锋,肖昌浩,沙德铭,刘福兴,毕广源,房兴,张家奇,郭祺,于婳[4](2021)在《辽东半岛金矿成矿作用与深部资源勘查》文中研究表明辽东半岛地处华北克拉通东北部、胶—辽台隆北段,是我国东部重要的金矿资源产区之一。区内先后发现五龙、白云、猫岭等大中型金矿床,探明储量超过300 t。鉴于辽东半岛与胶东半岛处于相似的构造背景,辽东半岛金矿成矿及找矿潜力一直广受关注,相关的地质研究及矿产勘查工作也持续进行。总体看,已有研究更多聚焦于金矿床本身的描述及矿床成因等方面的工作,但缺乏对区域成矿背景及成矿过程的全面梳理,在一定程度上制约了深部资源勘查工作的方向及部署。作者根据2016—2019年间的野外地质调查,结合区域成矿地质背景、含矿岩石显微构造变形和年代学等方面的分析,系统总结了辽东半岛金矿的成矿条件和控矿因素,并就深部资源勘查方向提出了建议。研究表明:辽东半岛已发现金矿化分属于晚三叠世和早白垩世两期构造-岩浆成矿系统。宏观及微观上,构造对区内金矿的形成和分布均表现出明显的控制作用。两个时期的金矿都经历了早期的韧性变形和晚期的脆性变形,且金矿化都与晚期脆性构造环境下发育的超碎裂岩化及含矿热液蚀变作用有关。基于辽东半岛地壳结构、物质组成和金矿成矿地质条件的分析,本文认为辽东半岛的深部资源勘查应重点集中在3个方向:营口—宽甸台拱的南、北边界断裂带及其伴随的北东、北西向断裂构造的复合部位;营口—宽甸台拱的东、西两侧北东向(新华夏系)边界断裂带及其伴随的低级别、低序次构造系统;关注在现有含矿构造带下部是否存在与印支期、燕山期岩浆活动有关的斑岩型金矿化(床)。
李建康,李鹏,严清高,刘强,熊欣[5](2021)在《中国花岗伟晶岩的研究历程及发展态势》文中研究说明我国是稀有金属资源大国,产出了众多独具特色的稀有金属花岗伟晶岩矿床。国内外学者对这些花岗伟晶岩的研究较大地促进了世界伟晶岩理论的发展。在世界伟晶岩研究历程中,虽然有学者认为伟晶岩形成于热液交代作用,但从较早的Jahns-Burnham模型,到后来的London提出的岩浆非平衡结晶模型和Thomas提出的岩浆液态分离模型,都强调了岩浆分异作用对于伟晶岩形成的重要性。我国花岗伟晶岩研究继承于苏联科学家的伟晶岩理论,并逐渐与国际接轨,在对阿尔泰、川西等地区典型花岗伟晶岩的研究过程中,提出了基于云母和长石的花岗伟晶岩分类方案;发展出变质分异型、超变质分异型和重熔岩浆分异型等伟晶岩成因模型;建立了指示高分异伟晶岩熔体-流体演化的矿物标型特征;通过对伟晶岩中富晶体包裹体的深入研究,揭示出我国典型花岗伟晶岩形成于较高温压条件的特点;同位素定年和示踪技术的发展,提升了对我国伟晶岩时空分布和物质来源的认识程度。在今后,我国应该重视矿物学、成矿流体、高温高压实验研究,重视稀有金属伟晶岩的综合绿色开发利用,揭示典型伟晶岩的形成机制,创新伟晶岩成岩成矿理论,实现我国稀有金属资源找矿行动和资源开发利用的进步。
XIE Wei,WEN Shouqin,ZHANG Guangliang,TANG Tieqiao[6](2021)在《Geochronology, Fluid Inclusions and Isotopic Characteristics of the Dongjun Pb-Zn-Ag Deposit, Inner Mongolia, NE China》文中提出The Dongjun Pb-Zn-Ag deposit in the northern part of the Great Xing’an Range(NE China) consists of quartzsulfide vein-type and breccia-type mineralization, related to granite porphyry. Hydrothermal alteration is well-developed and includes potassic-silicic-sericitic alteration, phyllic alteration and propylitic alteration. Three stages of mineralization are recognized on the basis of field evidence and petrographic observation, demarcated by assemblages of quartz-pyritearsenopyrite(early stage), quartz-polymetallic sulfide(intermediate stage) and quartz-carbonate-pyrite(late stage). Zircon LA-ICP-MS U-Pb dating indicates that the granite porphyry was emplaced at 146.7 ± 1.2 Ma(Late Jurassic). Microthermometry and laser Raman spectroscopy shows that ore minerals were deposited in conditions of intermediate temperatures(175–359°C), low salinity(0.5–9.3 wt% Na Cl eqv.) and low density(0.60–0.91 g/cm3). Ore-forming fluids were derived largely from magmatic hydrothermal processes, with late-stage addition of meteoric water, belonging to a H2O-NaCl-CO2 ± CH4 system. The δ34SV-CDT values range from 0.75‰ to 4.70‰. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of the ore minerals are in the ranges of 18.240–18.371, 15.542–15.570, and 38.100–38.178, respectively. Data for the S and Pb isotopic systems indicate that the ore-forming metals and sulfur were derived from Mesozoic magma. Based on the geological characteristics and geochemical signatures documented in this study, we conclude that the Dongjun deposit is a mesothermal magmatic hydrothermal vein-type Pb-Zn-Ag deposit controlled by fractures and related to granite porphyry, in response to Late Jurassic tectonic–magmatic–hydrothermal activity. We further conclude that fluid immiscibility, fluid mixing and fluid-rock interactions were the dominant mechanisms for deposition of the ore-forming materials.
黄威,廖晶,龚建明,路晶芳,崔汝勇[7](2021)在《印度洋多金属结核地质特征与资源潜力》文中提出通过在中印度洋海盆结核区外的印度洋其他海域内收集到的298处多金属结核站位的分布、成分和赋存环境等地质特征,圈定了5处资源潜力区。文章对这些区域内海洋长周期沉积速率、底层水含氧量、底质类型、夏季海面平均生物生产力、底栖宏生物量密度、海底地形地貌特征和海底表层沉积物有机碳含量等数据信息进行加权评估,揭示各区域结核分布密度的高低状况,辅以结核主要有用组分含量的分类,确定了印度洋内各结核区资源潜力的划分标准。笔者认为加斯科因平原结核区为印度洋多金属结核高资源潜力区,马达加斯加海盆结核区和南澳大利亚海盆西部结核区为中等资源潜力区,克洛泽海盆结核区和南澳大利亚海盆东部结核区为低资源潜力区。未来在这些区域内,尤其是加斯科因平原结核区中有希望通过进一步调查研究,精确锁定具有更高资源潜力的次级面积结核勘探区,检验和完善资源潜力评估方法,精细量化揭示这些区域的资源潜力。
吴昌志,贾力,雷如雄,陈博洋,丰志杰,凤永刚,智俊,白世恒[8](2021)在《中亚造山带天河石花岗岩及相关铷矿床的主要特征与研究进展》文中研究说明铷是重要的"关键金属"矿产资源,是未来各国资源争夺的焦点。虽然我国铷矿资源总量丰富,但主要为低品位难以加工利用的花岗岩型铷矿床,而以铁锂云母、锂云母和铯沸石等作为矿石矿物的高品位易加工花岗伟晶岩型铷矿床非常有限。因此,富铷花岗岩及相关铷矿床的形成过程、元素分异机制以及铷在不同矿物相中的赋存状态和控制因素是铷矿床成矿机制研究和找矿工作的关键。本文在对花岗(伟晶)岩铷矿主要研究进展进行综述的基础上,简介中亚造山带东、西段典型天河石花岗岩及相关铷等稀有金属矿床的主要特征和时空分布,并对未来研究重点进行了展望。本文认为,中亚造山带是全球最重要的天河石花岗岩和相关稀有金属矿床成矿域,其西段大量发育三叠纪天河石花岗岩,而东段大量发育晚侏罗至早白垩世天河石花岗岩。两者形成时代和构造背景分别与古亚洲洋向古特提斯洋构造域,以及古亚洲洋向古太平洋构造域的巨大转折相对应,铷等稀有金属成矿潜力巨大,值得开展深入的年代学、岩石学和矿床成因研究。
Guichun Liu,Zaibo Sun,Jianwei Zi,M.Santosh,Tianyu Zhao,Qinglai Feng,Guangyan Chen,Xiaomei Nie,Jing Li,Shitao Zhang[9](2021)在《Proto-Tethys ophiolitic mélange in SW Yunnan: Constraints from zircon U-Pb geochronology and geochemistry》文中研究表明An early Paleozoic Proto-Tethys ocean in western Yunnan has long been postulated although no robust geological evidence has been identified.Here we investigated the recently-identified Mayidui and Wanhe ophiolitic melanges in SW Yunnan,which occurs in a N-S trending belt east of the late Paleozoic Changning-Menglian suture zone.The ophiolites consist mainly of meta-basalts(amphibole schists),meta-(cumulate) gabbros and gabbroic diorites,and meta-chert-shale,representing ancient oceanic crust and pelagic and hemipelagic sediments,respectively.Six samples of gabbros and gabbroic diorites from 3 profiles(Mayidui,Kongjiao and Yinchanghe) yielded zircon U-Pb ages between 462±6 Ma and 447±9 Ma,constraining the formation of the Mayidui and Wanhe ophiolites to Middle Ordovician.Gabbros from the Mayidui and Kongjiao profiles share similar geochemical characteristics with affinities to tholeiitic series,and are characterized by depleted to slightly enriched LREEs relative to HREEs with(La/Sm)N=0.69-1.87,(La/Yb)N=0.66-4.72).These,along with their predominantly positive wholerock εNd(t) and zircon εHf(t) values,indicate a MORB-like magma source.By contrast,the meta-mafic rocks from the Yinchanghe profile show significantly enriched LREEs((La/Sm)N=0.97-3.33,(La/Yb)N=1.19-14.93),as well as positive whole-rock εNd(t) and positive to negative zircon εHf(t) values,indicating an E-MORB-type mantle source.These geochemical features are consistent with an intra-oceanic setting for the formation of the Mayidui-Wanhe ophiolites.Our data,integrated with available geological evidence,provide robust constraints on the timing and nature of the Mayidui-Wanhe ophiolitic melange,and suggest that the ophiolites represent remnants of the Proto-Tethys Ocean,which opened through separation of the Indochina and Simao blocks from the northern margin of Gondwana before the Early Cambrian,and evolved through to the Silurian.
黄世伟[10](2021)在《内蒙古中东部宝力高庙组火山岩同位素年代学》文中进行了进一步梳理对内蒙古中东部东乌珠穆沁旗宝力格苏木和阿巴嘎旗乌兰敖包宝力高庙组地层剖面上含植物化石层段中的凝灰岩开展了锆石U-Pb年代学研究。利用LA-ICP-MS方法,获得东乌旗宝力格苏木宝力高庙组(310.2±1.9) Ma和(303.1±1.6) Ma的凝灰岩加权平均年龄,获得阿巴嘎旗乌兰敖包剖面宝力高庙组(304.6±5.9) Ma的凝灰岩加权平均年龄。结合古植物化石和前人的测年数据,认为宝力高庙组是形成于晚石炭世(—早二叠世?)长期不间断喷发(323±1.4 Ma~297±1.2 Ma)的巨型火山岩带,经历了长达20 Ma以上的火山活动历史,地层的发育主要受控于火山机构,缺乏统一的分组、分段基础。
二、SHENYANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——PUBLICATIONS(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、SHENYANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——PUBLICATIONS(论文提纲范文)
(2)Geochemical and Nd-Hf Isotopic Constraints on the Petrogenesis of an Archean Granitoid in the Erguna Massif, NE China(论文提纲范文)
1 Introduction |
2 Geological Setting and Sampling |
3 Geochronological and Geochemical Characteristics |
3.1 Zircon CL images and REE patterns |
3.2 In-situ Lu-Hf isotopes |
3.3 Geochemical features |
4 Petrogenesis and Tectonic Setting |
4.1 Genetic type:I?type,S?type,or A?type? |
4.2 Petrogenesis of the Late Archean A-type granitoids |
4.3 Tectonic setting |
5 Neoarchean Basement and Crustal Growth in the Erguna Massif |
6 Conclusions |
(3)New innovations in pavement materials and engineering:A review on pavement engineering research 2021(论文提纲范文)
1. Introduction |
(1) With the society development pavement engineering facing unprecedented opportunities and challenges |
(2) With the modern education development pavement engineering facing unprecedented accumulation of scientific manpower and literature |
2. Asphalt binder performance and modeling |
2.1. Binder damage,healing and aging behaviors |
2.1.1. Binder healing characterization and performance |
2.1.1. 1. Characterizing approaches for binder healing behavior. |
2.1.1. 2. Various factors influencing binder healing performance. |
2.1.2. Asphalt aging:mechanism,evaluation and control strategy |
2.1.2. 1. Phenomena and mechanisms of asphalt aging. |
2.1.2. 2. Simulation methods of asphalt aging. |
2.1.2. 3. Characterizing approaches for asphalt aging behavior. |
2.1.2. 4. Anti-aging additives used for controlling asphalt aging. |
2.1.3. Damage in the characterization of binder cracking performance |
2.1.3. 1. Damage characterization based on rheological properties. |
2.1.3. 2. Damage characterization based on fracture properties. |
2.1.4. Summary and outlook |
2.2. Mechanism of asphalt modification |
2.2.1. Development of polymer modified asphalt |
2.2.1. 1. Strength formation of modified asphalt. |
2.2.1. 2. Modification mechanism by molecular dynamics simulation. |
2.2.1. 3. The relationship between microstructure and properties of asphalt. |
2.2.2. Application of the MD simulation |
2.2.2. 1. Molecular model of asphalt. |
2.2.2. 2. Molecular configuration of asphalt. |
2.2.2. 3. Self-healing behaviour. |
2.2.2. 4. Aging mechanism. |
2.2.2. 5. Adhesion mechanism. |
2.2.2. 6. Diffusion behaviour. |
2.2.3. Summary and outlook |
2.3. Modeling and application of crumb rubber modified asphalt |
2.3.1. Modeling and mechanism of rubberized asphalt |
2.3.1. 1. Rheology of bituminous binders. |
2.3.1. 2. Rheological property prediction of CRMA. |
2.3.2. Micromechanics-based modeling of rheological properties of CRMA |
2.3.2. 1. Composite system of CRMA based on homogenization theory. |
2.3.2. 2. Input parameters for micromechanical models of CRMA. |
2.3.2. 3. Analytical form of micromechanical models of CRMA. |
2.3.2. 4. Future recommendations for improving micro-mechanical prediction performance. |
2.3.3. Design and performance of rubberized asphalt |
2.3.3. 1. The interaction between rubber and asphalt fractions. |
2.3.3. 2. Engineering performance of rubberized asphalt. |
2.3.3. 3. Mixture design. |
2.3.3. 4. Warm mix rubberized asphalt. |
2.3.3. 5. Reclaiming potential of rubberized asphalt pavement. |
2.3.4. Economic and Environmental Effects |
2.3.5. Summary and outlook |
3. Mixture performance and modeling of pavement materials |
3.1. The low temperature performance and freeze-thaw damage of asphalt mixture |
3.1.1. Low temperature performance of asphalt mixture |
3.1.1. 1. Low temperature cracking mechanisms. |
3.1.1. 2. Experimental methods to evaluate the low temperature performance of asphalt binders. |
3.1.1. 3. Experimental methods to evaluate the low temperature performance of asphalt mixtures. |
3.1.1. 4. Low temperature behavior of asphalt materials. |
3.1.1.5.Effect factors of low temperature performance of asphalt mixture. |
3.1.1. 6. Improvement of low temperature performance of asphalt mixture. |
3.1.2. Freeze-thaw damage of asphalt mixtures |
3.1.2. 1. F-T damage mechanisms. |
3.1.2. 2. Evaluation method of F-T damage. |
3.1.2. 3. F-T damage behavior of asphalt mixture. |
(1) Evolution of F-T damage of asphalt mixture |
(2) F-T damage evolution model of asphalt mixture |
(3) Distribution and development of asphalt mixture F-T damage |
3.1.2. 4. Effect factors of freeze thaw performance of asphalt mixture. |
3.1.2. 5. Improvement of freeze thaw resistance of asphalt mixture. |
3.1.3. Summary and outlook |
3.2. Long-life rigid pavement and concrete durability |
3.2.1. Long-life cement concrete pavement |
3.2.1. 1. Continuous reinforced concrete pavement. |
3.2.1. 2. Fiber reinforced concrete pavement. |
3.2.1. 3. Two-lift concrete pavement. |
3.2.2. Design,construction and performance of CRCP |
3.2.2. 1. CRCP distress and its mechanism. |
3.2.2. 2. The importance of crack pattern on CRCP performance. |
3.2.2. 3. Corrosion of longitudinal steel. |
3.2.2. 4. AC+CRCP composite pavement. |
3.2.2. 5. CRCP maintenance and rehabilitation. |
3.2.3. Durability of the cementitious materials in concrete pavement |
3.2.3. 1. Deterioration mechanism of sulfate attack and its in-fluence on concrete pavement. |
3.2.3. 2. Development of alkali-aggregate reaction in concrete pavement. |
3.2.3. 3. Influence of freeze-thaw cycles on concrete pavement. |
3.2.4. Summary and outlook |
3.3. Novel polymer pavement materials |
3.3.1. Designable PU material |
3.3.1. 1. PU binder. |
3.3.1.2.PU mixture. |
3.3.1. 3. Material genome design. |
3.3.2. Novel polymer bridge deck pavement material |
3.3.2. 1. Requirements for the bridge deck pavement material. |
3.3.2.2.Polyurethane bridge deck pavement material(PUBDPM). |
3.3.3. PU permeable pavement |
3.3.3. 1. Permeable pavement. |
3.3.3. 2. PU porous pavement materials. |
3.3.3. 3. Hydraulic properties of PU permeable pavement materials. |
3.3.3. 4. Mechanical properties of PU permeable pavement ma-terials. |
3.3.3. 5. Environmental advantages of PU permeable pavement materials. |
3.3.4. Polyurethane-based asphalt modifier |
3.3.4. 1. Chemical and genetic characteristics of bitumen and polyurethane-based modifier. |
3.3.4. 2. The performance and modification mechanism of polyurethane modified bitumen. |
3.3.4. 3. The performance of polyurethane modified asphalt mixture. |
3.3.4. 4. Environmental and economic assessment of poly-urethane modified asphalt. |
3.3.5. Summary and outlook |
3.4. Reinforcement materials for road base/subrgrade |
3.4.1. Flowable solidified fill |
3.4.1. 1. Material composition design. |
3.4.1. 2. Performance control. |
3.4.1. 3. Curing mechanism. |
3.4.1. 4. Construction applications. |
3.4.1.5.Environmental impact assessment. |
3.4.1. 6. Development prospects and challenges. |
3.4.2. Stabilization materials for problematic soil subgrades |
3.4.2.1.Stabilization materials for loess. |
3.4.2. 2. Stabilization materials for expansive soil. |
3.4.2. 3. Stabilization materials for saline soils. |
3.4.2. 4. Stabilization materials for soft soils. |
3.4.3. Geogrids in base course reinforcement |
3.4.3. 1. Assessment methods for evaluating geogrid reinforce-ment in flexible pavements. |
(1) Reinforced granular material |
(2) Reinforced granular base course |
3.4.3. 2. Summary. |
3.4.4. Summary and outlook |
4. Multi-scale mechanics |
4.1. Interface |
4.1.1. Multi-scale evaluation method of interfacial interaction between asphalt binder and mineral aggregate |
4.1.1. 1. Molecular dynamics simulation of asphalt adsorption behavior on mineral aggregate surface. |
4.1.1. 2. Experimental study on absorption behavior of asphalt on aggregate surface. |
4.1.1. 3. Research on evaluation method of interaction between asphalt and mineral powder. |
(1) Rheological mechanical method |
(2) Microscopic test |
4.1.1. 4. Study on evaluation method of interaction between asphalt and aggregate. |
4.1.2. Multi-scale numerical simulation method considering interface effect |
4.1.2. 1. Multi-scale effect of interface. |
4.1.2. 2. Study on performance of asphalt mixture based on micro nano scale testing technology. |
4.1.2. 3. Study on the interface between asphalt and aggregate based on molecular dynamics. |
4.1.2. 4. Study on performance of asphalt mixture based on meso-mechanics. |
4.1.2. 5. Mesoscopic numerical simulation test of asphalt mixture. |
4.1.3. Multi-scale investigation on interface deterioration |
4.1.4. Summary and outlook |
4.2. Multi-scales and numerical methods in pavement engineering |
4.2.1. Asphalt pavement multi-scale system |
4.2.1. 1. Multi-scale definitions from literatures. |
4.2.1. 2. A newly-proposed Asphalt Pavement Multi-scale System. |
(1) Structure-scale |
(2) Mixture-scale |
(3) Material-scale |
4.2.1. 3. Research Ideas in the newly-proposed multi-scale sys- |
4.2.2. Multi-scale modeling methods |
4.2.2. 1. Density functional theory (DFT) calculations. |
4.2.2. 2. Molecular dynamics (MD) simulations. |
4.2.2. 3. Composite micromechanics methods. |
4.2.2. 4. Finite element method (FEM) simulations. |
4.2.2. 5. Discrete element method (DEM) simulations. |
4.2.3. Cross-scale modeling methods |
4.2.3. 1. Mechanism of cross-scale calculation. |
4.2.3. 2. Multi-scale FEM method. |
4.2.3. 3. FEM-DEM coupling method. |
4.2.3. 4. NMM family methods. |
4.2.4. Summary and outlook |
4.3. Pavement mechanics and analysis |
4.3.1. Constructive methods to pavement response analysis |
4.3.1. 1. Viscoelastic constructive models. |
4.3.1. 2. Anisotropy and its characterization. |
4.3.1. 3. Mathematical methods to asphalt pavement response. |
4.3.2. Finite element modeling for analyses of pavement mechanics |
4.3.2. 1. Geometrical dimension of the FE models. |
4.3.2. 2. Constitutive models of pavement materials. |
4.3.2. 3. Variability of material property along with different directions. |
4.3.2. 4. Loading patterns of FE models. |
4.3.2. 5. Interaction between adjacent pavement layers. |
4.3.3. Pavement mechanics test and parameter inversion |
4.3.3. 1. Nondestructive pavement modulus test. |
4.3.3. 2. Pavement structural parameters inversion method. |
4.3.4. Summary and outlook |
5. Green and sustainable pavement |
5.1. Functional pavement |
5.1.1. Energy harvesting function |
5.1.1. 1. Piezoelectric pavement. |
5.1.1. 2. Thermoelectric pavement. |
5.1.1. 3. Solar pavement. |
5.1.2. Pavement sensing function |
5.1.2. 1. Contact sensing device. |
5.1.2.2.Lidar based sensing technology. |
5.1.2. 3. Perception technology based on image/video stream. |
5.1.2. 4. Temperature sensing. |
5.1.2. 5. Traffic detection based on ontology perception. |
5.1.2. 6. Structural health monitoring based on ontology perception. |
5.1.3. Road adaptation and adjustment function |
5.1.3. 1. Radiation reflective pavement.Urban heat island effect refers to an increased temperature in urban areas compared to its surrounding rural areas (Fig.68). |
5.1.3. 2. Catalytical degradation of vehicle exhaust gases on pavement surface. |
5.1.3. 3. Self-healing pavement. |
5.1.4. Summary and outlook |
5.2. Renewable and sustainable pavement materials |
5.2.1. Reclaimed asphalt pavement |
5.2.1. 1. Hot recycled mixture technology. |
5.2.1. 2. Warm recycled mix asphalt technology. |
5.2.1. 3. Cold recycled mixture technology. |
(1) Strength and performance of cold recycled mixture with asphalt emulsion |
(2) Variability analysis of asphalt emulsion |
(3) Future prospect of cold recycled mixture with asphalt emulsion |
5.2.2. Solid waste recycling in pavement |
5.2.2. 1. Construction and demolition waste. |
(1) Recycled concrete aggregate |
(2) Recycled mineral filler |
5.2.2. 2. Steel slag. |
5.2.2. 3. Waste tire rubber. |
5.2.3. Environment impact of pavement material |
5.2.3. 1. GHG emission and energy consumption of pavement material. |
(1) Estimation of GHG emission and energy consumption |
(2) Challenge and prospect of environment burden estimation |
5.2.3. 2. VOC emission of pavement material. |
(1) Characterization and sources of VOC emission |
(2) Health injury of VOC emission |
(3) Inhibition of VOC emission |
(4) Prospect of VOC emission study |
5.2.4. Summary and outlook |
6. Intelligent pavement |
6.1. Automated pavement defect detection using deep learning |
6.1.1. Automated data collection method |
6.1.1. 1. Digital camera. |
6.1.1.2.3D laser camera. |
6.1.1. 3. Structure from motion. |
6.1.2. Automated road surface distress detection |
6.1.2. 1. Image processing-based method. |
6.1.2. 2. Machine learning and deep learning-based methods. |
6.1.3. Pavement internal defect detection |
6.1.4. Summary and outlook |
6.2. Intelligent pavement construction and maintenance |
6.2.1. Intelligent pavement construction management |
6.2.1. 1. Standardized integration of BIM information resources. |
6.2.1. 2. Construction field capturing technologies. |
6.2.1. 3. Multi-source spatial data fusion. |
6.2.1. 4. Research on schedule management based on BIM. |
6.2.1. 5. Application of BIM information management system. |
6.2.2. Intelligent compaction technology for asphalt pavement |
6.2.2. 1. Weakened IntelliSense of ICT. |
6.2.2. 2. Poor adaptability of asphalt pavement compaction index. |
(1) The construction process of asphalt pavement is affected by many complex factors |
(2) Difficulty in model calculation caused by jumping vibration of vibrating drum |
(3) There are challenges to the numerical stability and computational efficiency of the theoretical model |
6.2.2. 3. Insufficient research on asphalt mixture in vibratory rolling. |
6.2.3. Intelligent pavement maintenance decision-making |
6.2.3. 1. Basic functional framework. |
6.2.3. 2. Expert experience-based methods. |
6.2.3. 3. Priority-based methods. |
6.2.3. 4. Mathematical programming-based methods. |
6.2.3. 5. New-gen machine learning-based methods. |
6.2.4. Summary and outlook |
(1) Pavement construction management |
(2) Pavement compaction technology |
(3) Pavement maintenance decision-making |
7. Conclusions |
Conflict of interest |
(4)辽东半岛金矿成矿作用与深部资源勘查(论文提纲范文)
0 引言 |
1 区域成矿地质背景与金矿分布 |
2 主要金矿床地质特征 |
2.1 五龙金矿床 |
2.2 新房金矿床 |
2.3 四道沟金矿床 |
2.4 孙家屯金矿床 |
2.5 白云金矿床 |
2.6 尖山沟地区金矿床 |
2.7 猫岭金矿床 |
3 讨论 |
3.1 辽东半岛金矿成矿作用和控矿因素 |
3.1.1 成矿物质的多源性及控矿因素的多样性 |
3.1.2 构造对矿化作用的控制 |
3.2 辽东半岛金矿深部资源勘查方向与勘查模型 |
4 结论 |
(5)中国花岗伟晶岩的研究历程及发展态势(论文提纲范文)
1 国外花岗伟晶岩成因理论的研究历程 |
(1)19世纪初始阶段。 |
(2)20世纪二战前的发展期。 |
(3)二战后伟晶岩研究的高峰期。 |
(4)Jahns-Burnham模型期。 |
(5)London不平衡结晶模型与Thomas岩浆不混溶模型期。 |
2 中国花岗伟晶岩研究历程 |
(1)第一阶段(1935~1960年):中苏合作研究期。 |
(2)第二阶段(1960~2000年):国内伟晶岩理论发展期。 |
(3)第三阶段(2000~2010年):伟晶岩研究低谷期。 |
(4)第四阶段(2010年—至今):关键金属研究高潮期。 |
3 中国花岗伟晶岩的主要成果 |
3.1 花岗伟晶岩分类 |
3.2 花岗伟晶岩成因模型 |
3.3 伟晶岩矿物学研究 |
3.4 伟晶岩成岩成矿的物理化学条件 |
3.5 稀有金属伟晶岩成矿时代和物质来源 |
4 今后我国花岗伟晶岩领域的主要研究方向 |
4.1 稀有金属伟晶岩的矿物学和成矿流体研究 |
4.2 伟晶岩成岩成矿的高温高压实验研究 |
4.3 成矿模型和成矿规律研究 |
(6)Geochronology, Fluid Inclusions and Isotopic Characteristics of the Dongjun Pb-Zn-Ag Deposit, Inner Mongolia, NE China(论文提纲范文)
1 Introduction |
2 Regional Geology |
3 Ore Deposit Geology |
3.1 Local geology |
3.2 Characteristics of orebodies |
3.3 Characteristics of cryptoexplosive breccia |
3.4 Mineralization and alteration |
3.5 Paragenetic sequence |
4 Sampling and Analytical Methods |
4.1 Zircon LA-ICP-MS U-Pb dating |
4.2 Fluid inclusion microthermometry and laser Raman spectroscopy |
4.3 H-O-S-Pb isotopes |
5 Analytical Results |
5.1 Zircon U-Pb age |
5.2 Fluid inclusion study |
5.2.1 Petrography |
5.2.2 Microthermometry |
5.2.3 Laser Raman spectra |
5.2.4 Trapping pressure of fluid inclusions and ore-forming depth |
5.3 Isotope data |
5.3.1 Hydrogen-oxygen isotopes |
5.3.2 Sulfur isotopes |
5.3.3 Lead isotopes |
6 Discussion |
6.1 The relationship between mineralization and granite porphyry |
6.2 Age of mineralization and related magmatism |
6.3 Nature and evolution of the ore-forming fluid |
6.4 Source of ore-forming fluid and materials |
6.4.1 Source of ore-forming fluid |
6.4.2 Source of sulfur and ore-forming metals |
6.5 Mechanism of mineral deposition and genetic model |
6.5.1 Mechanism of mineral deposition |
6.5.2 Model of mineralization |
7 Conclusions |
(7)印度洋多金属结核地质特征与资源潜力(论文提纲范文)
1 数据说明 |
2 多金属结核地质特征 |
2.1 中北印度洋 |
2.2 东北印度洋 |
2.3 西北印度洋 |
2.4 东南印度洋 |
2.5 西南印度洋 |
3 多金属结核资源潜力评估 |
3.1 各结核区的分布密度 |
3.2 各结核区的主要有用组分含量 |
3.3 各结核区资源潜力分类 |
4 结论与展望 |
(8)中亚造山带天河石花岗岩及相关铷矿床的主要特征与研究进展(论文提纲范文)
1 花岗(伟晶)岩型铷矿床的主要研究进展 |
1.1 花岗(伟晶)岩中Rb的赋存状态 |
1.2 花岗岩型铷矿床的岩相分带与元素分异机制 |
1.3 富铷花岗伟晶岩的成因类型 |
2 中亚造山带天河石花岗岩与相关稀有金属矿床 |
2.1 中亚造山带西段典型天河石花岗(伟晶)岩及相关稀有金属矿床 |
2.1.1 南乌拉尔Il'menskie天河石伟晶岩型铷矿 |
2.1.2 中天山东段国宝山天河石花岗岩型铷矿床 |
2.1.3 中天山东段白石头泉天河石花岗岩型铷矿床 |
2.2 中亚造山带东段典型天河石花岗岩及相关稀有金属矿床 |
2.2.1 外贝加尔Orlovka天河石花岗岩型Ta-Li-Rb矿床 |
2.2.2 大兴安岭南段石灰窑天河石花岗岩型Rb-Nb-Ta矿床 |
2.2.3 大兴安岭南段维拉斯托Sn-Li-Rb多金属矿床 |
3 中亚造山带天河石花岗岩时空分布与构造背景 |
3.1 中亚造山带构造格架和演化 |
3.2 中亚造山带西段天河石花岗岩的构造背景 |
3.3 中亚造山带东段天河石花岗岩的构造背景 |
4 天河石花岗岩型铷矿的研究展望 |
4.1 成岩成矿时代的精确限定 |
4.2 岩浆演化与流体分异过程 |
4.3 富矿体的形成过程与找矿方向 |
5 结语 |
(10)内蒙古中东部宝力高庙组火山岩同位素年代学(论文提纲范文)
0 引言 |
1 区域地质背景 |
2 宝力高庙组地层特征 |
2.1 东乌旗宝力高庙 |
2.2 阿巴嘎旗乌兰敖包 |
3 宝力高庙组同位素测年 |
3.1 测年方法 |
3.2 测年结果 |
4 讨论 |
4.1 宝力高庙组形成时代 |
4.2 宝力高庙组火山岩年龄 |
4.3 宝力高庙组的划分 |
5 结论 |
四、SHENYANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——PUBLICATIONS(论文参考文献)
- [1]Geology and mineralization of the Sanshandao supergiant gold deposit(1200 t) in the Jiaodong Peninsula, China: A review[J]. Ming-chun Song,Zheng-jiang Ding,Jun-jin Zhang,Ying-xin Song,Jun-wei Bo,Yu-qun Wang,Hong-bo Liu,Shi-yong Li,Jie Li,Rui-xiang Li,Bin Wang,Xiang-dong Liu,Liang-liang Zhang,Lei-lei Dong,Jian Li,Chun-yan He. China Geology, 2021(04)
- [2]Geochemical and Nd-Hf Isotopic Constraints on the Petrogenesis of an Archean Granitoid in the Erguna Massif, NE China[J]. SHAO Jun,LI Yinglei,WANG Deli,SONG Wanbing,WU Xinwei,LIU Hongzhang. Acta Geologica Sinica(English Edition), 2021(06)
- [3]New innovations in pavement materials and engineering:A review on pavement engineering research 2021[J]. JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu. Journal of Traffic and Transportation Engineering(English Edition), 2021
- [4]辽东半岛金矿成矿作用与深部资源勘查[J]. 刘建民,赵国春,徐刚,邱海成,李建锋,肖昌浩,沙德铭,刘福兴,毕广源,房兴,张家奇,郭祺,于婳. 吉林大学学报(地球科学版), 2021(06)
- [5]中国花岗伟晶岩的研究历程及发展态势[J]. 李建康,李鹏,严清高,刘强,熊欣. 地质学报, 2021(10)
- [6]Geochronology, Fluid Inclusions and Isotopic Characteristics of the Dongjun Pb-Zn-Ag Deposit, Inner Mongolia, NE China[J]. XIE Wei,WEN Shouqin,ZHANG Guangliang,TANG Tieqiao. Acta Geologica Sinica(English Edition), 2021(05)
- [7]印度洋多金属结核地质特征与资源潜力[J]. 黄威,廖晶,龚建明,路晶芳,崔汝勇. 矿床地质, 2021(05)
- [8]中亚造山带天河石花岗岩及相关铷矿床的主要特征与研究进展[J]. 吴昌志,贾力,雷如雄,陈博洋,丰志杰,凤永刚,智俊,白世恒. 岩石学报, 2021(09)
- [9]Proto-Tethys ophiolitic mélange in SW Yunnan: Constraints from zircon U-Pb geochronology and geochemistry[J]. Guichun Liu,Zaibo Sun,Jianwei Zi,M.Santosh,Tianyu Zhao,Qinglai Feng,Guangyan Chen,Xiaomei Nie,Jing Li,Shitao Zhang. Geoscience Frontiers, 2021(05)
- [10]内蒙古中东部宝力高庙组火山岩同位素年代学[J]. 黄世伟. 世界地质, 2021(03)
标签:gold;