从历史和宏观角度探讨大学数学改革

从历史和宏观角度探讨大学数学改革

一、从历史和宏观的角度探讨大学数学改革(论文文献综述)

高雪芬[1](2013)在《一元微积分概念教学的设计研究》文中研究说明大众化背景下,大学生入学时的能力普遍降低,学生层次越来越不均衡,这已经成为世界高等教育面临的一个主要问题。另一方面,基础教育课程改革的推进使得中学的课程设置发生了巨大的变化,这种变化也对大学的课程设置提出了新的要求。大众化教育以及高中课改的背景使得大学微积分教学中的问题日益突出,很多大学生会进行求导、积分运算,但是对概念中蕴含的思想并不理解,对概念间的关系认识模糊。所以,发现学生在微积分概念上的认知困难并进行有针对性的教学设计是微积分教学改革的关键。本论文以一元微积分作为载体,选取极限、导数、微分、中值定理、定积分等内容作为研究的切入点,研究了2个问题:(1)大学生对微积分中的基本概念具有什么样的概念意象,存在哪些概念误解?(2)如何设计微积分的概念教学,以加深学生对概念的理解,提高其运用基本概念的能力?本研究构建了微积分概念教学原则,并对一所理工院校大一上学期三个教学班的微积分课程进行了教学设计与教学实验,主要采用了设计研究、问卷调查、访谈、课堂观察、准实验对照等研究方法,有3位教师以及255位学生参加了概念教学班的教学实践。研究包括3个阶段:(1)准备和设计:根据现有文献及教学经验总结出学生所遇到的常见错误与问题以及每个案例教学设计的要点(设计原型),设计出概念的前/后测试卷,对测试时间、教学时间作出安排。(2)教学实践:针对前测中发现的问题,对原有的教学设计(设计原型)进行修正,并实施概念教学。(3)回顾分析:任课教师撰写教学反思,并对概念教学设计原则进行修正;依据修正后的原则,开始下一轮的教学设计。在研究的最后,我们进行了教学设计的效果检验,主要通过三条路径:(1)以具体案例的前后测对比,进行教学班纵向的比较;(2)以学校统一安排的期中期末考试进行横向的比较;(3)在学期末,对学生进行调查,了解学生对概念教学的认可情况。通过研究得到以下结论:其一,大学生对微积分基本概念的概念意向是片面的,甚至有些是错误的。(1)在学习极限的定义前,大学生不会用严格的语言来界定极限,有一些同学用静态的观点来看待极限,认为极限就是“n趋于无穷大(x趋于x0)时,数列(函数)等于a”。(2)大多数学生在看到导数时首先想到的是函数曲线在某点切线的斜率;学生主要从斜率的角度来理解导数,而非从变化率的角度来理解。(3)学生对通过导数来求微分这种“操作性的知识”认识深刻,但是对微分的几何意义和线性近似的思想认识存在混乱。(4)部分学生知道定积分是面积,但是不清楚究竟是哪个区域的面积;知道定积分概念中的分割与近似代替的过程,但是部分学生不清楚对哪个量进行分割:一些学生单纯地认为dx是积分号的一部分,而忽略了其“微分”的实际意义。其二,我们构建了微积分概念教学原则,并进行了相应的教学设计与教学实验。微积分概念教学原则如下:(1)通过本原性(历史上的,本质的)问题引入数学概念,借助历史发展阐述数学概念;(2)借助几何直观或生活中的直观例子帮助同学理解概念;(3)注重概念间关系的阐述。针对前测中的问题,每个案例的设计重点如下:极限的教学设计重在通过直观的方式帮助同学熟悉、理解并会运用形式化的语言;导数的教学设计重在阐明概念所蕴含的“变化率”思想;微分的设计重点在于突出概念间的联系,帮助学生在头脑中形成概念图;中值定理的设计重点在于通过历史上的定理形式来让学生体会到概念的严格化过程:定积分是过程性概念的典型代表,其设计要点在于在教学中帮助学生将定积分的概念解压缩,从而将定积分概念迁移到未知情境中。研究的创新之处在于:在国内首先比较系统地研究了学生对一元微积分基本概念的理解,并剖析了学生的概念意象;针对这些概念意象与学生的概念误解进行了教学设计与为期一个学期的教学实践。研究呈现了微积分概念教学的原始设计、对学生概念意象及概念误解的调查、教学设计的修正、教学设计的实施、教学效果反馈的全过程,其理论意义在于为微积分教学研究提供实证性的依据,为后续研究的开展做一些基础性的工作。实践价值在于可帮助大学教师了解学生的概念理解情况,为教师提供具体的教学策略和教学设计参考,也可为大学的教材编写者提供素材。

李海[2](2019)在《职前数学教师实践知能发展的设计研究 ——以三个初中几何定理证明教学为例》文中研究表明实践知能是上海“青浦经验”发展到今天最核心的概念,是顾泠沅先生、鲍建生教授及其研究团队经过青浦实验、教师行动教育模式和教师发展指导者三个阶段40年左右的实践研究所形成的中国特色数学教育理论的重要组成部分。在顾泠沅先生、鲍建生教授及其团队关于实践知能研究的基础上,本文从词源学、哲学的视角出发,分析了与实践知能有关的词语“知识”、“能力”、“实践”的生活来源及其发展,分析了与这些词语相关的哲学观点以及各个不同哲学观点的共同之处。然后结合相关理论尤其是结合德国哲学家康德的四个问题,进一步探寻了数学教师实践知能的理论基础,重新界定了数学教师实践知能的概念。在鲍建生教授关于数学教师实践知能框架的基础上,对数学教师实践知能的框架进行了细化。在这个细化了的数学教师实践知能框架下,以《数学教育学》、《数学教学技能训练》和《数学课程标准解读与教材研究》为主要干预性课程,选择初中几何定理证明教学内容中的三角形内角和定理、勾股定理和垂径定理教学对某高校的2015级44名职前数学教师、2016级76名职前数学教师在2017年秋季学期和2018年秋季学期分别进行了一个学期的数学教师实践知能发展的干预性教学。本文以设计研究为研究的方法论,在细化了的数学教师实践知能框架基础上,编制职前数学教师实践知能问卷调查表和访谈提纲,采用问卷调查、访谈和讨论等收集研究数据的方法,对职前数学教师的实践知能发展进行实证研究,主要解决四个研究问题:(1)职前数学教师实践知能的现状是怎样的?(2)职前数学教师在学习干预课程中的教学理论时,对三个定理证明的教学进行了什么样的分析?这些分析对他们理解这三个定理的教学有什么帮助?(3)在数学教师实践知能模型框架之下,职前数学教师对研究者提供的三角形内角和定理、勾股定理和垂径定理教学设计文本案例的学习、思考和研讨,对职前数学教师理解三个定理的教学有什么作用?(4)经过数学教师实践知能干预性课程的学习和训练,职前数学教师实践知能产生了哪些变化?经过研究,得出以下主要结论:1.职前数学教师的数学教学实践知能现状不容乐观,但同时职前数学教师的数学教学实践知能并非空白,虽然职前数学教师没有真正做数学教师的经验,但他们在数学教师实践知能的知识基础、教学过程和支持系统领域都存在着一定的积累,这些积累来自于他们受教育的过程,包括中小学的教育过程和大学教育过程和部分职前数学教师做中小学数学家教的过程;职前数学教师通过接受中小学教育和大学教育尤其是数学教育,他们在教育教学理论、心理学理论、数学素养和信息技术方面已经有了一定的积累,但对数学课堂教学的教学经验尤其是课堂把控能力还比较薄弱;2.通过运用数学教师实践知能模型进行教学干预,职前数学教师的实践知能得到很大的发展,表现为实践知能的前后测存在显着性差异;3.实践知能模型应用于职前数学教师的培养具有一定的应用潜力,但在应用过程中需做好设计,即需要一个科学的教学干预过程;4.在实践知能干预性课程教学中既要重视理论的教和学,也要注重随时将理论与三个定理证明教学的实践相结合,在这一结合过程中,组织、引导职前数学教师对数学教学理论的学习、思考、分析和研讨,不但有利于他们理解数学教学理论,也有利于理解具体数学教学内容的教学;5.为职前数学教师提供比较成熟的三个定理证明教学的教学案例,并且组织他们对案例进行比较系统的学习、讨论、交流,对他们理解三个定理的证明教学具有积极的意义;6.通过数学教学理论学习、数学教学技能训练、设计教学、讨论和信心宣告,职前数学教师在实践知能的支持系统(信念与态度)得到提高。7.本研究设计的职前数学教师实践知能干预性教学,对提高职前数学教师的实践知能具有明显的作用。这些研究结论,对数学教师实践知能的研究、我国的数学教师教育具有一定的启示。最后,结合本研究的研究过程和结论,对高校数学教师教育数学专业任课教师和数学教育类课程任课教师给出了一些建议。并且对数学教师实践知能的未来研究进行了展望,提出了一些需要进一步研究的问题。本研究相信,为开拓新的数学教育研究广阔天地,建立具有鲜明中国特色的研究领域,本研究做出了些许的进展工作。

胡晋宾[3](2015)在《基于数学课程知识观的高中数学教科书编写策略研究》文中认为对于学校教育来说,知识毫无疑问是课程和教学的核心。而从历史上来看,知识观决定着课程观和教学观,有什么样的知识观,就会有什么样的课程设计和教学实施。每一次课程改革都是在特定的知识观影响下展开的,知识观是历次课程改革的分歧焦点。对于课程物化载体的教科书来说,它的编写也是知识观指导下的创作活动。基于当下的高中数学课改现实,研究教科书编写策略既有理论意义也有实践意义。从数学哲学、心理学和教育学这样3个视角来透视知识观发现:数学哲学视角的知识观强调对宏观的数学知识发生、确证、发展、结构、属性、应用等方面的反思和追问,心理学视角的知识观强调对微观的认知过程与机制、知识分类与传递等方面的解析和实证,教育学视角的知识观强调对学校中的数学知识的价值、筛选、组织、传递、教授、习得等方面的关切和侧重。数学知识观是隐藏在数学课程观和数学教学观背后的前提性根源,有什么样的数学知识观,就有什么样的数学课程观、数学教学观和数学学习观。在数学教育领域,数学观和数学知识观不是一个概念,但是经常被混淆着使用。本文认为,前者是有关数学发展的“世界观”,使用场合主要是数学研究,隶属于“数学哲学”;后者是关照数学教育的“知识观”,使用场合主要是数学教育,隶属于“数学教育哲学”。如果把数学教育当作基于数学知识的教育,并从知识的角度来考察和反思数学教育的话,那么形成的关于数学知识的看法就是数学知识观。而数学课程知识观是数学知识观的一个子集,就是指关于数学课程知识的观念,它是立足数学课程、关照数学课程、服务数学课程的一种数学知识观。数学教科书中体现的数学课程知识不同于数学科学知识,不同于生活数学知识,而是学校教育中的数学知识。同时,它是以客观的、共同的数学科学知识为基础,整合了同龄人中的生活情境、个人知识中的共性成分以及其他学科知识(如物理、化学等)等知识形态,揉进了教学法加工和编辑技术等元素,预设教学方式并以纸质文本呈现出来的整合知识。数学教科书知识的特点是,它假借以静态陈述的数学知识为躯壳,负载了教育理念的课程价值,预设有知识获得的教学方式。借鉴有关知识观的理论框架研究,我们赋予数学学科含义,认为数学课程知识观有3个维度,即数学知识本质观、数学知识价值观和数学知识获得观。理想的数学课程知识观理论图景是:数学知识本质是一种模式化的思维创造,数学知识价值是一种辩证性的复杂谱系,数学知识获得是一种参与式的社会建构。特别地,我们指出,应该强调借助数学教科书的编写去引导师生形成全面的、辩证的、现代的数学知识观。基于上述三维框架,对历史上数学教科书中隐匿的数学知识观进行了考察,对现实中教科书作者和数学教师的数学课程知识观以及数学教科书编写策略认同进行了问卷调查和相关分析。无论是从历史上6个版本教科书的文本考察来看,还是从现实中26名中学数学教科书作者和515名数学教师的问卷调查来看,知识观都影响了教科书编写策略;反过来,教科书编写策略中预设了不同的知识本质、知识价值和知识获得观念,从而又导致教学中不同数学知识观的形成。它们之间的关系,是统一的、辩证的。对于教科书作者来说,不同知识观导致了编写策略的不同认同,这种认同直接影响了编写策略,从而导致不同的教科书编写方式,间接影响了使用教科书的广大师生的数学知识观。正因为编写策略导致不同的教科书编写方案,因此优质的教科书编写应该寻求或者采用先进的数学课程知识观来做为指导。数学教科书编写是教科书作者在数学课程知识观显性或者隐性影响下的创造性活动,有什么样的数学课程知识观,就有什么样的高中数学教科书编写策略认同——持有传统的、机械的、静态的数学课程知识观,认同传统的、机械的、静态的高中数学教科书编写策略(大致强调知识、结果、显性、学科、传授、内部等);持有现代的、辩证的、动态的数学课程知识观,认同现代的、辩证的、动态的高中数学教科书编写策略(大致强调文化、过程、隐性、活动、建构、外部等)。基于数学课程知识观理论图景,对高中数学教科书编写策略进行了理论建构,并以3个课时的内容进行了微型实证和验证反思。首先,本文认为基于数学课程知识观视角的高中数学教科书编写策略的指导思想有3个,即:数学教科书应该具有学科性,数学教科书应该具有教学性,数学教科书应该具有人文性。其次,在此基础上我们提出如下6条具体的编写设想。第一条,经历数学化:衔接知识的过程与结果样态。第二条,揭示潜隐性.:兼顾知识的外显和内敛价值。第三条,渗透心理化:整合知识的逻辑和心理顺序。第四条,创设关联性:搭建知识的内部和外部链接。第五条,彰显主体性.:协调知识的科学和人文特质。第六条,体现交互性:铺设知识的传授和建构渠道。对于我国实际来说,数学教科书编写以前主要是国家行为,受到传统的教育理念的深刻影响;现在教科书多元化以后,编写策略是教科书建设的一个重要研究课题。因此,我们主张高中数学教科书在编写的时候,立足于数学知识的结果、显性、逻辑、内部、传授维度的基础上,尤其要注意数学知识的过程、隐性、心理、外部和建构维度,把它们辩证地平衡起来,防止矫枉过正的简单化和一分为二的片面性,从而实现数学知识的最大教育价值和最佳育人效果。

冯俊琪[4](2020)在《中国基础教育阶段女性数学教育发展研究(1978-2020年)》文中研究指明弹指一挥间,改革开放走过了40多年的历程。女性数学教育,作为一种文化现象,随着社会的变化、数学教育理念的变革逐步发展。经过40多年的积累,回望我国女性数学教育已发生翻天覆地的变化。女性接受数学教育是女性学习掌握数学科学知识的重要途径,也是女性发展智力、提升智力水平的重要工具,女性数学教育的程度标志着现代女性智能化的水平。因此,保障女性受数学教育的权利,不仅关系到女性素质的高低,而是更关系到经济的发展、社会进步的推动。女性数学教育是数学教育的重要组成部分,但有着区别于数学教育的独特问题、独特视野以及独特社会价值,所以人们应当更加关注与重视。女性数学教育研究是数学教育研究中不可或缺的部分,但有着区别于数学教育研究的独特问题、独特视野以及独特社会价值,所以人们应当更加关注与重视。目前,我国女性数学教育研究的主要任务是什么?这是一个值得每一位研究女性数学教育的学者思考的问题。笔者认为,当前的主要任务包括:1.记录我国女性数学教育发展的历程;2.探讨我国女性数学教育的历史发展与政治、经济、文化和教育理念之间的关系;3.对女性数学教育相关的研究成果进行研究与反思,以期为我国女性数学教育的发展和繁荣提供成果借鉴和历史思考。基于此,使得本文采用历史研究法、文献研究法等方法进行研究论述。全文主要分为绪论、理论基础、正文和结语四个部分。正文部分包括五章内容:第一章研究了女性数学教育从缺失到确立的历史进程,分为三个阶段,即零星的家庭数学教育(封建社会)、女性数学教育的萌芽(1840—1949年)和女性数学教育的发展(1849—1978年)。第二、三、四章分别论述了我国改革开放以来全面恢复时期(1979—1989年)、繁荣发展时期(1990—1999年)、巩固提高时期(2000年—至今)的女性数学教育发展总况。每一章都将从女性教育政策及措施、女性受数学教育情况、女性数学教育的成就以及女性数学教育研究情况四部分展现女性数学教育在每一期的发展历程。第五章是针对改革开放以来女性数学教育以及女性数学教育研究发展中存在的问题,总结了经验、梳理了对女性数学教育发展的影响因素、女性数学教育研究的结论,提供了一些对未来女性数学教育发展以及女性数学教育研究切实可行的措施,以期为今后女性数学教育的发展提供借鉴作用,起到自己的绵薄之力。总之,论文结合女性数学教育历史与现状,从数学史和数学教育的角度对女性数学教学和女性数学学习培养过程进行分析,并且分析了在此背景下兴起的女性数学教育研究的情况及问题,为我国数学教育中的性别公平建设,为女性数学教育进一步的理论研究和实践探索提供有益参考。

钟予[5](2017)在《建筑教育中的数学教育和教学》文中研究指明建筑,无论过去或现在,都旨在向人类提供实实在在的人文环境,建筑师执行的是最具体的人文关怀,数学则是人文精神最完美,最具体的体现,是人类共同文化遗产最核心,最根本的部分。轻视或取消数学教学,伤及了建筑教育的根本。本文探讨建筑数学的具体内容和教学方针,涉及国内外建筑数学教育的发展动向、受教育者的现实需求等。基于作者的实地考察和调研,发现建筑数学的教学应随时代精神、社会环境、学科发展以及实践需求不断调整。在此基础上,主张当代数学教学应顺应人文素质教育的改革趋势,避免系统数学知识的灌输,重在提高学生数学应用水平和造就人文精神、继承文化传统,并最终建立起与建筑创作关系更为密切的建筑数学课程,作为原有高等数学课的补充或替代。

宋晋凯[6](2020)在《民国前期数学现代转型的文化观照(1912-1935年)》文中提出民国时期的学术是中国学术史上的一座高峰。数学学科的发展历程也是如此,中国现代数学在民国后期(1936-1949年)出现了一次研究的高潮,许多数学家逐渐进入了世界数学舞台的中央,一些研究成果达到了世界先进水平。我们审视民国后期的数学发展成就,不可不追溯民国前期(1912-1935年)的数学现代转型。民国前期,文化变革剧烈,社会思潮汹涌,在科学文化空前繁荣的背景下,中国传统数学伴随着“四部之学”到“七科之学”的学术转向,逐步完成了体制化进程,现代转型初步完成。民国前期的数学现代转型,使中国传统数学在学术、学科、学人、学会等建制建设方面发生了根本性的转变。至为重要的是,在民国学术现代转型的浪潮中,学界对数学本质、数学价值、数学真理等数学思想进行了深刻的理论反思和哲学审视,构筑起具有独特时代文化特质的数学思想文化形态。民国前期的数学思想文化颠覆了中国传统数学的观念认知,与数学现代转型相互耦合、互为促进,也为国民政府时期数学研究的高潮奠定了坚实的文化根基。本文遵循学术现代转型的史学研究路径,以“契机→内容→主体→途径”为主线牵引通篇,分为绪论、正文(共七章,首章为契机,中间四章为内容,后二章分别为主体和途径)、结束语三个部分。绪论部分围绕研究目的和意义、国内外研究现状、研究思路、研究方法、创新与不足以及概念释名等内容进行阐释,重点对选题研究的合理性、可行性给予论证。第一章是关于民国前期数学现代转型的文化背景及基本概况的相关内容。民国数学现代转型的研究,必须将其置放于社会文化发展的时代背景之下,也必须通晓国外数学潮流的发展情况。本章简要介绍了民国科学文化、世界数学思想潮流的相关情况,重点对民国数学现代转型的重要标志和体制化完成的重要节点给予着墨论述,为正文后续部分的展开进行铺垫。第二章是关于民国前期数学本质探讨的内容。事物的本质最可从其定义中体现,从定义出发也可探寻事物本质的“元问题”。本章围绕数学界说在中国传统数学中的历史演变、民国前期数学界说的形态等内容,重点从数学基础研究、实在论的视角进行数学本质属性的挖掘。民国前期的数学本质体现出自然属性、哲学属性以及实在论等方面的特征。第三章是关于民国前期数学认识论的内容。认识论是对事物本质探寻的纽带。围绕数学知识能否被人类所认知这一问题,民国学界进行了激烈的论争,其中,尤以罗素的数学不可知论影响最为深远。受罗素来华带来的文化效应影响,数学不可知论成为这场论争的焦点。本章重点讨论数学不可知论的历史演变及传播概况,系统梳理了数学不可知论自身体现出的“空洞无物”“不辨真妄”的典型特征,并对民国学者利用唯物辩证法对其发起诘难的情况进行了回溯。第四章是关于民国前期数学价值观嬗变的内容。价值观是数学思想文化的重要组成。中国传统数学为“六艺之末”,体现出鲜明的实用主义导向。进入民国之后,现代数学的价值被学界重新认知,此时的数学被理解为是“科学之基”“科学之母”,数学的价值观念发生了根本转变。围绕数学的价值,民国学界对数学之于社会、文化和人生的作用,以及数学与统计学、经济学、艺术学等现代学科的关系进行了广泛的探讨。第五章是关于民国前期数学真理性研究的内容。真理性研究是数学哲学关注的重要主题。民国学界对数学真理所体现出的保守性、递进性、自足性等特点进行了总结。实证主义思潮传入使数学真理的特性受到了挑战,数学真理的相对性以及数学公理主义倾向成为学界论争的重点。康德哲学、实证主义、公理主义等哲学理论与非欧几何学、极限理论等数学学说相互交织、相互援引,成为民国学界真理性探讨的特色。第六章是关于民国前期数学思想文化主体寻源的内容。留学生是民国前期数学思想文化建构的主体。民国以前,实业是留学生学科选择的主要方向,数学留学生的数量极少。及至民国,西学被大规模建制化的持续引入,学界对数学的重要性有了充分认识,数学留学生的数量逐渐增多。学成回国的留学生不仅是民国数学现代转型的骨干,更是数学思想文化变革的中坚,引领了民国前期数学思想文化的发展。本章还以数学留学生的典型代表——胡明复为对象进行具体研究,点面结合勾勒数学留学生在民国前期数学思想文化构建中的重要作用。第七章是关于民国前期数学思想文化传播途径的内容。期刊是文化传播的重要载体。中国现代意义期刊的创办受益于来华传教士群体。在民国以前的期刊中刊载过一些数学文化方面的文章,但数量较少,并未产生特别的影响。数学思想文化在民国前期的传播途径体现出综合性期刊→大学期刊→专业期刊的典型特点。《科学》《少年中国》《学生杂志》等综合类期刊成为数学思想文化的重要传播平台。外国名哲来华访学,促进了民国数学思想文化的发展,人物学说研究类专门期刊开始出现。《罗素月刊》是此类期刊的嚆矢,是一种非常特殊的文化现象。以《罗素月刊》为研究素材,可以管窥民国前期数学思想文化经由期刊传播之原貌。结束语是对本文的总体回溯。主要包括民国前期数学思想文化特点的归纳总结、本文研究的不足与仍需努力的方面、本文研究的展望及下一步需要关注的研究方向等内容。

田仕芹[7](2017)在《建设性后现代视野下高等数学课程问题与改进策略研究》文中提出《高等数学》是高等院校理工、农、林、医、经管等学科的基础课程,具有很强的系统性、抽象性、逻辑性和应用性,其教学质量的高低直接影响到学生数学素质的提高和相关专业课程的学习。目前,高等数学教材内容与学生所学专业的联系不够紧密;教师课堂教学行为存在照本宣科、知识本位、预定程序、自导自演等现象;学生在学习过程中,存在初等数学思维向高等数学思维的转变困难、学习方法与策略不当等问题。综观国内外对高等数学课程的研究,已有研究大多以传统的课程和教学理论为指导,对解决当前高等数学课程存在的许多矛盾,有一定的局限性;定性的研究多于定量的研究,在定量研究方面,对高等数学课程现状缺乏有针对性的调查统计数据;对高等数学课程的研究有待深入和细化。建设性后现代哲学在有机、整合思维框架下构建一种超越现代性的世界观,建设性后现代教育学家关注课程理解和课程对人心灵的启迪与解放,倡导课程的开放性、多元性、过程性,有力地推动了现代课程理念的变革与创新。建设性后现代哲学与教育思想虽不能为高等数学课程提供具体的模式,但是它可以促使高等数学教育工作者积极反思和自我批判,获得对高等数学教学实践的深层次理解,化高等数学课程的现实困惑为课程新进步的实际开端。建设性后现代教育思想的核心观点可概括为:(一)教育要培养文化与专门知识兼备的人才,提倡课程目标预设与生成的有机结合。(二)建设性后现代教育倡导复杂性思维和一切有利于催生建设性后现代教育世界的思维方式。(三)强调教育过程必须保持有张力的节奏,经验在师生对话性交互作用中转变,意义在阐释与理解中建构,能力在回归性反思中发展,教师应成为有责任和智慧的舞伴和导师。(四)将课程理解为达成个体经验转变的过程,倡导用“自组织”作为基本假设设计非线性的开放性课程,强调评价应成为共同背景之中以转变为目的的协调过程。本研究采用文献法、观察法、比较法、调查法(访谈法和问卷调查法),通过对高等数学课程大纲、教材、教师、学生的调查,分析高等数学课程存在的问题及原因。调查发现,高等数学课程目标方面存在的主要问题是:不同院校或专业的高等数学课程目标趋同、高等数学课程目标过于宽泛、重预设轻生成、重知识轻情感、表述不清。高等数学课程内容方面存在的主要问题是:数学理论与数学应用比例失调、重数学知识而轻数学思想方法、缺乏与相关专业课程的融合、呈现形式单一。高等数学课程实施中存在的主要问题是:课堂教学以教师为中心、教学内容拘泥于课本知识、教学过程缺乏师生间的对话与交流、实践教学环节薄弱。高等数学课程评价方面存在的主要问题是评价方式、主体和内容单一,缺乏对评价结果的分析和反馈。产生上述问题的原因主要是高等数学课程的价值取向偏失、外部需求在高等数学教育领域的反映具有滞后性、教师的观念更新缓慢。针对高等数学课程存在的问题及问题产生的原因,在建设性后现代视野下探讨高等数学课程的改进策略。一是设计预设性与生成性相结合的多元化高等数学课程目标。二是构建KTAC一体化的高等数学课程内容体系(K-数学知识、T-数学思想、A-数学应用、C-数学文化)。三是开展过程教学,主要包括促进高等数学教学系统的自组织性,在节奏性对话教学中发展学生智慧,在展现数学思维过程中培育学生的创造性思维。四是实施多元动态评价,学生参与评价,全面评价学生的数学素质,注重过程评价。五是教师树立过程教育理念,通过反思转变观念,借助研究提升经验。基于建设性后现代哲学与教育思想对高等数学课程问题与改进策略进行研究,有助于高等数学课程理论的丰富和完善,又有助于高等数学课程研究的深入和细化,同时为指导和改善高等数学教学实践提供借鉴,为高等数学课程改革的具体落实提供一定参考,促进高等数学与学科教学的有效对接、高等数学教学质量的提高以及学生的发展。

李小平[8](2016)在《数学文化与现代文明》文中认为谈到人类文明,人们最先想到的是政治、经济、历史、文学、艺术、天文地理等方面的成就。熟不知数学才是人类文明的基础,它的产生和发展伴随着人类文明的整个进程,并在其中起着重要的推动作用。“文化”一词,在我国古代很早就有,比西方要早,但直到十九世纪,它才有一个较为完整的表示方式。《哲学小词典》认为“广义的文化”是指人类在社会历史实践过程中所创造的物质财富和精神财富的总和,而“狭义的文化”指的是社会意识形态以及与之相适应的规章制度、风俗习惯、学术思想、宗教组织及文学艺术等。文化可以随着人类社会的发展而发展,并借助语言和文字的形式来表现。而数学是人类认识世界和改造世界的思维工具、思想方法和理性精神,所以说数学也是一种文化,而且是一种先进的文化,数学文化的发展足迹是伴随着人类历史的发展足迹的,所以它见证了人类的文明发展。西方学者于20世纪60年代提出了数学文化观,认为数学是一个由其内在力量与外在力量共同作用而不断变化发展的文化系统,90年代末我国学者也开始从文化的角度来关注数学,并强调数学的文化价值。根据数学文化内涵的侧重点的不同,可以给予数学文化不同的理解。文化有广义狭义之分,那对应的数学文化也有广义狭义的理解。狭义的数学文化是指数学的思想、精神、方法、观点、语言,以及它们的形成及其发展过程,广义还包括了数学家、数学史、数学美、数学教育、数学与各种文化之间的关系。数学文化具有很多特点,文中给出数学文化的定义之后,对数学文化的传统性、抽象性、哲学性、美学性、渗透性、发展性、艺术性及趣味性等做了重点阐述,了解这些特点能进一步加深对数学文化的理解及认识。因为受经济制度、地理环境等各方面的影响,中西方文化在思维模式、民主观念、科学观、道德观、法制观、教育观等方面存在着很大的差异。古希腊相当重视数学,相传当时不懂几何者是不能进入柏拉图学园的,但在我国古代,崇尚诗词歌赋、琴棋书画或者懂点八股文的人被认为是有文化、有品味的人,而数学仅仅是被商人记账、算命先生算命时才会用到。纵观中国古代数学的发展,实用思想、算法化的特点一直贯穿其中。《九章算术》对我国古代数学发展的影响很大,从隋唐时代一直到明末清初,所学知识几乎都来自于《九章算术》或是其扩展版。《九章算术》的编写方式与希腊欧几里得的《几何原本》编写方式有着天壤之别,《几何原本》是从公理、公设、定理等出发,通过证明的方式建立起演绎数学体系,而《九章算术》是从问题出发,以解决问题的方式建立起机械性数学体系,这也体现了中国古代数学重实用、重计算的特点。我国的文化历史悠久,其中春秋战国时期的法家、儒家、道家三大学派,特别是儒家思想,对我国文化影响很大。儒家的“仁、义、礼、智、信”的世界观因迎合封建统治者的意愿而受到推崇,由这种观念所引发的轻视科学、鄙视技艺的思想也对后世造成了深刻的影响,至今我国政府、教育部门中还有大部分人不重视数学研究,可以说儒家文化阻碍了我国古代数学的发展。而古希腊的数学如哲学一般备受人们的重视,在整个文化系统中扮演重要角色,它孕育了一种理性精神,不仅给西方文化做出了不可磨灭的巨大贡献,也给整个人类文明的进程带来了巨大影响。儒家提倡崇古,排斥新思想、新理念,当明末清初西方数学传入我国时,我国大多数数学家们却把精力放在古算学书上,不接纳西方的数学文化思想,再加上清廷的衰败及闭关自守政策,把西方的数学文化拒之门外,造成中国数学文化与西方数学文化的脱节,也使得中国数学教育远远落后于西方的数学教育,这无疑造成了我国科学技术上的大落后。而对中西方数学文化的融合做出杰出贡献的首推意大利的传教士利玛窦,他把《几何原本》与非欧几何引入大陆,也把中国古代的儒家学说、数学思想及数学方法传输给了西方,从而促进了中西文化的交流,推动了人类文明的发展。没有数学,就没有现代文明,可知数学文化在现代文明中不可取代的地位。文中主要从两个方面来论述,一个是微积分时代,一个是计算机时代。17、18世纪,人类文明的重要瑰宝解析几何与微积分登上了历史舞台,数学达到空前的繁荣,迎来了一个“英雄的世纪”。它们的发明,尽管当时理论上尚不成熟,特别是微积分基础很不牢固,但并不影响它的大量使用及快速推广。微积分作为一种新生力量,推动了人类历史上整个科技革命。瓦特拿着“微积分”这把科学钥匙开启了工业革命的大门,蒸汽机的发明与使用直接把人类社会带进了“蒸汽时代”;19世纪微积分知识又为电磁理论打下基础,麦克斯韦的电磁波让电气走进了我们的生活。20世纪第一台计算机的诞生,成为人类文明史上一个重要的里程碑。计算机凭借数学这个幕后英雄以常人难以想象的速度发展,当然计算机的强大的计算功能也让数学如虎添翼,让数学比以往任何时候更具威慑力和渗透力。“互联网”时代的开启,更是让人们的生活发生翻天覆地的变化,让人类科学技术的进步达到空前繁荣的地步。可以说,整个人类社会的进程,无不显示出数学在认识世界和改造世界中所蕴藏的巨大生命力,数学文化影响了人类的文明进程,改写了人类的历史,同时也改变了人类的思维方式和认知水平,进而推动了人类社会的进步。当今,我们正在迈向信息化社会,信息时代意味着高技术时代,而高技术时代就其实质而言就是数学时代。事实上,我们一直在人类文明进程中不自觉的享受着数学文化的恩泽,但却对数学文化的重要性缺乏一个系统的理性的认识,这势必会影响到数学现在及未来的发展,间接的延缓人类社会向更高级、更先进的文明社会迈进的步伐,这是值得当今社会的每一成员认真思考并要足够重视的问题。一个国家经济的发展、国力的强盛与这个国家的国民素质息息相关,国民素质机构的一个重要组成部分就是人文素质,而数学素养又是人文素质的一个最为重要的构建。从我国高校有组织、有计划地实施大学生文化素质教育工作,至今已20余年,“素质教育”这个词早已成为我国教育理念的一个核心话题,植入了教育工作者们的心田。周远清曾评价大学生文化素质教育是“切中时弊、顺应潮流、涉及根本”,而数学文化课程的开设用这12个字来形容也毫无夸张之嫌。文中最后谈到了我国高校数学文化课程的开设情况。数学文化的教育价值得到了越来越多的教育工作者们的认可,但仅仅满足于开设数学文化类的选修课程远远不够。为提高学生数学素养,继而提高全民文化素质,让数学文化走进课堂的呼声越来越高。如何在教学中有效地融入数学文化的问题摆在了教师面前,而地方性本科院校又在大众化人才培养中占据着主要力量,为此我们对在地方院校数学文化课程的开设作了一些探讨,希望起到抛砖引玉作用。

侯燕[9](2019)在《胡锦涛青年思想研究》文中认为青年,既是社会发展的推动力量,又是影响社会问题的不定因素。青年群体的发展方向与各种政治力量的走势存在一定内在联系,青年与青年问题也因此始终受到社会的关注。马克思主义者总是把世界的发展进步与青年的历史使命联系起来,满腔热情地寄希望于青年。中国共产党自成立之日起,就始终代表广大青年、赢得广大青年、依靠广大青年,把马克思主义青年思想与中国革命、建设和改革实践相结合,不断进行理论创新。由于曾从事共青团工作,胡锦涛对于青年和青年问题有着直观感受和深刻理解,他在继承毛泽东、邓小平和江泽民的青年思想的基础上,坚持从事关国家与民族前途命运的重大战略高度审视青年和青年问题,形成了一系列符合社会发展与青年变化时代特征的科学认识与判断,从而继承和丰富了马克思主义青年思想。但凡客观存在的事物,都有其内在规律性。任何科学思想形成和发展都与当时特定的历史背景密切相关,是社会发展的必然产物。在独特的实践历程中逐步形成和发展的胡锦涛青年思想,有着丰富的理论渊源和现实依据,也有其内在根基,其产生、形成、发展和成熟都遵循社会历史基本规律。改革开放翻开了中华民族艰苦奋斗、厚积薄发的新篇章,党领导全国人民以无限的智慧和热情投入这一波澜壮阔的伟大实践,奋力推进中国特色社会主义建设。在这一过程中,中国经济社会发生了深刻变化,青年自身的特征与需求也呈现出相应的时代气息。随之逐步形成和发展起来的胡锦涛青年思想,遵循马克思主义基本观点,坚持科学发展,强调以人为本,把青年发展与中国特色社会主义事业发展紧密联系在一起,注重以服务青年发展促进青年理想信念的形成与生力军作用的发挥,指引着当代青年与青年工作的发展方向。本研究通过对胡锦涛青年思想形成的理论渊源、现实基础以及形成发展过程进行回溯和梳理,阐述了胡锦涛青年思想的总体脉络和逻辑体系,探讨了胡锦涛青年思想在马克思主义青年思想中国化发展历程中的地位和作用,就如何以胡锦涛青年思想为指导,坚持服务发展,营造良好环境,提高青年素质,更好地为党和国家的各项事业提供人才保障进行了前瞻性分析。本研究认为,马克思恩格斯的青年思想、列宁斯大林的青年思想、毛泽东邓小平江泽民的青年思想以及中西方文化中的青年观点,是胡锦涛青年思想形成发展的理论和文化渊源;中国特色社会主义建设的伟大实践、党的青年工作面临的任务与挑战、胡锦涛自身成长和青年工作经历则构成了胡锦涛青年思想形成发展的现实依据。就其发展阶段来看,胡锦涛青年思想经历了由孕育到初步形成、再到不断丰富完善的过程,而这一过程始终与中国特色社会主义建设进程紧密相连。本研究也探讨了胡锦涛青年思想关于青年的地位和价值、青年的优势与不足、青年工作的旨归与要求等方面的基本观点,这些也恰恰构成了胡锦涛青年思想的立论基础。在总论其形成基础、发展阶段和基本出发点之后,本研究选取胡锦涛青年思想极具时代特征的政治视角、利益视角、人才视角、实践视角、全球视角等维度对其内容构成进行了分论。从坚持党的领导、以马克思主义群众观审视青年和青年问题,突出价值引领、以社会主义核心价值体系为青年发展提供指引,实施科学发展、以科学发展观统领青年工作等方面论述了胡锦涛青年思想之政治视角;从为大局服务与为青年服务的一致性、寓引导教育于服务之中、着力服务青年的根本需求等方面讨论了胡锦涛青年思想之利益视角;从人才强国与青年人才培养、科教兴国与青年教育、社会环境与青年成长、执政能力与干部选拔等方面剖析了胡锦涛青年思想之人才视角;从火热社会实践中的无悔青春、党和国家需要青春力量、伟大时代召唤创业者等方面分析了胡锦涛青年思想之实践视角;从青年要努力拓展世界眼光、青年是和谐世界的重要建设者、加强各国青年之间的交流等方面阐述了胡锦涛青年思想之全球视角。最后,提出胡锦涛青年思想的现实启示,即坚持党的领导,准确把握青年脉搏,积极创造良好的社会环境,促进青年全面协调可持续发展;坚持以人为本,激发青年的主体自觉,充分发挥青年的主观能动性,搭建更为广阔的青年创新实践平台,引导青年为中国特色社会主义事业接续奋斗;坚持服务青年,注重青年的利益实现,增强服务青年的实效性,推进青年工作改革创新,牢牢把握青年工作的生命线。基于对共产党执政规律、社会主义建设规律以及人类社会发展规律的认识,胡锦涛青年思想系统且全面地回答了关于青年的基本问题,既是马克思主义指导下的既有理论范畴,又是科学发展观战略思想不可或缺的组成部分。胡锦涛青年思想内容丰富、时代感强,不仅丰富与发展了马克思主义理论宝库,而且对深刻认识马克思主义一脉相承且与时俱进的理论体系及其科学品质,开拓青年工作的思路、方法、手段,增强青年工作的针对性和实效性,具有深远的借鉴意义。为了阐明胡锦涛青年思想对于开展青年工作的指导意义,本研究选取了多个案例,从某一角度或某一形式印证胡锦涛青年思想的实践价值。比如,以青年马克思主义者培养工程为例,简述了党和青年的特殊关系,突出了马克思主义理论指导对于青年发展的重要意义,就青年思想政治教育的有效路径进行了论述;以大学青年教师为例,从剖析职业获得感生成入手,对于如何立足青年的基本特征、遵从青年成长的客观规律、正确分析青年的实际状况、在服务中赢得青年进行了探讨;以高校共青团发展路向为例,就共青团如何通过深化改革凝聚青年人才、为中国特色社会主义建设提供人才支撑和智力保障进行了分析;以21世纪以来蓬勃发展的青年自组织为例,讨论了新时期青年社会实践主体的拓展形式,得到的基本结论是,自组织这一随着时代发展应运而生的组织形式对于青年参与社会、投身实践具有一定的积极意义和价值,但也存在着局限性,需要在实践中贴近青年、创新思路,充分发挥青年群体的主体作用,积极引领青年成长发展;以孔子学院的形成发展为例,简析青年国际交流状况,以此说明青年拓展世界眼光的重大意义,并印证青年对于促进国际交流、树立国际形象、提升国家“软实力”的积极作用。站在新的历史时期分析青年和青年工作,不难看到胡锦涛青年思想严谨而科学的理论品质及重大而深刻的时代价值。当今世界政治、经济形势正在发生深刻复杂的变化,国际青年争夺战愈演愈烈,党的青年工作也面临各种新情况与新挑战,但综观国际国内大势,中国发展仍处于大有可为的重要战略机遇期。胡锦涛深刻指出,未来属于青年,未来取决于青年,未来更需要青年去创造。当代中国青年的历史使命与青年运动的主题,在根本上与全国各族人民共同的奋斗目标完全一致,就是要实现中华民族的伟大复兴。处在全面建成小康社会的决胜时期,从进一步巩固中国共产党的执政地位、实现中华民族伟大复兴的历史使命出发,全面梳理、分析胡锦涛青年思想对青年工作的指导价值和实践成效,对于引领当代中国青年自觉担负起实现“两个一百年”的历史责任,投身全面建设社会主义现代化国家伟大征程,无疑具有重要的实践参考与指导价值。

张蜀青[10](2019)在《问题驱动的高中数学课堂教学设计理论与实践》文中认为近几十年来,我国中学数学教育改革进行了若干轮,从教学大纲改为课程标准,到2017年的新课标,除了对教学知识版块进行了增减,还产生了各种教育理念.在教师群体中,则主要是基于教学形式的课堂教学改革.教育届有识之士提出数学教育应该是数学的再创造过程,我们也看到很多论文言必称弗莱登塔尔和“再创造”,但是什么是真正的数学再创造?并没有一个明确的内涵解释和操作行为准则.本研究所提出的“问题驱动”是对弗莱登塔尔数学教育观的发展和丰富,是其“再创造”思想的具体化.它倡导教师借助数学史等深入了解知识内部,通过挖掘知识产生的背景,了解数学思想形成的过程,剖析其文化价值.具体实施过程则是结合教育学和心理学的原则,根据学生的认知水平创设合理的问题情境,将引发概念被创建或定理被发现的问题嵌入到情境中,实现问题驱动教学.本研究主要做了以下几方面的工作:1.文献综述新中国建国以来的中学数学教育改革,及美国和日本为代表的世界数学教育改革情况.根据当前高中数学教学存在的问题,提出问题驱动的数学课堂教学理论.2.从数学教育的本质、数学教育的价值来详细阐述问题驱动的高中数学教学设计的理念和指导思想,强调我们的数学课堂教学应该重视思辨和直觉培养,从而培养学生的创造力,数学教育除了体现学科价值还应该体现人文价值.3.深入阐述了“问题驱动”的内涵与外延,指出何为“真问题”和“真情境”,如何通过问题驱动实现数学的再创造.给出问题驱动的高中数学课堂教学评价标准及解读.4.本研究在积累了近百篇教学设计基础上,通过三种课型的5个典型案例的教学设计进行对比评价,从多个角度用实际案例示范引领如何创设问题情境,实现问题驱动.5.总结了近四年的研究成果与不足,明确下一步研究的方向.本研究的创新之处:1.和导师一起建立了问题驱动的数学课堂教学理论并进行了实践.2.和导师一起建立了反映数学本质的简单易操作的数学课堂教学评价标准.3.提出了数学教育是数学的有限再创造的观点,丰富发展了弗莱登塔尔的再创造理论.4.大、中学教师以及教研员长期扎根一线教学,通过教学研讨形式实现理论与实践相结合的崭新合作模式,使理论研究落到实处,也使课堂教学有章法可循,在实践中提升教师的教育研究水平.本研究通过行动研究形成一套有效可行的实现数学再创造的理论,一方面落实“四基”和“四能”,一方面探索出一条在应试教育与素质教育之间寻找平衡点的道路.本研究已在高中教学取得了很好的效果,在国内有一定的影响。

二、从历史和宏观的角度探讨大学数学改革(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、从历史和宏观的角度探讨大学数学改革(论文提纲范文)

(1)一元微积分概念教学的设计研究(论文提纲范文)

摘要
ABSTRACT
第1章 引论
    1.1 研究的背景
        1.1.1 高等教育大众化的影响
        1.1.2 课程改革背景的诉求
        1.1.3 对微积分教学现状的反思
    1.2 研究的问题
    1.3 研究的意义
    1.4 论文的结构
第2章 文献综述
    2.1 大学数学教育研究概览
        2.1.1 上世纪80年代关于高等数学的研究
        2.1.2 《高等数学思维》
        2.1.3 《大学数学教育研究》
        2.1.4 《大学数学的教与学》
        2.1.5 美国的微积分课程改革运动
        2.1.6 中国的工科数学改革
    2.2 大学与高中的衔接
        2.2.1 大学与高中的衔接的困难及其表现
        2.2.2 导致大学与高中衔接困难的因素
        2.2.3 大学与高中衔接的解决策略
        2.2.4 大学与高中衔接的理论模型
    2.3 高等数学思维相关理论综述
        2.3.1 概念意象与概念定义
        2.3.2 过程性概念
        2.3.3 数学的三个世界
        2.3.4 APOS理论
        2.3.5 再谈“压缩”
    2.4 微积分概念教学
        2.4.1 直观的方法
        2.4.2 历史发生的方法
        2.4.3 “基于概念”的学习环境
第3章 研究方案与设计
    3.1 研究方法
        3.1.1 教育设计研究法
        3.1.2 为什么要用教育设计研究法
    3.2 研究对象及研究参与者
        3.2.1 学校
        3.2.2 教师
        3.2.3 学生
        3.2.4 课程与教材
        3.2.5 研究人员
    3.3 研究思路与流程
        3.3.1 微积分概念教学原则
        3.3.2 案例选取
        3.3.3 研究流程
    3.4 研究工具
        3.4.1 调查问卷与测试
        3.4.2 访谈
        3.4.3 课堂观察与视频分析
        3.4.4 准实验研究
    3.5 数据收集与处理
        3.5.1 数据收集日程
        3.5.2 数据收集工具
        3.5.3 数据处理分析
    3.6 研究的效度与伦理
        3.6.1 信度与效度
        3.6.2 伦理
第4章 研究结果总述
    4.1 预研究
        4.1.1 2010年1月对大一学生的调查
        4.1.2 2010年5月对大一学生的访谈——关于微分概念误解
        4.1.3 2010年9月对大一新生的测试
        4.1.4 预研究小结
    4.2 概念教学设计原则的提出与发展
        4.2.1 “基于概念”的教学环境
        4.2.2 概念教学原则的提出与第一次修正
        4.2.3 概念教学原则的第二次修正
    4.3 概念教学设计原型
    4.4 学期初前测
    4.5 概念教学的总体效果
        4.5.1 从常规的期中期末考试成绩来看
        4.5.2 从期末的调查来看
        4.5.3 教学效果小结
第5章 设计研究案例
    5.1 极限的教学设计
        5.1.1 关于极限的研究综述
        5.1.2 大学生对极限的概念意象
        5.1.3 对极限的教学设计与实施
        5.1.4 极限小结
    5.2 导数的教学设计
        5.2.1 关于导数的研究综述
        5.2.2 导数前测
        5.2.3 导数的教学设计
        5.2.4 反馈
        5.2.5 导数小结
    5.3 微分的教学设计
        5.3.1 关于微分概念的研究综述
        5.3.2 大学生对微分概念的理解
        5.3.3 微分的教学设计
        5.3.4 课堂反思
        5.3.5 微分小结
    5.4 中值定理的设计研究
        5.4.1 关于中值定理的研究综述
        5.4.2 中值定理的教学设计
        5.4.3 课堂效果分析
        5.4.4 第二轮教学实践
        5.4.5 中值定理小结
    5.5 定积分的教学设计
        5.5.1 关于定积分的研究综述
        5.5.2 定积分前测与教学设计要点
        5.5.3 定积分概念的设计
        5.5.4 定积分后测
        5.5.5 定积分后测与前测的对比
        5.5.6 从任课教师教学反思看课堂实施情况
        5.5.7 定积分小结
第6章 研究结论与展望
    6.1 研究结论
        6.1.1 学生对微积分基本概念的概念意象
        6.1.2 微积分概念教学原则的构建
        6.1.3 微积分基本概念以及中值定理的教学设计
        6.1.4 概念教学的总体效果
    6.2 研究建议
    6.3 反思与展望
        6.3.1 本研究的创新性
        6.3.2 本研究的不足
        6.3.3 后续研究展望
中文文献
英文文献
附录一 学期初前测
附录二 导数前测
附录三 导数后测定积分前测
附录四 定积分后测
附录五 学期末调查
攻读博士期间发表的论文与主持的相关科研项目
致谢

(2)职前数学教师实践知能发展的设计研究 ——以三个初中几何定理证明教学为例(论文提纲范文)

摘要
abstract
第1章 导论
    1.1 研究背景
        1.1.1 从我国教育的战略地位到教师在教育中的核心作用
        1.1.2 从师范教育到教师教育的重要转型
        1.1.3 我国职前数学教师培养概要及其主要问题
        1.1.4 初中几何证明教学的重要性及其现实教学困难
        1.1.5 重视实践性知识和能力的教师专业发展
    1.2 主要概念界定
        1.2.1 职前数学教师
        1.2.2 实践知能
    1.3 研究目的与意义
        1.3.1 了解职前数学教师实践知能的现状
        1.3.2 优化高等师范院校对职前数学教师培养的方式
        1.3.3 为数学教师实践知能的进一步研究提供参考和借鉴
    1.4 研究问题
    1.5 论文结构
第2章 文献综述
    2.1 实践知能
        2.1.1 实践知能相关词语的词源分析
        2.1.2 知识的哲学理论概览
        2.1.3 知识及其分类
        2.1.4 实践的哲学理论概览
        2.1.5 教师知识及其分类
        2.1.6 教师知识的实践取向
        2.1.7 已有实践取向的教师知识研究
    2.2 发展职前数学教师实践性知识与能力的模式、方法与措施
    2.3 职前数学教师数学推理与证明教学知识研究
    2.4 几何证明教学研究
        2.4.1 什么是推理与证明
        2.4.2 数学推理与证明历史发展的简要轮廓
        2.4.3 数学证明的教育价值
    2.5 本章小结
第3章 数学教师实践知能的理论框架
    3.1 已有“知能”研究文献述评
    3.2 数学教师实践知能的概念和结构
        3.2.1 顾泠沅先生和鲍建生教授关注实践知能的缘起及基本研究思路
        3.2.2 数学教师实践知能概念及其结构发展的简要脉络
        3.2.3 已有数学教师实践知能概念及其结构述评
        3.2.4 数学教师实践知能研究的展望
        3.2.5 数学教师实践知能的理论基础
        3.2.6 本研究的数学教师实践知能定义及其框架
        3.2.7 对数学教师实践知能框架的进一步细化
第4章 研究方法与研究设计
    4.1 研究对象
    4.2 初中几何定理证明教学三个定理的选定
    4.3 实践知能发展干预性课程的教学
        4.3.1 干预课程的教学目标
        4.3.2 干预课程的教学内容
        4.3.3 干预课程的教学方法与教学措施
    4.4 研究方法
        4.4.1 设计研究概述及其与本研究的关系
        4.4.2 本研究的研究问题及其子问题对应的研究方法
    4.5 研究流程
        4.5.1 设计研究的研究流程
        4.5.2 第一轮、第二轮研究研究流程
    4.6 研究工具
        4.6.1 职前数学教师实践知能问卷调查表(前后测)的形成
        4.6.2 职前数学教师实践知能变化情况访谈提纲的形成
    4.7 问卷调查和访谈的具体实施
        4.7.1 职前数学教师实践知能问卷调查的实施
        4.7.2 职前数学教师实践知能访谈的实施
    4.8 研究数据的收集
    4.9 研究数据的分析方式
    4.10 研究的信度、效度与伦理
        4.10.1 研究的信度
        4.10.2 研究的效度
        4.10.3 研究的伦理
第5章 第一轮研究结果
    5.1 职前数学教师实践知能的现状
        5.1.1 职前数学教师对三角形内角和定理等三个定理及其证明的掌握
        5.1.2 职前数学教师实践知能中知识基础的现状
        5.1.3 职前数学教师实践知能中教学过程的现状
        5.1.4 职前数学教师实践知能中支持系统的现状
    5.2 职前数学教师在教学理论学习时对三个定理教学的分析
        5.2.1 职前数学教师对青浦经验的四条数学教学原理的学习和理解
        5.2.2 职前数学教师应用脚手架理论对三个证明教学的分析
        5.2.3 职前数学教师学习弗赖登塔尔的教学理论时对三个定理教学的分析
        5.2.4 小结
    5.3 职前数学教师实践知能的变化
        5.3.1 整体上实践知能的前后测差异情况
        5.3.2 职前数学教师在实践知能各个子成分的变化
        5.3.3 通过对个别研究对象的访谈看研究对象实践知能的变化
第6章 第二轮研究结果
    6.1 职前数学教师实践知能的现状
        6.1.1 职前数学教师对三角形内角和定理等三个定理及其证明的掌握
        6.1.2 职前数学教师实践知能中知识基础的现状
        6.1.3 职前数学教师实践知能中教学过程的现状
        6.1.4 职前数学教师实践知能中支持系统的现状
    6.2 职前数学教师在教学理论学习中对三个定理教学的分析
        6.2.1 职前数学教师对青浦经验的四条数学教学原理的学习和理解
        6.2.2 职前数学教师应用脚手架理论对三个证明教学的分析
        6.2.3 职前数学教师学习弗赖登塔尔的教学理论时对三个定理教学的分析
    6.3 职前数学教师对三个定理教学设计案例的学习和研讨
        6.3.1 职前数学教师对三角形内角和定理教学设计案例的学习和研讨
        6.3.2 职前数学教师对勾股定理教学设计案例的学习和研讨
        6.3.3 职前数学教师对垂径定理教学设计案例的学习和研讨
        6.3.4 案例学习、思考和研讨对职前数学教师理解三个定理教学的意义
    6.4 职前数学教师实践知能的变化
        6.4.1 整体上实践知能的前后测差异情况
        6.4.2 职前数学教师实践知能各个子成分的变化
        6.4.3 通过对个别研究对象的访谈看研究对象实践知能的变化
第7章 对两轮研究的总结
    7.1 职前数学教师实践知能的现状
        7.1.1 职前数学教师对三个定理内容及其证明掌握的现状
        7.1.2 职前数学教师实践知能的现状
    7.2 教学理论的学习、讨论和分析对掌握三个定理教学的价值
    7.3 教学案例对职前数学教师理解三个定理教学的意义
    7.4 两轮研究问卷数据合并后职前数学教师实践知能的变化
        7.4.1 整体上实践知能的前后测差异情况
        7.4.2 两轮问卷调查数据合并后职前数学教师实践知能各个子成分的变化
        7.4.3 从两轮研究中访谈个别研究对象而发现研究对象实践知能的变化
第8章 研究结论与启示
    8.1 研究结论
    8.2 启示与建议
        8.2.1 研究启示
        8.2.2 建议
    8.3 有待进一步研究的问题
    8.4 研究的主要贡献
    8.5 研究局限
参考文献
附录
    附录1 :职前数学教师对其他同学三个定理证明的讨论提纲
    附录2 :研究职前数学教师实践知能变化情况访谈提纲
    附录3 :职前数学教师从业信心宣告书
    附录4 :职前数学教师数学教学实践知能问卷调查表
    附录5 :三角形内角和定理、勾股定理、垂径定理教学设计案例
        1.三角形内角和定理教学设计案例
        2.勾股定理教学设计案例
        3.垂径定理教学设计案例
    附录6 :职前数学教师三个定理证明教学设计案例学习思考提纲
    附录7 :职前数学教师三个定理证明教学设计案例研讨讨论提纲
    附录8 :职前数学教师干预性课程教学满意度问卷调查表
作者简历及在学期间所取得的科研成果
    1.个人简历
    2.参与或主持科研项目
    3.发表论文
致谢

(3)基于数学课程知识观的高中数学教科书编写策略研究(论文提纲范文)

摘要
Abstract
第1章 缘起和目标:绪论
    1.1 研究缘起及问题
        1.1.1 研究缘起
        1.1.2 问题提出
    1.2 研究价值
        1.2.1 理论价值
        1.2.2 实践价值
    1.3 概念界定
        1.3.1 数学课程知识观
        1.3.2 高中数学教科书
        1.3.3 编写策略
    1.4 研究路径及方法
        1.4.1 研究路径
        1.4.2 研究方法
第2章 综述和评论:相关研究及其进展
    2.1 关于知识观及数学(知识)观的研究
        2.1.1 关于知识观的研究
        2.1.2 关于数学(知识)观的研究
    2.2 关于高中数学教科书编写策略的相关研究
        2.2.1 关于功能目标和编写原则的研究
        2.2.2 关于内容素材和组织呈现的研究
        2.2.3 关于语言图表和教材评价的研究
        2.2.4 关于编辑技术和其他学科的研究
    2.3 关于知识观、数学(知识)观和课程教材关系的研究
        2.3.1 课程和教材对数学(知识)观形成的影响
        2.3.2 课程和教材中的数学(知识)观前提及其体现
        2.3.3 利用课程和教材去培养数学(知识)观的建议
    2.4 本章小结
第3章 梳理和考察:多维视角的知识观审视及其对数学课程和教科书的影响
    3.1 知识与知识观
        3.1.1 知识
        3.1.2 知识观与认识论、知识论
    3.2 多维视角下的知识观审视
        3.2.1 数学哲学视角下的知识观
        3.2.2 心理学视角下的知识观
        3.2.3 教育学视角下的知识观
    3.3 知识观对数学课程和教科书编写的影响
        3.3.1 从数学哲学视角来看
        3.3.2 从心理学视角来看
        3.3.3 从教育学视角来看
    3.4 本章小结
第4章 厘清和界定:数学课程知识观涵义、图景及其观照下的高中数学教科书
    4.1 数学观与数学知识观辨析
        4.1.1 数学观是有关数学发展的“世界观”
        4.1.2 数学知识观是面向数学教育的知识观
    4.2 数学课程知识观的提出及其图景
        4.2.1 数学课程知识观的概念及其特点
        4.2.2 数学课程知识观是知识教育立场的价值综合
        4.2.3 数学课程知识观的理论图景概述
    4.3 数学课程知识观下的高中数学教科书编写透视
        4.3.1 基于数学课程知识观精选的学科知识
        4.3.2 作为编写策略加工过的课程知识
        4.3.3 借助教科书编写引导数学(知识)观发展
    4.4 本章小结
第5章 检视和辩驳:数学课程知识观及教科书编写策略的历史存在和现实认同
    5.1 中外教科书里隐匿的数学课程知识观
        5.1.1 以《几何原本》和《九章算术》为例:1949年以前的典型
        5.1.2 以SMP版和人教大纲版为例:1970年前后的典型
        5.1.3 以CPMP版和苏教课标版为例:2000年以来的典型
    5.2 数学课程知识观及高中数学教科书编写策略问卷设计
        5.2.1 理论维度设计
        5.2.2 项目鉴别度、信度和效度
    5.3 对中学数学教科书作者的调查
        5.3.1 教科书作者的数学课程知识观
        5.3.2 教科书作者的编写策略认同
        5.3.3 教科书作者的数学课程知识观和编写策略认同的相关研究
    5.4 对高中数学教师的调查
        5.4.1 高中数学教师的数学课程知识观
        5.4.2 高中数学教师的编写策略认同
        5.4.3 高中数学教师的数学课程知识观和编写策略认同的相关研究
    5.5 本章小结
第6章 反思和建构:数学课程知识观下的高中数学教科书编写策略设想
    6.1 数学课程知识观下高中数学教科书编写策略的指导思想
        6.1.1 数学教科书应该具有学科性
        6.1.2 数学教科书应该具有教学性
        6.1.3 数学教科书应该具有人文性
    6.2 数学课程知识观下高中数学教科书编写策略的具体设想
        6.2.1 经历数学化:衔接知识的结果与过程样态
        6.2.2 揭示潜隐性:兼顾知识的外显与内敛价值
        6.2.3 渗透心理化:整合知识的逻辑和心理顺序
        6.2.4 创设关联性:搭建知识的内部和外部链接
        6.2.5 彰显主体性:协调知识的科学和人文特质
        6.2.6 体现交互性:铺设知识的传授和建构渠道
    6.3 本章小结
第7章 尝试和探索:基于策略设想编写的3个微型实证研究案例
    7.1 微型实验1:棱柱、棱锥和棱台(课时)
        7.1.1 实验设计
        7.1.2 信息处理
        7.1.3 研究启示
    7.2 微型实验2:两个基本计数原理(课时)
        7.2.1 实验设计
        7.2.2 信息处理
        7.2.3 研究启示
    7.3 微型实验3:基本不等式(课时)
        7.3.1 调查设计
        7.3.2 信息处理
        7.3.3 研究启示
    7.4 本章小结
第8章 总结和展望:结论、不足及前景
    8.1 研究结论
    8.2 研究不足
    8.3 研究展望
附录
    附录1 数学课程知识观调查问卷
    附录2 高中数学教科书编写策略认同调查问卷
    附录3 棱柱、棱锥和棱台(静态陈述式)
    附录4 棱柱、棱锥和棱台(动态发生式)
    附录5 棱柱、棱锥和棱台(测试问卷)
    附录6 两个基本计数原理(旁观式)
    附录7 两个基本计数原理(参与式)
    附录8 两个基本计数原理(测试问卷)
    附录9 基本不等式(孤立式)
    附录10 基本不等式(关联式)
    附录11 基本不等式(访谈问卷)
参考文献
在读期间发表的学术论文及研究成果
致谢

(4)中国基础教育阶段女性数学教育发展研究(1978-2020年)(论文提纲范文)

中文摘要
abstract
第1章 绪论
    1.1 问题提出
    1.2 研究方法与思路
        1.2.1 研究方法
        1.2.2 研究思路
    1.3 研究目的与意义
第2章 理论基础与研究背景
    2.1 理论基础
        2.1.1 理论介绍
        2.1.2 概念界定
    2.2 研究背景
        2.2.1 国内外研究现状
        2.2.2 研究时期划分
第3章 女性数学教育历史回顾
    3.1 封建社会——零星的家庭教育
    3.2 1840 -1949 年——女性数学教育的萌芽
    3.3 1949 -1978 年——女性数学教育的发展
        3.3.1 1949 -1956 年的女性数学教育
        3.3.2 1957 -1978 年女性数学教育
    3.4 女数学家
    3.5 本章小结
第4章 全面恢复时期(1979—1989 年)的女性数学教育
    4.1 时期背景
        4.1.1 女性教育政策及措施
        4.1.2 数学教育理念
    4.2 女性受数学教育情况
        4.2.1 女性受小学数学教育情况
        4.2.2 女性受中学数学教育情况
        4.2.3 存在的问题
    4.3 女性数学教育成就
        4.3.1 女数学家
        4.3.2 女性数学教师
        4.3.3 女性数学教育研究者
    4.4 女性数学教育研究情况
        4.4.1 女性数学教育研究文章统计
        4.4.2 女性数学教育研究内容及特点
        4.4.3 小结
    4.5 本章小结
第5章 繁荣发展时期(1990—1999 年)的女性数学教育
    5.1 时期背景
        5.1.1 女性教育政策与措施
        5.1.2 数学教育理念
    5.2 女性受数学教育情况
        5.2.1 女性受义务教育阶段数学教育情况
        5.2.2 女性受高中数学教育情况
        5.2.3 存在的问题
    5.3 女性数学教育成就
        5.3.1 女数学家
        5.3.2 女性数学教师
        5.3.3 女性数学教育研究者
    5.4 女性数学教育研究情况
        5.4.1 女性数学教育研究文章统计
        5.4.2 女性数学教育研究内容及特点
        5.4.3 小结
    5.5 本章小结
第6章 巩固提高时期(2000 年—至今)的女性数学教育
    6.1 时期背景
        6.1.1 女性教育政策与措施
        6.1.2 数学教育理念
    6.2 女性受数学教育情况
        6.2.1 女性受义务教育阶段数学教育情况
        6.2.2 女性受高中数学教育情况
        6.2.3 存在的问题
    6.3 女性数学教育成就
        6.3.1 女数学家
        6.3.2 女性数学教师
        6.3.3 女性数学教育研究者
    6.4 女性数学教育研究情况
        6.4.1 女性数学教育研究文章统计
        6.4.2 女性数学教育研究内容及特点
        6.4.3 小结
    6.5 本章小结
第7章 经验教训与挑战
    7.2 女性数学教育历史发展
        7.2.1 发展概况
        7.2.2 存在问题
        7.2.3 影响因素
        7.2.4 相关建议
    7.3 女性数学教育研究
        7.3.1 结论
        7.3.2 建议
结语
参考文献
致谢

(5)建筑教育中的数学教育和教学(论文提纲范文)

摘要
Absttract
绪论
    一、研究目的与意义
    二、文献综述
    三、研究方法与论文框架
1 我国建筑教育中的数学课程的开设
    1.1 建筑教育的起步,1900-1920
        1.1.1 癸卯学制,1903
        1.1.2 壬子癸丑学制,1913
        1.1.3 苏州工业专门学校建筑科,1923-1926
        小结
    1.2 欧美化教育体系的自由探索,1920-1940
        1.2.1 逐渐完备的学院派体系
        1.2.1.1 中央大学建筑科系(早期),1928-1937
        1.2.1.2 东北大学建筑系,1928-1931
        1.2.1.3 全国统一科目表,1939-1949
        1.2.2 引入包豪斯的尝试
        1.2.2.1 圣约翰大学建筑工程系,1942-1952
        1.2.2.2 清华大学建筑系,1946-1949
        1.2.3 作为一门艺术的建筑
        1.2.3.1 北平大学艺术学院建筑系,1928-1934
        1.2.3.2 广东勷勤大学建筑系,1931-1938
        小结
    1.3 社会主义教育体系的探索,1950-80
        1.3.1 全面苏化时期,1950
        1.3.1.1 院系调整
        1.3.1.2 全国统—的专业教学计划
        1.3.2 政治运动主导时期,1960-70
        1.3.2.1 时局的影响
        1.3.2.2 现代建筑教育的局部探索
        1.3.3 教育恢复时期,1980
        1.3.3.1 数学公共课的转向
        1.3.3.2 数学专业课的变化
        小结
    1.4 当代职业化建筑教育的探索,1990-今
        1.4.1 数学课程的科学化
        1.4.2 数学课程的建筑化
        1.4.2.1 画法几何
        1.4.2.2 建筑数学
        1.4.2.3 数学相关课程
        1.4.3 数学课程的人文化
        小结
2 建筑数学教学对象调研
    2.1 建筑学毕业去向调研
        2.1.1 设计:建筑师之路
        2.1.1.1 独立工作能力
        2.1.1.2 社会责任
        2.1.2 研究:升学深造
        2.1.2.1 教师的期待
        2.1.2.2 学生的需求
        2.1.3 其它:跨专业的转向
        2.1.3.1 艺术
        2.1.3.2 统筹管理
        小结
    2.2 生源的数学基础调查
        2.2.1 知识结构调研:中学数学的课程标准与教学大纲分析
        2.2.1.1 我国中学教学大纲的变迁,1903-今
        2.2.1.2 现行的02版大纲
        2.2.2 学习方法调研:高考与奥数的影响
        2.2.2.1 高考:应试型教育的"独木桥"
        2.2.2.2 奥数:精英培养的迷途
        小结
3 建筑数学课程的演变与启示
    3.1 西方现代建筑教育两大体系中的数学课程
        3.1.1 学院派建筑教育中的数学课程
        3.1.1.1 建筑学教授的早期影响
        3.1.1.2 数学教授的早期影响
        3.1.1.3 力学学科发展和工程师的出现
        3.1.1.4 学院派教育体系中的数学
        3.1.2 包豪斯教育中的数学课程
        3.1.2.1 理论蓝图
        3.1.2.2 实践探索
        3.1.2.3 技术精神的延续——乌尔姆设计学院
        小结
    3.2 当代欧美建筑教育中的数学课程
        3.2.1 美国部分高校建筑数学课程现状调查
        3.2.1.1 入学要求
        3.2.1.2 教学计划
        3.2.1.3 公众舆论中的建筑数学
        3.2.2 欧洲部分高校建筑数学课程现状调查
        3.2.2.1 入学要求
        3.2.2.2 教学计划
        3.2.2.3 公众舆论中的建筑数学
        小结
4 近代数学教育改革的启示
    4.1 近代数学教育改革的一些思索
        4.1.1 数学的"新"或"旧"
        4.1.1.1 数学的三次危机:方法论的启示
        4.1.1.2 非欧几何的诞生:思维模式的转变
        4.1.2 数学的"实"与"用"
        4.1.2.1 近代数学教育理论的一些探索
        4.1.2.2 当代我国数学教育与现实结合的探索
        4.1.3 数学的"爱"或"恨"
        4.1.3.1 两种教学法中的数学情感
        4.1.3.2 数学游戏的一些启示
        小结
    4.2 当代我国大学数学素质教育实践的启示
        4.2.1 高等数学教育的起源
        4.2.2 我国文科数学的探索
        4.2.3 我国高校数学通识教育的尝试
        4.2.3.1 理论探讨
        4.2.3.2 实践探索
        小结
5 建筑数学教学大纲初探
    5.1 教学的目标
        小结
    5.2 教学的原则
        5.2.1 现实问题驱动原则
        5.2.2 模型化原则
        5.2.3 适度抽象化原则
        5.2.4 素质教育原则
        5.2.5 美学和人文精神感召原则
        小结
    5.3 教学的内容
        5.3.1 建筑学观点中的初等数学
        5.3.1.1 数
        5.3.1.2 函数与集合
        5.3.1.3 几何
        5.3.2 设计视野中的高等数学
        5.3.2.1 画法几何与设计媒介
        5.3.2.2 微积分的概念
        5.3.2.3 概率统计
        5.3.3 当代建筑实践中的"新数学"
        5.3.3.1 胞体几何与镶嵌图形
        5.3.3.2 拓扑几何
        5.3.3.3 分形几何
        小结
    5.4 教学的模式和方法
        5.4.1 "教":"讲授式"或"发现式"
        5.4.2 "学":数学兴趣的激发
        小结
    5.5 教学的计划
        5.5.1 开课时段
        5.5.2 课时分配
        小结
结论
参考文献
图片来源
附录
    附录A 教学档案
        附录A1: 北平大学艺术学院学则(1928年)
        附录A2: 北平大学艺术学院建筑系课表(1929年)
        附录A3: 国立杭州艺术专科学校建筑系的科目分配表(1934年)
        附录A4: EAAE中部分建筑院校对新生数学的要求(2013年)
    附录B 教学资料
        附录B1 波利亚的"怎样解题"步骤列表
        附录B2 《文科数学(丹尼斯版)》大纲
        附录B3 "十一五"国家级规划文科数学教材简明一览
        附录B4 当代建筑中的"新数学"主题(2010)
        附录B5 中央美术学院"建筑数学"讲座提纲(2016)
鸣谢

(6)民国前期数学现代转型的文化观照(1912-1935年)(论文提纲范文)

中文摘要
ABSTRACT
绪论
    一、研究目的和意义
    二、国内外研究现状
    三、研究思路
    四、重点难点
    五、研究方法与创新
    六、概念释名
第一章 民国前期数学现代转型的文化背景及演进情况
    1.1 民国前期科学文化的发展
    1.2 民国前期现代数学思想的发展
    1.3 民国数学之现代转型
        1.3.1 数学教育制度的发展
        1.3.2 大学数学系的创设
        1.3.3 数学学会制度的发展
        1.3.4 国外着名数学家来华交流
    1.4 本章小结
第二章 本体论追问:民国前期数学界说及其哲学意蕴
    2.1 数学界说的历史演变
    2.2 民国前期数学界说之形态
        2.2.1 数学具有自然科学的属性
        2.2.2 数学具有哲学学科的属性
        2.2.3 数学基础论争视角下的数学界说
    2.3 实在论视域下的数学界说
        2.3.1 数学对象的实在性
        2.3.2 数学对象的非观念性
    2.4 本章小结
第三章 认识论探讨:民国前期数学不可知论的传播
    3.1 数学不可知论溯源
    3.2 不同视角下的数学不可知论
        3.2.1 民国前期数学不可知论的译介
        3.2.2 数学不可知论的数学之极善界说
        3.2.3 空洞无物:观念论视域下的数学不可知论
        3.2.4 不辨真妄:公理系统视域下的数学不可知论
        3.2.5 数学基础构建视域下的数学不可知论
    3.3 “虚”“妄”之辩:唯物辩证法对数学不可知论的批驳
        3.3.1 数学概念的实在性
        3.3.2 数学公理的真理性
    3.4 哥德尔不完备性定理对数学不可知论的影响
    3.5 本章小结
第四章 价值观嬗变:民国前期“六艺之末”到“科学之母”的数学
    4.1 古代中国社会中的数学
        4.1.1 实践导向,实用为尚
        4.1.2 儒学为本,数学为末
    4.2 民国前期的数学价值
        4.2.1 数学之于科学
        4.2.2 数学之于社会
        4.2.3 数学之于人类精神世界
    4.3 数学与其他学科的关系
        4.3.1 数学与统计学
        4.3.2 数学与经济学
        4.3.3 数学与艺术学
    4.4 本章小结
第五章 真理性探究:民国前期数学真理的特征及其意义
    5.1 数学真理的特征
        5.1.1 数学真理的保守性
        5.1.2 数学真理的递进性
        5.1.3 数学真理的自足性
    5.2 实证主义视域下的数学真理观
        5.2.1 实证主义真理观的内容
        5.2.2 实证主义真理观的诘难
        5.2.3 康德哲学真理观的佐证
    5.3 民国前期对数学公理的诘难
        5.3.1 对公理自明性的批驳
        5.3.2 对公理主义的批驳
    5.4 本章小结
第六章 主体寻源:留学生与民国前期的数学文化
    6.1 留学生学科专业选择之变迁
    6.2 数学留学生群体
        6.2.1 民国以前的数学留学
        6.2.2 民国前期的数学留学
        6.2.3 数学博士群体分析
    6.3 留学生与民国前期的数学文化
        6.3.1 留学生对科学的传播
        6.3.2 留学生对数学文化的传播
    6.4 数学文化传播主体的个例分析
        6.4.1 胡明复的数学贡献
        6.4.2 胡明复的数学思想
    6.5 本章小结
第七章 途径审视:民国前期期刊中的数学文化
    7.1 民国以前的报刊及数学文化
    7.2 民国前期的期刊与数学文化
        7.2.1 综合类期刊中的数学文化
        7.2.2 大学期刊中的数学文化
        7.2.3 数理期刊中的数学文化
    7.3 数学文化传播途径的个例分析
        7.3.1 《罗素月刊》刊创
        7.3.2 《罗素月刊》概貌
        7.3.3 《罗素月刊》中的数学文化
        7.3.4 《罗素月刊》的影响
    7.4 本章小结
结束语
参考文献
攻读学位期间取得的研究成果
致谢
个人简况及联系方式

(7)建设性后现代视野下高等数学课程问题与改进策略研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    一、研究缘起
        (一)高等数学课程现状引发的思考
        (二)开放的数学教育哲学研究背景
        (三)建设性后现代主义对高等数学课程研究的意义
    二、研究的目的与意义
        (一)研究目的
        (二)研究意义
    三、研究的内容与方法
        (一)研究的主要内容
        (二)研究的基本思路与方法
        (三)研究的创新之处
    四、有关概念界定
        (一)课程 高等数学课程
        (二)建设性后现代主义
        (三)其他有关概念
第二章 文献综述
    一、高等数学课程研究综述
        (一)国外高等数学课程研究综述
        (二)国内高等数学课程研究综述
    二、建设性后现代思想相关研究综述
        (一)国外相关研究综述
        (二)国内相关研究综述
第三章 建设性后现代哲学与教育思想
    一、建设性后现代哲学
        (一)怀特海及其过程哲学
        (二)大卫·格里芬及其后现代精神
    二、建设性后现代教育思想的核心观点
        (一)建设性后现代教育目的
        (二)建设性后现代教育思维
        (三)建设性后现代教育实践
        (四)建设性后现代课程思想
第四章 高等数学课程现状调查
    一、高等数学课程现状调查方案设计与实施
        (一)课程大纲与教材的调查设计
        (二)调查问卷设计与样本选取
        (三)访谈提纲设计与样本选取
        (四)课堂观察
    二、高等数学课程现状调查结果
        (一)对课程大纲的调查结果
        (二)对教材的调查结果
        (三)对教师的调查结果
        (四)对学生的调查结果
第五章 高等数学课程存在的问题及原因分析
    一、高等数学课程存在的问题
        (一)课程目标趋同、宽泛、轻生成与情感、表述不清
        (二)课程内容结构不协调
        (三)课程实施以教师为中心、教学内容局限、教学方法单一、实践环节薄弱
        (四)课程评价主体、内容、方式单一
    二、高等数学课程存在问题的原因分析
        (一)高等数学课程的价值取向偏失
        (二)外部需求在高等数学教育领域的反映具有滞后性
        (三)教师的观念更新缓慢
第六章 建设性后现代视野下高等数学课程的改进策略
    一、设计预设性与生成性相结合的多元化课程目标
        (一)注重预设性目标与过程性目标的结合
        (二)设计多维度、多层次的高等数学课程目标
    二、构建KTAC一体化高等数学课程内容体系
        (一)体现数学知识的确定性、不确定性和过程性
        (二)渗透数学思想
        (三)突出数学应用
        (四)融入数学文化
    三、开展过程教学
        (一)促进高等数学教学系统的自组织
        (二)在节奏性对话教学中发展学生智慧
        (三)在展现数学思维过程中培养学生的创造性思维
    四、实施多元动态的发展性评价
        (一)学生参与评价
        (二)全面评价学生的数学素质
        (三)注重过程评价
    五、教师树立过程教育理念
        (一)在反思中转变观念
        (二)在研究中提升经验
结论
    一、主要研究结论
    二、研究局限与展望
参考文献
附录
攻读博士学位期间所取得的研究成果
致谢

(8)数学文化与现代文明(论文提纲范文)

前言
中文摘要
Abstract
第1章 绪论
    1.1 研究的背景与意义
    1.2 本课题的历史和现状
    1.3 本文的主要研究内容
第2章 文化与数学文化的特征
    2.1 文化的特征
        2.1.1 文化和文明
        2.1.2 文化的分类及特征
    2.2 数学文化的特征
        2.2.1 数学文化的内涵
        2.2.2 数学文化的特征
第3章 数学教育与人类文化
    3.1 数学教育的起源与发展
        3.1.1 数学教育概述
        3.1.2 国际数学教育的历史沿革
        3.1.3 中国数学教育的发展
    3.2 人类文化的形成
        3.2.1 中西方文化的形成
        3.2.2 中西方文化的比较
        3.2.3 利玛窦对中西方数学文化融合的影响
第4章 近代数学发展与现代文明
    4.1 微积分与现代文明
        4.1.1 微积分的发展史
        4.1.2 我国古代数学对微积分创立的贡献
        4.1.3 牛顿与莱布尼兹对微积分的贡献
        4.1.4 微积分对后世的影响
    4.2 近代数学发展对现代文明的影响
        4.2.1 近代数学的形成发展及其影响
        4.2.2 中国近现代数学的发展概况
        4.2.3 历史上的三次工业化革命
        4.2.4 近代数学在工业化革命中的作用
第5章 “互联网+”时代数学文化的传播与作用
    5.1 计算机的产生与发展
    5.2 互联网的产生和“互联网+”时代的开启
    5.3“互联网+”时代数学文化的传播与作用
第6章 国内外数学文化教育的发展
    6.1 国外数学文化教育的发展
        6.1.1 国外数学文化教育概况
        6.1.2 国外数学课程中的数学文化
    6.2 国内高校数学文化教育的发展
        6.2.1 国内高校数学文化课程开设情况
        6.2.2 国内数学文化与数学教育研究进展
第7章 对我国高校发展数学文化课的建议
    7.1 我国高校开设数学文化课的意义
    7.2 我国高校发展数学文化课存在的问题
    7.3 对我国高校发展数学文化课的建议
结束语
参考文献
附录:研究文献目录
作者简介及在学期间所取得的科研成果
致谢

(9)胡锦涛青年思想研究(论文提纲范文)

中文摘要
Abstract
绪论
    一、研究缘起及意义
    二、研究现状与文献综述
    三、基本概念界定
    四、研究思路和主要方法
    五、创新点与不足
第一章 胡锦涛青年思想的形成基础与发展阶段
    第一节 胡锦涛青年思想的理论文化渊源
        一、马克思恩格斯的青年思想
        二、列宁斯大林的青年思想
        三、毛泽东邓小平江泽民的青年思想
        四、中西方文化中的青年观点
    第二节 胡锦涛青年思想形成发展的现实依据
        一、实践基础: 中国特色社会主义建设的伟大实践
        二、现实需求: 青年工作面临的任务与挑战
        三、个人因素: 胡锦涛自身的成长与青年工作经历
    第三节 胡锦涛青年思想的形成发展阶段
        一、胡锦涛青年思想孕育阶段
        二、胡锦涛青年思想初步形成阶段
        三、胡锦涛青年思想丰富完善阶段
第二章 胡锦涛青年思想的基本出发点
    第一节 青年的地位与价值
        一、“青年是推动社会历史进步的伟大力量”
        二、“党离不开青年,青年更离不开党”
        三、“未来属于青年,未来取决于青年,未来更需要青年去创造”
    第二节 青年的优势与不足
        一、青年“最具创造活力”
        二、青年“值得信赖、堪当重任、大有希望”
        三、青年要“认真克服自己的弱点和不足”
    第三节 青年工作的旨归与要求
        一、培养目标: “四个新一代”
        二、实现路径: “与实践相结合、与人民群众相结合”
        三、基本原则: “尊重青年、理解青年、相信青年、依靠青年”
第三章 胡锦涛青年思想之政治视角
    第一节 以马克思主义群众观审视青年和青年问题
        一、扩大党在青年群体中的执政基础
        二、注重对青年的引导方式
    第二节 以社会主义核心价值体系为青年发展提供指引
        一、强化青年理想信念教育
        二、青年要牢固树立社会主义荣辱观
        三、推进青年道德建设
    第三节 以科学发展观统领青年工作
        一、服务科学发展是青年工作的根本出发点和落脚点
        二、以青年为本
        三、发挥青年在发展中的生力军作用
    第四节 青年思想政治教育路径论析——以青年马克思主义者培养工程为例
第四章 胡锦涛青年思想之利益视角
    第一节 “把为大局服务和为青年服务结合起来”
        一、“赢得青年才能赢得未来”
        二、服务青年是党的宗旨在青年工作中的具体体现
    第二节 寓引导教育于服务之中
        一、全党要“关注青年、关心青年、关爱青年”
        二、青年工作要坚持“贴近实际、贴近生活、贴近青年”
    第三节 “竭诚服务青年”
        一、服务青年学习成才
        二、促进青年就业创业
        三、维护青年合法权益
    第四节 案例分析: 在服务青年中赢得青年——以大学青年教师职业获得感生成为例
第五章 胡锦涛青年思想之人才视角
    第一节 人才强国与青年人才培养
        一、青年人才是最重要战略性资源
        二、“提高青年整体素质”
        三、完善青年人才工作的体制机制
    第二节 科教兴国与青年教育
        一、以立德树人为根本任务,大力实施“科教兴国”
        二、以“人民满意”为衡量标准,持续促进教育公平
        三、以青年成才为终极目标,不断深化教育改革
    第三节 社会环境与青年成长
        一、树立“多样化人才”和“人人皆可成才”的理念
        二、“以事业感召、培养、造就人才”
        三、青年的成才路径
    第四节 执政能力与青年干部选拔
        一、青年干部应具备的素质
        二、大力培养选拔优秀年轻干部
        三、创新青年干部选拔机制
    第五节 案例分析: 共青团如何以改革凝聚青年人才——以高校共青团发展路向为例
第六章 胡锦涛青年思想之实践视角
    第一节 “在火热的社会实践中创造出无悔、永恒的青春”
        一、社会实践是青年思想政治教育的重要环节
        二、人民群众的实践是青年学习提高的大课堂
        三、“投身实践是青年成长的必由之路”
    第二节 “到祖国最需要的地方去”贡献智慧和力量
        一、“奉献是崇高的精神境界”
        二、青年要艰苦奋斗
        三、时代呼唤千千万万青年志愿者
    第三节 “做伟大时代的创业者”
        一、当代青年“生恰逢时”
        二、“中国特色社会主义的伟大实践,是青年汲取营养和力量的源泉”
        三、创新思维是青年发展的希望所在
    第四节 案例分析: 青年自组织——社会实践主体的新拓展
第七章 胡锦涛青年思想之全球视角
    第一节 青年要努力拓展世界眼光
        一、起点: 把握国际竞争主动权的首要任务是学习
        二、任务: “用人类创造的一切优秀文明成果丰富自己”
        三、基点: “始终弘扬爱国主义精神”
    第二节 青年是和谐世界的重要建设者
        一、“和平与发展依然是时代的主题”
        二、青年是和平发展的生力军
        三、青年“肩负着开创世界人民美好未来之使命”
    第三节 加强各国青年之间的交流
        一、青年交流是国际关系的重要组成部分
        二、重视留学工作
        三、构建青年交流的长效机制
    第四节 案例分析: 青年国际交流状况论析——以孔子学院为例
第八章 胡锦涛青年思想的现实启示
    第一节 坚持党的领导,促进青年全面协调可持续发展
        一、青年运动要坚持党的领导
        二、准确把握青年脉搏
        三、优化青年发展的社会环境
    第二节 坚持以人为本,激发青年的主体自觉
        一、中国特色社会主义事业需要青年接续奋斗
        二、充分发挥青年的主观能动性
        三、搭建更为广阔的青年创新实践平台
    第三节 坚持服务青年,把握青年工作的生命线
        一、注重青年的利益实现
        二、增强服务青年的实效性
        三、推进青年工作改革创新
结语
参考文献
致谢
攻读学位期间发表的学术论文目录

(10)问题驱动的高中数学课堂教学设计理论与实践(论文提纲范文)

摘要
Abstract
第一章 引言
    1.1 问题的提出
    1.2 相关文献研究综述
        1.2.1 新中国中学数学教育研究发展概述
        1.2.2 国外当代中学数学教育改革历程
        1.2.3 我国目前高中数学课堂教学存在的问题
    1.3 研究的目的与意义
        1.3.1 与问题驱动教学设计相关的研究综述
        1.3.2 研究的理论基础
        1.3.3 研究的意义
        1.3.4 研究的目的
        1.3.5 研究的创新之处
    1.4 研究思路与方法
        1.4.1 研究思路
        1.4.2 研究方法
第二章 问题驱动的高中数学课堂教学理论
    2.1 何为数学的再创造?
    2.2 何为问题驱动的数学教学?
    2.3 如何实现问题驱动的数学教学
    2.4 我们应该教什么样的数学
        2.4.1 思辨、演绎、算法并重的数学课堂教学
        2.4.2 培养直觉能力的数学教学
第三章 从数学教育的本质看高中数学课堂教学核心要素
    3.1 数学教育的本质
        3.1.1 数学的本质
        3.1.2 数学教育的本质
    3.2 问题驱动的高中数学课堂教学核心要素
    3.3 案例分析
    3.4 体现学科特点和教学要求的教学评价量表
第四章 问题驱动的高中数学课堂教学实践
    4.1 问题驱动的高中数学概念课教学
        4.1.1 概念课案例1
        4.1.2 概念课案例2
        4.1.3 概念课案例3
    4.2 问题驱动的高中数学原理课教学
        4.2.1 原理课案例1
        4.2.2 原理课案例2
    4.3 问题驱动的高中数学解题课教学
        4.3.1 问题驱动的习题课教学设计
        4.3.2 教学评析
第五章 反思与展望
    5.1 研究成果
        5.1.1 问题驱动的数学教学对学生数学价值观念的改变
        5.1.2 问题驱动的数学教学对学生数学学习成绩的影响
        5.1.3 问题驱动的数学教学对教师教育观念的改变
        5.1.4 开创了一线教学实践者和理论研究工作者的合作新模式
        5.1.5 研究的不足
    5.2 展望
参考文献
附录
致谢
攻读学位期间的学术成果

四、从历史和宏观的角度探讨大学数学改革(论文参考文献)

  • [1]一元微积分概念教学的设计研究[D]. 高雪芬. 华东师范大学, 2013(10)
  • [2]职前数学教师实践知能发展的设计研究 ——以三个初中几何定理证明教学为例[D]. 李海. 华东师范大学, 2019(02)
  • [3]基于数学课程知识观的高中数学教科书编写策略研究[D]. 胡晋宾. 南京师范大学, 2015(05)
  • [4]中国基础教育阶段女性数学教育发展研究(1978-2020年)[D]. 冯俊琪. 内蒙古师范大学, 2020(08)
  • [5]建筑教育中的数学教育和教学[D]. 钟予. 中央美术学院, 2017(08)
  • [6]民国前期数学现代转型的文化观照(1912-1935年)[D]. 宋晋凯. 山西大学, 2020(12)
  • [7]建设性后现代视野下高等数学课程问题与改进策略研究[D]. 田仕芹. 哈尔滨师范大学, 2017(05)
  • [8]数学文化与现代文明[D]. 李小平. 吉林大学, 2016(08)
  • [9]胡锦涛青年思想研究[D]. 侯燕. 扬州大学, 2019(06)
  • [10]问题驱动的高中数学课堂教学设计理论与实践[D]. 张蜀青. 广州大学, 2019(01)

标签:;  ;  ;  ;  ;  

从历史和宏观角度探讨大学数学改革
下载Doc文档

猜你喜欢