水文地质与工程地质研究所——科研工作总结

水文地质与工程地质研究所——科研工作总结

一、INSTITUTE OF HYDROGEOLOGY AND ENGINEERING GEOLOGY——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文文献综述)

JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu[1](2021)在《New innovations in pavement materials and engineering:A review on pavement engineering research 2021》文中进行了进一步梳理Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges. In the past 10 years, the pavement infrastructure strongly supports the rapid development of the global social economy. New theories, new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem. Because of actual coupled behaviors of traffic and environmental conditions, predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis. In order to summarize the current and determine the future research of pavement engineering, Journal of Traffic and Transportation Engineering(English Edition) has launched a review paper on the topic of "New innovations in pavement materials and engineering: A review on pavement engineering research 2021". Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering, this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world. The content includes asphalt binder performance and modeling, mixture performance and modeling of pavement materials,multi-scale mechanics, green and sustainable pavement, and intelligent pavement.Overall, this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.

Yao Wang,Chi-hui Guo,Shu-rong Zhuang,Xi-jie Chen,Li-qiong Jia,Ze-yu Chen,Zi-long Xia,Zhen Wu[2](2021)在《Major contribution to carbon neutrality by China’s geosciences and geological technologies》文中提出In the context of global climate change, geosciences provide an important geological solution to achieve the goal of carbon neutrality, China’s geosciences and geological technologies can play an important role in solving the problem of carbon neutrality. This paper discusses the main problems, opportunities, and challenges that can be solved by the participation of geosciences in carbon neutrality, as well as China’s response to them. The main scientific problems involved and the geological work carried out mainly fall into three categories:(1) Carbon emission reduction technology(natural gas hydrate, geothermal, hot dry rock, nuclear energy, hydropower, wind energy, solar energy, hydrogen energy);(2) carbon sequestration technology(carbon capture and storage, underground space utilization);(3) key minerals needed to support carbon neutralization(raw materials for energy transformation, carbon reduction technology).Therefore, geosciences and geological technologies are needed: First, actively participate in the development of green energy such as natural gas, geothermal energy, hydropower, hot dry rock, and key energy minerals, and develop exploration and exploitation technologies such as geothermal energy and natural gas; the second is to do a good job in geological support for new energy site selection, carry out an in-depth study on geotechnical feasibility and mitigation measures, and form the basis of relevant economic decisions to reduce costs and prevent geological disasters; the third is to develop and coordinate relevant departments of geosciences, organize and carry out strategic research on natural resources, carry out theoretical system research on global climate change and other issues under the guidance of earth system science theory, and coordinate frontier scientific information and advanced technological tools of various disciplines. The goal of carbon neutrality provides new opportunities and challenges for geosciences research. In the future, it is necessary to provide theoretical and technical support from various aspects, enhance the ability of climate adaptation, and support the realization of the goal of carbon peaking and carbon neutrality.

尹立河,张俊,王哲,董佳秋,常亮,李春燕,张鹏伟,顾小凡,聂振龙[3](2021)在《西北内陆河流域地下水循环特征与地下水资源评价》文中认为在系统梳理前人调查研究成果基础上,总结了西北内陆河流域主要的含水层特点,对山区、平原区和沙漠区的地下水循环特点进行了分析,着重对平原区地下水水流系统进行了讨论。由于西北内陆河流域地下水与地表水关系密切,形成了具有密切水力联系的含水层-河流系统,不论是上游开发地表水还是地下水,都会引起整个流域内地下水资源的强烈变化。地下水资源评价表明,西北内陆河流域地下水资源量为783亿m3/a,其中平原区的地下水资源量为487亿m3/a,山区与平原区的地下水资源重复量为199亿m3/a,现状开采量为128亿m3/a。地下水开发潜力分析表明,除柴达木盆地、塔里木盆地南缘等地区外,其他地区的地下水开采潜力有限,应通过提高水资源的利用效率来提高其承载能力。今后应加大(微)咸水资源化、地下水水库的调查研究,加强地下水的生态功能和生态需水量评价,为地下水资源的合理开发利用提供技术支撑。

陈松云[4](2021)在《英语学术论文中元话语动词型式的变异研究 ——学科内与学科间视角》文中指出在学术论文写作中,作者可以通过多种话语手段组织内容,将观点传达给读者。“元话语”(metadiscourse)作为分析学术话语组织和论证的重要理论框架,有助于揭示学术知识建构及学术体裁特征。本研究在元话语框架内,聚焦动词相关的元话语资源。本研究提出“元话语动词型式”(metadiscursive verb patterns)这一概念,以涵盖各种元话语功能的动词型式资源。所谓“元话语动词型式”(如,this study shows that),是指核心动词与临近词汇语法资源构成的具有元话语功能的语言单位,是形式与功能的统一体。参照Hyland(2015)的元话语体系的功能分类,元话语动词型式具有典型的引导和互动功能。在引导层面,元话语动词型式能有效提示学术语篇的结构框架,为读者理解语篇内容提供必要的引导,提升文本可读性和可信度;在互动层面,元话语动词型式能表达作者对命题内容的立场和态度,体现与读者共建文本的互动作用。本研究从学科内和学科间两个角度考察元话语动词型式的变异情况。研究首先基于五百万词次(含18个子学科)的英语医学学术论文语料库,开展元话语动词型式的学科内变异研究。结果表明,元话语动词型式在子学科中存在明显的学科依存性。例如,言据类和介入标记类(如,as described in Dupont et al.(2000);it is important to note that)常见于具有跨学科性质和新兴的子学科;内指标记类(如,as shown in Fig.6)则频繁出现在依赖医学设备开展研究的子学科;态度标记类(如,we that)倾向于出现在儿童和老人群体病人的子学科。本研究同时对比了文学、教育学、生命科学以及计算机信息科学等四个学科英语学术论文语料库(各库分别包含100篇学术论文,平均库容为160万词次),从而考察元话语动词型式的学科间变异。结果表明:元话语动词型式在不同学科间具有显着的变异特征,能够对学科进行有效区分。其中,言据类和态度标记类元话语动词型式常见于纯软学科;描述研究过程和结果的框架标记类元话语动词型式(如,we examined that;it was found that)以及内指标记类常见于纯硬和应用学科,而互动类明显低于纯软学科。整体而言,元话语动词型式主要用于文本的引导层面。元话语动词型式的学科变异受制于多方因素的影响,包括知识对象、研究方法、以及知识建构模式。这些因素在很大程度上决定了作者修辞策略使用的方式和风格。同时,其学科变异性也揭示了该语言资源使用风格体现出的学科间排斥和跨学科融合的特征。如医学学科中具有跨学科性质的子学科表现出了与其他传统子学科显着不同的使用特征;同属软学科的教育学与文学相比其使用风格也大相径庭,但在一定程度上呈现出了硬学科特性。这一特征引发了我们对学科边界以及学科划分的深层思考。综上所述,元话语动词型式是一种重要的话语资源,被学术写作者广泛运用于学术话语的建构之中。对元话语动词型式的研究,有效地丰富了学术英语教学中的语言资源,也深化了对学科论文体裁特征的理解。

Qaiser Mehmood[5](2021)在《长江第一湾大同沟、台村沟的泥石流敏感性评估和冲出范围预测》文中进行了进一步梳理山区经常发生灾难性泥石流,这对人类社会经济、生命财产和安全都造成了严重的威胁。泥石流通常在暴雨、融雪条件下才会发生,因其没有任何预兆,成为最具破坏性的地质灾害之一。随着中国山区的快速开发,导致了泥石流事件时常发生,使得中国成为世界上泥石流受灾最严重的国家之一,特别是西南山区的泥石流灾害最为严重。因此进行山区泥石流敏感性评价和泥石流冲出范围预测的相关工作具有重要意义。本论文以长江第一湾附近的大同沟和台村沟作为实例,采用现场调查、敏感性评价和数值模拟的综合方法对这两条泥石流沟的敏感性和潜在冲出范围进行了评价和预测。通过野外调查,对泥石流沟的形成,运动和堆积过程机理有了基本的认识与把握。利用遥感影像获取了泥石流沟的基本几何参数信息。通过参考前人研究,并结合研究区泥石流沟的基本特征,选取了坡度、地面湿度指数、输沙指数、地形湿度指数、流域面积、主沟弯曲系数、物源、归一化植被指数共8个影响因子作为泥石流沟敏感性评价指标。采用层次分析法确定了8个影响因子的相对重要程度:坡度(0.314)>地形湿度指数(0.249)>输沙指数(0.168)>地面粗糙度(0.091)>流域面积(0.078)>弯曲系数(0.042)>归一化植被指数(0.025)。根据8个影响因子的综合权重系数和单因子关联度,采用可拓理论分别计算了大同、台村沟泥石流的敏感性,得到两条泥石流沟的敏感性均为中等。通过层次分析法与可拓理论相结合较好的解决了泥石流敏感性评价这一复杂的地质问题。利用吉林大学建设工程学院开发的基于浅水流模型的软件“SFLOW”,对泥石流的演化和冲出过程与范围进行了预测。对大同沟和台村沟分别模拟了以10年、20年、50年和100年为回归周期的泥石流事件。得到这两条泥石流沟的冲出范围最远可达到主干道,甚至可以完全阻断金沙江。上述的危险性评价和冲出范围预测可为决策者提供指导性意见。

Zhao-xian Zheng,Xiao-shun Cui,Pu-cheng Zhu,Si-jia Guo[6](2021)在《Sensitivity assessment of strontium isotope as indicator of polluted groundwater for hydraulic fracturing flowback fluids produced in the Dameigou Shale of Qaidam Basin》文中认为Hydrogeochemical processes that would occur in polluted groundwater and aquifer system, may reduce the sensitivity of Sr isotope being the indicator of hydraulic fracturing flowback fluids(HFFF) in groundwater. In this paper, the Dameigou shale gas field in the northern Qaidam Basin was taken as the study area, where the hydrogeochemical processes affecting Sr isotope was analysed. Then, the model for Sr isotope in HFFF-polluted groundwater was constructed to assess the sensitivity of Sr isotope as HFFF indicator. The results show that the dissolution can release little Sr to polluted groundwater and cannot affect the εSr(the deviation of the 87 Sr/86 Sr ratio) of polluted groundwater. In the meantime, cation exchange can considerably affect Sr composition in the polluted groundwater. The Sr with low εSr is constantly released to groundwater from the solid phase of aquifer media by cation exchange with pollution of Quaternary groundwater by the HFFF and it accounts for 4.6% and 11.0% of Sr in polluted groundwater when the HFFF flux reaches 10% and 30% of the polluted groundwater, respectively. However, the Sr from cation exchange has limited impact on Sr isotope in polluted groundwater. Addition of Sr from cation exchange would only cause a 0.2% and 1.2% decrease in εSr of the polluted groundwater when the HFFF flux reaches 10% and 30% of the polluted groundwater, respectively. These results demonstrate that hydrogeochemical processes have little effect on the sensitivity of Sr isotope being the HFFF indicator in groundwater of the study area. For the scenario of groundwater pollution by HFFF, when the HFFF accounts for 5%(in volume percentage) of the polluted groundwater, the HFFF can result in detectable shifts of εSr(ΔεSr=0.86) in natural groundwater. Therefore, after consideration of hydrogeochemical processes occurred in aquifer with input of the HFFF, Sr isotope is still a sensitive indicator of the Quaternary groundwater pollution by the HFFF produced in the Dameigou shale of Qaidam Basin.

贺少伟[7](2021)在《西南科技大学校园网页新闻汉英翻译实践报告》文中研究表明在我们国家优秀文化对外传播越来越广的基础上,高校官方的英文网站也顺应趋势,成为外界了解国内高校的重要窗口,在对外交流中起到了举足轻重的作用。而笔者认为西南科技大学校园新闻翻译,与其他院校类似,均存在拘泥于原文的问题,虽然将原文作者的意思表达了出来,但是对于目标读者来说信息冗杂,无法一目了然的知道核心内容,更有由于文化视域差别导致的理解偏差存在。本报告以笔者在西南科技大学外国语学院MTI中心的新闻翻译实践为基础,运用翻译模因论指导翻译实践,试图解决上述问题,并以此创作翻译实践报告。通过分析新闻文本的特点,笔者选用国内发展较快的翻译模因论作为理论指导,结合翻译项目中的具体案例,对源文本进行了详细的分析,得出源文本作为新闻所具有的时效性、宣传性以及和英语之间的不同,如时态语态等问题。此外,笔者引用源文本中的案例,围绕笔认为在校园新闻翻译过程中需要解决的三个方面的问题进行分析:一是当时态在目的语表述过程中发生转变时,如何通过模因论指导选择翻译方法;二是分析通过模因论如何选择翻译方法来使得译出语符合英语语言语法特点;第三是分析在此翻译过程中如何运用模因论选择翻译方法来清晰的表述源语言的文本信息。最后笔者提出了相应的翻译策略,即运用省译法、解释性翻译法和顺句翻译法来解决时态转变带来的翻译问题;运用分、合译法和倒译法在翻译过程中适应目标语言的语法特点;运用编译法在译文中更清晰合适的表达源语言想传达出的信息。通过分析以及相应的翻译方法的选择,笔者能够较为有效解决翻译过程中的难题,诸如译文需要符合英语读者的需要和译文的表达方式等问题,从而提高了汉英翻译的可读性和准确性。最后是笔者对整个翻译过程中所学所得,如需要进行充分的准备工作和译后校对,更要熟悉翻译理论并指导实践,以及出现的问题和不足之处的总结,以及对校园新闻翻译提出的要注意译员身份的中立以及翻译过程中对文化冲突的理解等建议,希望能够有所帮助。

Abiodun Ismail Lawal,Sangki Kwon[8](2021)在《Application of artificial intelligence to rock mechanics: An overview》文中进行了进一步梳理Different artificial intelligence(AI) methods have been applied to various aspects of rock mechanics,but the fact that none of these methods have been used as a standard implies that doubt as to their generality and validity still exists.For this,a literature review of application of AI to the field of rock mechanics is presented.Comprehensive studies of the researches published in the top journals relative to the fields of rock mechanics,computer applications in engineering,and the textbooks were conducted.The performances of the AI methods that have been used in rock mechanics applications were evaluated.The literature review shows that AI methods have successfully been used to solve various problems in the rock mechanics field and they performed better than the traditional empirical,mathematical or statistical methods.However,their practical applicability is still an issue of concern as many of the existing AI models require some level of expertise before they can be used,because they are not in the form of tractable mathematical equations.Thus some advanced AI methods are still yet to be explored.The limited availability of dataset for the AI simulations is also identified as a major problem.The solutions to the identified problems and the possible future research focus were proposed in the study subsequently.

ZHANG Jian-kang,DONG Hua,CHENG Yan-pei,YUE Chen,LIU Kun[9](2020)在《Compilation of hydrogeological map of China》文中研究表明Hydrogeological map is one of the important carriers of groundwater related information. It directly reflects the hydrogeological conditions and previous investigation and research results of a mapping area. The hydrogeological map of China is a map reflecting the characteristics of hydrogeology and groundwater dynamics on a national scale. On the basis of the hydrogeological map of China(1: 4 000 000) compiled in 1988, this map compilation attempted to update and enhance the existing map, with the latest survey results from the project of National Investigation and Evaluation of Groundwater Resources and Environmental Problems led by China Geological Survey. Task of the mapping program included redefining groundwater types, quantifying the classification standard of the groundwater and adding the pore-fissure water in laterite layer of hilly basin. The multilayer structures for porous, karst and porous-fractured groundwater and their water-rich grades are reflected on the map. Based on the comprehensive summary of the latest hydrogeological data of China, this research conducts an in-depth analysis of the regional distribution characteristics of groundwater in China, utilizes a digital mapping process and establishes a cartographic database for the purpose of further use. With the enrichment of the content and the continuous improvement of cognitive level, mapping content can be updated quickly, which has practical significance for the concept of surveying and mapping and scientific popularization.

Kouamelan Kouamelan Serge(赛格)[10](2020)在《白垩纪古环境地球物理测井研究 ——以陆相和海相地层的科学钻探井为例》文中研究说明地球形成于几十亿年前。自它诞生以来,它已经经历了几次地质和气候事件,其中许多被保存在地球的深层。对地球表面的研究不足以更好地理解这些变化,而科学钻探是最好的方法之一。科学钻探项目探测和获取连续完整的沉积地层,基于生物、地球化学和物理替代指标重建古环境和古气候演化历史,其研究有助于破译过去的环境变化。海洋和陆地环境中的古气候和古环境研究,对过去的气候和环境变化提供了重要的两个方面的观点,这有助于地球科学家更好地了解地球的过去状态以及它所经历的主要地质事件及其对海洋和大陆系统的影响。然而,由于对高分辨率连续古环境替代指标缺乏清晰的认识,这样的综合研究很少。地球物理测井记录了万米到数千米的地下地层原位、连续、高分辨率的岩石物理和地球化学参数,是古环境和古气候的重要档案。本研究以测井资料为基础,对海洋和陆地的古环境/古气候变化开展综合对比研究。此外,本研究还利用非平稳分析方法对海洋/湖泊缺氧事件、白垩纪-古近系划分及其在海陆环境中的岩石物理响应等复杂的古环境现象进行了表征。本研究通过对比松辽盆地科学钻探井和一些海相科学钻探井的上白垩统地层测井数据,得出以下结论和认识:(1)陆相和海相沉积物的物理性质(特别是伽马射线和电阻率)对过去的环境变化非常敏感,与地球化学数据的变化有很好的相关性。这些测井信号已被证明是推断古环境和古气候细节(如气候波动、海洋入侵、海平面变化)的有效替代指标。海洋缺氧事件和湖相缺氧事件与碳循环、高海平面、低沉积幅度和高有机质页岩等一系列重要变化有关,在岩石物理性质上表现出显着的偏移。伽马射线和电阻率是陆地和海洋古环境比较和相互关联的有效替代指标。(2)首次利用多重分形去趋势波动分析(MFDFA)对海洋和陆地环境中钍钾和钍铀分布的标度行为进行分析,揭示了Coniacian-Santonian大洋缺氧事件(OAE3)及其陆地上的表现(TEOAE3)的自相似性。在海洋和陆地沉积环境中,OAE3和TEOAE3层段主要由长程相关性引起的多重分形特征决定。然而,OAE3层段在海相和非海相体系中具有不同的多重分形特征,主要受粘土矿物和古氧化还原条件影响,尽管存在一些类似的趋势。以放射性同位素元素为基础,从多重分形特征中提取了有价值的隐藏古环境细节。这表明MFDFA对沉积模式的变化非常敏感,可以作为海洋和陆地古环境研究的有效分析方法。(3)研究发现,白垩纪到古近纪的转变与不同地层物性的显着变化存在联系。尽管不同沉积体系的测井响应并不总是相同的,但多分辨率扫描检测方法表明,在测井信号中可以检测到海陆系统的关键层序界面。在非海相松辽盆地,K-Pg分界线位于335-330m之间的可信度较高。由于测井是原位参数,且具有比岩心更高的分辨率,测井资料的综合分析可以有效地帮助进行重大地质事件的定位。本研究表明,岩石物理指标对古环境变化是敏感的,也能用于海陆沉积环境中一些主要地质事件的特征。这对于促进测井资料在古环境古气候研究中的应用具有重要意义。

二、INSTITUTE OF HYDROGEOLOGY AND ENGINEERING GEOLOGY——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、INSTITUTE OF HYDROGEOLOGY AND ENGINEERING GEOLOGY——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文提纲范文)

(1)New innovations in pavement materials and engineering:A review on pavement engineering research 2021(论文提纲范文)

1. Introduction
    (1) With the society development pavement engineering facing unprecedented opportunities and challenges
    (2) With the modern education development pavement engineering facing unprecedented accumulation of scientific manpower and literature
2. Asphalt binder performance and modeling
    2.1. Binder damage,healing and aging behaviors
        2.1.1. Binder healing characterization and performance
        2.1.1. 1. Characterizing approaches for binder healing behavior.
        2.1.1. 2. Various factors influencing binder healing performance.
        2.1.2. Asphalt aging:mechanism,evaluation and control strategy
        2.1.2. 1. Phenomena and mechanisms of asphalt aging.
        2.1.2. 2. Simulation methods of asphalt aging.
        2.1.2. 3. Characterizing approaches for asphalt aging behavior.
        2.1.2. 4. Anti-aging additives used for controlling asphalt aging.
        2.1.3. Damage in the characterization of binder cracking performance
        2.1.3. 1. Damage characterization based on rheological properties.
        2.1.3. 2. Damage characterization based on fracture properties.
        2.1.4. Summary and outlook
    2.2. Mechanism of asphalt modification
        2.2.1. Development of polymer modified asphalt
        2.2.1. 1. Strength formation of modified asphalt.
        2.2.1. 2. Modification mechanism by molecular dynamics simulation.
        2.2.1. 3. The relationship between microstructure and properties of asphalt.
        2.2.2. Application of the MD simulation
        2.2.2. 1. Molecular model of asphalt.
        2.2.2. 2. Molecular configuration of asphalt.
        2.2.2. 3. Self-healing behaviour.
        2.2.2. 4. Aging mechanism.
        2.2.2. 5. Adhesion mechanism.
        2.2.2. 6. Diffusion behaviour.
        2.2.3. Summary and outlook
    2.3. Modeling and application of crumb rubber modified asphalt
        2.3.1. Modeling and mechanism of rubberized asphalt
        2.3.1. 1. Rheology of bituminous binders.
        2.3.1. 2. Rheological property prediction of CRMA.
        2.3.2. Micromechanics-based modeling of rheological properties of CRMA
        2.3.2. 1. Composite system of CRMA based on homogenization theory.
        2.3.2. 2. Input parameters for micromechanical models of CRMA.
        2.3.2. 3. Analytical form of micromechanical models of CRMA.
        2.3.2. 4. Future recommendations for improving micro-mechanical prediction performance.
        2.3.3. Design and performance of rubberized asphalt
        2.3.3. 1. The interaction between rubber and asphalt fractions.
        2.3.3. 2. Engineering performance of rubberized asphalt.
        2.3.3. 3. Mixture design.
        2.3.3. 4. Warm mix rubberized asphalt.
        2.3.3. 5. Reclaiming potential of rubberized asphalt pavement.
        2.3.4. Economic and Environmental Effects
        2.3.5. Summary and outlook
3. Mixture performance and modeling of pavement materials
    3.1. The low temperature performance and freeze-thaw damage of asphalt mixture
        3.1.1. Low temperature performance of asphalt mixture
        3.1.1. 1. Low temperature cracking mechanisms.
        3.1.1. 2. Experimental methods to evaluate the low temperature performance of asphalt binders.
        3.1.1. 3. Experimental methods to evaluate the low temperature performance of asphalt mixtures.
        3.1.1. 4. Low temperature behavior of asphalt materials.
        3.1.1.5.Effect factors of low temperature performance of asphalt mixture.
        3.1.1. 6. Improvement of low temperature performance of asphalt mixture.
        3.1.2. Freeze-thaw damage of asphalt mixtures
        3.1.2. 1. F-T damage mechanisms.
        3.1.2. 2. Evaluation method of F-T damage.
        3.1.2. 3. F-T damage behavior of asphalt mixture.
        (1) Evolution of F-T damage of asphalt mixture
        (2) F-T damage evolution model of asphalt mixture
        (3) Distribution and development of asphalt mixture F-T damage
        3.1.2. 4. Effect factors of freeze thaw performance of asphalt mixture.
        3.1.2. 5. Improvement of freeze thaw resistance of asphalt mixture.
        3.1.3. Summary and outlook
    3.2. Long-life rigid pavement and concrete durability
        3.2.1. Long-life cement concrete pavement
        3.2.1. 1. Continuous reinforced concrete pavement.
        3.2.1. 2. Fiber reinforced concrete pavement.
        3.2.1. 3. Two-lift concrete pavement.
        3.2.2. Design,construction and performance of CRCP
        3.2.2. 1. CRCP distress and its mechanism.
        3.2.2. 2. The importance of crack pattern on CRCP performance.
        3.2.2. 3. Corrosion of longitudinal steel.
        3.2.2. 4. AC+CRCP composite pavement.
        3.2.2. 5. CRCP maintenance and rehabilitation.
        3.2.3. Durability of the cementitious materials in concrete pavement
        3.2.3. 1. Deterioration mechanism of sulfate attack and its in-fluence on concrete pavement.
        3.2.3. 2. Development of alkali-aggregate reaction in concrete pavement.
        3.2.3. 3. Influence of freeze-thaw cycles on concrete pavement.
        3.2.4. Summary and outlook
    3.3. Novel polymer pavement materials
        3.3.1. Designable PU material
        3.3.1. 1. PU binder.
        3.3.1.2.PU mixture.
        3.3.1. 3. Material genome design.
        3.3.2. Novel polymer bridge deck pavement material
        3.3.2. 1. Requirements for the bridge deck pavement material.
        3.3.2.2.Polyurethane bridge deck pavement material(PUBDPM).
        3.3.3. PU permeable pavement
        3.3.3. 1. Permeable pavement.
        3.3.3. 2. PU porous pavement materials.
        3.3.3. 3. Hydraulic properties of PU permeable pavement materials.
        3.3.3. 4. Mechanical properties of PU permeable pavement ma-terials.
        3.3.3. 5. Environmental advantages of PU permeable pavement materials.
        3.3.4. Polyurethane-based asphalt modifier
        3.3.4. 1. Chemical and genetic characteristics of bitumen and polyurethane-based modifier.
        3.3.4. 2. The performance and modification mechanism of polyurethane modified bitumen.
        3.3.4. 3. The performance of polyurethane modified asphalt mixture.
        3.3.4. 4. Environmental and economic assessment of poly-urethane modified asphalt.
        3.3.5. Summary and outlook
    3.4. Reinforcement materials for road base/subrgrade
        3.4.1. Flowable solidified fill
        3.4.1. 1. Material composition design.
        3.4.1. 2. Performance control.
        3.4.1. 3. Curing mechanism.
        3.4.1. 4. Construction applications.
        3.4.1.5.Environmental impact assessment.
        3.4.1. 6. Development prospects and challenges.
        3.4.2. Stabilization materials for problematic soil subgrades
        3.4.2.1.Stabilization materials for loess.
        3.4.2. 2. Stabilization materials for expansive soil.
        3.4.2. 3. Stabilization materials for saline soils.
        3.4.2. 4. Stabilization materials for soft soils.
        3.4.3. Geogrids in base course reinforcement
        3.4.3. 1. Assessment methods for evaluating geogrid reinforce-ment in flexible pavements.
        (1) Reinforced granular material
        (2) Reinforced granular base course
        3.4.3. 2. Summary.
        3.4.4. Summary and outlook
4. Multi-scale mechanics
    4.1. Interface
        4.1.1. Multi-scale evaluation method of interfacial interaction between asphalt binder and mineral aggregate
        4.1.1. 1. Molecular dynamics simulation of asphalt adsorption behavior on mineral aggregate surface.
        4.1.1. 2. Experimental study on absorption behavior of asphalt on aggregate surface.
        4.1.1. 3. Research on evaluation method of interaction between asphalt and mineral powder.
        (1) Rheological mechanical method
        (2) Microscopic test
        4.1.1. 4. Study on evaluation method of interaction between asphalt and aggregate.
        4.1.2. Multi-scale numerical simulation method considering interface effect
        4.1.2. 1. Multi-scale effect of interface.
        4.1.2. 2. Study on performance of asphalt mixture based on micro nano scale testing technology.
        4.1.2. 3. Study on the interface between asphalt and aggregate based on molecular dynamics.
        4.1.2. 4. Study on performance of asphalt mixture based on meso-mechanics.
        4.1.2. 5. Mesoscopic numerical simulation test of asphalt mixture.
        4.1.3. Multi-scale investigation on interface deterioration
        4.1.4. Summary and outlook
    4.2. Multi-scales and numerical methods in pavement engineering
        4.2.1. Asphalt pavement multi-scale system
        4.2.1. 1. Multi-scale definitions from literatures.
        4.2.1. 2. A newly-proposed Asphalt Pavement Multi-scale System.
        (1) Structure-scale
        (2) Mixture-scale
        (3) Material-scale
        4.2.1. 3. Research Ideas in the newly-proposed multi-scale sys-
        4.2.2. Multi-scale modeling methods
        4.2.2. 1. Density functional theory (DFT) calculations.
        4.2.2. 2. Molecular dynamics (MD) simulations.
        4.2.2. 3. Composite micromechanics methods.
        4.2.2. 4. Finite element method (FEM) simulations.
        4.2.2. 5. Discrete element method (DEM) simulations.
        4.2.3. Cross-scale modeling methods
        4.2.3. 1. Mechanism of cross-scale calculation.
        4.2.3. 2. Multi-scale FEM method.
        4.2.3. 3. FEM-DEM coupling method.
        4.2.3. 4. NMM family methods.
        4.2.4. Summary and outlook
    4.3. Pavement mechanics and analysis
        4.3.1. Constructive methods to pavement response analysis
        4.3.1. 1. Viscoelastic constructive models.
        4.3.1. 2. Anisotropy and its characterization.
        4.3.1. 3. Mathematical methods to asphalt pavement response.
        4.3.2. Finite element modeling for analyses of pavement mechanics
        4.3.2. 1. Geometrical dimension of the FE models.
        4.3.2. 2. Constitutive models of pavement materials.
        4.3.2. 3. Variability of material property along with different directions.
        4.3.2. 4. Loading patterns of FE models.
        4.3.2. 5. Interaction between adjacent pavement layers.
        4.3.3. Pavement mechanics test and parameter inversion
        4.3.3. 1. Nondestructive pavement modulus test.
        4.3.3. 2. Pavement structural parameters inversion method.
        4.3.4. Summary and outlook
5. Green and sustainable pavement
    5.1. Functional pavement
        5.1.1. Energy harvesting function
        5.1.1. 1. Piezoelectric pavement.
        5.1.1. 2. Thermoelectric pavement.
        5.1.1. 3. Solar pavement.
        5.1.2. Pavement sensing function
        5.1.2. 1. Contact sensing device.
        5.1.2.2.Lidar based sensing technology.
        5.1.2. 3. Perception technology based on image/video stream.
        5.1.2. 4. Temperature sensing.
        5.1.2. 5. Traffic detection based on ontology perception.
        5.1.2. 6. Structural health monitoring based on ontology perception.
        5.1.3. Road adaptation and adjustment function
        5.1.3. 1. Radiation reflective pavement.Urban heat island effect refers to an increased temperature in urban areas compared to its surrounding rural areas (Fig.68).
        5.1.3. 2. Catalytical degradation of vehicle exhaust gases on pavement surface.
        5.1.3. 3. Self-healing pavement.
        5.1.4. Summary and outlook
    5.2. Renewable and sustainable pavement materials
        5.2.1. Reclaimed asphalt pavement
        5.2.1. 1. Hot recycled mixture technology.
        5.2.1. 2. Warm recycled mix asphalt technology.
        5.2.1. 3. Cold recycled mixture technology.
        (1) Strength and performance of cold recycled mixture with asphalt emulsion
        (2) Variability analysis of asphalt emulsion
        (3) Future prospect of cold recycled mixture with asphalt emulsion
        5.2.2. Solid waste recycling in pavement
        5.2.2. 1. Construction and demolition waste.
        (1) Recycled concrete aggregate
        (2) Recycled mineral filler
        5.2.2. 2. Steel slag.
        5.2.2. 3. Waste tire rubber.
        5.2.3. Environment impact of pavement material
        5.2.3. 1. GHG emission and energy consumption of pavement material.
        (1) Estimation of GHG emission and energy consumption
        (2) Challenge and prospect of environment burden estimation
        5.2.3. 2. VOC emission of pavement material.
        (1) Characterization and sources of VOC emission
        (2) Health injury of VOC emission
        (3) Inhibition of VOC emission
        (4) Prospect of VOC emission study
        5.2.4. Summary and outlook
6. Intelligent pavement
    6.1. Automated pavement defect detection using deep learning
        6.1.1. Automated data collection method
        6.1.1. 1. Digital camera.
        6.1.1.2.3D laser camera.
        6.1.1. 3. Structure from motion.
        6.1.2. Automated road surface distress detection
        6.1.2. 1. Image processing-based method.
        6.1.2. 2. Machine learning and deep learning-based methods.
        6.1.3. Pavement internal defect detection
        6.1.4. Summary and outlook
    6.2. Intelligent pavement construction and maintenance
        6.2.1. Intelligent pavement construction management
        6.2.1. 1. Standardized integration of BIM information resources.
        6.2.1. 2. Construction field capturing technologies.
        6.2.1. 3. Multi-source spatial data fusion.
        6.2.1. 4. Research on schedule management based on BIM.
        6.2.1. 5. Application of BIM information management system.
        6.2.2. Intelligent compaction technology for asphalt pavement
        6.2.2. 1. Weakened IntelliSense of ICT.
        6.2.2. 2. Poor adaptability of asphalt pavement compaction index.
        (1) The construction process of asphalt pavement is affected by many complex factors
        (2) Difficulty in model calculation caused by jumping vibration of vibrating drum
        (3) There are challenges to the numerical stability and computational efficiency of the theoretical model
        6.2.2. 3. Insufficient research on asphalt mixture in vibratory rolling.
        6.2.3. Intelligent pavement maintenance decision-making
        6.2.3. 1. Basic functional framework.
        6.2.3. 2. Expert experience-based methods.
        6.2.3. 3. Priority-based methods.
        6.2.3. 4. Mathematical programming-based methods.
        6.2.3. 5. New-gen machine learning-based methods.
        6.2.4. Summary and outlook
        (1) Pavement construction management
        (2) Pavement compaction technology
        (3) Pavement maintenance decision-making
7. Conclusions
Conflict of interest

(3)西北内陆河流域地下水循环特征与地下水资源评价(论文提纲范文)

1 引言
2 水文地质条件
    2.1 主要含水层
        2.1.1 山麓相、河-湖相新近系、古近系和白垩系含水岩组
        2.1.2 冲湖积相第四系中、下更新统含水组
        2.1.3 冲洪积相第四系中、上更新统含水层
        2.1.4 沙漠相第四系全新统含水层
    2.2 地下水循环
        2.2.1 山区地下水循环
        2.2.2 平原区地下水循环
        2.2.3 沙漠区地下水循环
    2.3 平原区地下水流系统
3 地下水资源评价与潜力分析
    3.1 资源评价
        3.1.1 评价单元划分与评价方法
        3.1.2 评价结果
    3.2 开采潜力分析
4 建议
    4.1 开源与节流并举
        4.1.1 加强南疆地区水资源“开源”技术研究
        4.1.2 加强储水构造及地下水库关键技术研究
    4.2 地下水的生态功能与生态需水量评价
5 结论

(4)英语学术论文中元话语动词型式的变异研究 ——学科内与学科间视角(论文提纲范文)

摘要
Abstract
Acknowledgements
Abbreviations
Chapter 1 Introduction
    1.1 Research background
    1.2 Purpose of the study
    1.3 Significance of the study
    1.4 Organization of the thesis
Chapter 2 Literature Review
    2.1 Definitions of metadiscourse
    2.2 Taxonomies of metadiscursive markers
    2.3 Exploration of resources with metadiscourse function
        2.3.1 Investigation on level of typical word class
        2.3.2 Investigation on pattern level
        2.3.3 Investigation on clause level
    2.4 Disciplinary investigation of metadiscourse
    2.5 Research gap
Chapter 3 The Definition and Identification of MVPs
    3.1 Specific instance of MVPs
    3.2 Grammatical form of MVPs
    3.3 Definition and features of MVPs
Chapter 4 Research Methodology
    4.1 The corpora
    4.2 Research tools
        4.2.1 BFSU PowerConc for corpus concordance
        4.2.2 R-Studio for data processing
    4.3 Retrieving method and functional labelling of MVPs
    4.4 Data analysis
        4.4.1 Log-Likelihood test for examining data difference
        4.4.2 Correspondence analysis for examining association of variables
Chapter 5 Intradisciplinary Variation of MVPs
    5.1 Major function of MVPs in MedDEAP
        5.1.1 MVPs as frame markers
        5.1.2 MVPs as endophoric markers
        5.1.3 MVPs as evidentials
        5.1.4 MVPs as attitude markers
        5.1.5 MVPs as engagement markers
    5.2 Intradisciplinary variation of MVPs
        5.2.1 Overall variation of MVPs
        5.2.2 Variation of MVPs as frame markers
        5.2.3 Variation of MVPs as endophoric markers
        5.2.4 Variation of MVPs as evidentials
        5.2.5 Variation of MVPs as attitude markers
        5.2.6 Variation of MVPs as engagement markers
    5.3 Associations between MVPs and the sub-disciplines
        5.3.1 Association between the categories of MVPs and sub-disciplines
        5.3.2 Association between the sub-categories of MVPs and sub-disciplines
    5.4 Evaluation on intradisciplinary investigation
    5.5 Summary
Chapter 6 Interdisciplinary Variation of MVPs
    6.1 Grammatic forms of MVPs across disciplines
        6.1.1 Grammatical forms of MVPs as transitions
        6.1.2 Grammatical forms of MVPs as frame markers
        6.1.3 Grammatical forms of MVPs as endophoric markers
        6.1.4 Grammatical forms of MVPs as evidentials
        6.1.5 Grammatical forms of MVPs as code glosses
        6.1.6 Grammatical forms of MVPs as attitude markers
        6.1.7 Grammatical forms of MVPs as engagement markers
    6.2 Distribution of MVPs in LitDEAP
        6.2.1 Interactive MVPs in LitDEAP
        6.2.2 Interactional MVPs in LitDEAP
        6.2.3 Characteristics of using MVPs in LitDEAP
    6.3 Distribution of MVPs in EduDEAP
        6.3.1 Interactive MVPs in EduDEAP
        6.3.2 Interactional MVPs in EduDEAP
        6.3.3 Characteristics of using MVPs in EduDEAP
    6.4 Distribution of MVPs in BioDEAP
        6.4.1 Interactive MVPs in BioDEAP
        6.4.2 Interactional MVPs in BioDEAP
        6.4.3 Characteristics of using MVPs in BioDEAP
    6.5 Distribution of MVPs in InfoDEAP
        6.5.1 Interactive MVPs in InfoDEAP
        6.5.2 Interactional MVPs in InfoDEAP
        6.5.3 Characteristics of using MVPs in InfoDEAP
    6.6 Interdisciplinary variation of MVPs
        6.6.1 Variation of MVPs in general
        6.6.2 Variation of MVPs as transitions
        6.6.3 Variation of MVPs as frame markers
        6.6.4 Variation of MVPs as endophoric markers
        6.6.5 Variation of MVPs as evidentials
        6.6.6 Variation of MVPs as code glosses
        6.6.7 Variation of MVPs as attitude markers
        6.6.8 Variation of MVPs as engagement markers
    6.7 Interdisciplinary associations of MVPs
        6.7.1 Association between the categories of MVPs and disciplines
        6.7.2 Association between the sub-categories of MVPs and disciplines
    6.8 Remarkable feature of interdisciplinary employment of MVPs
    6.9 Summary
Chapter 7 Discussions on MVPs and Disciplinary Boundary
    7.1 Evaluation of MVPs
    7.2 Contributing factors of employing MVPs
        7.2.1 Knowledge base
        7.2.2 Research method
        7.2.3 Mode of knowledge construction
    7.3 Disciplinary boundary
    7.4 Summary
Chapter 8 Conclusion
    8.1 Major findings
    8.2 Implications
        8.2.1 Theoretical implications
        8.2.2 Pedagogical implications
    8.3 Limitations and suggestions for future research
References
Appendices
    Appendix 1 MVPs in MedDEAP
    Appendix 2 MVPs in LitDEAP
    Appendix 3 MVPs in EdUDEAP
    Appendix 4 MVPs in BioDEAP
    Appendix 5 MVPs in InfoDEAP

(5)长江第一湾大同沟、台村沟的泥石流敏感性评估和冲出范围预测(论文提纲范文)

摘要
abstract
Chapter 1:Introduction
    1.1 Background purpose and meaning of the topic:
    1.2 Research status of debris flow:
        1.2.1 The current situation of research on debris flow
        1.2.2 Research status of debris flow susceptibility assessment:
        1.2.3 Research status of Debris flow Runout Prediction:
    1.3 Research Contents and Technical Routes
Chapter2:Overview of the Geological Environment of the Study Area
    2.1 Research area location
    2.2 Geographical location
    2.3 Meteorological and Hydrological condition
        2.3.1 Inner diameter flow
        2.3.2 Regional hydrological station
        2.3.3 Heavy rains in the area
        2.3.4 Regional Meteorology
    2.4 Groundwater
    2.5 The regional geological formation,tectonics,and earthquake
        2.5.1 Profile of the regional geological structures
        2.5.2 Stratigraphy and Lithology
        2.5.3 Seismic conditions of the study area
    2.6 Social environment
Chapter 3:Geological Characteristics of Datong and Taicun Gully Debris Flow
    3.1 Datong and Taicun gully geographical location
    3.2 Datong and Taicun gully overall features
    3.3 Geological characteristics of Datong and Taicun gully
        3.3.1 Formation area of Debris flow gullies
        3.3.2 Circulation area of the debris flow gullies
        3.3.3 Accumulation area of debris flow gullies
    3.4 Source statistics of debris flow gullies
        3.4.1 Source statistics of Datong gully
        3.4.2 Source statistics of Taicun gully
    3.5 On-site sieve analysis of debris flow material in the accumulated area
        3.5.1 Site screening equipment
        3.5.2 On-site sampling principle
        3.5.3 The analysis method of the particle size distribution of debris flow deposits
        3.5.4 Particle size characteristics of early debris flow accumulation in Datong gully
    3.6 Material sampling for Optical Luminescence Dating test
Chapter4:Debris Flow Susceptibility Assessment
    4.1 Field investigation
    4.2 Software
    4.3 Data used
    4.4 Model selection
        4.4.1 Analytical hierarchy process
        4.4.2 Extension Method
    4.5 Assessment Factors
    4.6 Modelling Approach
    4.7 Assigning weight
    4.8 Susceptibility assessment based on Extension method
    4.9 Discussion
Chapter5:Runout Prediction of Debris Flow
    5.1 Runout Prediction of Debris Flow
    5.2 Basic Theory of SFLOW
    5.3 Control equation:
    5.4 Model validation
    5.5 Datong and Taicun gully debris flow Runout prediction:
        5.5.1 Data pre-processing in SFLOW:
        5.5.2 Simulation Results:
    5.6 Discussions
Chapter6:Conclusion and recommendations
References
作者简介及在学期间所取得的科研成果
致谢
DEDICATIONS

(7)西南科技大学校园网页新闻汉英翻译实践报告(论文提纲范文)

Abstract
摘要
Chapter One Introduction
    1.1 Background of the Translation Project
    1.2 Analysis of the Source Text
    1.3 Structure of the Report
Chapter Two Translation Processes
    2.1 Pre-translation Preparation
    2.2 Translation Procedures
    2.3 Proofreading after Translation
Chapter Three Introduction to the Guiding Theory
    3.1 The Memetics Theory
        3.1.1 The Origin of the Memetics Theory
        3.1.2 The Development of the Memetics Theory
    3.2 The Guiding Role of Memetics Theory on Campus Web Page News Translation
        3.2.1 The Guiding Theory
        3.2.2 The Specific Process
Chapter Four Case Study
    4.1 Translation choices under tense changes in translation
        4.1.1 The Omission
        4.1.2 The Explanatory
        4.1.3 The Syntactic Linearity
    4.2 Translation choices under grammatical features in translation
        4.2.1 The Division
        4.2.2 The Integration
        4.2.3 The Syntactic Reverse
    4.3 Translation choices under cultural communication in translation
Chapter Five Quality Evaluation of Translations
    5.1 Self-evaluation
    5.2 Client-evaluation
    5.3 Commissioner-evaluation
Chapter Six Conclusion
    6.1 Conclusion to the translation process
        6.1.1 Experiences accumulated in task
        6.1.2 Deficiencies in the translation process
    6.2 Suggestions for translating campus news
Acknowledgement
Bibliography
Appendix A The Source Text and the Target Text
Appendix B Certificate of Translation Practice
Appendix C Glossary of terms
Appendix D Translation Aids Website

(9)Compilation of hydrogeological map of China(论文提纲范文)

Introduction
1 Methods and technical route of map compilation
    1.1 Mapping principles
    1.2 Mapping methods
    1.3 Technical route
2 Main contents and cartographic methods
    2.1 Main content
    2.2 Display method
3 Updated contents
    3.1 Major items updated in current map
    3.2 Major data updated in current mapping campaign
4 Layer structure
6 Conclusions

(10)白垩纪古环境地球物理测井研究 ——以陆相和海相地层的科学钻探井为例(论文提纲范文)

摘要
abstract
Chapter 1 Introduction
    1.1 Background of topic selection
    1.2 Research status
        1.2.1 Paleoclimate and paleoenvironmental investigation using biological andchemical proxies
        1.2.2 Geophysical well logs as indicator of past environmental changes
        1.2.2.1 Conventional logs
        1.2.2.2 Geochemical logs
        1.2.3 Paleoclimate/Paleoenvironmental analysis methods
        1.2.4 Progress in paleoenvironment and paleoclimate research in the non-marineCretaceous Songliao Basin
    1.3 Research content and Technical route
        1.3.1 Research scope and objectives
        1.3.2 Purpose and significance of the study
        1.3.3 Technical route
        1.3.4 Dissertation organization
    1.4 Major Innovations
Chapter 2 Synthesis of the geological background of the explored basins
    2.1 Continental Songliao Basin
    2.2 Marine environment
        2.2.1 Goban Spur Basin
        2.2.2 Deep Ivorian Basin
        2.2.3 Demerara Rise
Chapter 3 Research data and analysis methods
    3.1 Data
        3.1.1 Songliao Basin (SLB)
        3.1.2 Goban Spur Basin
        3.1.3 Deep Ivorian Basin (DIB)
        3.1.4 Demerara Rise (DR)
        3.1.5 Logging tools summary, ODP Leg 114, Leg 122, Leg 130, Leg 165 and Leg 171B
    3.2 Analysis methods
        3.2.1 Statistical analysis
        3.2.2 Wavelet transform
        3.2.2.1 Wavelet filter
        3.2.2.2 Number of levels
        3.2.3 Multiresolution sedimentation rate analysis
        3.2.4 Fractal/multifractal analysis
        3.2.4.1 Fractal analysis methods
        3.2.4.2 Multifractal analysis
        3.2.5 Change points detection
        3.2.5.1 Hilbert transform
        3.2.5.2 Empirical mode decomposition and Short time Fourier transform
    3.3 Chapter summary
Chapter 4 Upper Cretaceous paleoenvironmental changes and petrophysical responsesin NE Asian lacustrine and NW European Marine sedimentary deposits
    4.1 Introduction
    4.2 Logs trend analysis
    4.3 Discussion
        4.3.1 Petrophysical properties as indicator of paleo-lake environment changes
        4.3.1.1 Deposition of organic-rich shale (OrSh)
        4.3.1.2 Brine bearing shale (Vshw) content, paleoclimate and sea water ingression
        4.3.1.3 Timing of Lake Anoxic Events (LAEs) and petrophysical responses
        4.3.2 Impact of Sea Environment Changes on the Petrophysical Properties
        4.3.2.1 Seafloor spreading
        4.3.2.2 Or Sh deposition, sea level change and carbonate compensation depth (CCD)
        4.3.2.3 Timing of Ocean Anoxic Events (OAEs) and Petrophysical Responses
    4.4 Chapter summary
Chapter 5 Investigation and analysis of the self-similarities of the Coniacian-Santonian OAE3 in both marine and terrestrial sedimentary records based on spectral gamma ray log
    5.1 Introduction
    5.2 Spectral gamma ray log
    5.3 The spectral gamma ray characteristics across the OAE3 section
        5.3.1 Songliao Basin (SB)
        5.3.2 Deep Ivorian Basin (DIB)
        5.3.3 Demerara Rise (DR)
    5.4 Analysis of the spectrum gamma ray ratio by MFDFA through the OAE3 and non-OAE3 intervals
    5.5 MFDFA results
    5.6 Discussion
        5.6.1 Source of multifractality
        5.6.2 Possible factors affecting the multifractality properties of Th-U and Th-Kdistributions in the OAE3 interval
    5.7 Chapter summary
Chapter 6 Petrophysical properties variation at the K-Pg boundary in both marine andterrestrial environments
    6.1 Introduction
    6.2 Paleontological evidences of the K-Pg boundary in Songliao Basin
    6.3 Contribution of borehole logging data for paleoenvironmental research in SongliaoBasin and constraint
    6.4 Discovery of variation in well log responses as indicator of K-Pg boundary inSongliao Basin
        6.4.1 Natural gamma ray and spectral gamma ray logs
        6.4.1.1 Hilbert Huang Transform and change points detection
        6.4.1.2 Robust empirical mode decomposition – short time Fourier transform anddepositional sequence boundary (DSB) detection
        6.4.2 Correlation analysis of spectral gamma ray reactivity to clay mineralogy andcharophytes distribution across the K-Pg boundary in Songliao Basin
        6.4.2.1 Radioisotope elements distribution and clay mineralogy
        6.4.2.2 Radioisotope elements and charophytes distribution
        6.4.3 Resistivity log
        6.4.4 Porosity logs
    6.5 Well log responses across the K-Pg boundary in some marine basins
    6.6 Correlation between the K-Pg boundary in Songliao Basin and sites 700B, 762C, 807C, 1001A and 1050C
    6.7 Chapter summary
Chapter 7 Conclusions and Recommendations
    7.1 Conclusions
    7.2 Recommendations
References
APPENDICES
ACKNOWLEDGEMENT
CURRICULUM VITAE

四、INSTITUTE OF HYDROGEOLOGY AND ENGINEERING GEOLOGY——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文参考文献)

  • [1]New innovations in pavement materials and engineering:A review on pavement engineering research 2021[J]. JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu. Journal of Traffic and Transportation Engineering(English Edition), 2021
  • [2]Major contribution to carbon neutrality by China’s geosciences and geological technologies[J]. Yao Wang,Chi-hui Guo,Shu-rong Zhuang,Xi-jie Chen,Li-qiong Jia,Ze-yu Chen,Zi-long Xia,Zhen Wu. China Geology, 2021(02)
  • [3]西北内陆河流域地下水循环特征与地下水资源评价[J]. 尹立河,张俊,王哲,董佳秋,常亮,李春燕,张鹏伟,顾小凡,聂振龙. 中国地质, 2021(04)
  • [4]英语学术论文中元话语动词型式的变异研究 ——学科内与学科间视角[D]. 陈松云. 北京外国语大学, 2021(09)
  • [5]长江第一湾大同沟、台村沟的泥石流敏感性评估和冲出范围预测[D]. Qaiser Mehmood. 吉林大学, 2021(01)
  • [6]Sensitivity assessment of strontium isotope as indicator of polluted groundwater for hydraulic fracturing flowback fluids produced in the Dameigou Shale of Qaidam Basin[J]. Zhao-xian Zheng,Xiao-shun Cui,Pu-cheng Zhu,Si-jia Guo. Journal of Groundwater Science and Engineering, 2021(02)
  • [7]西南科技大学校园网页新闻汉英翻译实践报告[D]. 贺少伟. 西南科技大学, 2021(09)
  • [8]Application of artificial intelligence to rock mechanics: An overview[J]. Abiodun Ismail Lawal,Sangki Kwon. Journal of Rock Mechanics and Geotechnical Engineering, 2021(01)
  • [9]Compilation of hydrogeological map of China[J]. ZHANG Jian-kang,DONG Hua,CHENG Yan-pei,YUE Chen,LIU Kun. Journal of Groundwater Science and Engineering, 2020(04)
  • [10]白垩纪古环境地球物理测井研究 ——以陆相和海相地层的科学钻探井为例[D]. Kouamelan Kouamelan Serge(赛格). 中国地质大学(北京), 2020

标签:;  ;  

水文地质与工程地质研究所——科研工作总结
下载Doc文档

猜你喜欢