三边为连续自然数且面积也是自然数的三角形

三边为连续自然数且面积也是自然数的三角形

一、三边长为连续自然数、面积也是自然数的三角形(论文文献综述)

余应龙[1](1985)在《三边长为连续自然数、面积也是自然数的三角形》文中认为 众所周知,给出三角形的三边a、b、c的长,三角形的面积S就可用秦九韶公式或海伦公式求出。如果三角形的三边a,b,c都是自然数,由于以上两个面积公式都带有根号,所以求出的面积未必是自然数。特别当三边为连续自然数时,面积也未必是自然数。本文要解决的问题是:三角形的三边是怎样的连续自然数时,面积也是自然数,并求出一切这样的三角形。

陈宏[2](1990)在《从海伦公式的应用中想到的》文中进行了进一步梳理 用海伦公式计算斜三角形的面积时,任给三边长都为整数,面积却未必为整数。因此,很自然的问题是;三边长都为整数且面积也是整数的斜三角形是否存在?有几个?这个问题似乎是问得太泛了。然而在三边长为连续自然数且满足两奇一偶的条件下,这样的三角形还是存在的。如以13、14、15为三边长的三角形就满足要求。这是因为: 由海伦公式此时它的面积是: 并且满足条件: 132+142≠152。那么这样的斜三角形究竟有多少个呢?回答是: 命题三边长为两奇一偶的连续自然数且面积也是自然数的斜三角形有无数多个。

朱道勋[3](1994)在《关于海伦三角形的边和面积的性质》文中指出关于海伦三角形的边和面积的性质山东济宁教育学院朱道勋海伦三角形是边长与面积均为整数的三角形.若海伦三角形的三边长互素,则称之为本原海伦三角形(也称素海伦三角形).关于海伦三角形以及特殊的海伦三角形(如方海伦三角形)的存在性问题和表示海伦三角形三边的一...

严卿[4](2019)在《初中生逻辑推理和直观想象能力的发展与教学研究》文中研究表明核心素养体现了学生适应终身发展和社会发展的需要,培育学生的核心素养是时代赋予教育的重要任务。一直以来,逻辑推理与直观想象能力都居于数学教育目标之列,此番作为数学核心素养被提出,既是延续,也包含了新的解读。聚焦初中生逻辑推理与直观想象两种能力,开展一系列研究,包含两条研究线索。主线是对两种能力发展特点的揭示,对两者间关系的探索,以及在此基础上设计并实施的假言推理教学实验。支线是对两种能力价值的研究,探究两种能力对数学学业成绩与开放性问题解决的影响。具体来说,研究问题如下:问题一:初中生逻辑推理能力的发展具有怎样的特点?问题二:初中生直观想象能力的发展具有怎样的特点?问题三:初中生逻辑推理与直观想象能力之间的相关性如何?问题四:初中生逻辑推理与直观想象能力对数学成绩、开放性问题解决分别有怎样的影响?问题五:假言推理的直观化教学能否促进学生对其的理解与迁移?对这些问题的研究依赖于对两种能力的测量。基于对现有研究的梳理以及理论思辨,分别构建逻辑推理与直观想象能力的评价框架,在此基础上编制《初中生逻辑推理能力测验》以及《初中生直观想象能力测验》,测验经过项目分析、探索性因素分析和信度分析,具有良好的信、效度。测量样本总计涉及来自8个省的4000多名初中生。教学实验基于测量研究的结果设计,核心在于对假言命题及推理的直观化表征。研究结论概括如下:(1)初中生逻辑推理能力的提升贯穿整个初中阶段,假言推理提升幅度最大;重点中学学生逻辑推理能力优于普通中学,差异随年龄增长呈缩小趋势;初中生逻辑推理能力的发展受制于对数学概念之间关系的理解,以及对推理形式的认识。(2)初中生直观想象能力在八至九年级出现快速发展,表现为综合的提升。同样也是在这一时期,不同地区间学生的能力差异开始拉大。初中生在几何直观的能力与意识上都存在欠缺。(3)初中生逻辑推理与直观想象能力间存在比较高的相关性,一方面,逻辑推理的过程存在空间因素;另一方面,空间操作蕴含了对规则的使用。(4)逻辑推理与直观想象能力同数学成绩存在中等程度的相关,显著影响数学成绩;逻辑推理与直观想象能力同开放性问题解决存在中等程度的相关,显著影响学生的开放性问题解决;几何直观与演绎推理的影响最为直接。(5)直观化的教学策略并未从整体上提高实验班学生的假言推理能力,但对于直观想象能力优秀的学生,这种教学策略能够发挥一定的效果,具体而言,对假言推理的直观理解有利于迁移到不同的假言推理形式或其它问题背景中。(6)为了发展初中生的逻辑推理与直观想象能力,从两个方面提出建议。就课程与教材而言,应把握能力的快速发展期,有针对性地安排教材内容;在不同知识领域中渗透逻辑推理。就教学而言,应展开价值反思,凸显合情推理的“或然性”;尊重个体差异,从根本上抬升几何直观的地位;提升认识,发掘隐藏于知识中的能力因素;借助命题形式,在知识间建立更普遍的联系。

戴德芬,袁小元,解珊,何玉树,王洁敏,钟天英[5](1995)在《数学综合题归纳与训练》文中进行了进一步梳理 代数 初中代数知识包括数、式、方程(不等式)和函数,数、式是构成方程和函数的基础。 代数综合题大部分是围绕着方程和函数展开的。解代数综合题,一要系统地掌握代数基础知识,要特别注意理解方程、不等式及函数之间的区别和联系;二要会运用数学思想和方法。数学思想主要有:数形结合的思想,分类讨论的思想,布列方程的思想,恒等变换的思想,函数思想等。数学方法主要有:换元法,配方法,待定系数法,消元降次法等。这些数学思想和方法,对解决代数综合题起着重要作用,同时,对于提高我们的数学素质也有重大意义。

黄新民[6](1996)在《边长为连续自然数的整点三角形存在性问题》文中指出所谓整点多边形是指:在平面直角坐标系中,顶点坐标都为整数的多边形。关于整点多边形问题曾有过许多研究,并得出了下面一系列结果:定理1 除正方形外,再没有整点正多边形(见文[2]、[3]、[4])定理2 不存在整点等角n边形(n≠4,n≠8)(见文[5])定理3 不存在其中一个角等于r°(r为有理数,且r≠45,90,135)的整点多边形(见文[6]).

王建生,高燕,寿多娟,王丽萍,储冬生,叶柱,李金俊,徐友新[7](2007)在《小学数学知识概要与学法指导》文中提出就数学学习而言,许多相关知识是分散在不同年级逐步出现的。因此,在小学阶段的学习即将告一个段落时,有必要将分散学习的知识加以整理、归纳和提炼,使之条理化和系统化,从而加深理解,融会贯通。为此,我们特约有关数学教研专家和特级教师编写了《小学数学知识概要与学法指导》专辑,本专辑以《数学课程标准》的教育理念为指导,重视基本技能的考查,着眼发展能力。试题贴近社会,突出联系实际,富有时代特征,引导学生关注社会、思考问题,学有所用。试题具有较强的开放性和综合性,注重学科知识的内在联系和多学科的综合联系,培养学生科学的思维方式和创新意识。本专辑将小学数学的内容归结为“数和数的运算”、“代数初步知识”、“应用题”、“量的计量”、“几何初步知识”、“简单的统计”六个部分,每部分安排了“知识要点”、“学法点拨”、“自我演练”三项内容。知识要点:帮助同学们了解复习知识的概貌,明确复习的范围。学法点拨:根据课程标准,结合现行小学教材,对需要掌握的知识进行全面归纳,把其中的难点、重点总结成易掌握、易记忆、易检索的要点,方便系统复习。自我演练:按复习内容和课程标准的要求选编了A、B、C三组练习题,以满足不同的需要,A组为基本习题,B、C两组为有所发展变化的习题。另外,在本专辑的最后还安排了两组综合训练,以帮助老师对学生复习效果进行检测。

王成营[8](2012)在《数学符号意义及其获得能力培养的研究》文中认为为什么随着年级的增加,许多学生感觉数学越来越难学、越来越枯燥,普遍出现“听而不懂”、“懂而不会”、“会而不对”问题?对小学和初中数学教材中的数学概念、数学符号、数学图表、数学公式、数学定理、数学关键词进行分类统计的结果表明,小学生平均每学期需要学习42个新符号,而初中生每学期需要学习120个新符号,几乎是小学生学习量的3倍。对小学、初中、高中三个阶段学生的问卷调查表明,学生的数学符号意义获得能力普遍较低,38%的学生不认识学过的数学符号,45%的学生只能说出数学符号的一个意义,只有17%的学生能够想到二个或二个以上的意义,而且三个学段学生的数符号意义获得能力无显著差异。这些数据表明,随着年级增加,数学符号的数量急剧增加,形式越来越简洁,意义越来越复杂,学生的数学符号意义获得能力却仍处在低水平,没有得到相应提升,是导致学生数学学习困难的根本原因。为此,本课题提出了研究假设:培养和提高学生的数学符号意义获得能力是解决上述问题的有效方法。首先,概括阐述了符号学的基本方法和基本原理,作为本研究的理论基础。符号学理论认为,任何事物的存在状态和变化规律既受内部组成要素的影响,也受外部环境因素的影响,始终处在由内部要素和外部因素组成的关系结构中;符号是包含符号形式(记号)和符号意义(记号表象)的统一体,不能脱离记号谈论符号意义,也不能脱离符号意义谈论记号;符号都不是孤立存在的,它本身是一个结构,又处于更大的符号结构中;研究符号意义需要全面构建相互关联的包括要素结构、联结结构和意义结构三个层次的符号结构。其次,应用符号学理论分析教学活动中的符号现象,探讨符号学理论和方法的教学意蕴,对传统的“符号”、“知识”、“学习”、“教学”进行新的诠释。符号本质上是一种能够刺激人的感官,使人产生意义联想的客观存在形式,是一种可以替代认识对象的“感官刺激物”。教学活动中可以刺激学生产生意义联想,帮助学生理解教学内容的实物、模型、手势、视频、教材等一切东西都可看作符号,视作教学资源。知识是由知识外部表征(记号结构)与知识内部表征(认知结构)组成的统一体,本质上是一种符号结构。人的任何想法都可以通过符号以“直观”的方式直接地或通过符号结构以“意会”方式间接地传递给他人。个体知识的外部表征构成了与现实世界相对应的个体的“记号世界”,个体知识的内部表征构成了与“记号世界”相对应的个体的“经验世界”。由记号结构和认知结构构成的符号结构,代表了个体的所有知识和经验,代表了个体适应和改造现实世界的综合能力。人类的某一感官不可能同时感知整个客观事物,只能感知它的部分属性。感知到的属性被感知者赋予意义后就建立了一个刺激物(记号)与意义(感觉表象)的联结,成为自然符号。当感觉表象被感性思维加工成与客观事物对应的知觉表象(感性经验)时,与感觉表象对应的符号就联结成自然符号结构,并与客观事物建立了对应关系。当感觉表象被理性思维加工成客观世界中不存在的知觉形象(概念)时,人类就需要创造人工符号来表征它,并使建立在概念基础上的理性经验与人工符号结构形成对应关系。因此,学习知识的过程本质上是建构符号结构的过程,具体包括客观事物的经验化、经验的符号化、符号的经验化三个相互转换过程。知识的教学就是教师帮助学生建构符号结构的过程。再次,应用符号学理论和方法重新界定了数学符号、数学符号意义、数学符号意义获得能力的内涵,分析了影响数学符号意义获得能力培养的主要因素和困难,并结合数学概念教学、数学命题教学和数学问题教学进行了案例研究。在教学活动中,数学符号是一切承载数学信息的符号,主要包括数学自然符号、数学模型符号、数学语音符号、数学文字符号、数学专业符号、数学图表符号、数学行为符号七大类。数学符号意义是指在数学符号刺激下被激活的整个数学符号结构,主要包括数学符号的语符意义、基本意义、转换意义、隐性意义、美学意义、个性化意义、操作意义七种意义,它可通过联想到的所有数学符号的记号的数量来测量。数学符号意义获得能力是指在数学符号刺激下建构包含这该数学符号的数学符号结构的能力,主要包括数学符号的形式感性能力、意义联想能力、意义转换能力、意义整合能力和记号操作能力五大能力。影响数学符号意义获得能力培养的因素主要是数学教师的数学符号观和教学资源观、数学教学观和教学方法观。在数学教学实践,数学教师应转变观念,依据《数学课程》的“三维”教学目标要求,科学选择、安排、呈现数学符号资源,灵活应用符号结构分析方法,传授学生建构数学符号意义结构的基本方法和思维模式,探讨数学符号的多元表征,全面建构数学符号意义结构,并使之内化为学生自己的认知结构,提升学生的数学素养,促进学生的全面发展。最后,概括了本研究的基本逻辑:(1)无法获得数学符号丰富的数学意义是学生害怕、讨厌数学,感觉数学难学的主要原因;(2)教师忽视数学符号教学是导致学生数学符号意义获得能力较低的主要原因;(3)教师片面的数学符号观和知识观是导致教师忽视数学符号教学的主要原因;(4)数学符号结构中蕴含了数学知识的所有信息,需要学习者去感知、发现、领悟和建构;(5)获得数学符号结构中的数学信息需要学生具备较高的数学符号意义获得能力;(6)培养数学符号意义获得能力的核心是超越数学符号“是什么”的传统思维,努力思考它“意味着什么”;(7)培养学生的数学符号意义获得能力需要教师转变片面的符号观、知识观、学习观和教学观。本研究的最终结论是:培养和提高学生的数学符号意义获得能力是解决“数学难学”、“数学枯燥”,“听而不懂”、“懂而不会”“会而不对”等教学难题的一种有效的、可行的、具有操作性的途径和方法。

《小学数学知识概要与学法指导》编写组[9](2012)在《小学数学知识概要与学法指导》文中研究指明前言六年的小学生活即将结束,回想一下,丰富的数学活动伴随了我们一千多个日子,大家在数学王国一起观察、操作、交流、合作……收获多多。从用手指点数数"一、二、三、四……"到亿以内大数的自如读写;从加减乘除的学习到许多生产、生活实际问题的解决:从已知数进行的算术解答到未知数参与运算的代数思考;从摆弄积木到能对身边物体特

徐岳灿[10](2016)在《由一道解三角形问题想到的》文中研究说明一、问题的提出问题是否存在三边长为连续自然数的三角形,使得最大角是最小角的两倍?这是解三角形中的一道常规问题,学生普遍利用下列解法中的一种.二、问题的求解解法一:设三边长分别为n,n+1,n+2,分别对应角A,B,C,(其中n∈N*),

二、三边长为连续自然数、面积也是自然数的三角形(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、三边长为连续自然数、面积也是自然数的三角形(论文提纲范文)

(4)初中生逻辑推理和直观想象能力的发展与教学研究(论文提纲范文)

摘要
Abstract
第1章 导论
    1.1 研究背景
        1.1.1 核心素养在数学教育中的体现
        1.1.2 对传统能力的传承与发展
    1.2 研究意义
    1.3 研究问题
    1.4 论文结构
第2章 文献述评
    2.1 逻辑推理研究述评
        2.1.1 逻辑推理内涵解析
        2.1.2 逻辑推理能力的评价
        2.1.3 逻辑推理能力的发展
        2.1.4 逻辑推理的教学
    2.2 直观想象研究述评
        2.2.1 直观想象内涵解析
        2.2.2 直观想象能力的评价
        2.2.3 直观想象能力的发展
        2.2.4 直观想象的教学
第3章 研究设计
    3.1 研究技术路线
    3.2 初中生逻辑推理能力的发展研究
        3.2.1 研究目的
        3.2.2 样本选取
        3.2.3 研究工具
        3.2.4 数据收集与处理
    3.3 初中生直观想象能力的发展研究
        3.3.1 研究目的
        3.3.2 样本选取
        3.3.3 研究工具
        3.3.4 数据收集与处理
    3.4 初中生逻辑推理与直观想象能力的相关性研究
        3.4.1 研究目的
        3.4.2 样本选取
        3.4.3 研究工具与数据处理
    3.5 两种能力对数学学业成绩与开放性问题解决的影响研究
        3.5.1 研究目的
        3.5.2 样本的选取
        3.5.3 研究工具
        3.5.4 数据收集与处理
    3.6 教学实验
        3.6.1 研究目的
        3.6.2 实验设计
        3.6.3 样本选取及无关变量的控制
        3.6.4 实验安排
        3.6.5 研究工具
        3.6.6 数据收集与处理
第4章 初中生逻辑推理能力的发展研究
    4.1 研究结果
        4.1.1 初中生逻辑推理能力总体现状
        4.1.2 影响因素间的交互作用分析
        4.1.3 初中生逻辑推理能力的总体发展特点
        4.1.4 初中生逻辑推理能力各维度发展特点
        4.1.5 两类学校学生逻辑推理发展的比较
    4.2 分析与讨论
        4.2.1 逻辑推理能力的发展兼具一般性与特殊性
        4.2.2 逻辑推理能力的发展受制于对数学知识的理解
        4.2.3 逻辑推理能力的发展受制于对推理形式的认识
第5章 初中生直观想象能力的发展研究
    5.1 研究结果
        5.1.1 初中生直观想象能力总体现状
        5.1.2 影响因素间的交互作用分析
        5.1.3 初中生直观想象能力的总体发展特点
        5.1.4 初中生直观想象能力各维度发展特点
    5.2 分析与讨论
        5.2.1 空间想象与几何直观能力的发展动因存在区别
        5.2.2 空间想象能力的发展是一种综合的提升
        5.2.3 几何直观能力与意识都有待进一步发展
第6章 初中生逻辑推理与直观想象能力的相关性研究
    6.1 研究结果
    6.2 分析与讨论
        6.2.1 逻辑推理的过程存在空间因素
        6.2.2 空间操作蕴含了对规则的使用
第7章 两种能力对数学学业成绩与开放性问题解决的影响
    7.1 研究结果
        7.1.1 逻辑推理与直观想象能力对数学学业成绩的影响
        7.1.2 逻辑推理与直观想象能力对开放性问题解决的影响
    7.2 分析与讨论
        7.2.1 对开放题解答情况的分析
        7.2.2 对影响机制及意义的分析与讨论
第8章 假言推理的直观化教学研究
    8.1 教学设计
        8.1.1 理论基础
        8.1.2 教学设计思路
        8.1.3 教学活动内容
    8.2 研究结果
    8.3 分析与讨论
第9章 对课程与教学的建议
    9.1 对课程与教材的建议
    9.2 对教学的建议
    9.3 教学案例
第10章 研究结论与反思
    10.1 研究结论
        10.1.1 初中生逻辑推理能力的发展
        10.1.2 初中生直观想象能力的发展
        10.1.3 初中生逻辑推理与直观想象能力的相关性
        10.1.4 两种能力对数学学业成绩与开放性问题解决的影响
        10.1.5 假言推理的直观化教学
        10.1.6 对课程与教学的建议
    10.2 反思与展望
        10.2.1 研究反思
        10.2.2 研究展望
附录A
附录B
附录C
附录D
附录E
附录F
参考文献
在读期间发表的学术论文及研究成果
致谢

(8)数学符号意义及其获得能力培养的研究(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 问题提出
        1.1.1 现实问题
        1.1.2 问题分析
        1.1.3 研究假设
    1.2 国内外研究现状
        1.2.1 数学语言的研究现状
        1.2.2 数学符号的研究现状
        1.2.3 数学符号感的研究现状
        1.2.4 数学多元表征的研究现状
        1.2.5 小结与思考
    1.3 研究方法和思路
        1.3.1 研究方法
        1.3.2 研究思路
    1.4 研究意义
        1.4.1 研究的理论意义
        1.4.2 研究的实践意义
2 符号学理论及其教学意蕴
    2.1 符号学基本研究方法:结构分析法
        2.1.1 结构的内涵
        2.1.2 结构分析法
    2.2 符号学基本原理:符号结构的建构
        2.2.1 符号的要素结构
        2.2.2 符号的联结结构
        2.2.3 符号的意义结构
    2.3 符号学视域中的知识学习与教学
        2.3.1 符号学视域中的教学活动
        2.3.2 符号学视域中的“知识”
        2.3.3 符号学视域中的“知识学习”
        2.3.4 符号学视域中的“知识教学”
3 数学符号及其意义结构
    3.1 数学符号的内涵界定
        3.1.1 数学符号的三种理解
        3.1.2 数学符号的分类
        3.1.3 数学符号的特征
        3.1.4 数学符号的功能
        3.1.5 义务教育阶段数学教材中数学符号分布状况的统计与分析
    3.2 数学符号的意义结构
        3.2.1 数学符号的语符意义
        3.2.2 数学符号的基本意义
        3.2.3 数学符号的转换意义
        3.2.4 数学符号的隐性意义
        3.2.5 数学符号的美学意义
        3.2.6 数学符号的操作意义
        3.2.7 数学符号的个性化意义
4 数学符号意义获得能力及其培养
    4.1 中小学生数学符号意义获得能力的现状调查
        4.1.1 调查过程的设计
        4.1.2 调查结果的统计与分析
        4.1.3 调查结论
    4.2 中小学生数学符号意义获得过程中的主要困难和错误
        4.2.1 数学符号意义获得过程中的主要困难
        4.2.2 减少数学符号意义获得困难应注意的几个问题
    4.3 数学符号意义获得能力的基本特征
        4.3.1 数学符号意义获得能力的内涵
        4.3.2 数学符号意义获得能力的基本结构
        4.3.3 数学符号意义获得能力的综合表现形式——符号感及其培养
    4.4 数学符号意义获得能力培养的影响因素
        4.4.1 数学教师的数学符号观
        4.4.2 数学教师的教学资源观
        4.4.3 数学教师的教学观
        4.4.4 数学教师的教学方法观
    4.5 数学符号意义获得能力培养的教学案例
        4.5.1 数学概念教学中的培养案例
        4.5.2 数学命题教学中的培养案例
        4.5.3 数学问题解决教学中的培养案例
5 结论与展望
    5.1 研究结论
    5.2 研究的创新点
    5.3 研究展望
参考文献
附录
    附录1 小学与初中数学教材中数学符号的统计表
    附录2 中小学生数学符号意义获得能力调查问卷
    附录3 中小学生数学符号意义获得能力的调查统计表
    附录4 数学符号感的行为结构表
攻读学位期间发表的学术论文
后记

四、三边长为连续自然数、面积也是自然数的三角形(论文参考文献)

  • [1]三边长为连续自然数、面积也是自然数的三角形[J]. 余应龙. 数学教学, 1985(01)
  • [2]从海伦公式的应用中想到的[J]. 陈宏. 数学教学研究, 1990(05)
  • [3]关于海伦三角形的边和面积的性质[J]. 朱道勋. 数学通讯, 1994(09)
  • [4]初中生逻辑推理和直观想象能力的发展与教学研究[D]. 严卿. 南京师范大学, 2019(04)
  • [5]数学综合题归纳与训练[J]. 戴德芬,袁小元,解珊,何玉树,王洁敏,钟天英. 中学考试通讯(初中版), 1995(04)
  • [6]边长为连续自然数的整点三角形存在性问题[J]. 黄新民. 中学数学杂志, 1996(03)
  • [7]小学数学知识概要与学法指导[J]. 王建生,高燕,寿多娟,王丽萍,储冬生,叶柱,李金俊,徐友新. 河北教育(教学版), 2007(Z1)
  • [8]数学符号意义及其获得能力培养的研究[D]. 王成营. 华中师范大学, 2012(06)
  • [9]小学数学知识概要与学法指导[J]. 《小学数学知识概要与学法指导》编写组. 河北教育(教学版), 2012(Z1)
  • [10]由一道解三角形问题想到的[J]. 徐岳灿. 上海中学数学, 2016(Z2)

标签:;  ;  ;  ;  ;  

三边为连续自然数且面积也是自然数的三角形
下载Doc文档

猜你喜欢