一、猪传染性水泡病组织培养弱毒疫苗研制总结(论文文献综述)
王薇[1](2015)在《动物疫情公共危机政府防控能力建设研究》文中认为改革开放以来,中国的畜牧业得到了空前的发展,已经成为世界上畜牧养殖数量最大的国家,畜牧业也成为中国国民经济的重要组成部分。但是目前我国动物疫情防控形势越来越严峻复杂。动物疫病防治工作关系国家食物安全和公共卫生安全,关系社会和谐稳定,是政府社会管理和公共服务的重要职责,是农村农业工作的重要内容。2012年5月2日,《国家中长期动物疫病防治规划(2012-2020年)》(以下简称《规划》)经国务院常务会议审议通过发布实施。这是新中国成立以来,第一个指导全国动物疫病防治工作的综合性规划,是我国动物疫病防治发展史上的重要里程碑,标志着动物疫病防治工作进入了规划引领、科学防治的新阶段。本论文在此背景下,从政府管理的角度出发,依据《规划》的基本理念,研究影响我国动物疫情政府防控能力的基本要素,对于我国制定合理的防控政策、创新防控组织体系建设、防控技术推广以及促进、社会防控资源整合有着很强的迫切性和现实性。本文在公共管理学、危机管理学、农业推广学、社会学、经济学等多学科视角下,综合运用公共危机管理理论、风险理论、脆弱性分析、动物卫生经济学理论以及系统管理理论对动物疫情公共危机政府防控能力建设进行理论分析的基础上,依据《规划》提出的四个能力建设的基本保障,提出我国动物疫情公共危机政府防控能力建设的四大基础要素:法制规范、组织体制、科技支撑和条件保障。分章对此四大基本要素在我国建设的基本概况、存在的基本问题、问题引发的原因、国外的基本经验及做法以及可能的改进方向和做法进行了综合分析,旨在提升我国政府提高动物疫情公共危机防控能力。本文通过理论分析、文献探讨和实证昀方法对动物疫情防控能力建设的一系列问题进行了具体分析,得出了一系列重要的观点与结论。首先,改变观念,建立系统化的动物疫情防控法律体系。其中需要改变观念,从动物卫生安全的高度看待动物疫情公共危机防控立法;健全动物防疫组织立法,防止动物疫情防控立法碎片化;树立动物疫情风险意识,健全动物卫生风险评估机制。其次,突破限制,建立开放型的动物疫情防控体制框架。需要从专业性出发设立常规性指挥机构;以任务为中心建立复合式组织结构;以政府为中心的多元主体参与共治。再次,创新科技,构建有机性的动物疫情防控科技支撑。需要做到接轨国际标准,加强科技支撑基础条件建设;抓住核心技术,做好科技支撑沟通平台建设;注重社会需求,完善科技支撑能力评价机制;重视技术应用,科学研究与防控实践相结合。最后重视投入,建立稳定性的动物疫情防控条件保障。需要在条件保障上重心前移,加大和稳定动物疫病防控财政支持;建立多元化的动物疫病防控资金分摊机制;对动物疫病防控重点领域进行合理分派;合理安排重大动物疫情应急资金和物资储备。本文借鉴相关研究成果及通过案例的实地调查和大量的统计数据来进行我国动物疫情公共危机政府防控能力建设研究,可能在两方面具有创新:一是基本研究思路的创新性。文章突破单纯的从畜牧兽医学的角度来探讨动物疫情防控问题,而是从人类社会公共管理的角度来考察人类社会的管理行为如何削弱或消减动物疫情公共危机的发生的风险。二是计量研究方法具有创新性。本项目采用回归分析对现阶段我国动物疫情防控的基本情况进行实证分析,找出目前影响防控能力的关键性要素,对我国短期内的防控政策的制定有一定的参考价值。
甘肃省兽医研究所[2](1977)在《猪传染性水泡病组织培养弱毒疫苗研制总结》文中研究说明 猪传染性水泡病于十年前开始发生,对养猪业危害很大。目前不仅在欧洲大量流行,而且也波及日本。但现在国外尚无安全有效的疫苗用于生产。 本病在我国也有广泛流行,给生猪生产、肉食供应和出口援外造成很大影响。因此研制出安全有效并宜于工厂化大量生产的特异性疫苗,以期迅速控制和扑灭本病,是当前急需解决的问题。
陆民[3](2019)在《克拉玛依市猪口蹄疫、猪瘟和猪蓝耳病的病原学调查及抗体检测分析》文中研究表明目的:生猪养殖是克拉玛依市的优势畜牧产业,随着克拉玛依市畜牧业的发展,当地生猪的存栏量逐年上升,猪的传染病也越来越多,给当地的养猪业带来了不小的损失。为掌握克拉玛依市猪口蹄疫、猪瘟和猪蓝耳病的流行情况,本研究针对性地开展了病原学调查、抗体检测与分析,以期为该地区有效控制三种疫病疫情提供理论依据。方法:本次试验对2017年、2018年克拉玛依市各辖区生猪三大疫病通过荧光定量RT-PCR的方法,进行病原学调查与比较分析;对克拉玛依市2015年秋季—2018年春季期间生猪三种疫病的免疫抗体采用酶联免疫吸附试验进行检测,并对结果进行分析;同时对比分析了传统防疫服务模式与购买兽医社会化服务模式的防控成效,在此基础上为克拉玛依市今后有效防控生猪三大疫病提供了合理建议。结果:(1)通过荧光定量RT-PCR方法调查2017年、2018年两年的三种疫病的流行情况,结果显示大三疫病的阳性率均为0.00%,得知克拉玛依市辖区近两年未出现口蹄疫、猪瘟、猪蓝耳疫情。(2)不同养殖模式下,规模化养殖的猪口蹄疫、猪瘟和猪蓝耳病的平均抗体合格率分别为92.41%、97.01%、91.72%,明显高于散养模式下71.68%、81.38%、82.94%的合格率。经差异分析可知,散养模式下各区的三大疫病抗体水平都存在显着差异,规模场之间差异不显着。(3)不同区域下,农业综合开发区的三种疫病抗体水平相对最高,合格率分别为95.35%、88.50%、99.53%,其次较高的是白碱滩区,三种疫病抗体水合格率分别为91.36%、89.30%和98.10%,主要原因是白碱滩区和农业开发区实行了购买兽医社会化服务模式,提高了防疫质量和效率。(4)不同年份下,口蹄疫的抗体合格率从2015年的75.96%到2018年的94.56%,呈逐年上升趋势;猪瘟和猪蓝耳抗体合格率呈现先低后高再到低的趋势变化,主要是因为口蹄疫一直作为国家强制免疫的动物疫病,而2017年国家对猪瘟和猪蓝耳不再执行强制免疫的政策。(5)通过对比两种防疫服务模式结果表明在购买兽医社会化服务模式中,猪口蹄疫的抗体水平大概提高了10个百分点,口蹄疫、猪瘟、猪蓝耳病免疫密度均达到99%以上,比传统防疫模式提高近10个百分点;随机抽样三种疫病的免疫抗体合格率,均比传统防疫模式的抗体合格率提高1015个百分点;疫苗浪费率比传统防疫模式下降近5个百分点;强制免疫动物应激死亡率比传统防疫模式下降低近3倍。结论:(1)通过抗原检测,证实克拉玛依市辖区近两年未出现口蹄疫、猪瘟、猪蓝耳疫情;(2)不同养殖模式下,规模场的三种疫病抗体合格率高于散养模式;(3)不同区域下,白碱滩区和农业综合开发区的三种疫病抗体水平显着高于其他三个区;(4)不同年份下,猪瘟和猪蓝耳抗体水平呈现先低后高再到低的曲线变化,而口蹄疫的抗体水平呈逐年升高趋势;(5)比较两种防疫服务模式,购买兽医社会化服务模式显着优于统防疫模式。
甘肃省兽医研究所[4](1974)在《猪传染性水泡病组织培养弱毒疫苗的初步研究——第二报》文中认为 猪传染性水泡病(简称水泡病,下同)上海北新泾系地鼠肾组织培养弱毒疫苗,室内外安全与效力试验结果表明,虽然对猪有一定的免疫力,但安全性不够稳定,细胞毒某些代数对猪的反应率较大并发生同居感染。为解决弱毒苗的安全性问题,我们将水泡病秦皇岛系猪蹄部水泡皮毒适应2~3日龄小白鼠,连续传代致弱,待鼠毒对猪失去致病力后,再将鼠毒在仔猪肾上皮细胞中传代,试制组织培养弱毒疫苗。
甘肃省兽医研究所[5](1974)在《猪传染性水泡病组织培养弱毒疫苗的初步研究——第一报》文中研究表明 随着猪传染性水泡病在一些地区的不断扩大蔓延,给国民经济造成了越来越严重的损失。提供安全有效并宜于大量生产的特异性疫苗,以期迅速控制和扑灭本病,乃是当前保障出口援外和发展养猪业的迫切需要。
崔忠道[6](1990)在《猪传染性水泡病的研究》文中研究表明 前言引起猪发生水泡症状的传染病,有口蹄疫、水泡性口炎、猪水泡疹以及由肠道病毒引起的猪水泡病。这四种病以在猪的蹄及口鼻等部位引起水泡病变为其主要特征,在症状上难以区别。重要差别是感染对象范围不同:口蹄疫传染牛、羊、猪等偶蹄动物,水泡性口炎除传染牛、羊、猪外,尚传染马;猪水泡疹及猪水泡病则仅传染猪,不传染其
田宏[7](2006)在《猪水疱病和猪瘟基因工程亚单位疫苗的研究》文中研究指明猪水疱病和猪瘟均被世界动物卫生组织(OIE)列入A类动物疫病。猪水疱病是一种急性传染病,该病的临床症状与口蹄疫及其它水疱性疾病相似,难以区分,从而妨碍了猪及猪产品的流通和国际贸易;猪瘟是一种急性烈性传染病,致病力强,危害严重。猪瘟弱毒疫苗对于控制猪瘟大流行虽然起到重要的作用,但使用弱毒疫苗后,难以区分疫苗免疫和野毒感染动物,不利于鉴别病猪。目前,国际上还没有预防猪水疱病的疫苗。研制安全高效并具有潜在标记的基因工程疫苗,将为控制猪水疱病和猪瘟探索新的技术方法。本研究通过一系列分子生物学技术制备了猪水疱病和猪瘟基因工程亚单位疫苗,研究其免疫效果,为猪水疱病和猪瘟新型疫苗的研究探索一条可供参考之路。1.构建了猪水疱病结构蛋白P1区重组逆转录病毒载体(pBABE puro-P1),并与水疱性口炎病毒载体pVSV-G共转染GP2-293包装细胞,获得了包装完整的假病毒,测定滴度。假病毒经polybrene(8μg/mL)的介导使该假病毒感染靶细胞PK-15,嘌呤霉素筛选阳性细胞克隆。间接免疫荧光显示PK-15细胞表达的P1衣壳前体蛋白能被猪水疱病病毒(SVDV)阳性血清所识别,表明所表达的蛋白具有良好的反应原性;PCR可从不同代次(分别选取第1,8,16代和30代)的阳性细胞中扩增到SVDV的P1基因,证明靶细胞可稳定的携带目的基因传代。2.大量收获阳性细胞培养物,用弗氏佐剂乳化并免疫豚鼠。通过淋巴细胞增殖试验、阻断ELISA和细胞中和试验,对制备的疫苗效力进行了评价。结果显示,与对照组相比,免疫组豚鼠的外周血淋巴细胞有明显的增殖;阻断ELISA结果表明,免疫组4号豚鼠从首免后的第3周开始出现特异性SVDV抗体,而其他的免疫组豚鼠也从免疫后的第4周开始的全面出现SVDV抗体;应用微量细胞中和试验对免疫接种后第4周、第6周及第8周采集的豚鼠血清中和抗体的滴度进行了检测。结果表明,免疫接种4周时,免疫接种组2号豚鼠的中和抗体为1∶8,其余均小于1∶8;免疫接种组从第6周开始,中和抗体滴度均达到1∶8,甚至超过1∶8,而空白对照组血清中和抗体始终全部小于1∶4。3.采用与猪水疱病类似的方法建立了表达猪瘟病毒(CSFV)E2蛋白的细胞株。免疫荧光和ELISA显示,PK-15细胞表达的E2蛋白能被CSFV阳性血清所识别,表明所表达的蛋白具有良好的反应原性;PCR可扩增到不同代次(本次试验分别选取第1,10,20代和30代)阳性细胞基因中的E2基因,证明靶细胞可稳定的携带目的基因传代。4.大量收获表达产物,乳化并免疫家兔。通过T淋巴细胞增殖试验、阻断ELISA
李慧昕,刘胜旺[8](2019)在《新中国成立70周年兽医科学研究进展》文中认为本文从兽医学发展历史沿革,各时期国家对兽医事业的规划,国家对兽医科学研究的支持,兽医科研人员在基础研究,基础应用和应用研究方面的进展,取得的重大成果以及在党中央的领导下对动物疾病的综合防控效果等方面,对我国兽医事业取得的研究进展进行简要总结和回顾,并对未来兽医工作进行了展望,以期对兽医领域从业人员提供借鉴和参考.
农林部兽医药品监察所[9](1977)在《猪传染性水泡病细胞弱毒疫苗试制试用》文中研究表明 猪传染性水泡病在我国流行至今没能彻底控制。根据农林部提出用组织培养法生产疫苗的科研任务,我们在学习推广上海龙华四系鼠化弱毒疫苗的基础上,1974年底开展用国外引进的IB-RS-2猪肾传代细胞制取龙华毒细胞弱毒苗的研究。两年来,通过一系列试验,在北京郊区试用,1975年和甘肃省兽药厂协作,在大生产条件下,取得用大转瓶旋转培养试制
王迪[10](2015)在《猪传染性胸膜肺炎放线杆菌三价灭活疫苗的研制》文中研究表明山东9个地区11个规模化猪场,自2011年以来猪群陆续发病,疫情不断,遭受了严重的经济损失。为了全面了解猪场的发病原因,从而有针对性地控制疫情,本研究对发病猪场送检的264份病料进行病原检测。结果发现,发病猪体内存在的主要病原及其分离率分别为:猪繁殖与呼吸综合征病毒(Porcine reproductive and respiratory syndrome virus,PRRSV)占43.18%,流行性腹泻病毒(Epidemic diarrhea virus,缩写)占27.27%,猪圆环病毒(Porcine circovirus,PCV)占31.64%;猪传染性胸膜肺炎放线杆菌(Actinobacillus pleuropneumoniae,APP)占58.33%,副猪嗜血杆菌(Haemophilus parasuis,HPS)占26.42%,大肠杆菌(Escherichia coli,E.coli)占32.85%,支气管败血波氏杆菌(Bordetella bronchiseptica,Bb)占3.12%,绿脓杆菌(Pseudomonas aeruginosa,PA)占2.51%。结果分析发现,诱发呼吸道疾病的病原(PRRSV、APP和Bb)的总分离率最高,其中原发和继发感染的APP分离率占主导地位,这可能是山东地区规模化猪场发病的主要原因之一。为了研制一种有效的疫苗来防控APP的危害,本研究对从山东规模化猪场送检病料中分离到的24株APP的培养特性、血清型、分子生物学特性进行了研究,并根据分离株毒力和免疫保护的相关结果,从中筛选出候选疫苗株。血清型鉴定结果表明,分离株的血清型分为1、2、5、7和10型,各有8、1、6、8、1株;其中血清1、5、7型分离株占总分离株的91.67%,因此,这三个血清型的菌株被用作疫苗株的参考。最终,根据致病性试验结果,分别从血清1、5、7型分离株中筛选出免疫原性好、毒力强的APPSD1101、APPSD1207、APPSD1103株作为生产用疫苗株,以制备猪传染性胸膜肺炎放线杆菌三价灭活疫苗。对筛选得到的三株疫苗株的最小致死量进行了测定:每个疫苗株设置五个浓度组(2.0×109CFU/ml、5.0×108CFU/ml、2.0×108CFU/ml、5.0×107CFU/ml、2.0×107CFU/ml)和空白对照组,共6组,每组接种5头6周龄健康易感商品猪,每头滴鼻攻毒3 ml。结果发现,APP血清1、5、7型的MID分别为1.5×108CFU、1.5×109CFU、6.0×108CFU。结果为疫苗的效力检测提供了实验依据。为了摸索该三价疫苗的生产工艺,本研究测定疫苗株在体外培养的最佳收获时间,并通过甲醛(甲醛浓度分为0.1%、0.2%、0.3%、0.4%4组)在不同时间段灭活抗原,筛选最佳灭活条件,对疫苗的最小抗原量和最小免疫量进行测定;并对制备的疫苗进行物理性状、安全性以及免疫效力进行了检测。依据生长曲线的结果表明,调整种子液OD600值到0.5,然后按照3.0%的剂加入新培养液,37℃,160 rpm培养5 h-7 h时收获抗原最佳,此时的代谢产物少,抗原含量高,疫苗更安全;依据抗原灭活试验结果,制定的在实际生产过程中疫苗灭活条件为甲醛浓度0.3%,37℃下160 rpm搅拌15 h;通过最小抗原量试验结果测得,疫苗中最小抗原量APP血清1、5、7型分别为为2×109 CFU/ml、4×109 CFU/ml、1×109 CFU/ml,为实际生产过程中确定最低的抗原含量提供了参考依据;通过最小免疫量试验(结果与最小抗原量试验结果相符),本研究制定的免疫方式为:6周龄颈部肌肉注射1 ml/头;经过对制备的疫苗进行各项检测,制备的疫苗稳定性、安全性均符合相关标准,免疫三周后对血清1、5、7型菌株的免疫保护率可达90%100%,效果良好。本研究为针对当前流行的传染性胸膜肺炎三价疫苗的制备以及临床应用提供了理论和技术支持。
二、猪传染性水泡病组织培养弱毒疫苗研制总结(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、猪传染性水泡病组织培养弱毒疫苗研制总结(论文提纲范文)
(1)动物疫情公共危机政府防控能力建设研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 选题背景及研究意义 |
1.1.1 选题背景 |
1.1.2 研究意义 |
1.2 国内外文献综述 |
1.2.1 危机防控能力研究 |
1.2.2 动物疫情公共危机的研究 |
1.2.3 动物疫情公共危机防控研究 |
1.2.4 对已有研究的评述 |
1.3 研究问题与内容 |
1.4 本文研究框架与方法 |
第2章 相关概念及理论基础 |
2.1 相关概念界定 |
2.1.1 公共危机 |
2.1.2 动物疫情公共危机 |
2.1.3 危机防控能力 |
2.1.4 能力建设及其基础 |
2.2 相关理论基础 |
2.2.1 公共危机管理理论 |
2.2.2 风险管理与脆弱性研究 |
2.2.3 动物卫生经济学 |
2.2.4 系统管理理论 |
第3章 我国动物疫情公共危机能力建设基础及其形成 |
3.1 能力基础之一:法制体系建设情况 |
3.2 能力基础之二:管理体制建设情况 |
3.3 能力基础之三:科技研发支持情况 |
3.4 能力基础之四:条件保障建设情况 |
3.5 综合能力形成:应急响应实施情况 |
第4章 动物疫情公共危机防控法制体系建设 |
4.1 我国动物疫情公共危机防控法制体系建设 |
4.1.1 我国动物卫生法律体系建设概况 |
4.1.2 我国动物疫情公共危机应急管理法规建设情况 |
4.2 我国动物疫情应急法制体系建设存在的问题 |
4.2.1 立法文本及内容自身存在的问题 |
4.2.2 法律文本与实践工作存在脱节 |
4.2.3 应急法律体系的操作性存在欠缺 |
4.3 其他国家动物疫情防疫法律体系建设经验借鉴 |
4.3.1 美国:1+N系统化动物卫生法律体系 |
4.3.2 澳大利亚:风险监控为主的动物疫情防控立法 |
4.3.3 加拿大:体系健全覆盖面广的疫情防控立法 |
4.3.4 欧盟:规范化、人性化的动物卫生立法体系 |
4.4 我国动物疫情防控立法的改进方向 |
4.4.1 健全动物防疫组织立法,防止立法碎片零散 |
4.4.2 树立动物疫情风险意识,健全风险评估机制 |
4.4.3 改变动物疫病防控观念,做好系统规范立法 |
第5章 动物疫情公共危机防控管理体制建设 |
5.1 构建应急管理组织体系的理论基础 |
5.1.1 应急管理组织结构设计的原则 |
5.1.2 公共危机组织结构的特点 |
5.2 我国动物疫情公共危机管理体制建设现状 |
5.3 我国动物疫情公共危机管理体制建设的问题及原因 |
5.3.1 动物疫情常态应急机构尚未建立 |
5.3.2 危机管理指挥联动系统尚且缺乏 |
5.3.3 官方组织缺乏与社会力量的整合 |
5.3.4 重大动物疫情区域合作机制缺乏 |
5.4 动物疫情公共危机防控管理体系的改进 |
5.4.1 专业性、常规性指挥机构的设立 |
5.4.2 以任务为中心建立复式组织结构 |
5.4.3 政府、企业、社会组织相协调 |
第6章 动物疫情公共危机防控科技支撑体系建设 |
6.1 动物疫病公共危机防控科技支撑体系建设现状 |
6.1.1 我国动物疫病防控科研机构发展现状 |
6.1.2 我国动物疫情防控科技成果研发情况 |
6.1.3 我国动物疫情防控科技成果运用情况 |
6.2 我国动物疫情防控科技支撑体系建设的问题 |
6.2.1 防控科技人力资本待遇较低、队伍不稳 |
6.2.2 防控技术研究投资不足、应用水平偏低 |
6.2.3 防控科研项目立项及管理处于无序状态 |
6.2.4 科技成果鉴定评价机制忽视了实践需求 |
6.2.5 科研成果推广缓慢,不能满足社会需求 |
6.3 制约科技支撑体系建设的主要因素分析 |
6.3.1 缺乏与时俱进的科学劳动价值评价机制 |
6.3.2 缺乏全面、完整、连续的经费资助机制 |
6.3.3 缺乏国家层面统一的科技管理服务平台 |
6.3.4 缺乏科技需求方主导的制度化评价机制 |
6.3.5 缺乏与社会转型相适应的成果转化机制 |
6.4 我国动物疫情科技支撑体系建设的途径 |
6.4.1 优化薪酬结构,尊重科技人才价值 |
6.4.2 改善投资机制,加强基础条件建设 |
6.4.3 抓住核心技术,做好管理平台建设 |
6.4.4 注重社会需求,完善鉴定评价机制 |
6.4.5 重视技术应用,科研与防控相结合 |
第7章 动物疫情公共危机防控条件保障建设 |
7.1 我国动物疫病财政支持政策概述 |
7.1.1 我国动物疫病防控财政支持政策的历史演变 |
7.1.2 我国动物疫病防控条件保障基本理念的形成 |
7.2 我国动物疫病财政支持存在的问题 |
7.2.1 财政支持总量尚显不足 |
7.2.2 财政支出结构不够合理 |
7.2.3 财政支持的持续性不够 |
7.3 我国动物疫病财政支持存在问题的原因分析 |
7.3.1 财政投入理念存在差距 |
7.3.2 财政分摊机制并未健全 |
7.3.3 财政支出方式过于单一 |
7.4 美国和澳大利亚动物疫病防控财政支持的基本经验 |
7.4.1 财政支持总量充足力度较大 |
7.4.2 财政支出结构动态均衡变化 |
7.4.3 多元主体共同平衡分摊费用 |
7.4.4 疫病消灭计划占据较大比重 |
7.5 改进我国动物疫病防控条件保障的建议 |
7.5.1 加大和稳定动物疫病危机防控财政支持 |
7.5.2 建立多元化动物疫病防控资金分摊机制 |
7.5.3 对动物疫病防控重点领域进行合理分派 |
7.5.4 合理安排动物疫情应急资金和物资储备 |
第8章 政府动物疫情公共危机防控的应急响应 |
8.1 动物疫情公共危机防控应急响应的理论框架 |
8.2 Matlab回归分析理论模型 |
8.3 我国动物疫情防控应急响应的实证研究 |
8.4 提升动物疫情公共危机防控的应急响应的路径选择 |
第9章 基本结论与政策建议 |
9.1 改变观念,建立系统化的动物疫情防控法律体系 |
9.2 突破限制,建立开放型的动物疫情防控体制框架 |
9.3 创新科技,构建有机性的动物疫情防控科技支撑 |
9.4 重视投入,建立稳定性的动物疫情防控条件保障 |
第10章 研究不足与展望 |
10.1 防控能力建设基础的综合性研究 |
10.2 防控能力基础条件的精细化研究 |
10.3 防控能力建设效果的全面性评估 |
参考文献 |
致谢 |
作者简历 |
读博期间科研成果目录 |
(3)克拉玛依市猪口蹄疫、猪瘟和猪蓝耳病的病原学调查及抗体检测分析(论文提纲范文)
摘要 |
Abstract |
英文缩略词表 |
第一章 绪论 |
1 猪口蹄疫的研究概述 |
1.1 病原 |
1.2 流行病学 |
1.3 临床症状 |
1.4 临床诊断 |
1.5 免疫程序 |
1.6 综合防制 |
1.7 口蹄疫疫苗的国内外研究 |
2 猪瘟的研究概述 |
2.1 病原 |
2.2 流行病学 |
2.3 临床症状 |
2.4 诊断 |
2.5 免疫程序 |
2.6 综合防治 |
2.7 猪瘟疫苗研究进展 |
3 猪繁殖与呼吸综合征的研究概述 |
3.1 病原 |
3.2 流行病学 |
3.3 临床症状 |
3.4 病理变化 |
3.5 诊断 |
3.6 免疫程序 |
3.7 综合防治 |
3.8 猪蓝耳病疫苗研究进展 |
4 研究目的意义 |
第二章 试验部分 |
试验一 克拉玛依市猪口蹄疫、猪瘟和猪蓝耳病防控现状调查 |
1 引言 |
2 材料与方法 |
2.1 地点 |
2.2 方法 |
2.2.1 调查方法 |
2.2.2 调查内容 |
3 结果与分析 |
3.1 克拉玛依市生猪养殖现状 |
3.2 克拉玛依市生猪饲养管理现状 |
3.3 克拉玛依市防疫体系建设现状 |
3.4 克拉玛依市生猪疫苗使用情况及免疫方法 |
3.4.1 疫苗使用情况 |
3.4.2 免疫方法 |
4 讨论 |
5 结论 |
试验二 克拉玛依市猪口蹄疫、猪瘟和猪蓝耳病病原学调查 |
1 引言 |
2 材料和方法 |
2.1 试验材料 |
2.1.1 样品来源 |
2.1.2 主要仪器设备 |
2.1.3 主要试剂 |
2.2 试验方法 |
2.2.1 试验分组及数据处理 |
2.2.2 口蹄疫病毒通用型直接扩增荧光定量RT-PCR抗原检测试验 |
2.2.3 猪瘟病毒通用型直接扩增荧光定量RT-PCR抗原检测试验 |
2.2.4 猪蓝耳病病毒变异株直接扩增荧光定量RT-PCR抗原检测试验 |
3 结果与分析 |
3.1 2017 年猪口蹄疫、猪瘟、猪蓝耳病病原学调查结果 |
3.2 2018 年猪口蹄疫、猪瘟、猪蓝耳病病原学调查结果 |
4 讨论 |
5 结论 |
试验三 猪口蹄疫、猪瘟和猪蓝耳病的抗体水平检测分析 |
1 引言 |
2 材料和方法 |
2.1 试验材料 |
2.1.1 样品来源 |
2.1.2 主要仪器设备 |
2.1.3 主要试剂 |
2.2 试验方法 |
2.2.1 试验分组与数据处理 |
2.2.2 口蹄疫液相阻断ELISA试验 |
2.2.3 猪瘟抗体ELISA试验 |
2.2.4 猪蓝耳抗体ELISA试验 |
3 结果与分析 |
3.1 不同养殖模式下抗体水平检测分析 |
3.1.1 不同养殖模式下猪口蹄疫的抗体水平检测分析 |
3.1.2 不同养殖模式下猪瘟的抗体水平检测分析 |
3.1.3 不同养殖模式下猪蓝耳病的抗体水平检测分析 |
3.2 不同区域抗体水平检测分析 |
3.2.1 不同区域猪口蹄疫的抗体水平检测分析 |
3.2.2 不同区域猪瘟的抗体水平检测分析 |
3.2.3 不同区域猪蓝耳病的抗体水平检测分析 |
3.3 不同年份抗体水平检测分析 |
3.3.1 不同年份猪口蹄疫的抗体水平检测分析 |
3.3.2 不同年份猪瘟的抗体水平检测分析 |
3.3.3 不同年份猪蓝耳病的抗体水平检测分析 |
4 讨论 |
5 结论 |
试验四 两种防疫服务模式防控效果的对比分析 |
1 引言 |
2 材料与方法 |
2.1 试验材料 |
2.1.1 样品来源 |
2.1.2 主要仪器设备 |
2.1.3 主要试剂 |
2.2 试验方法 |
2.2.1 试验分组与数据处理 |
2.2.2 免疫抗体的检测 |
3 结果与分析 |
3.1 克拉玛依市政府购买兽医社会化服务现状 |
3.2 两种防疫服务模式防控效果对比的案例分析 |
3.2.1 克拉玛依市雪瑞防疫合作社成立背景 |
3.2.2 两种防疫服务模式费用对比 |
3.2.3 两种防疫服务模式工作内容对比 |
3.2.4 两种防疫服务模式免疫抗体水平检测 |
3.2.5 两种防疫服务模式防疫效果对比 |
4 讨论 |
5 结论 |
全文总结 |
参考文献 |
致谢 |
作者简介 |
附件 |
(7)猪水疱病和猪瘟基因工程亚单位疫苗的研究(论文提纲范文)
摘要 |
ABSTRACT |
文献综述 |
第一章 猪水疱病及猪水疱病病毒研究进展 |
1.1 猪水疱病研究进展 |
1.1.1 病原学 |
1.1.2 猪水疱病的流行病学 |
1.1.3 猪水疱病的临床症状和发病机理 |
1.1.4 诊断 |
1.1.5 猪水疱病的防控策略 |
1.2 猪水疱病病毒研究进展 |
1.2.1 猪水疱病病毒的形态及理化特性 |
1.2.2 SVDV 基因组结构 |
1.2.3 SVDV 编码的蛋白及其功能 |
1.2.3.1 结构蛋白 |
1.2.3.2 非结构蛋白 |
1.3 猪水疱病疫苗研究进展 |
1.3.1 弱毒疫苗 |
1.3.2 抗独特型抗体疫苗 |
1.3.3 基因工程疫苗 |
1.3.3.1 基因缺失毒力致弱疫苗 |
1.3.3.2 亚单位疫苗 |
1.3.3.3 基因工程活载体疫苗 |
1.3.4 合成肽疫苗 |
1.4 小结 |
第二章 猪瘟及猪瘟病毒研究进展 |
2.1 概述 |
2.2 CSFV 的病原学及生物学特性 |
2.2.1 CSFV 的病原学 |
2.2.1.1 CSFV 病毒粒子结构 |
2.2.1.2 CSFV 的理化特性 |
2.2.2 CSFV 生物学特性研究进展 |
2.2.2.1 抗原性 |
2.2.2.2 病原性及病理特性 |
2.2.2.3 遗传特性 |
2.3 CSFV 致病机制的研究 |
2.3.1 CSFV 的免疫病理学 |
2.3.2 CSFV 在体内的复制过程 |
2.3.3 猪瘟病毒对体外培养细胞的影响 |
2.4 CSFV 的分子免疫学 |
2.5 猪瘟防制策略与防制新技术的研究进展 |
2.6 结束语 |
第三章 逆转录病毒载体系统的研究 |
3.1 逆转录病毒表达系统 |
3.1.1 逆转录病毒表达载体 |
3.1.1.1 辅助病毒互补的逆转录病毒质粒载体 |
3.1.1.2 不需要辅助病毒互补的逆转录病毒载体 |
3.1.1.3 广寄主的逆转录病毒载体 |
3.1.1.4 逆转录病毒表达载体 |
3.1.2 包装细胞系 |
3.1.3 水疱性口炎病毒载体 |
3.2 逆转录病毒表达系统基本原理 |
3.3 逆转录病毒载体的构建与应用 |
3.4 影响逆转录病毒载体表达效率的影响因素 |
3.5 逆转录病毒表达系统在基因治疗及表达研究中的应用 |
3.5.1 逆转录病毒载体系统在基因治疗中的应用 |
3.5.2 逆转录病毒载体在基因表达反面的应用 |
3.6 逆转录病毒载体系统的缺陷 |
3.7 小结 |
试验研究 |
第四章 猪水疱病亚单位标记疫苗的构建及体外表达 |
4.1 材料与方法 |
4.1.1 质粒载体、工程菌及主要试剂 |
4.1.2 主要仪器 |
4.1.3 细胞及种毒 |
4.1.4 引物的设计与合成 |
4.1.5 目的基因的获取 |
4.1.6 重组质粒的构建、克隆及鉴定 |
4.1.6.1 构建策略 |
4.1.6.2 重组质粒的构建即克隆方法 |
4.1.6.2.1 大肠杆菌JM109 感受态的制备 |
4.1.6.2.2 PCR 产物及载体质粒的酶切、回收及连接 |
4.1.6.2.3 连接产物的转化 |
4.1.6.2.4 重组质粒的制备 |
4.1.6.2.5 重组质粒的鉴定 |
4.1.6.3 重组SCDV HK/70 P1 基因的逆转录病毒载体的构建 |
4.1.6.4 重组质粒的测序 |
4.1.7 体外转染质粒的制备 |
4.1.8 转染包装细胞GP2-293 |
4.1.9 重组假型病毒的收获 |
4.1.10 病毒滴度的检测 |
4.1.11 假型重组逆转录病毒感染PK15 细胞 |
4.1.12 P1 基因体外表达的检测 |
4.1.12.1 P1 基因的PCR 整合鉴定 |
4.1.12.2 间接免疫荧光检测P1 基因的表达 |
4.1.12.3 P1 基因在PK15 细胞中的稳定性鉴定 |
4.2 结果 |
4.2.1 SVDV HK/70 P1 基因的PCR 扩增结果 |
4.2.2 重组质粒pBABE puro-P1 的鉴定结果 |
4.2.3 假型病毒感染PK15 细胞后PCR 鉴定P1 基因的整合结果 |
4.2.4 免疫荧光检测PK15 细胞中P1 基因的表达 |
4.2.5 P1 基因的稳定性整合鉴定结果 |
4.3 讨论 |
第五章 猪水疱病亚单位疫苗的豚鼠免疫实验 |
5.1 材料与方法 |
5.1.1 免疫原与实验动物 |
5.1.2 主要试剂 |
5.1.3 免疫用抗原的制备 |
5.1.4 重组抗原对豚鼠的免疫程序 |
5.1.5 T 淋巴细胞增殖实验 |
5.1.5.1 各种溶液的配制 |
5.1.5.2 淋巴细胞的分离方法 |
5.1.5.3 淋巴细胞的增殖实验 |
5.1.6 双夹心ELISA 检测免疫豚鼠的SVDV 特异性抗体 |
5.1.7 SVDV HK/70 的复壮及半数细胞感染剂量(TCID50)的测定 |
5.1.8 细胞中和实验测定豚鼠血清SVDV 抗体效价 |
5.2 结果 |
5.2.1 T 淋巴细胞增殖实验 |
5.2.2 免疫豚鼠SVDV 特异性抗体的动态变化 |
5.2.3 SVDV 半数感染剂量的测定结果 |
5.2.4 细胞中和实验测定豚鼠中和抗体 |
5.3 讨论 |
第六章 猪瘟亚单位疫苗的构建及体外表达 |
6.1 材料与方法 |
6.1.1 质粒载体、工程菌及主要试剂 |
6.1.2 主要仪器 |
6.1.3 细胞 |
6.1.4 引物的设计与合成 |
6.1.5 目的基因的获取 |
6.1.6 重组质粒的构建、克隆及鉴定 |
6.1.6.1 构建策略 |
6.1.6.2 重组质粒的构建及克隆的基本方法 |
6.1.6.2.1 大肠杆菌JM109 感受态的制备 |
6.1.6.2.2 PCR 产物及载体质粒的酶切、回收及连接 |
6.1.6.2.3 连接产物的转化 |
6.1.6.2.4 重组质粒的制备 |
6.1.6.2.5 重组质粒的鉴定 |
6.1.6.3 重组CSFV Shimen E2 基因的逆转录病毒载体的构建 |
6.1.6.4 重组质粒的测序 |
6.1.7 体外转染质粒的制备 |
6.1.8 转染包装细胞GP2-293 |
6.1.9 重组假型病毒的收获 |
6.1.10 病毒滴度的检测 |
6.1.11 假型重组逆转录病毒感染PK15 细胞 |
6.1.12 E2 基因体外表达的检测 |
6.1.12.1 E2 基因的PCR 整合鉴定 |
6.1.12.2 间接免疫荧光检测E2 基因的表达 |
6.1.12.3 夹心 ELISA 检测 E2 蛋白的活性 |
6.1.12.4 E2 基因在PK15 细胞中的稳定性整合鉴定 |
6.2 结果 |
6.2.1 CSFV Shimen E2 基因的PCR 扩增结果 |
6.2.2 重组质粒pBABE puro-E2 的鉴定结果 |
6.2.3 假型病毒感染PK15 细胞后PCR 鉴定E2 基因的整合结果 |
6.2.4 E2 基因的稳定性整合鉴定结果 |
6.2.5 免疫荧光检测PK15 细胞中E2 基因的表达 |
6.2.6 ELISA 检测细胞培养物中E2 蛋白的生物学活性 |
6.3 讨论 |
第七章 猪瘟亚单位疫苗的兔免疫保护实验 |
7.1 材料与方法 |
7.1.1 主要试剂 |
7.1.2 免疫用的抗原的制备 |
7.1.3 重组抗原对家兔的免疫实验 |
7.1.4 T 淋巴细胞增殖实验 |
7.1.4.1 各种溶液的配制 |
7.1.4.2 淋巴细胞的分离方法 |
7.1.4.3 T 淋巴细胞增殖实验 |
7.1.5 阻断ELISA 检测免疫家兔的CSFV 特异性抗体 |
7.1.6 实验兔子的病毒攻击保护实验 |
7.2 结果 |
7.2.1 T 淋巴细胞增殖情况 |
7.2.2 免疫兔子CSFV 特异性抗体的动态变化 |
7.2.3 攻毒兔子的免疫保护实验结果 |
7.2.3.1 兔子体温变化 |
7.2.3.2 攻毒兔子脾脏变化 |
7.3 讨论 |
结论 |
参考文献 |
附录 |
致谢 |
作者简介 |
(8)新中国成立70周年兽医科学研究进展(论文提纲范文)
1 各时期国家对兽医事业的规划 |
2 新中国成立以来国家对兽医科学研究项目的支持 |
2.1 国家自然科学基金对兽医科学的项目资助 |
2.2 其他重要国家科技计划对兽医科学的项目资助 |
3 新中国成立以来重大动物疫病防控进展 |
4 我国新发和再发动物传染病 |
4.1影响中国养猪业的重要新发和再发传染病 |
4.2 影响中国养禽业的重要新发和再发传染病 |
5 兽医科学基础研究 |
5.1 兽医科学在国际顶级杂志发表研究论文 |
5.2 在兽医学领域代表性主流国际杂志发表研究论文 |
6 兽医科学应用研究进展 |
6.1 动物用生物制品的研制 |
6.2 兽医领域制定国家标准、农业行业标准 |
6.3 兽医领域获得国家发明专利 |
6.4 新中国成立以来我国兽医科技平台的建设 |
7 新中国成立以来兽医科学取得的重大科技成果 |
7.1 兽医科学领域20世纪“四大科技成就” |
7.2 新中国成立以来兽医科学获得的其他重要成果 |
8 我国兽医科学研究的国际地位 |
9 未来兽医工作重点及展望 |
(10)猪传染性胸膜肺炎放线杆菌三价灭活疫苗的研制(论文提纲范文)
中文摘要 |
Abstract |
1. 前言 |
1.1 猪传染性胸膜肺炎研究进展 |
1.1.1 病原特性 |
1.1.2 流行病学 |
1.1.3 临床症状 |
1.1.4 病理变化 |
1.1.5 致病因子 |
1.1.6 诊断和防治 |
1.2 动物细菌病灭活苗的研究进展 |
1.2.1 疫苗作用及意义 |
1.2.2 细菌疫苗的发展 |
1.2.3 疫苗灭活剂 |
1.2.4 免疫佐剂和免疫增强剂 |
1.3 本研究的目的和意义 |
2. 材料与方法 |
2.1 试验材料 |
2.1.1 仪器 |
2.1.2 试验动物 |
2.1.3 主要化学试剂 |
2.1.4 试剂配制 |
2.2 方法 |
2.2.1 猪源病原的分离鉴定 |
2.2.1.1 细菌性病原 |
2.2.1.2 病毒性病原 |
2.2.2 猪传染性胸膜肺炎放线杆菌的分离培养 |
2.2.3 分子生物学特性 |
2.2.4 血清型鉴定 |
2.2.5 疫苗菌株的筛选与LD50的测定 |
2.2.6 疫苗株体外培养最佳收获时间的测定 |
2.2.7 疫苗株最小致死剂量测定 |
2.2.8 抗原灭活条件的筛选 |
2.2.9 最小抗原量和最小免疫剂量的测定 |
2.2.10 猪传染性胸膜肺炎放线杆菌三价灭活疫苗的制备 |
2.2.11 疫苗物理性状、无菌检验 |
2.2.12 疫苗安全性试验 |
2.2.13 免疫保护试验 |
3.结果与分析 |
3.1 猪源病原调查结果 |
3.1.1 细菌性病原 |
3.1.2 病毒性病原 |
3.2 猪传染性胸膜肺炎放线杆菌分离培养结果 |
3.3 血清型鉴定结果 |
3.4 疫苗菌株的筛选与LD50的测定 |
3.5 疫苗株体外培养最佳收获时间 |
3.6 抗原灭活条件 |
3.7 猪传染性胸膜肺炎放线杆菌疫苗株最小致死剂量结果 |
3.8 最小抗原量和最小免疫剂量试验 |
3.9 疫苗物理性状、无菌检验结果 |
3.10 安全性试验 |
3.11 免疫保护试验 |
4. 讨论 |
5. 结论 |
参考文献 |
致谢 |
个人简介 |
攻读硕士期间发表的论文 |
四、猪传染性水泡病组织培养弱毒疫苗研制总结(论文参考文献)
- [1]动物疫情公共危机政府防控能力建设研究[D]. 王薇. 湖南农业大学, 2015(08)
- [2]猪传染性水泡病组织培养弱毒疫苗研制总结[J]. 甘肃省兽医研究所. 兽医科技资料, 1977(S1)
- [3]克拉玛依市猪口蹄疫、猪瘟和猪蓝耳病的病原学调查及抗体检测分析[D]. 陆民. 石河子大学, 2019(05)
- [4]猪传染性水泡病组织培养弱毒疫苗的初步研究——第二报[J]. 甘肃省兽医研究所. 兽医科技资料, 1974(01)
- [5]猪传染性水泡病组织培养弱毒疫苗的初步研究——第一报[J]. 甘肃省兽医研究所. 兽医科技资料, 1974(01)
- [6]猪传染性水泡病的研究[J]. 崔忠道. 北京实验动物科学, 1990(02)
- [7]猪水疱病和猪瘟基因工程亚单位疫苗的研究[D]. 田宏. 西北农林科技大学, 2006(05)
- [8]新中国成立70周年兽医科学研究进展[J]. 李慧昕,刘胜旺. 中国科学:生命科学, 2019(11)
- [9]猪传染性水泡病细胞弱毒疫苗试制试用[J]. 农林部兽医药品监察所. 兽医科技资料, 1977(S1)
- [10]猪传染性胸膜肺炎放线杆菌三价灭活疫苗的研制[D]. 王迪. 山东农业大学, 2015(04)