地质力学研究所—出版物

地质力学研究所—出版物

一、INSTITUTE OF GEOMECHANICS——PUBLICATIONS(论文文献综述)

JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu[1](2021)在《New innovations in pavement materials and engineering:A review on pavement engineering research 2021》文中研究说明Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges. In the past 10 years, the pavement infrastructure strongly supports the rapid development of the global social economy. New theories, new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem. Because of actual coupled behaviors of traffic and environmental conditions, predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis. In order to summarize the current and determine the future research of pavement engineering, Journal of Traffic and Transportation Engineering(English Edition) has launched a review paper on the topic of "New innovations in pavement materials and engineering: A review on pavement engineering research 2021". Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering, this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world. The content includes asphalt binder performance and modeling, mixture performance and modeling of pavement materials,multi-scale mechanics, green and sustainable pavement, and intelligent pavement.Overall, this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.

吴玉,陈正乐,陈柏林,王永,孙岳,孟令通,何江涛,王斌[2](2021)在《北阿尔金早古生代同碰撞花岗质岩浆记录及其对增生造山过程的启示》文中进行了进一步梳理本文对出露在北阿尔金的喀腊大湾似斑状花岗岩、沟口泉似斑状二长花岗岩、卓尔布拉克花岗岩和木孜萨依白云母花岗岩进行了详细的岩相学、岩石地球化学、锆石U-Pb年代学和Hf同位素研究。地球化学特征显示喀腊大湾似斑状花岗岩具有高硅和钠,低铁、镁和钙的特征,铝饱和指数(A/CNK)为1.03~1.04,属弱过铝质I-S过渡型花岗岩;沟口泉似斑状二长花岗岩和卓尔布拉克花岗岩具有相对高的钠含量和准铝质-弱过铝质特征,表现为I型花岗岩;木孜萨依白云母花岗岩具有高硅、富碱、富集Rb、Th和LREE,亏损Ba、Sr、Ti和Eu特征,铝饱和指数大于1.1,属过铝质S型花岗岩。锆石U-Pb定年结果显示4个岩体的年龄分别为432.4±4.9Ma、432.8±4.1Ma、439.6±3.5Ma和437.3±2.4Ma。结合区域地质资料和构造判别图解,揭示这4个岩体均形成于同碰撞构造背景下,表明北阿尔金洋最终关闭以及洋陆转换的时间节点应为445~440Ma。锆石Hf同位素结果显示沟口泉似斑状二长花岗岩和卓尔布拉克花岗岩岩浆起源于新生地壳物质的部分熔融;喀腊大湾似斑状花岗岩起源于变杂砂岩部分熔融,木孜萨依白云母花岗岩起源于变泥质岩石的低程度部分熔融;但喀腊大湾似斑状花岗岩和木孜萨依白云母花岗岩εHf(t)值分别为+0.18~+5.88和-6.47~+4.52,反映二者的岩浆源区也均有新生地壳物质的加入。上述这些特征与北祁连早古生代同碰撞花岗岩体具有良好的可对比性,进一步支持二者曾作为统一的整体经历了洋盆裂解-扩张-俯冲-闭合造山等构造演化过程。

Fanzhen Meng,Louis Ngai Yuen Wong,Hui Zhou[3](2021)在《Rock brittleness indices and their applications to different fields of rock engineering:A review》文中研究指明Brittleness is an important parameter controlling the mechanical behavior and failure characteristics of rocks under loading and unloading conditions,such as fracability,cutability,drillability and rockburst proneness.As such,it is of high practical value to correctly evaluate rock brittleness.However,the definition and measurement method of rock brittleness have been very diverse and not yet been standardized.In this paper,the definitions of rock brittleness are firstly reviewed,and several representative definitions of rock brittleness are identified and briefly discussed.The development and role of rock brittleness in different fields of rock engineering are also studied.Eighty brittleness indices publicly available in rock mechanics literature are compiled,and the measurement method,applicability and limitations of some indices are discussed.The results show that(1) the large number of brittleness indices and brittleness definitions is attributed to the different foci on the rock behavior when it breaks;(2) indices developed in one field usually are not directly applicable to other fields;and(3) the term "brittleness" is sometimes misused,and many empirically-obtained brittleness indices,which lack theoretical basis,fail to truly reflect rock brittleness.On the basis of this review,three measurement methods are identified,i.e.(1) elastic deformation before fracture,(2) shape of post-peak stress-strain curves,and(3) methods based on fracture mechanics theory,which have the potential to be further refined and unified to become the standard measurement methods of rock brittleness.It is highly bene ficial for the rock mechanics community to develop a robust definition of rock brittleness.This study will undoubtedly provide a comprehensive timely reference for selecting an appropriate brittleness index for their applications,and will also pave the way for the development of a standard definition and measurement method of rock brittleness in the long term.

Xiangchong Liu,Changhao Xiao,Shuanhong Zhang,Bailin Chen[4](2021)在《Numerical Modeling of Deformation at the Baiyun Gold Deposit, Northeastern China: Insights into the Structural Controls on Mineralization》文中认为The Qingchengzi ore field is an important gold-polymetallic center of the North China Craton. It has been recognized that the gold deposits in Qingchengzi were controlled by structures like lithological interfaces and fractures along mechanically weak bedding and foliation planes, but it still remains poorly understood how the structures affected the localization of the gold deposits. Finite element based numerical modeling was used to reproduce the deformation process of the Baiyun gold deposit during the mineralization period. Paleoproterozoic schist and marble are widely exposed in Qingchengzi, and a large part of the Baiyun gold ores occurs along the interfaces between the schist and the marble. The modeling results suggest that the mechanical contrast between the schist and the marble may be a major reason why the stress was localized along their lithological interfaces under a compressional stress regime. Two parts of their lithological interfaces were identified to be easily stress-localized and first fractured: the interface between the schist and its underlying marble at shallower levels and the one between the schist and its overlying marble at deeper levels. Stress concentration in these two parts is independent on the dipping angle and direction of the interfaces. Therefore, mineralizing fluids may have been concentrated into these two parts. The first one is consistent with the present ore bodies of the Baiyun gold deposit, and the second one could be considered for deep prospecting. These findings also provide implications for the structural controls of lithological interfaces on the mineralization in other gold deposits of this region.

宋丹辉,韩润生,王明志,张艳,周威[5](2020)在《黔西北青山铅锌矿床主要控矿断裂构造岩-岩相分带模式》文中研究说明青山铅锌矿床是黔西北矿集区内威宁-水城成矿亚带的典型矿床之一,矿体产出严格受构造和岩性双重因素控制。含矿断裂带中构造岩既是构造变形作用的载体,也是相应变形环境的受体,其具有显着的分带特征。针对斜落走滑构造环境下弱蚀变构造岩与热液成矿成生联系研究的薄弱环节,基于构造岩-岩相学填图方法以及不同岩相带内节理、裂隙构造解析,系统采集不同构造岩-岩相带内定向构造岩样品,进行显微构造与地球化学分析,剖析不同岩相带内构造岩类型、物质组成、内部结构、构造及其分带特征,构建了该矿床构造岩-岩相分带模式,即从矿体向外,依次为:张裂岩相带→泥化相带(一、三中段及以上)→扭裂岩相带→压裂岩相带。扭裂岩相带内发育黄铁矿化、铅锌矿化、方解石化、弱白云石化,压裂岩相带内主要发育方解石化,矿化蚀变随着远离矿体呈现出从强变弱的变化规律,成矿环境也随着温度逐渐降低,呈现氧化→弱氧化-弱还原→还原的变化特征。同时,结合宏观和显微构造应力场分析,认为矿体外侧不同类型的构造岩是在统一构造应力场作用下,因不同位置的局部应力场变化而形成的不同类型的构造岩,发育在北西向断裂下盘的次级断裂不仅控制了矿体定位和形态产状,也控制了其外侧构造岩-岩相带。

Santosh Kumar Yadav[6](2020)在《软土地基承载力及沉降的水土耦合统一弹塑性数值分析研究》文中研究表明软土地基的承载力和沉降问题一直是岩土工程中传统而又仍然重要的研究课题。开发可以统一地评估不同荷载和排水条件下的自然软土和软土复合地基的承载力和沉降特性的数值方法,对提高软土地基破坏及变形预测能力具有重要意义。目前虽有不少针对这些问题的研究成果,但仍缺乏能统一地评估这两种问题(承载力和沉降)的方法。本文基于统一弹塑性本构模型(Unified model)和水-土耦合数值算法,对结构性软土地基的承载力、挤密砂桩复合软土地层的沉降、地震作用后软土地层长期沉降等问题开展数值研究。该本构模型的优点是可考虑土体的超固结、结构性和各向异性,可用同一组材料参数描述土体在不同荷载和排水条件下的力学特性。在研究过程中,用室内三轴试验和固结试验的结果确定材料的材料参数和初始状态参量;然后通过对比现场模型试验、离心模型试验和现场实测数据,验证了数值方法的可靠性和准确性;整理计算结果时,着重分析软土的有效应力路径、应力应变关系和结构性演化规律,以揭示不同加载条件和排水条件对软土强度及变形的影响规律。本文的主要研究内容和成果如下:(1)分析排水条件对天然软土地基上浅基础承载力的影响规律,揭示承载力随固结而提高的力学机制。用高质量原状土样的三轴试验数据来确定统一本构模型的材料参数和初始状态参数。接着以现场模型试验为研究对象建立有限元模型,进行不固结不排水(UU)和固结不排水(CU)条件下的水-土耦合数值分析。UU和CU两种工况下的初始条件均相同,UU工况为连续荷载至失稳,而CU工况在第一阶段加载后静置了540天,然后再加载至失稳。计算所得的地基承载力和沉降量与现场实测结果吻合良好,验证了数值方法的正确性。基于统一模型的水-土耦合算法揭示了由固结引起的地基强度增加、进而导致承载力增加的现象;通过分析不同深度的软土的应力-应变关系、应力路径和土结构破坏等单元力学响应,获得了软土在UU和CU工况下的力学机制差异;结构性破坏区的传播揭示了软土地基承载力失稳机理;然后进一步讨论了软土的初始结构性对地基承载力的影响。基于统一模型的水-土耦合数值方法促进了对结构性软粘土地层上的浅基础在短期/长期荷载下的承载力变化的理解,并为设计施工提供有益参考。(2)分析深厚软土层中的贯穿式和非贯穿式挤密砂桩(SCP)的沉降差异,提出“贯穿式+非贯穿式”的组合砂桩概念,并基于数值分析结果给出相应的沉降量简易预测方法。首先基于粘土和砂土的三轴试验结果,验证了统一本构模型可以模拟这两种不同土体的力学特性,并确定了相关的材料参数。然后建立SCP复合地基的有限元模型,以贯穿式和非贯穿式SCP复合地基的离心试验为对象,开展数值模拟分析。数值模拟结果表明,所采用的数值计算方法可以很好地再现不同阶段荷载下两种复合基础的沉降量和超孔隙水压的变化规律。还建立了“贯穿式+非贯穿式”的两种类型SCP桩的组合砂桩概念,对置换率和非贯穿式SCP桩长进行参数分析;结果表明,在相同置换率(31%)下,采用“贯穿式+非贯穿式”SCP组合砂桩的地基沉降要比仅采用非贯穿式SCP的地基沉降小;为了方便计算,还分析了不同情况下的沉降量折减系数。研究成果有助于掌握软土地基处理中非贯穿式SCP的工程特性,同时有助于提高工程经济性。(3)基于统一弹塑性本构模型,结合水-土耦合动力有限元算法,以2007年日本新泻地震为背景,分析了地震荷载作用后的软土地基长期沉降。计算采用的结构性软土参数均参考室内土工试验获得;动力计算采用Newmark-?隐式算法;地震波从模型底部入射。数值计算所得地面加速度响应与K-Net记录一致;地表沉降量计算值与实测值相同,显示地震引起的沉降持续约3年;软土在地震荷载作用下的力学特性,包括地层中的超孔隙水压力及土体剪切刚度沿深度的变化,都得到了很好的再现。上述研究成果表明,基于统一弹塑性本构模型的水-土耦合有限元算法能较好地评估软土地层的承载力和沉降问题,包括不同的荷载条件(静力荷载和动力荷载)、不同的地层(结构性黏土、砂土)和不同的排水条件。所提出方法的准确性和适用性分别得到了室内土工试验、现场模型试验、离心模型试验和现场实测的验证。研究成果将促进岩土工程数值计算的完善与发展。

Usama Khalid[7](2020)在《人造结构性软粘土的制备方法、宏微观特性与本构模拟》文中研究表明海相软粘土具有抗剪强度低(su<50 k Pa)、压缩性高、孔隙比大、天然含水率高于液限等特征。这些粘土广泛分布在中国及世界各国的沿海地区。海相软粘土表现出复杂的结构特性,对其进行定量的力学特性试验需要大量的相同的原状土样,而采取高质量的原状土样是一项昂贵并且充满挑战的任务,因此用人工的方法制造具有结构性的土样是一种经济又有效的选择。本文以上海结构性最强的第四层海相软粘土为研究对象,提出了一种利用重塑土样制备结构性软粘土的方法,其优点是可以以较低的成本获得满足实验室要求的大量性质一样的土样,进而可以通过室内试验获得结构性软土的力学特性。本研究的主要内容和成果如下:(1)提出了用低温搅拌控制颗粒间水泥胶结的结构性土样制备方法,并通过与原状土对比验证制备方法的适用性。粘土颗粒间的胶结(键)是天然软土中不稳定的组成部分,比组构更容易破坏。和天然软粘土类似,利用水泥和固结的共同作用产生胶结。通常重塑粘土的孔隙比小于天然粘土,在泥浆中添加低含量的水泥,以增加絮凝产生的孔隙比,并产生胶结。重塑过程中的固结压力可以增加土结构的强度。在约0±2°C的低温下,在上海第四层软土的重塑土样中添加少量水泥,并充分搅拌;低温的目的是将水合反应延缓到固结之后才开始。第一批试验是在固结应力为98 k Pa的条件下,用1-6%的水泥含量制备结构性土样,为探测性试验。第二批试验是在50 k Pa固结压力下,用1-3%水泥含量制备土样,并开展了详细研究。基于上述试验结果,归纳总结水泥含量对无侧限抗剪强度、破坏应变等指标的影响规律,以扩大研究成果的应用范围。(2)开展无侧限抗压试验和常规固结试验,获得了人工制备土样的无侧限抗压强度、抗剪强度、变形模量、屈服应力、压缩指数、膨胀指数等力学特性,并与天然土样进行比较。此外,开展不同应力路径和排水条件下的力学试验,比较天然土样和人造土样的力学特性异同。固结不排水三轴试验结果表明,随着水泥含量的增加,偏应力、超孔隙水压力和临界状态强度比均有所增加;但在水泥含量低的情况下,养护时间对这些参量的影响不显着。开展洛德角为0°至60°的固结排水真三轴试验,比较了天然土样和人造土样的抗剪强度、体积应变和主应变等力学特性的异同,两种土样的剪切强度、体积应变均随洛德角的增大而减小。分析上述试验结果可得,总体上用2%水泥含量的土样的宏观力学特性与上海天然软粘土接近,而1%水泥含量的土样只有变形模量和初始孔隙比与天然土样接近。(3)采用电镜扫描(SEM)和压汞法(MIP)分析人工制备土样的微观结构特征。电镜扫描结果表明,天然和人造结构试样均为开放型分散结构,粉粒含量较高,内部孔隙大小不一。1%水泥含量的土样中未观察到明显的结构性,但在水泥含量为2%和3%的试件中观察到网状组构和颗粒间胶结。此外,人工土样的总孔隙体积随着水泥含量的增加而增加,水泥主要影响小于10μm的孔隙。但是,随着养护时间的增加,大于10μm的孔隙数量也会随之增加。天然土样的孔径分布与水泥含量为2%的土样相同。另外,通过SEM、MIP和固结试验,研究了不同固结压力下的人工制备土样的结构性。固结压力的增大对土体结构有显着影响:土体的压缩指数和孔隙比均减小,但屈服应力增大。(4)用课题组开发的统一弹塑性本构模型模拟了人工制备软土的固结试验、不排水三轴试验和排水真三轴试验结果。该模型仅用一组材料参数就可以模拟不同加载条件和排水条件的试验结果。对初始结构性、初始超固结比开展参数分析,探讨这些初始状态对力学特性的影响。天然土样和水泥含量为2%的人工土样的模拟结果与试验结果吻合较好。综上所述,所提出的人工制备方法可以得到宏微观性能都接近天然软土的人工土样。今后有望基于该方法,批量制造性状一样的结构性土样用于各种室内土工试验研究,为揭示结构性软土的物理化学力学特性、建立相关本构模型奠定基础。

HUO Hailong,CHEN Zhengle,ZHANG Qing,HAN Fengbin,ZHANG Wengao,SUN Yue,YANG Bin,TANG Yanwen[8](2019)在《Chronological Constraints on Late Paleozoic Collision in the Southwest Tianshan Orogenic Belt, China: Evidence from the Baleigong Granites》文中指出The Baleigong granites, located in the western part of the southwestern Tianshan Orogen(Kokshanyan region, China), records late Paleozoic magmatism during the late stages of convergence between the Tarim Block and the Central Tianshan Arc Terrane. We performed a detailed geochronological and geochemical study of the Baleigong granites to better constrain the nature of collisional processes in the Southwest Tianshan Orogen. The LA-ICP-MS U-Pb zircon isotopic analyses indicate that magmatism commenced in the early Permian(~282 Ma). The granite samples, which are characterized by high contents of SiO2(67.68–69.77 wt%) and Al2O3(13.93–14.76 wt%), are alkali-rich and Mg-poor, corresponding to the high-K calc-alkaline series. The aluminum saturation index(A/CNK) ranges from 0.93 to 1.02, indicating a metaluminous to slightly peraluminous composition. Trace element geochemistry shows depletions in Nb, Ta, and Ti, a moderately negative Eu anomaly(δEu=0.40–0.56), enrichment in LREE, and depletion in HREE((La/Yb)N=7.46–11.78). These geochemical signatures are characteristic of an I-type granite generated from partial melting of a magmatic arc. The I-type nature of the Baleigong granites is also supported by the main mafic minerals being Fe-rich calcic hornblende and biotite. We suggest that the high-K, calc-alkaline I-type granitic magmatism was generated by partial melting of the continental crust, possibly triggered by underplating by basaltic magma. These conditions were likely achieved in a collisional tectonic setting, thus supporting the suggestion that closure of the South Tianshan Ocean was completed prior to the Permian and was followed(in the late Paleozoic) by collision between the Tarim Block and the Central Tianshan Arc Terrane.

Manchao He,L.Ribeiro e Sousa,André Müller,Euripedes Vargas Jr.,R.L.Sousa,C.Sousa Oliveira,Weili Gong[9](2019)在《Numerical and safety considerations about the Daguangbao landslide induced by the 2008 Wenchuan earthquake》文中指出The 2008 Wenchuan earthquake resulted in a large number of fatalities and caused significant economic losses.Thousands of landslides,many of which are very large,were triggered by the earthquake.A majority of catastrophic landslides were distributed along the central Longmenshan fault system,at the eastern margin of the Tibetan Plateau.Some of the landslides resulted in sudden damming of rivers causing flooding,which in turn induced secondary sliding disasters.Among the most significant landslides,the Daguangbao landslide was the largest in volume with the maximum thickness.For this,a numerical model of the Daguangbao landslide,using the material point method(MPM),was developed to simulate the interaction of the seismic loads imposed on the slope.The numerical results then are compared with the post-earthquake profile.As a consequence of the landslide,a nearly vertical head scarp with a maximum height of about 700 m was generated.This is considered as a high risk situation that requires constant monitoring and evaluation.Finally,we propose a methodology based on Bayesian networks(BNs) to manage the risk associated with the stability of the rockwall at the Daguangbao landslide site.

Onur Vardar,Chengguo Zhang,Ismet Canbulat,Bruce Hebblewhite[10](2019)在《Numerical modelling of strength and energy release characteristics of pillar-scale coal mass》文中提出Coal burst is a manifestation of rapid energy release,which is considered as one of the most critical operational hazards in underground coal mines.This study numerically investigates the effects of discontinuities on the strength and energy release characteristics of coal mass samples under uniaxial compression.The universal distinct element code(UDEC) was used to model pillar-scale coal mass samples that were represented by an assembly of triangular deformable blocks,and pre-existing discontinuities such as bedding planes and cleats were also included in the models.It shows that cleat spacing can have a significant impact on compressive strength and energy release,with both strength and energy release(magnitude and rate) reducing as the number of cleats was increased.This work is one of the first attempts to numerically model and quantify the energy release which occurs during the failure of pillar-scale coal mass samples with varying cleat densities.The insights from the numerical modelling can help to understand the possible energy release mechanisms and associated coal burst potential in changing coal cleat conditions.

二、INSTITUTE OF GEOMECHANICS——PUBLICATIONS(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、INSTITUTE OF GEOMECHANICS——PUBLICATIONS(论文提纲范文)

(1)New innovations in pavement materials and engineering:A review on pavement engineering research 2021(论文提纲范文)

1. Introduction
    (1) With the society development pavement engineering facing unprecedented opportunities and challenges
    (2) With the modern education development pavement engineering facing unprecedented accumulation of scientific manpower and literature
2. Asphalt binder performance and modeling
    2.1. Binder damage,healing and aging behaviors
        2.1.1. Binder healing characterization and performance
        2.1.1. 1. Characterizing approaches for binder healing behavior.
        2.1.1. 2. Various factors influencing binder healing performance.
        2.1.2. Asphalt aging:mechanism,evaluation and control strategy
        2.1.2. 1. Phenomena and mechanisms of asphalt aging.
        2.1.2. 2. Simulation methods of asphalt aging.
        2.1.2. 3. Characterizing approaches for asphalt aging behavior.
        2.1.2. 4. Anti-aging additives used for controlling asphalt aging.
        2.1.3. Damage in the characterization of binder cracking performance
        2.1.3. 1. Damage characterization based on rheological properties.
        2.1.3. 2. Damage characterization based on fracture properties.
        2.1.4. Summary and outlook
    2.2. Mechanism of asphalt modification
        2.2.1. Development of polymer modified asphalt
        2.2.1. 1. Strength formation of modified asphalt.
        2.2.1. 2. Modification mechanism by molecular dynamics simulation.
        2.2.1. 3. The relationship between microstructure and properties of asphalt.
        2.2.2. Application of the MD simulation
        2.2.2. 1. Molecular model of asphalt.
        2.2.2. 2. Molecular configuration of asphalt.
        2.2.2. 3. Self-healing behaviour.
        2.2.2. 4. Aging mechanism.
        2.2.2. 5. Adhesion mechanism.
        2.2.2. 6. Diffusion behaviour.
        2.2.3. Summary and outlook
    2.3. Modeling and application of crumb rubber modified asphalt
        2.3.1. Modeling and mechanism of rubberized asphalt
        2.3.1. 1. Rheology of bituminous binders.
        2.3.1. 2. Rheological property prediction of CRMA.
        2.3.2. Micromechanics-based modeling of rheological properties of CRMA
        2.3.2. 1. Composite system of CRMA based on homogenization theory.
        2.3.2. 2. Input parameters for micromechanical models of CRMA.
        2.3.2. 3. Analytical form of micromechanical models of CRMA.
        2.3.2. 4. Future recommendations for improving micro-mechanical prediction performance.
        2.3.3. Design and performance of rubberized asphalt
        2.3.3. 1. The interaction between rubber and asphalt fractions.
        2.3.3. 2. Engineering performance of rubberized asphalt.
        2.3.3. 3. Mixture design.
        2.3.3. 4. Warm mix rubberized asphalt.
        2.3.3. 5. Reclaiming potential of rubberized asphalt pavement.
        2.3.4. Economic and Environmental Effects
        2.3.5. Summary and outlook
3. Mixture performance and modeling of pavement materials
    3.1. The low temperature performance and freeze-thaw damage of asphalt mixture
        3.1.1. Low temperature performance of asphalt mixture
        3.1.1. 1. Low temperature cracking mechanisms.
        3.1.1. 2. Experimental methods to evaluate the low temperature performance of asphalt binders.
        3.1.1. 3. Experimental methods to evaluate the low temperature performance of asphalt mixtures.
        3.1.1. 4. Low temperature behavior of asphalt materials.
        3.1.1.5.Effect factors of low temperature performance of asphalt mixture.
        3.1.1. 6. Improvement of low temperature performance of asphalt mixture.
        3.1.2. Freeze-thaw damage of asphalt mixtures
        3.1.2. 1. F-T damage mechanisms.
        3.1.2. 2. Evaluation method of F-T damage.
        3.1.2. 3. F-T damage behavior of asphalt mixture.
        (1) Evolution of F-T damage of asphalt mixture
        (2) F-T damage evolution model of asphalt mixture
        (3) Distribution and development of asphalt mixture F-T damage
        3.1.2. 4. Effect factors of freeze thaw performance of asphalt mixture.
        3.1.2. 5. Improvement of freeze thaw resistance of asphalt mixture.
        3.1.3. Summary and outlook
    3.2. Long-life rigid pavement and concrete durability
        3.2.1. Long-life cement concrete pavement
        3.2.1. 1. Continuous reinforced concrete pavement.
        3.2.1. 2. Fiber reinforced concrete pavement.
        3.2.1. 3. Two-lift concrete pavement.
        3.2.2. Design,construction and performance of CRCP
        3.2.2. 1. CRCP distress and its mechanism.
        3.2.2. 2. The importance of crack pattern on CRCP performance.
        3.2.2. 3. Corrosion of longitudinal steel.
        3.2.2. 4. AC+CRCP composite pavement.
        3.2.2. 5. CRCP maintenance and rehabilitation.
        3.2.3. Durability of the cementitious materials in concrete pavement
        3.2.3. 1. Deterioration mechanism of sulfate attack and its in-fluence on concrete pavement.
        3.2.3. 2. Development of alkali-aggregate reaction in concrete pavement.
        3.2.3. 3. Influence of freeze-thaw cycles on concrete pavement.
        3.2.4. Summary and outlook
    3.3. Novel polymer pavement materials
        3.3.1. Designable PU material
        3.3.1. 1. PU binder.
        3.3.1.2.PU mixture.
        3.3.1. 3. Material genome design.
        3.3.2. Novel polymer bridge deck pavement material
        3.3.2. 1. Requirements for the bridge deck pavement material.
        3.3.2.2.Polyurethane bridge deck pavement material(PUBDPM).
        3.3.3. PU permeable pavement
        3.3.3. 1. Permeable pavement.
        3.3.3. 2. PU porous pavement materials.
        3.3.3. 3. Hydraulic properties of PU permeable pavement materials.
        3.3.3. 4. Mechanical properties of PU permeable pavement ma-terials.
        3.3.3. 5. Environmental advantages of PU permeable pavement materials.
        3.3.4. Polyurethane-based asphalt modifier
        3.3.4. 1. Chemical and genetic characteristics of bitumen and polyurethane-based modifier.
        3.3.4. 2. The performance and modification mechanism of polyurethane modified bitumen.
        3.3.4. 3. The performance of polyurethane modified asphalt mixture.
        3.3.4. 4. Environmental and economic assessment of poly-urethane modified asphalt.
        3.3.5. Summary and outlook
    3.4. Reinforcement materials for road base/subrgrade
        3.4.1. Flowable solidified fill
        3.4.1. 1. Material composition design.
        3.4.1. 2. Performance control.
        3.4.1. 3. Curing mechanism.
        3.4.1. 4. Construction applications.
        3.4.1.5.Environmental impact assessment.
        3.4.1. 6. Development prospects and challenges.
        3.4.2. Stabilization materials for problematic soil subgrades
        3.4.2.1.Stabilization materials for loess.
        3.4.2. 2. Stabilization materials for expansive soil.
        3.4.2. 3. Stabilization materials for saline soils.
        3.4.2. 4. Stabilization materials for soft soils.
        3.4.3. Geogrids in base course reinforcement
        3.4.3. 1. Assessment methods for evaluating geogrid reinforce-ment in flexible pavements.
        (1) Reinforced granular material
        (2) Reinforced granular base course
        3.4.3. 2. Summary.
        3.4.4. Summary and outlook
4. Multi-scale mechanics
    4.1. Interface
        4.1.1. Multi-scale evaluation method of interfacial interaction between asphalt binder and mineral aggregate
        4.1.1. 1. Molecular dynamics simulation of asphalt adsorption behavior on mineral aggregate surface.
        4.1.1. 2. Experimental study on absorption behavior of asphalt on aggregate surface.
        4.1.1. 3. Research on evaluation method of interaction between asphalt and mineral powder.
        (1) Rheological mechanical method
        (2) Microscopic test
        4.1.1. 4. Study on evaluation method of interaction between asphalt and aggregate.
        4.1.2. Multi-scale numerical simulation method considering interface effect
        4.1.2. 1. Multi-scale effect of interface.
        4.1.2. 2. Study on performance of asphalt mixture based on micro nano scale testing technology.
        4.1.2. 3. Study on the interface between asphalt and aggregate based on molecular dynamics.
        4.1.2. 4. Study on performance of asphalt mixture based on meso-mechanics.
        4.1.2. 5. Mesoscopic numerical simulation test of asphalt mixture.
        4.1.3. Multi-scale investigation on interface deterioration
        4.1.4. Summary and outlook
    4.2. Multi-scales and numerical methods in pavement engineering
        4.2.1. Asphalt pavement multi-scale system
        4.2.1. 1. Multi-scale definitions from literatures.
        4.2.1. 2. A newly-proposed Asphalt Pavement Multi-scale System.
        (1) Structure-scale
        (2) Mixture-scale
        (3) Material-scale
        4.2.1. 3. Research Ideas in the newly-proposed multi-scale sys-
        4.2.2. Multi-scale modeling methods
        4.2.2. 1. Density functional theory (DFT) calculations.
        4.2.2. 2. Molecular dynamics (MD) simulations.
        4.2.2. 3. Composite micromechanics methods.
        4.2.2. 4. Finite element method (FEM) simulations.
        4.2.2. 5. Discrete element method (DEM) simulations.
        4.2.3. Cross-scale modeling methods
        4.2.3. 1. Mechanism of cross-scale calculation.
        4.2.3. 2. Multi-scale FEM method.
        4.2.3. 3. FEM-DEM coupling method.
        4.2.3. 4. NMM family methods.
        4.2.4. Summary and outlook
    4.3. Pavement mechanics and analysis
        4.3.1. Constructive methods to pavement response analysis
        4.3.1. 1. Viscoelastic constructive models.
        4.3.1. 2. Anisotropy and its characterization.
        4.3.1. 3. Mathematical methods to asphalt pavement response.
        4.3.2. Finite element modeling for analyses of pavement mechanics
        4.3.2. 1. Geometrical dimension of the FE models.
        4.3.2. 2. Constitutive models of pavement materials.
        4.3.2. 3. Variability of material property along with different directions.
        4.3.2. 4. Loading patterns of FE models.
        4.3.2. 5. Interaction between adjacent pavement layers.
        4.3.3. Pavement mechanics test and parameter inversion
        4.3.3. 1. Nondestructive pavement modulus test.
        4.3.3. 2. Pavement structural parameters inversion method.
        4.3.4. Summary and outlook
5. Green and sustainable pavement
    5.1. Functional pavement
        5.1.1. Energy harvesting function
        5.1.1. 1. Piezoelectric pavement.
        5.1.1. 2. Thermoelectric pavement.
        5.1.1. 3. Solar pavement.
        5.1.2. Pavement sensing function
        5.1.2. 1. Contact sensing device.
        5.1.2.2.Lidar based sensing technology.
        5.1.2. 3. Perception technology based on image/video stream.
        5.1.2. 4. Temperature sensing.
        5.1.2. 5. Traffic detection based on ontology perception.
        5.1.2. 6. Structural health monitoring based on ontology perception.
        5.1.3. Road adaptation and adjustment function
        5.1.3. 1. Radiation reflective pavement.Urban heat island effect refers to an increased temperature in urban areas compared to its surrounding rural areas (Fig.68).
        5.1.3. 2. Catalytical degradation of vehicle exhaust gases on pavement surface.
        5.1.3. 3. Self-healing pavement.
        5.1.4. Summary and outlook
    5.2. Renewable and sustainable pavement materials
        5.2.1. Reclaimed asphalt pavement
        5.2.1. 1. Hot recycled mixture technology.
        5.2.1. 2. Warm recycled mix asphalt technology.
        5.2.1. 3. Cold recycled mixture technology.
        (1) Strength and performance of cold recycled mixture with asphalt emulsion
        (2) Variability analysis of asphalt emulsion
        (3) Future prospect of cold recycled mixture with asphalt emulsion
        5.2.2. Solid waste recycling in pavement
        5.2.2. 1. Construction and demolition waste.
        (1) Recycled concrete aggregate
        (2) Recycled mineral filler
        5.2.2. 2. Steel slag.
        5.2.2. 3. Waste tire rubber.
        5.2.3. Environment impact of pavement material
        5.2.3. 1. GHG emission and energy consumption of pavement material.
        (1) Estimation of GHG emission and energy consumption
        (2) Challenge and prospect of environment burden estimation
        5.2.3. 2. VOC emission of pavement material.
        (1) Characterization and sources of VOC emission
        (2) Health injury of VOC emission
        (3) Inhibition of VOC emission
        (4) Prospect of VOC emission study
        5.2.4. Summary and outlook
6. Intelligent pavement
    6.1. Automated pavement defect detection using deep learning
        6.1.1. Automated data collection method
        6.1.1. 1. Digital camera.
        6.1.1.2.3D laser camera.
        6.1.1. 3. Structure from motion.
        6.1.2. Automated road surface distress detection
        6.1.2. 1. Image processing-based method.
        6.1.2. 2. Machine learning and deep learning-based methods.
        6.1.3. Pavement internal defect detection
        6.1.4. Summary and outlook
    6.2. Intelligent pavement construction and maintenance
        6.2.1. Intelligent pavement construction management
        6.2.1. 1. Standardized integration of BIM information resources.
        6.2.1. 2. Construction field capturing technologies.
        6.2.1. 3. Multi-source spatial data fusion.
        6.2.1. 4. Research on schedule management based on BIM.
        6.2.1. 5. Application of BIM information management system.
        6.2.2. Intelligent compaction technology for asphalt pavement
        6.2.2. 1. Weakened IntelliSense of ICT.
        6.2.2. 2. Poor adaptability of asphalt pavement compaction index.
        (1) The construction process of asphalt pavement is affected by many complex factors
        (2) Difficulty in model calculation caused by jumping vibration of vibrating drum
        (3) There are challenges to the numerical stability and computational efficiency of the theoretical model
        6.2.2. 3. Insufficient research on asphalt mixture in vibratory rolling.
        6.2.3. Intelligent pavement maintenance decision-making
        6.2.3. 1. Basic functional framework.
        6.2.3. 2. Expert experience-based methods.
        6.2.3. 3. Priority-based methods.
        6.2.3. 4. Mathematical programming-based methods.
        6.2.3. 5. New-gen machine learning-based methods.
        6.2.4. Summary and outlook
        (1) Pavement construction management
        (2) Pavement compaction technology
        (3) Pavement maintenance decision-making
7. Conclusions
Conflict of interest

(2)北阿尔金早古生代同碰撞花岗质岩浆记录及其对增生造山过程的启示(论文提纲范文)

1 区域地质概况
2 采样位置及岩相学特征
3 分析测试方法
4 分析结果
    4.1 锆石U-Pb定年结果
    4.2 地球化学特征
        4.2.1 主量元素
        4.2.2 稀土和微量元素
    4.3 锆石Hf同位素
5 讨论
    5.1 岩石成因类型
    5.2 岩浆源区探讨
    5.3 岩体侵位时代和构造环境
    5.4 对增生造山过程的启示
6 结论

(4)Numerical Modeling of Deformation at the Baiyun Gold Deposit, Northeastern China: Insights into the Structural Controls on Mineralization(论文提纲范文)

0 INTRODUCTION
1 GEOLOGICAL BACKGROUND
    1.1 The Qingchengzi Ore Field
    1.2 The Baiyun Gold Deposit
2 NUMERICAL MODELING OF DEFORMATION
    2.1 Model Setup
    2.2 Simulation Methods
3 RESULTS
    3.1 The 1st Scenario with Lithological Interfaces Dipping with an Angle of 45o
    3.2 The 2nd Scenario with 1 km Thick Layer of Marble at the Bottom
    3.3 The 3rd Scenario with Lithological Interfaces Dipping with an Angle of 30o
    3.4 The 4th Scenario with Lithological Interfaces Dipping North
4 DISCUSSION
5 CONCLUSIONS

(5)黔西北青山铅锌矿床主要控矿断裂构造岩-岩相分带模式(论文提纲范文)

0 引言
1 矿床地质概况
2 构造岩-岩相带划分及其特征
    2.1 张裂岩相带
    2.2 泥化相带
    2.3 扭裂岩相带
    2.4 压裂岩相带
3 构造岩显微构造特征
4 不同构造岩-岩相带地球化学特征
    4.1 主量元素特征
    4.2 稀土元素组成特征
5 讨论
    5.1 不同构造岩-岩相带中元素变化规律及指示意义
    5.2 构造岩-岩相分带模式
6 结论

(6)软土地基承载力及沉降的水土耦合统一弹塑性数值分析研究(论文提纲范文)

摘要
Abstract
Chapter 1 Introduction
    1.1 Background
    1.2 Research motivation
    1.3 Objectives of this study
    1.4 Research strategy
    1.5 Novelties of current study
    1.6 Dissertation structure
Chapter2 Literature review
    2.1 Soft soil formation
    2.2 Structure of soft clay
    2.3 Basic properties influencing soft soil behaviour
        2.3.1 Basic index properties of soft soil
        2.3.2 Compression properties
        2.3.3 Strength properties
        2.3.4 Deformation behaviour
    2.4 Bearing capacity and settlement behaviour
        2.4.1 Bearing capacity and settlement in soft clay for shallow foundation
        2.4.2 Improved soft ground Settlement behaviour under embankment loading
        2.4.3 Soft ground settlement behaviour under earthquake loading
    2.5 Necessity of soft clay modelling
    2.6 Centrifuge physical modelling
    2.7 Numerical modelling
    2.8 Summary
Chapter 3 Soil model and soil-water coupled FEM algorithm
    3.1 Introduction
    3.2 Constitutive models
    3.3 Unified constitutive models
    3.4 Shanghai model
    3.5 Soil-water coupled algorithm
    3.6 Summary
Chapter 4 Bearing capacity of structured soft clay in unconsolidated and consolidated undrained conditions
    4.1 Introduction
    4.2 Background
    4.3 Modelling the soft structured clay under foundation loading
        4.3.1 Soft clay’s parameters evaluation
        4.3.2 Shallow foundation FEA model and mesh
        4.3.3 Soft clay loading simulation
    4.4 Bearing capacity response
        4.4.1 Unconsolidated undrained response
        4.4.2 Consolidated undrained response
        4.4.2.1 Bearing pressure – time – settlement
        4.4.2.2 Excess pore water pressure
        4.4.2.3 Consolidated undrained bearing capacity
    4.5 Stress–strain behaviour and stress paths of representative elements
    4.6 Influence of initial soil structure to bearing capacity
    4.7 Summary
Chapter 5 Numerical modelling of centrifugal tests in soft clay ground improved by sand compaction piles
    5.1 Introduction
    5.2 Centrifugal physical model
    5.3 Finite element analysis(FEA)model
    5.4 Model parameters
        5.4.1 General
        5.4.2 Material parameter simulation
    5.5 Analysis and result interpretation
        5.5.1 General
        5.5.2 Settlement of floating and fixed SCPs improved clay
        5.5.3 Pore water pressure
        5.5.4 Stress along fixed and floating SCPs
    5.6 Alternate sand compaction piles(SCPs)combination
    5.7 Modelling the soft clay and alternate SCPs combination
    5.8 Settlement of composite soil under alternate combinations
        5.8.1 Settlement behaviour under alternate floating SCPs combination
        5.8.2 Settlement behaviour under alternate floating and fixed SCPs combination
        5.8.3 Stress and strain behaviour in alternate SCPs combination
    5.9 Settlement behaviour of alternate SCPs combination at varying area ratios
        5.9.1 Alternate floating SCPs combination
        5.9.2 Alternate floating and fixed SCPs combination
    5.10 Settlement reduction factor
        5.10.1 Settlement reduction factor for fixed SC
        5.10.2 Settlement reduction factor for floating SCPS
        5.10.3 Settlement reduction factor for alternate floating SCPs combination
        5.10.4 Settlement reduction factor for alternate floating and fixed SCPs combination
    5.11 Summary
Chapter 6 Settlement of soft clay under dynamic loading
    6.1 Introduction
    6.2 Background
    6.3 Finite element analysis model
    6.4 Material Parameters
        6.4.1 General
        6.4.2 Material parameters simulation
        6.4.3 Static simulation of modified material parameters
        6.4.4 Dynamic simulation of modified material parameters
    6.5 Analysis and results interpretation
        6.5.1 General
        6.5.2 Settlement under earthquake loading
        6.5.3 Response acceleration
        6.5.4 Excess pore water pressure
        6.5.5 Structure
    6.6 Summary
Chapter 7 Conclusions and recommendations
    7.1 Conclusions
    7.2 Recommendations for future work
References
Acknowledgement
Publications

(7)人造结构性软粘土的制备方法、宏微观特性与本构模拟(论文提纲范文)

Abstract
摘要
List of Symbols
Chapter1 Introduction
    1.1 Background and significance
    1.2 Literature review
        1.2.1 Soft,natural,artificial structured and destructured clays
        1.2.2 Structuration of natural soft clays
        1.2.2.1 Formation of soil structure
        1.2.2.2 Natural Cementation
        1.2.2.3 Quantification of soil structure
        1.2.3 Stability of soil structure
        1.2.4 Destructuration of soft clays
        1.2.5 Disturbance of natural soil structure
        1.2.6 Artificial structuration of soft clays
        1.2.7 Previous studies on development of artificial structured clays
    1.3 Motivation of work
    1.4 Key research contents and objectives
    1.5 Novelties of current study
    1.6 Dissertation organization
Chapter 2 Artificial structuration of soft clays:Reconstitution method and initial evaluation
    2.1 Introduction
    2.2 General assumptions about soil structure
    2.3 Artificial soil structure development
        2.3.1 Effect of cement on soil structure
        2.3.2 Effect of consolidation pressure on soil structure
    2.4 Materials selection
        2.4.1 Shanghai soft clay
        2.4.2 Cement
    2.5 Reconstitution of artificial structured soft clay
        2.5.1 Reconstitution method
        2.5.2 Cement content determination
        2.5.3 Correlation to determine the minimum cement content
    2.6 Experimental program
    2.7 Initial evaluation of artificial structured soft clay
        2.7.1 Unconfined compression test
        2.7.1.1 Test purpose
        2.7.1.2 Test method and apparatus
        2.7.1.3 Results and discussion
        2.7.2 Compression characteristics
        2.7.2.1 Test method
        2.7.2.2 Results and discussion
    2.8 Difference in mechanical behavior of low to high cemented soft clays
    2.9 Further evaluation
    2.10 Summary
Chapter3 Soil structure assessment using microstructure tests
    3.1 Introduction
    3.2 Specimens preparation for the MIP and SEM tests
    3.3 Mercury intrusion porosimetry analysis
        3.3.1 Objectives of MIP analysis
        3.3.2 Test method
        3.3.3 Results and discussion
    3.4 Scanning electron microscope analysis
        3.4.1 Objectives of SEM analysis
        3.4.2 Test procedure and equipment
        3.4.3 Results and discussion
    3.5 Soil structure transformation due to Consolidation pressure
        3.5.1 Pore size distribution analysis
        3.5.2 Scanning electron microscope analysis
        3.5.3 Macrostructure transformation due to consolidation pressure
    3.6 Summary
Chapter4 Macrostructure evaluation under different loading and drainage conditions
    4.1 Introduction
    4.2 Conventional consolidated undrained triaxial test
        4.2.1 Significance of CU triaxial test
        4.2.2 Test apparatus
        4.2.3 Test method
        4.2.4 Results and discussion
        4.2.4.1 Stress-strain and excess pore pressure behaviors
        4.2.4.2 Stress paths and critical state lines
    4.3 Drained true triaxial test
        4.3.1 Significance of drained true triaxial test
        4.3.2 True triaxial apparatus
        4.3.3 Test method and calculations
        4.3.4 Results and discussion
        4.3.4.1 Influence of lode angle on shear strength and volumetric strain
        4.3.4.2 Shear strength and volumetric strain comparison
        4.3.4.3 Principle strains comparison
        4.3.4.4 Mean effective stress consequence on true triaxial results
    4.4 Steps and validation of reconstitution method
    4.5 Summary
Chapter5 Application of unified elastoplastic constitutive model on artificial structured clays
    5.1 Introduction
    5.2 Elastoplastic constitutive model
    5.3 Material parameters,initial conditions,and simulation procedure
    5.4 Simulations of tests results and discussion
        5.4.1 Oedometer and CU triaxial tests
        5.4.2 Drained true triaxial results simulations
    5.5 Validation of constitutive model
    5.6 Initial soil structure and its behavior under different loadings
    5.7 Initial over-consolidation and its behavior under different loadings
    5.8 Summary
Chapter6 Conclusions and recommendations
    6.1 Conclusions
    6.2 Recommendations for future work
References
Appendix
Acknowledgement
Publications during Ph.D.study

(8)Chronological Constraints on Late Paleozoic Collision in the Southwest Tianshan Orogenic Belt, China: Evidence from the Baleigong Granites(论文提纲范文)

1 Introduction
2 Geological Background
3 Sampling and Analytical Methods
    3.1 Sampling and description
    3.2 Analytical methods
        3.2.1 Major and trace element analyses
        3.2.2 Zircon U–Pb isotope analysis
        3.2.3 Mineral electron microprobe
4 Results
    4.1 Geochemical characteristics
    4.2 Zircon LA-ICP-MS U-Pb geochronology
    4.3 Mineral electron microprobe data
5 Discussion
    5.1 Petrogenesis
        5.1.1 Petrogenetic type:I–type affinity
        5.1.2 Sources nature and fractional evolution process
    5.2 Implications for regional tectonics
6 Conclusions

(10)Numerical modelling of strength and energy release characteristics of pillar-scale coal mass(论文提纲范文)

1. Introduction
    3.1. UDECTrigon
    3.2. Model setup
    3.3. Calibration of the micro-cohesion and micro-friction angle values
    3.4. Evaluation of the calibrated parameters
    3.5. Incorporation of discontinuities into coal mass samples
4. Results and discussion
    4.1. Uniaxial compressive strength
    4.2. Total energy release and fracturing
5. Conclusions
Conflicts of interest

四、INSTITUTE OF GEOMECHANICS——PUBLICATIONS(论文参考文献)

  • [1]New innovations in pavement materials and engineering:A review on pavement engineering research 2021[J]. JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu. Journal of Traffic and Transportation Engineering(English Edition), 2021
  • [2]北阿尔金早古生代同碰撞花岗质岩浆记录及其对增生造山过程的启示[J]. 吴玉,陈正乐,陈柏林,王永,孙岳,孟令通,何江涛,王斌. 岩石学报, 2021(05)
  • [3]Rock brittleness indices and their applications to different fields of rock engineering:A review[J]. Fanzhen Meng,Louis Ngai Yuen Wong,Hui Zhou. Journal of Rock Mechanics and Geotechnical Engineering, 2021(01)
  • [4]Numerical Modeling of Deformation at the Baiyun Gold Deposit, Northeastern China: Insights into the Structural Controls on Mineralization[J]. Xiangchong Liu,Changhao Xiao,Shuanhong Zhang,Bailin Chen. Journal of Earth Science, 2021(01)
  • [5]黔西北青山铅锌矿床主要控矿断裂构造岩-岩相分带模式[J]. 宋丹辉,韩润生,王明志,张艳,周威. 地质力学学报, 2020(03)
  • [6]软土地基承载力及沉降的水土耦合统一弹塑性数值分析研究[D]. Santosh Kumar Yadav. 上海交通大学, 2020(01)
  • [7]人造结构性软粘土的制备方法、宏微观特性与本构模拟[D]. Usama Khalid. 上海交通大学, 2020(01)
  • [8]Chronological Constraints on Late Paleozoic Collision in the Southwest Tianshan Orogenic Belt, China: Evidence from the Baleigong Granites[J]. HUO Hailong,CHEN Zhengle,ZHANG Qing,HAN Fengbin,ZHANG Wengao,SUN Yue,YANG Bin,TANG Yanwen. Acta Geologica Sinica(English Edition), 2019(05)
  • [9]Numerical and safety considerations about the Daguangbao landslide induced by the 2008 Wenchuan earthquake[J]. Manchao He,L.Ribeiro e Sousa,André Müller,Euripedes Vargas Jr.,R.L.Sousa,C.Sousa Oliveira,Weili Gong. Journal of Rock Mechanics and Geotechnical Engineering, 2019(05)
  • [10]Numerical modelling of strength and energy release characteristics of pillar-scale coal mass[J]. Onur Vardar,Chengguo Zhang,Ismet Canbulat,Bruce Hebblewhite. Journal of Rock Mechanics and Geotechnical Engineering, 2019(05)

标签:;  ;  ;  

地质力学研究所—出版物
下载Doc文档

猜你喜欢