我国部分地层菱铁矿床地质地球化学特征

我国部分地层菱铁矿床地质地球化学特征

一、我国某些层控菱铁矿床地质及地球化学特征(论文文献综述)

楼金伟[1](2012)在《安徽铜陵矿集区中酸性侵入岩及狮子山矿田铜多金属矿床》文中进行了进一步梳理包括斑岩型矿床、矽卡岩型矿床在内的与岩浆作用有关的热液矿床是提供铜、钼、金、多金属矿产资源的重要矿床类型,因此也是矿床学研究的热点和重点,理论成就丰硕。铜陵矿集区作为我国长江中下游构造-岩浆-成矿带中的一个重要的铜多金属成矿区,长期以来一直被列为我国矿产资源勘查的重要成矿区带,同时也是我国地质工作者尤其是矿床学家们研究的热点和重点地区,研究成果丰富,但也留有许多长期争议的关键地质问题。铜陵矿集区中生代侵入岩发育,以中酸性岩为主。前人对该区侵入岩及其中的岩石包体开展了广泛深入的岩石学、岩石化学和地球化学研究,对该区中生代岩浆的起源和演化及成岩大地构造背景、成岩动力学过程进行了深入的探讨,但尚未达成广泛的共识。本文在全面收集前人研究资料和成果的基础上,系统总结了铜陵矿集区中生代侵入岩的空间分布特征,精确厘定了侵入岩的形成年龄,准确划分了侵入岩的岩石类型和岩石系列,并基于岩石主量元素、微量元素、稀土元素和Pb-Sr-Nd-O同位素地球化学特征,深入探讨了区域岩浆作用深部动力学过程及成岩机制。研究认为:铜陵矿集区中生代中酸性侵入岩的形成年龄集中于135~147Ma,为晚侏罗世-早白垩世岩浆作用产物,岩浆活动持续时间大约为10~15Ma;岩体总体受基底断裂制约,沿近东西向呈带状分布,受多期不同方向和性质的断裂控制,主要呈岩枝、岩墙和岩脉状浅成侵入产出;岩石矿物成分变化较大,但多以斜长石为主,依据实际矿物成分确定区内侵入岩主要为辉石闪长(玢)岩、石英(二长)闪长(玢)岩和花岗闪长(玢/斑)岩3类;岩石化学成分特点是Si02含量中等,略偏酸性或基性,富碱富钠,高钾准铝质,均属亚碱性高钾钙碱性系列;3类侵入岩具有相似的微量元素、稀土元素和Pb-Sr-Nd-O同位素地球化学特征,均与埃达克质岩石特征相似。侵入岩的地质地球化学特征反映原始岩浆起源于富集岩石圈地幔的熔融,幔源玄武质岩浆底侵并熔融下地壳形成埃达克质岩浆进而发生混合作用,可能是本区中酸性侵入岩浆形成的主要方式;岩浆演化可能经历了一个复杂过程,岩浆在地壳深部因温度梯度引起扩散对流作用,进而发生一定程度的熔离分异作用,形成带状岩浆房,同时伴随结晶分异作用;不同岩浆层中的岩浆与构造运动诱发的深断裂相沟通并随机地上升,脉动式侵位,形成的侵入体空间上相互穿插,时间上难分早晚;区域岩浆形成于挤压向拉张过渡的动力学背景之下,岩石圈地幔加厚后减压熔融并底侵下地壳岩石;岩浆活动的大地构造背景是大陆板块内部,岩浆作用与晚侏罗纪古太平洋板块的俯冲作用密切相关,但同时受到海西-印支期断裂坳陷及华北与扬子陆块碰撞造山作用形成的前中生代基底构造的制约。铜陵矿集区铜多金属矿床在平面上主要沿近东西向基底断裂展布的铜陵-沙滩脚构造-岩浆带中部产出,集中分布于铜官山、狮子山、新桥、凤凰山、沙滩脚等5个矿田。矿床赋存于古生代志留系中-上统坟头组和茅山组至三叠系中统东马鞍山组地层及其附近岩体中,其中最主要赋矿层位是石炭系中-上统黄龙组和船山组白云岩和灰岩。矿化在垂向剖面上往往表现为上金(银)下铜(钼)以及上部浅成热液脉状矿化、中部矽卡岩型矿化和深部斑岩型矿化的分带现象。矿床成因类型多样,主要为矽卡岩型,其次为斑岩型和脉型,其中矽卡岩型有裂隙式、接触带式、层间式、层控式等矿化形式,斑岩型矿床的最新发现为矿集区深部和边部找矿提供了有益启示。矿床同位素年代学研究表明成矿作用与燕山期岩浆作用及其相关的热液作用密切相关,而海西期沉积事件中是否有火山喷发或火山喷流(或喷气)沉积成矿作用以及其对成矿的贡献尚需进一步探索和甄别。本文针对矿集区矿床成因机制及铜多金属矿化的空间分带特征,选择狮子山矿田开展了较为系统深入的地质和地球化学研究。结果表明:铜陵矿集区及狮子山矿田虽以矽卡岩型矿化为特征,但后期热液硫化物多金属矿化非常强烈,以致大多数矿床早期矽卡岩矿物组合受晚期叠加热液的强烈改造而改变甚至部分消失,多数矿床矽卡岩型矿石不发育,或矽卡岩中的矿化并不强;狮子山矿田各矿床的成矿作用一般可以划分为(早+晚)硅酸盐(矽卡岩)阶段、氧化物阶段、(早+晚)硫化物阶段和碳酸盐阶段,铜多金属矿化主要集中于硫化物阶段,部分铜矿化亦发育于硅酸盐阶段,部分金矿化亦发育于碳酸盐阶段。矿田内主要矿床的原生包裹体主要为富气相包裹体、富液相包裹体和含子矿物多相包裹体3种类型,不同成矿阶段流体包裹体的类型略有差异,但富气相包裹体常与富液相包裹体共生。成矿流体盐度较高、温度中等、弱酸性至弱碱性,在相同的成矿阶段,如硫化物阶段,金或金(铜)矿床成矿温度一般较铜(金)矿床低,反映金的沉淀成矿温度略低。热力学计算和分析表明,在成矿热液流体演化过程中,共存于同一成矿流体中的铜和金由于其络合物类型和溶解度的差异及其对物理化学条件变化作出的响应不同,使其在沉淀的时间和空间上表现出明显的差异,导致铜和金的时空分离;但与此同时,由于本区构造-岩浆作用及相关的热液活动的多期叠加、成矿热液流体的连续性演化以及成矿物理化学条件的波动性变化,往往又导致金矿化叠加在铜矿化之上,金矿化与铜矿化又表现出共生的现象。矿床H-O同位素地球化学特征反映成矿流体主要来源于岩浆,从成矿早阶段向晚阶段演化,大气降水混入不断增加。矿石铅主要来源于岩浆作用,虽然不能排除沉积铅的加入,但无疑沉积铅是次要的。硫同位素组成特征的简单类比表明,冬瓜山矿床硫化物的硫同位素组成与Sedex型矿床明显不同,硫酸盐的硫同位素组成与VHMS型矿床不同,而它们均与斑岩型矿床基本一致;虽然区域沉积岩的硫同位素组成特征显示其成岩过程中经历了明显的海水沉积作用和硫酸盐细菌还原作用,但热力学计算显示成矿热液中的硫来源于区内高钾钙碱性岩浆熔体分异的热液流体,没有保存海西期沉积硫的同位素证据。结合矿床地质特征可以认为,狮子山矿田各矿床为受统一的燕山期岩浆热液系统控制的斑岩-层控矽卡岩-浅成热液脉型铜多金属矿床。

于晓飞[2](2010)在《西昆仑造山带区域成矿规律研究》文中研究说明西昆仑造山带地处青藏高原西北缘,是板块北缘成矿带的重要组成部分,有着丰富的矿产资源。论文以区域动力学背景和区域成矿理论为基础,以成矿作用为核心,采用成矿动力学背景-区域成矿分析与典型矿床研究相结合,在阐明成矿动力学背景、成矿作用、控矿因素的基础上,建立不同矿床的成因类型和成矿模式,总结成矿规律,确定找矿远景区。区域成矿动力学背景表明,本区区域构造演化经历了长期而复杂的地壳演化,包括太古代陆核形成、俯冲、碰撞和陆内构造作用。以往研究认为库地蛇绿岩和其曼于特蛇绿岩是裂解洋和弧后洋盆的重要证据,本文研究发现它们是古大洋发育成熟的产物,并且库地蛇绿岩现在的位置并不是西昆北洋碰撞缝合的位置,而是受后期挤压作用的影响仰冲上来的。对中新元古代火山岩地球化学特征分析,认为长城系、蓟县系基性火山岩形成于洋中脊和洋岛环境;阿克塔什、萨洛依热水喷流沉积块状硫化物矿床类型的确定,进一步证明大洋环境的存在。这些证据表明西昆仑-塔里木古元古代并不存在统一大陆裂解形成的裂陷槽,而是一个古大洋。以往多认为本区中新元古代时期从塔里木板块裂解出去的,有着共同的基底,通过对比研究发现,西昆仑地块并不是从塔里木地台裂解出来的微陆块,而是完全独立的太古宙古陆块,具有独立的地质构造演化历史,被南北两侧的古大洋所分隔,本文称之为“西昆北洋”和“西昆南洋”。针对西昆仑中间岩浆岩带,分别针对各个时期的花岗岩,尤其是对加里东期和海西期花岗岩进行地球化学、年代学和构造环境研究,认为自510480Ma(寒武纪)开始,西昆北洋东部洋壳向南、北两侧大陆俯冲,在440430Ma(早志留世)两个陆块发生碰撞,直到410Ma(早泥盆世)西昆北洋东部南、北两侧大陆完全对接,而这时期的西部仍然为浩瀚的大洋。海西早期东部进入后造山阶段,西昆北洋西部洋壳开始向两侧俯冲,于270Ma(二叠纪)南北两侧大陆对接碰撞,大洋闭合,结束了西昆北洋的历史,是一种自东向西“剪刀式”演化过程。在此基础上,总结出西昆仑造山带地球动力学演化经历了如下4个阶段:①西昆仑古陆的形成②西昆北洋的演化与闭合-内部造山③西昆南洋的演化与闭合-边缘造山④西昆仑造山带的后期演化-隆升。研究中以构造-岩浆活动和成矿作用为主线,对西昆仑地区各时代侵入岩进行了年代学研究:采用LA-ICP-MS锆石U-Pb法高精度定年方法对大同布斯拉津铜钼黑云母石英二长岩和花岗细晶岩、塔什库尔干班迪尔闪长玢岩和斯如依迭尔碱性花岗岩进行了系统的年龄测试,它们分别是449Ma和446Ma、239.8Ma、13Ma。446Ma和449Ma年龄代表后造山花岗岩,证明加里东期造山带的存在,这个时期东部已经开始碰撞造山,是一俯冲间歇期伸展环境的产物;239.8Ma年龄代表了印支早期岩浆热事件;13Ma年龄代表了帕米尔构造结作用的结果。另外,首次对布斯拉津铜钼矿床的辉钼矿进行Re-Os法定年,获得了439 Ma辉钼矿Re-Os年龄,指示了西昆仑地区加里东期的成矿事件。对研究区内部分金矿床(点)形成的地质背景和成矿因素进行研究,首次提出黄羊岭锑(金)矿、帕西木金矿点、叶尔羌河金矿、木吉金矿等为造山型金矿床的观点,采集矿区样品进行流体包裹体测试分析,通过获得的成矿温度,计算出不同成矿深度,认为区内造山型金矿存在从低温-中温、从浅成(黄羊岭锑(金)矿、帕西木金矿点、叶尔羌河金矿)-中成(木吉金矿)等连续成矿的特点,从而建立起该区造山型金矿的地壳垂直连续成矿模式。研究了西昆仑北带的塔木铅锌矿床的地质背景、矿化蚀变特征和岩浆岩特征,并采样测试了成矿物理化学条件,获得流体盐度为3.45wt%NaCl,密度为0.90g/cm3,首次提出了塔木-卡兰古一带的铅锌矿床不是前人认为的密西西比河谷型铅锌矿,而是与基性辉绿岩脉有关的中低温热液脉状铅锌矿床。根据热水喷流沉积矿床的特点,我们按照块状硫化物矿床和贫硫化物型喷流矿床进行研究。西昆北带石炭纪海底火山喷流-喷气沉积成矿特点,明确提出阿克塔什、萨洛依铜矿床为热水喷流沉积成因块状硫化物矿床,萨洛依铜矿床为别子型、阿克塔什铜矿床为类黑矿型;契列克其、黑恰铁多金属矿床成矿流体研究表明,二者都是受后期岩浆热液的影响,导致矿化进一步富集,是热水喷流沉积-热液叠加改造型矿床。同时指出矿区含钠长质硅质岩和碳酸盐岩为热水沉积岩,从而为寻找热水喷流成因矿床提供了有力证据。通过对大同布斯拉津铜钼矿床的地质特征、成矿流体、成矿年代学的研究,明确认为该矿床为岩浆热液脉型铜钼矿床,成矿作用发生于加里东中期,略晚于成岩年龄;通过对含矿石英脉进行流体包裹体研究,测得成矿均一温度为147~172℃之间,辉钼矿形成于低温条件。在成矿动力学演化研究基础上,通过对典型矿床、同位素年代学、成矿地球化学、成矿作用的研究,建立了西昆仑造山带的成矿模式,并总结了成矿规律,在成矿模式、确定找矿标志和大型矿田产出条件的基础上,提出各类矿床的6个找矿方向,为该区下一步找矿勘探工作提供了科学依据。

陈大[3](2015)在《扬子地台西缘铅锌矿床分布规律及矿源层探讨》文中认为为探索川滇黔相邻区铅锌矿床之成因规律,提升成矿理论认识及预测找矿效果,通过对区内铅锌矿床分布规律研究得出如下认识:1)发现矿床(点)之集群分布趋势,据此将成矿区域划分为3个矿集区;2)统计发现,震旦系和石炭系具有较高的成矿机率(51.57%),灯影组和摆佐组汇聚了区域80.98%的金属量;3)构造单元分级控制了成矿单元展布,而矿集区与二级构造单元之间具有不完全的对等性,矿集区Ⅰ、Ⅱ由康滇地轴和龙门山拗陷及二者向上扬子区域跨越地带联合控制;4)根据菱(赤)铁矿与铅锌矿空间耦合,以及菱(赤)铁矿伴生铅锌元素、铅锌矿物含量均较高等现象,论证了在盆地演化早期,古陆边缘拗陷带(或海盆)内之次级单元代表了浅海环境之低能较深水凹(断)陷或海湾环境,沉积了古生界志留系兰多维列统特列奇阶至下石炭统德坞阶和中元古界下昆阳群(会理群)两套含铁建造,形成了区域Pb、Zn成矿金属元素的初始富集,并于成岩-后生期经热液流体循环改造而成矿,含铁建造提供了成矿的主要矿质来源;5)本区成矿物质硫源-膏盐层主要赋存于灯影组和摆佐组下伏地层以及寒武系多个层位;6)矿源层、硫源共同决定了矿集区以及层控的形成机制,并成为控制其分布的决定性因素。

刘一男[4](2019)在《安徽庐枞盆地铁矿床成矿系统和成矿模式研究》文中研究表明长江中下游成矿带位于扬子板块北缘,是我国最重要的陆内铜金铁多金属成矿带之一。庐枞盆地是成矿带内以陆相火山岩型和矽卡岩型铁矿床为特色的矿集区,区内地质勘查研究历史悠久,参与人员众多,成果积累丰富。2013年以来,庐枞盆地深部勘探得重大突破,在罗河铁矿床主矿体以下600米又发现了新的厚大铁矿体;龙桥铁矿床、大鲍庄铁硫矿床,马口铁矿床、杨山铁矿床和何家大岭铁矿床的生产勘探也揭露了新的成矿地质现象,这些找矿新发现和新突破是庐枞已有成矿模式所无法解释的,也经典“玢岩矿床”成矿模式存在较大差异,因此庐枞盆地铁矿床成矿系统和成矿模式亟待进一步深入研究。本次工作在前人研究的基础上,结合最新的勘查成果,通过野外地质调查、岩心编录以及室内岩相学工作,结合全岩地球化学、同位素地球化学(全岩、单矿物)、同位素年代学、高精度矿物原位微量元素以及同位素测试等多种分析测试手段,对庐枞盆地内龙桥、罗河,大鲍庄、马口、杨山和何家大岭等铁硫矿床开展系统研究,阐明盆地不同类型铁矿床的成矿作用过程,并将它们纳入同一成矿系统,建立庐枞盆地的成矿模式。通过与长江中下游成矿带铁矿床对比,开展成矿带内成铁岩浆岩成矿专属性,膏盐层与铁成矿作用关系以及矿床中磷的来源的方面研究,并探讨铁矿床成矿动力学背景以及成矿带铁铜矿床成矿作用的差异性。论文获得的主要认识和进展如下:前人研究将龙桥铁矿床归为沉积-热液改造型矿床,认为矿区内正长岩是矿床成矿母岩。本次工作在龙桥铁矿床中新发现了闪长岩侵入体,确定其岩性为辉长闪长岩,其成岩时代为133.5±0.8Ma,稍早于矿床中已知的正长岩体。矿床地质特征研究表明,辉长闪长岩与铁成矿作用关系密切,而正长岩为成矿期后破矿岩体。龙桥铁矿床中磁铁矿微量元素分析测试结果表明,靠近辉长闪长岩的磁铁矿具有较高的形成温度(Ti,V含量高)以及较低的水岩反应强度(Mg+Al+Si低),随着远离辉长闪长岩体,磁铁矿形成温度降低,水岩反应作用增强,地层组分加入增多。本文提出龙桥铁矿床属于层控矽卡岩型铁矿床,其中部分铁质可能来源于岩浆流体与赋矿围岩中沉积菱铁矿的水岩反应作用,但主要铁质来源仍为闪长质岩浆。罗河铁矿床总资源量约10亿吨,是成矿带内最大的铁矿床,其火山岩中“二层矿”特征具有鲜明的成矿特色,其相关研究具有重要的找矿勘探价值。本次工作通过对罗河铁矿床系统矿床学研究,确定矿床深部新发现矿体和浅部矿体的赋矿围岩均为强烈蚀变的砖桥组火山岩(粗安岩-辉石粗安岩),明确罗河铁矿床在成因上和深部隐伏闪长质岩浆活动有关。将罗河铁矿床的成矿作用划分为6个阶段,即碱性长石阶段(I)、透辉石-硬石膏-磁铁矿阶段(II)、绿泥石-绿帘石-碳酸盐阶段(III)、硬石膏-黄铁矿阶段(IV)、石英-硫化物阶段(V)以及碳酸盐-硫酸盐阶段(VI)。通过榍石年代学和地球化学研究,确定罗河铁矿床深部和浅部矿体中榍石的形成时代分别为130.0±0.8Ma和129.7±0.8Ma,形成时代相近。榍石微量元素特征指示成矿温度约700-800℃,成矿流体自深部向浅部氧逸度有所升高。两类榍石均具有岩浆榍石轻稀土富集的特征,Nd同位素特征均与赋矿围岩相似,表明深部和浅部矿体为同一成矿作用的产物。罗河铁矿床各阶段典型矿物SHRIMP原位S同位素特征表明,阶段II中黄铁矿的δ34S值为8.2-9.3‰;阶段III中黄铁矿的δ34S值为7.2-11.1‰,其中脉状黄铁矿(7.2-7.4‰)要低于浸染状黄铁矿(8.7-11.1‰);阶段IV黄铁矿的δ34S值为6.2—10.6‰;阶段V中黄铁矿的δ34S值为-2.5—-4.6‰。阶段II硬石膏δ34S值为16.1-17.7‰;阶段IV硬石膏δ34S值为18.3-19.2‰。阶段II,III,IV黄铁矿硫同位素相对稳定,与之共生的硬石膏值也变化较小,而阶段V中黄铁矿硫同位素则呈现出了突然变低的趋势。上述硫同位素特征表明,成矿系统从深部膏盐层持续获得硫酸盐补给,早期硫同位素分馏仅仅受到歧化反应控制,而到了晚期硫酸盐的还原作用导致黄铁矿δ34S值有所升高。罗河铁矿床各阶段典型矿物SHRIMP原位C-O同位素特征表明,阶段II成矿流体δ18Ofluid明显高于岩浆水,δ18Ofluid值在流体演化过程中有两次迅速降低,表明成矿过程中有两次岩浆-热液脉动作用并伴随后期大气水的加入,分别对应阶段IIb和阶段IV硬石膏的大量沉淀;C碳酸盐C-O同位素二元图,大多测试样品δ13C值在-5‰~0‰且δ13C与δ18Ofluid并无相关性,表明矿床流体中的碳源主要来自三叠系沉积地层,氧同位素的降低表明了大气水的加入。罗河铁矿床至少经历了两期深部流体脉动作用,第二次热液脉动温度明显降低,持续时间较短,后期大气降水的大量加入是导致磁铁矿转变为黄铁矿硬石膏组合的关键因素。矿床磁铁矿微量元素具有矽卡岩和IOA型矿床的双重特征。综上所述,罗河铁矿床既不同于典型的矽卡岩型铁矿床,也与典型IOA矿床存在差异,在矿床浅部与斑岩型热液系统具有一定可比性,属于较为特殊的Fe-P-SO42-系统,这里我们暂时将其称之为“非典型”IOA矿床。大鲍庄硫铁矿床由赤铁矿体、黄铁矿体以及硬石膏矿体组成,均产于砖桥组凝灰质火山岩中,具有VMS型矿床的部分地质特征,但其成因一直存在较大争议。本次工作通过系统的矿床地质和黄铁矿SHRIMP原位S同位素和LA-ICP-MS分析,确定矿床中存在四类黄铁矿,不同类型黄铁矿δ34S具有较大的变化范围(-31.4‰~+10.5‰)。凝灰岩中的脉状黄铁矿(type I)δ34S为+9.9‰和+10.5‰;块状矿体中细粒环状或椭圆状黄铁矿(type II)δ34S为-9.2‰~-2.0‰;交代凝灰岩的黄铁矿(type III)δ34S为+3.1‰~+5.3‰;硬石膏胶结物中的自形大颗粒黄铁矿(type IV)δ34S为-29.7‰~-30.4‰;等粒状和板状硬石膏变化范围较窄,为+21.0‰~+21.7‰。Type I黄铁矿具有高Mn、Co、Ni、Zn,低As、Ti、Tl、Sb的特征;type II黄铁矿具有较高的Al、Ti、V、Cu、As、Sb、Te、Tl,而Mn、Zn和Se含量较低;type III黄铁矿具有较高的Mg,Al,V,Ti,且变化范围较大,具有较高的Se,以及较低的Cu,Te;Mn,Zn,As,Sb,Bi,Tl等微量元素含量也是介于type I和type II之间;type IV大多微量元素含量均低于其他三类黄铁矿。上述地质地球化学特征表明,深部初始高温流体含有大量地层硫的加入,type I黄铁矿显示出与罗河铁矿床相似的硫同位素特征;随后喷出的热液与湖水混合,形成沉积黄铁矿(type II),温度不超过300℃;未喷出的流体交代围岩形成浸染状或脉状黄铁矿(type III)。热液活动末期流体活动减弱,温度迅速下降,形成少量type IV黄铁矿。与典型VMS型矿床不同,大鲍庄矿床的硫来自于深部同化而并非海水的混合,属于火山湖喷流沉积型矿床。前人研究认为马口铁矿床正长岩中产出典型的磷灰石-透辉石-磁铁矿“三组合”,属于与正长岩有关的玢岩型铁矿床。本次工作通过系统的矿床学和矿物学和年代学研究工作,确定马口铁矿床成矿母岩为闪长岩,成岩时代为131.2±3.3Ma,石英正长岩体为后期破矿岩体。马口铁矿床成矿母岩的厘定,进一步明确了庐枞盆地铁矿床的岩浆岩成矿专属性。马口铁矿床磁铁矿微量元素特征指示钠长石阶段热液性质接近岩浆水,黄铁矿硫同位素特征指示了矿床内的硫总体来自岩浆硫。在磁铁矿矿化过程中岩浆热液对三叠系地层的同化作用增强,随后从透辉石磁铁矿阶段到石英硫化物阶段,成矿流体中大气水的加入导致温度迅速下降。马口铁矿床的成矿物质来源、矿体特征、矿物组合以及磁铁矿沉淀机制与“梅山式”玢岩铁矿相似。通过对庐枞盆地内不同类型铁矿床中磁铁矿微量元素和同位素的系统对比研究,提出马口热液磁铁矿微量元素变化与典型IOA型矿床磁铁矿岩浆-热液模式相似,氧同位素接近正岩浆磁铁矿;龙桥矽卡岩型矿床磁铁矿微量元素变化趋势与Knipping et al(2015)提出Kiruna型铁矿床磁铁矿成分变化趋势完全不同,磁铁矿氧同位素明显高于岩浆水范围。罗河和杨山铁矿床磁铁矿微量元素变化趋势介于马口和龙桥之间,总体趋势指向IOCG,磁铁矿氧同位素值介于马口和龙桥之间,具有矽卡岩和IOA的双重(过渡)特征。本次研究结果表明庐枞盆地内一系列与岩浆热液有关的铁矿床属于同一成矿系统,成矿作用是一个持续变化的过程,矽卡岩型矿床强烈的水岩反应导致了磁铁矿成分变化趋势在Ti+V vs.Mn+Al图解上更偏向于横向变化。磁铁矿地球化学成分不可能受到严格的限制,与固定的界线相比,利用磁铁矿微量元素的演化趋势去判断矿床类型更为可靠。在对庐枞盆地成铁岩浆岩地球化学特征系统研究的基础上,通过区域对比,本次工作提出长江中下游成矿带铁矿床具有闪长岩质岩浆岩成矿专属性,130Ma左右形成闪长质侵入岩是矽卡岩型及玢岩型铁矿成矿的必要条件,而正长岩类侵入岩形成稍晚,在部分矿区穿切铁矿体,与铁成矿作用无直接关系。庐枞盆地、宁芜盆地和鄂东南地区的成铁岩浆岩的成岩时代和地球化学特征基本一致,岩浆源区为成分接近EMI型富集地幔的交代地幔,岩浆上升过程中受下地壳物质混染较少,更多保留了源区地幔的特征。庐枞盆地内不同类型铁矿床中磷灰石SHRIMP原位O同位素和微量元素特征表明,马口和龙桥铁矿床中辉长闪长岩内的岩浆磷灰石主要为富F、Cl磷灰石,马口热液磷灰石继承了岩浆磷灰石的地球化学特征,而罗河、泥河矿床热液磷灰石具有较高的SO3,指示了庐枞盆地铁成矿体系同化膏盐层具有选择性。岩浆可以大量同化石盐,但对于石膏的同化有限,石膏的加入主要是靠热液的溶解作用。这种同化机制的差异造成了庐枞盆地内岩体侵位深度不同的矿床其矿物组合以及磷灰石地球化学特征具有明显的差异。通过与宿松变质磷灰石特征对比,表明无论是岩体侵位还是热液成矿过程都没有同化已知的基底变质富磷地层。庐枞火山岩盆地中的大多数铁矿床成矿流体在深部与三叠系沉积地层发生了水岩反应,后沿断裂运移到火山岩中形成大量Na-Ca质蚀变,由于矽卡岩矿物发育、CO2逸度较高等因素导致磷灰石发育少于南美。蚀变特征、磁铁矿微量元素特征以及流体氧同位素指示盆地内铁矿床应属于矽卡岩-IOA的过渡部分,与岩浆-热液IOCG矿床中的早期Na-Ca质蚀变相似。以此为基础建立了庐枞盆地铁矿床的综合成矿模式,主要可分为产于三叠系沉积地层中的矽卡岩型铁矿床(龙桥);产于岩体和火山岩接触带的IOA型铁矿床(马口);产于巨厚火山岩中的矽卡岩-IOA型铁矿床(罗河、泥河、杨山);产于中低温氧化条件下的赤铁矿矿床(大岭)以及产于砖桥旋回晚期凝灰岩中的喷流沉积型黄铁矿矿床(大鲍庄)。虽然各个矿床赋存部位有所差异,但均与闪长质岩浆有关,盆地内的铁成矿过程连续而且成因上具有相互联系,是与早白垩世岩浆热液在不同成矿环境和成矿条件的产物。在区域构造和地球物理资料综合分析的基础上,提出长江中下游成矿带为扬子板块和大别造山带之间的前陆盆地系统,庐枞盆地作在前陆系统中应属于地势较低的前缘带,可能为古板块的碰撞缝合部位,其成岩成矿作用受中国东部中生代燕山期地质动力学背景的制约。源区岩浆在152Ma开始活化,至135Ma后,由于古太平洋板块俯冲应力方向有所改变,区域伸展作用加强,构造活化作用导致局部缝合带活化,在135Ma-123Ma之间形成了一系列火山岩盆地及其中以铁为主的矿床。通过对成矿带内成铜岩浆岩和成铁岩浆岩的对比研究,初步提出“深部岩浆演化决定矿种,浅部地层性质决定矿床类型”,并建立了长江中下游成矿带源区构造“双活化”成矿模式。

宋昊[5](2014)在《扬子地块西南缘前寒武纪铜—铁—金—铀多金属矿床及区域成矿作用》文中研究指明扬子地块西南缘的前寒武纪地层中赋存的铜-铁矿床以矿床数量多、规模大、伴生多种金属等为特征,其中拉拉、大红山等矿床的成矿地质特征具有代表性,且铜铁金属资源量丰富,并伴生有Au-Mo-U-Ag-Co-REE等组分,因而具有重要的研究意义。本文选题来源于由导师负责的中国地质调查局综合研究项目“西南地区主要成矿带铜铁金多金属找矿模型与勘查方法技术综合研究项目(12120113095500)”和中核集团委托的“西南地区深部地质过程与铀成矿作用研究”项目。论文以扬子地块西南缘前寒武纪铜-铁-金-铀多金属矿床——拉拉、大红山、迤纳厂、岔河等铁铜多金属矿床作为研究重点,开展野外地质调研、室内分析测试及综合研究,深入系统地研究矿床成矿地质背景和成矿地质条件,研究区内岩浆岩成因及年代学、矿床地质特征、流体来源、成矿时代、矿床形成的区域构造演化等主要地质学及矿床学问题,探讨矿床的形成机理及成矿模式,总结了区域铜多金属矿的成矿规律及成矿作用。通过本文研究工作,主要有以下几点认识:(1)系统总结了研究区区域地质背景、地层、构造、岩浆岩与区域地质演化;通过岩石学、地球化学、年代学的系统研究,提出拉拉矿区A型花岗岩形成于1657±15Ma的非造山伸展环境——板内裂谷构造环境,可能与地壳-岩石圈减薄及软流圈地幔上涌有关;元素地球化学指示辉长辉绿岩主要源于富集地幔,在上升过程中可能受到陆壳岩石圈的混染;随着具有富集地幔特征的岩浆通过底侵、上涌和强烈的结晶分异,形成本区A型花岗岩,认为本区存在辉长辉绿岩及A型花岗斑岩为代表的“双峰式”岩浆组合。(2)研究了矿床多金属组合特征及规律、矿物的共生组合关系,在此基础上,根据微量元素、电子探针分析,研究拉拉矿床Cu-Au-Mo-Co-Fe-U等多金属共生组合规律及成矿元素的赋存形态;将拉拉铜矿区的成矿过程划分为三个成矿期:火山沉积-岩浆热液期、热液流体成矿期、表生氧化期,对拉拉铜矿Cu-Fe-Au-Mo-U-Co等多金属成矿期次进行划分:Fe①-P(1期);Fe②-Co-Cu①(2期);Mo-Au-Cu②-U(3期)。(3)通过与典型IOCG矿床对比研究认为有较多相似之处。拉拉铜矿床、大红山铁铜矿床不仅规模大、意义重要,而且是研究区典型的两个IOCG矿床,且二者具有很强的相似性,从成矿与Fe-Cu多金属组合、Au-U-REE、岩浆岩、磁铁矿、断裂构造、褶皱、角砾岩、萤石化及矿体产状的关系可以总结出,拉拉、大红山、迤纳厂等矿床具有较为明显铁氧化物铜金(IOCG)矿床的特征。(4)通过矿石矿物硫同位素、磁铁矿元素地球化学显示矿床具有IOCG矿床的特征;磁铁矿元素地球化学特征表明成矿物质具有多种来源,可能局部为沉积来源-沉积改造成因,是后期热液交代叠加而形成。黄铁矿元素地球化学特征表明,矿床具有火山喷发沉积叠加后期热液的成矿特征,深部流体和浅部流体均对成矿有贡献,早期以火山-沉积作用为主,通过后期热液叠加作用而成矿。(5)根据硫-碳-氧同位素及稀土元素示踪研究、黄铜矿包裹体稀有气体同位素研究,结合Re-Os体系对成矿物质来源的探讨,表明地幔流体对拉拉、大红山矿床等矿床成矿具有重要意义,拉拉、大红山等矿床的成矿流体为浅部与深源岩浆水-地幔流体有关的混合来源;地幔流体在成矿过程中的参与,是本区形成(超)大型铜-铁-金-铀多金属矿床的重要条件。(6)通过黄铜矿Re-Os等时线年龄测得拉拉矿床、大红山矿床、岔河矿床等成矿年龄,拉拉矿床的成矿年龄为1085±27Ma、大红山1083±45Ma、岔河矿床为1082±46Ma,三者成矿时代具有较好的一致性,表明矿床的成矿可能属于中元古代末同一地质事件的产物。磁铁矿Re-Os同位素获得大红山矿床铁成矿年龄1325±170Ma,该年龄误差较大,可能代表了本区热液成因磁铁矿年龄,表明磁铁矿、磷灰石等主要在这一阶段富集成矿。通过对拉拉矿床内晶质铀矿较为系统的电子探针化学测年,确定铀的成矿年龄为824±15Ma,表明铀的形成晚于铁铜钼金等多金属的成矿作用,为新元古代的一期规模小但较为普遍的富集事件。(7)建立了典型矿床的成矿模式。本区矿床成因较复杂,一般经历了原始矿源层形成以后各种作用下复杂的叠加改(再)造,矿床是多期次、多阶段、多种成矿作用相互叠加后在有利空间富集成矿;从区域演化特征来看,早元古代是拉拉式铜铁多金属成矿作用的预富集阶段,形成重要的矿源层,经过其后多次构造运动的叠加改造而成矿,其中1.41.2Ga和1.11.0Ga是两次重要的铜多金属成矿作用,0.8Ga是区内IOCG矿床中的铀成矿阶段,多期次叠加成矿作用形成了铁-铜-金-铀-钼-钴-稀土多金属组合。(8)研究了成矿作用与重大地质事件的响应。对研究区Columbia超大陆裂解、格林威尔运动及Rodinia超大陆拼合裂解事件进行了总结和研究。认为成矿作用至少可以分为前期预富集作用及两次大的成矿作用,以及若干小的成矿作用,其中两次大的成矿作用主要为早元古代成矿作用和中元古代成矿作用。在此基础上建立了区域成矿过程及成矿模式。提出早元古代末和中元古代是研究区IOCG矿床的主要成矿时代,铁铜矿的形成与Columbia超大陆的裂解有关,而多金属矿床还与后期Rodinia超大陆的拼合和Grenville运动有密切关系。认为早元古代是本区铜铁等多金属成矿作用的预富集阶段,在早元古代末海相火山喷发沉积形成了矿床的赋矿层位和矿源层,经过中元古代多次构造作用和热液叠加改造,形成了研究区主要的IOCG矿床,如大红山、拉拉等矿床。

沈其韩,宋会侠[6](2015)在《华北克拉通条带状铁建造中富铁矿成因类型的研究进展、远景和存在的科学问题》文中进行了进一步梳理本文在查阅前人大量资料的基础上,对华北克拉通条带状铁建造中富铁矿的研究历史进行了回顾和总结,将研究历史分为1949年以前,19501965年期间,19781986年期间,19871994年期间和2009年以来5个阶段。重点介绍了鞍本地区、冀东-吕梁地区和河南舞阳地区富铁矿的基本地质特征以及典型富铁矿的研究概况,针对鞍本地区弓长岭二矿区磁铁富矿成因的复杂性,对不同成因观点以及目前已取得的共识进行了详细阐述。目前大多数学者不支持接触交代假说和菱铁矿经变质转化为富铁矿成矿假说,近半数学者支持变质热液成矿假说,半数学者支持混合岩化热液成矿假说。作者在综合分析前人大量资料后,认为变质热液成矿说依据不足,理由有四点:(1)磁铁富矿中往往见有磁铁贫矿的残体;(2)磁铁富矿与蚀变岩紧密伴生,蚀变矿物石榴子石、部分角闪石(透闪石)和部分绿泥石均属非变质热液成因;(3)研究区遭受区域高绿片岩相至低角闪岩相变质作用的时间为25002450Ma,而与蚀变矿物石榴石紧密伴生的热液锆石SHRIMP U-Pb定年结果为1840±7Ma,明显小于区域变质作用年龄,据此可将热液作用时间限定于古元古代晚期,相当于大陆地壳伸展阶段;(4)部分热液成因富铁矿利用Re-Os方法定年,除一种属原生沉积成矿外,年龄范围也在古元古代晚期,可作为参考。此种热液是否为混合岩化热液尚缺乏足够证据,故本文暂将其作为古元古代晚期热液。此外,本文对华北克拉通条带状铁建造中富铁矿成因类型及其远景进行了初步总结,认为古元古代晚期形成的磁铁富矿规模属大型矿床,有较好远景;原生较富贫铁矿因褶皱构造产生磁铁矿流变而形成的富铁矿(可能尚有热液叠加)规模较大,具有一定远景;其他类型均为小型规模,不具工业意义。最后,本文指出富铁矿成因研究中尚存在的主要问题,包括早元古代晚期热液的来源;热液的形成是一期还是多期;铁建造遭受区域变质达高绿片岩相时,贫铁矿的围岩变质演化机理等,尚需进一步探讨。

江满容[7](2014)在《陆相火山岩型铁矿床矿石组构学特征及其成因意义》文中研究说明宁芜盆地、庐枞盆地及攀西地区是我国陆相火山岩型铁矿研究的重要基地,而此类矿床中的矿石是在特定的地质条件下经过漫长的成矿过程演化而形成的,记录着成矿作用的相关信息。宁芜-庐枞地区铁矿床的赋矿岩体为一套晚侏罗世-早白垩世的中酸性次火山岩,其中以出露于地表-30m以下的宁芜梅山铁矿和地表-600m以下庐枞泥河铁矿为典型代表;而攀西地区平川铁矿的赋矿岩体为一套晚二叠世-早三叠世基性-超基性的次火山岩,矿体出露地表。泥河→梅山→平川铁矿的赋矿次火山岩体依次为偏酸性→中性→基性-超基性。三个矿床虽然都是陆相火山岩型铁矿,但是产出的地质背景、赋矿岩体、控矿构造、成矿作用、成矿流体及矿石组构等方面都有所差异。本次研究,以宁芜盆地梅山铁矿床、庐枞地区泥河铁矿床以及攀西地区平川铁矿床为研究对象,在矿相学理论指导基础上,进行系统的矿石组构学研究,并结合矿床地球化学和流体地质学等理论知识,选择具代表性的标型矿物组合通过探寻其物理性质、化学成分、流体性质及同位素组成在不同成矿环境的指纹信息,反馈不同成矿地质作用对标型矿物形成的制约作用,旨在揭示不同陆相火山岩系列的铁矿床在成矿作用过程中的共性及差异性。本次研究对深入认识陆相火山岩铁矿成矿作用,总结完善该类型铁矿床的成矿规律研究及推动深部找矿具有重要的意义。本次研究成果如下:(1)矿石组构学梅山铁矿早阶段伴随有网脉浸染状磁铁矿矿化,形成浸染状、网脉状贫矿体,晚阶段发生富矿流体的充填,形成块状富矿体;中期蚀变作用阶段磁铁矿发生赤铁矿化等,形成假象-半假象赤铁矿。典型矿石结构主要有自形-半自形粒状结构、它形粒状结构、交代结构、脉状-网脉状结构、格状结构、共结边结构、生长环边结构等。泥河铁矿矿石构造主要有浸染状构造、块状构造、斑杂状构造、细脉浸染状构造、网脉状构造,矿石结构主要有自形-半自形粒状结构、它形粒状结构、交代结构、格状结构、脉状-网脉状结构等。平川铁矿矿山梁子矿段和道坪子矿段的矿石构造主要有致密块状构造、浸染状构造、角砾状构造、脉状-网脉状构造,矿石结构主要有自形-半自形粒状结构、似海绵陨铁结构、交代结构、包含结构、碎裂结构。总体来说,陆相火山岩型铁矿床金属矿物主要为磁铁矿,其次赤铁矿、黄铁矿及菱铁矿。泥河铁矿床以次火山热液交代作用为主;梅山铁矿床以次火山热液交代作用为主,充填作用为辅;平川地区道坪子-矿段梁子矿段以充填成矿为主,交代作用为辅;平川烂纸厂矿段为火山沉积-变质成矿。(2)成矿期及成矿阶段的划分泥河铁矿和梅山铁矿都经历了三个成矿期,包括晚期岩浆结晶分异期,气水-热液成矿期和表生氧化期。泥河铁矿床的气水-热液成矿期可分为碱交代作用阶段、硬石膏-透辉石-磁铁矿化阶段、铁硫-钙充填交代阶段及硅化-泥化水热交代阶段。梅山铁矿在岩浆成矿期已经开始富集成矿物质,可进一步划分为岩浆结晶分异阶段、碱性长石化阶段及硬石膏-(磷灰石)-磁铁矿-透辉石/石榴石阶段;气水-热液成矿期划分为硬石膏-(磷灰石)-黄铁矿-磁铁矿阶段、石英-黄铁矿-磁铁矿阶段、含水硅酸盐矿物叠加作用阶段、硬石膏-黄铁矿化阶段及硅化-泥化-碳酸盐化阶段。平川铁矿在不同矿段表现出不同的成矿类型。基本上,成矿期可划分为岩浆分异期(大杉树矿段)、火山喷发-沉积期(烂纸厂)、次火山热液期(矿山梁子、道坪子矿段)和后生改造期。(3)磁铁矿的成因特征①磁铁矿至少可分为三个世代:早期为细粒它形磁铁矿,呈稀疏浸染状分布于赋矿次火山岩体中;中期为硬石膏-透辉石-磷灰石-磁铁矿化阶段(梅山、泥河)或(金云母)(蛇纹石)-磷灰石-磁铁矿化阶段(平川)以浸染状-块状构造产出的磁铁矿石,磁铁矿呈细粒它形粒状结构:晚期为以硬石膏-石英/碳酸盐-磷灰石-磁铁矿阶段脉状-网脉状构造产出的粗粒-伟晶状磁铁矿(泥河)、致密块状磁铁矿(梅山)或细粒碳酸盐-(硫化物)-磁铁矿阶段以梳状构造(矿山梁子)产出的中粗粒磁铁矿。根据其产出组构特征,一般早期为岩浆结晶分异的产物;中期为次火山岩热液交代作用的产物,为主矿体的主要组成部分;晚期为热液充填成矿。②磁铁矿晶胞参数:梅山及泥河铁矿床的晶胞参数(ao为8.38892-8.39057nm和8.38630-8.38965nm)分布在接触交代和热液交代型磁铁矿范围内,应为热液交代成因。而平川铁矿(包括矿山梁子和道坪子)磁铁矿的晶格常数ao分别为8.392-8.395nm和8.391-8.398nm,显示磁铁矿主体为热液交代成因,部分可能为岩浆作用形成。③梅山铁矿早期深部辉长闪长玢岩中的磁铁矿属于富钛低镁型-富钛富钒型;而后期接触交代作用下形成的磁铁矿属于低钛富镁型-低钛富钒型。泥河铁矿早期磁铁矿颗粒为富钛低镁型-富钛富钒型;泥河铁矿中期浸染状磁铁矿为低钛低镁型-低钛富钒型;晚期粗粒脉状磁铁矿Ti02含量在1%左右波动,比较偏过渡类型。矿山梁子及道坪子主矿体磁铁矿石矿山梁子以低钛、低铝、高镁含量为特征。电子探针数据显示由泥河→梅山→平川,磁铁矿的TFeO、Fe2O3含量及Fe2O3/FeO值明显增加,FeO含量明显降低,这可能与成矿溶液中铁质含量、成矿作用形式及矿质沉淀的空间位置有关。④梅山铁矿磁铁矿TiO2、Al2O3、MgO和MnO的对数分布图显示,A1203略负向偏倚分布,MgO、TiO2和MnO均呈较明显的负向偏倚特征,与岩浆型磁铁矿相似,可能为该区后期磁铁矿继承了部分岩浆结晶分异期的元素。泥河铁矿磁铁矿MnO、MgO略具对数负向偏倚分布,整体与火山岩型磁铁矿较为相似。平川铁矿道坪子矿段整体与矽卡岩型磁铁矿较为相似,可能与成矿期后大量的碳酸盐交代作用有关。⑤磁铁矿TiO2-Al2O3-MgO, TiO2-Al2O3-(MgO+MnO)成因图解显示,平川矿山梁子及道坪子主矿体磁铁矿具明显的热液交代和接触交代作用特征,而烂纸厂为沉积变质作用而成;泥河铁矿特征值分布集中,为与中性岩浆有关的火山岩型-热液型过渡类型;梅山铁矿特征值分布非常分散,为明显的过渡性成矿。⑥不同类型矿床、不同矿石结构和构造产出的磁铁矿TiO2-Al2O3-(MgO+MnO)成因图解也具有一定规律性。梅山铁矿磁铁矿为与火山岩有关的岩浆期后热液作用成矿,脉状矿石为岩浆期后矿质充填形成,以它形细粒结构集合体为特征;角砾状矿石及块状矿石则是早期热液交代萃取围岩中的铁质,晚期矿质大规模沉淀而成,该作用过程中发育区内最广泛的浸染状磁铁矿化,磁铁矿受后期热液作用的影响而被交代溶蚀呈残余结构。泥河铁矿磁铁矿主要分布于Ⅱ、Ⅲ、Ⅳ区的过渡区间,角砾状构造→浸染状构造→斑杂状构造→伟晶状构造→致密块状构造→网脉浸染状磁铁矿石中磁铁矿由火山岩型→岩浆型→热液型逐渐过渡,但浸染状磁铁矿石、伟晶状磁铁矿石及块状磁铁矿石受热液交代混染分布略分散。从磁铁矿产出结构特征来看,细粒它形结构与交代残余结构磁铁矿主要为火山岩型,粗粒自形-它形粒状结构磁铁矿偏向于热液成因,与区内以次火山岩-热液成矿特征较为一致。平川矿山梁子及道坪子矿段磁铁矿几乎都分布于矽卡岩型区域内,仅道坪子矿段发育的浸染状、细脉状磁铁矿石受地层混染而有向热液型过渡的趋势,矿山梁子矿段应该为富铁质矿浆沿本区火山机构及区内构造薄弱面充填成矿,受区内碳酸盐围岩影响。烂纸厂矿段磁铁矿为典型的沉积变质成因类型。⑦磁铁矿H-O稳定同位素:梅山磁铁矿H-O同位素特征显示成矿热液总体显示岩浆水(5DH2O=-73-84%o,δ18OH2O=6.68-8.9‰)的特征,大气降水混入不明显。泥河磁铁矿H-O同位素特征表明主成矿阶段的流体主要为岩浆水,成矿晚阶段则主要为天水。平川磁铁矿δ18OMt介于5.6-10.3‰之间,明显区别于岩浆型磁铁矿和沉积变质型磁铁矿,与辉长质岩浆(δ180=5.5~7.4‰)相近,说明形成磁铁矿的氧与深部岩浆源具有亲缘关系。成矿热液中的水主要来源于岩浆体系,和区内岩浆活动密切相关,但因碳酸盐脱碳作用而具有低δD和高δ180特征。(4)蚀变-矿化分带规律梅山铁矿围岩蚀变空间上,自下而上,分为岩体深部浅色蚀变带、接触带附近深色蚀变带和上部安山质火山岩中浅色蚀变带,磁铁矿化开始于岩体深部浅色蚀变带,在接触带附近深色蚀变带富集。泥河铁矿床矿体,自下而上分为①下部浅色蚀变带、②深色蚀变带、③叠加蚀变带及④上部浅色蚀变带。分别对应钠长石化、紫色硬石膏-透辉石-(磷灰石)-磁铁矿化、含石英-赤铁矿-(菱铁矿)-浅色硬石膏-黄铁矿化及硅化-泥化。次生石英岩化是磁铁矿化的远程指示性蚀变,膏辉岩化出现在近矿和容矿蚀变带,钠长石化大规模发育标志铁矿化作用的开始,亦即深部找矿勘探的终止。平川铁矿的道坪子矿段V号矿体产于辉长岩体与碳酸盐岩接触带,具充填交代成因,围岩蚀变相对较为发育,可划分为4个蚀变带:①蛇纹石化大理岩带、②金云母-蛇纹石-磁铁矿化带、③金云母-透闪石化带、及④绿帘石-阳起石-透辉石化带。各蚀变带渐变过渡,向接触带两侧蚀变程度逐渐减弱。金云母-蛇纹石-磁铁矿带是主要赋矿部位,主要发育在细粒辉绿辉长岩中,金云母和蛇纹石是近矿围岩蚀变标志。(5)蚀变-矿化作用过程中的元素迁移本次研究的陆相火山岩型铁矿中泥河铁矿具有保存最完整及最典型的蚀变分带特征,因此选取其作为研究对象,对蚀变-矿化作用过程进行探讨,分析元素迁移规律。针对泥河铁矿床蚀变矿化带对蚀变岩主量元素分析,以早期蚀变岩石为原岩与稍晚期蚀变岩石的不活动元素拟合最佳等浓度方程,采用改良后的等浓度图法(The Isocon Diagram)来定量探讨蚀变过程中元素迁移特征。早期碱交代作用阶段以Na质富集为主,代表着铁矿化作用的开始。Fe质迁移与Na质富集为负相关,与P富集呈正相关关系。深色蚀变带以铁、镁、钙交代作用为主,膏辉岩以强烈富集Ca、Mg,弱富集Fe、Si为特征,为磁铁矿化过程富集Fe、P提供物质基础。叠加蚀变带以铁、硫、钙充填交代作用为主,早期赤铁矿-(菱铁矿)-硬石膏-黄铁矿化过程伴随强烈的硅酸盐矿物绿泥石化、绿帘石化水解,富集Fe、P、S和LOI,强烈亏损Ca、Mg;黄铁矿-硬石膏化蚀变岩以强烈富集Ca、Sr和Ba,强烈亏损Al、Si、K、Mg和Na,较亏损P为特征,Ba、Sr等大离子亲石元素富集可能与硬石膏大规模沉淀有关。上部浅色蚀变带以硅、钾、铝水热交代作用为主,水云母-高岭土带富集K、Al,而早期蚀变迁移出的Si质则在次生石英岩化带沉淀形成硅质岩壳,磁铁矿化强度与硅化强度呈正相关关系,区内硅质的大规模沉淀标志着铁矿成矿作用过程全部结束。在整个矿化作用过程中Ti仅在磁铁矿大规模沉淀时发生类质同象置换而迁移,在其它蚀变过程中均以不活动组分存在。钠长石化的大量出现标志着铁矿化的开始;膏辉岩化是近矿和容矿蚀变;次生石英岩化是远程指示性蚀变。泥河铁矿床早期发育于辉石粗安玢岩体中的蚀变矿化过程微量稀土元素未发生明显的迁移。由辉石粗安玢岩内带至砖桥组粗安岩,微量-稀土元素逐渐降低,指示着稀土元素由内带向外带运移,亦指明了热液流体的运移方向。综上所述,陆相火山岩型铁矿床矿石组构学特征、磁铁矿成因标型特征及蚀变-矿化分带特征显示,铁质来源与岩浆岩密切相关。中性和基性-超基性火山岩系列铁矿床产出于火山岩体内部或接触带部位,铁矿体以交代充填成矿为主,均发育浸染状矿化、块状矿化及脉状-网脉状矿化,局部发育角砾状矿化。由于矿体产出位置及成矿环境差异导致产出不同类型矿石组构特征及磁铁矿类型。磁铁矿化学成分特征表明浸染状细粒它形磁铁矿颗粒具有火山岩型或岩浆型-热液型过渡特征,说明其对火山岩中的铁质具有继承性特征。通过研究泥河铁矿各蚀变矿化带的元素迁移规律结合区内成矿流体特征,探讨了陆相火山岩型铁矿床成矿作用过程及矿床形成机制,并建立了蚀变-矿化模型。

韩颖霄[8](2020)在《鄂东南-赣西北矽卡岩铜金成矿作用研究 ——以九瑞丰山矿田和城门山矿区为例》文中研究说明长江中下游地区作为我国重要的成矿带,发育大量与燕山期侵入岩相关的斑岩-矽卡岩-层控型Cu-Fe-Au-Mo矿床。虽然经过多年研究,但远离接触带的脉状金矿化和层控型矿体的成因依然存在巨大争议,而且矿区内稀散金属的赋存状态一直未得到足够的重视。本论文以九瑞矿集区丰山矿田、城门山矿区作为研究对象,对区内赋存于碳酸盐岩中的脉状金矿化、层控型矿体的成因开展研究,并对稀散金属的赋存状态进行探讨。丰山矿田矽卡岩型铜金矿床和脉状金矿床中发育大量Te-Au-Ag-(T1)矿物,如银金矿、碲金银矿、碲金矿、碲金铊矿物等。这两种矿化在铅锌成矿阶段均发育富Mn碳酸盐,可标识出岩浆热液的前锋位置;在矿田中由近接触带矽卡岩型铜金矿至远接触带脉状金矿,可识别出Cu-Mo-Te-Bi、Pb-Zn-Mn-Te、As-Te-TI的元素分带。这两种矿化中碳酸盐δ13C和δ18O值由早到晚呈正相关增大趋势,模拟计算显示这是由岩浆热液与碳酸盐岩反应过程中水岩比降低所导致的。新的硫酸盐S同位素测试和前人数据共同显示矿田内矽卡岩型铜金、脉状金矿化为单一的岩浆硫源。在城门山矿区,镜下特征显示纹层状矿石、胶状-草莓状黄铁矿均不能作为同生喷流沉积作用的证据,层控型矿体的矿物组合、生成顺序与斑岩-矽卡岩型矿体一致,即矽卡岩成矿系统可以解释各类型矿石的矿相学特征。城门山矿区发现大量与铜铅硫化物密切相关的Te-Bi矿物,包括碲银矿、辉碲铋矿、硫铋铜矿、硫铋铅矿等,这与丰山矿田中矽卡岩型铜金矿床相类似。原位微量元素研究显示黄铁矿具有早期富Se、Co,晚期富As、Au、Tl的典型特征,且含量变化与斑岩体密切相关,与其他地区的岩浆热液系统相似,而不同于喷流沉积型矿床;闪锌矿早期富Fe、In,晚期Cd、Mn的特征也符合前人对岩浆热液系统中闪锌矿微量元素的总结。硫化物原位S同位素研究显示城门山矿区的硫源为单一且稳定的岩浆硫源(834S=0~4‰),高氧逸度环境会导致局部样品富集轻硫(δ34S最小达-30%‰)。矿相学、稳定同位素、硫化物微量元素等研究显示脉状金矿化、层控型矿体与斑岩-矽卡岩型矿体具有密切的成因联系,其成因类型分别为远接触带型金矿化、manto交代型矿化,与近接触带的斑岩-矽卡岩型矿化构成了与燕山期斑岩体相关的矽卡岩型铜多金属成矿系统;矿区内可发育稀散金属富集,例如Te、Tl元素常以细粒的矿物集合体产出,而Se、In、Ga、Cd等元素则可以赋存在不同产状的黄铁矿、闪锌矿之中;同时本文建立的黄铁矿Se/As-Co图解,在识别矿床成因类型时也可提供重要思路。

张乐骏[9](2011)在《安徽庐枞盆地成岩成矿作用研究》文中研究表明长江中下游成矿带位于扬子板块北缘,是我国最重要的陆内铜金铁多金属成矿带之一,庐枞(庐江枞阳)盆地位于长江中下游成带中部的安徽省境内,是长江中下游成矿带的重要组成部分。作为断拗区典型代表的庐枞盆地的成岩成矿作用特色显着,矿床类型复杂多样。盆地中发育有白垩纪的四个旋回的钾玄岩系列岩石和多个侵入岩体。随着2006年庐枞盆地泥河大型铁矿床的发现,人们对庐枞盆地的找矿潜力进行了重新评价,并将其作为深部找矿的重要靶区之一,这使得成岩成矿时代、矿床成因、成矿规律及成矿系统之间的演化关系等工作亟待进行。因此,本文选择长江中下游成矿带中的庐枞盆地作为研究对象,在充分收集、整理前人研究成果的基础上,通过大量的野外地质调查和室内分析测试工作,综合运用多学科多方法,尤其是矿床学、蚀变岩石学、成岩成矿同位素地球化学、同位素年代学和流体包裹体地球化学及高精度微区微量分析等手段对对庐枞盆地的成岩成矿作用开展了系统的研究工作,获得的主要认识和进展如下:庐枞盆地的侵入岩可以分成两个阶段,其中包含了三种类型的岩石。早阶段的为二长、闪长岩类侵入体,主要分布在盆地的北部,形成时代为134Ma130Ma,与龙门院旋回和砖桥旋回的火山活动有关。晚期的侵入岩包括正长岩和A型花岗岩,主要分布在盆地的南部,形成时代为129Ma123Ma,与双庙旋回和浮山旋回的火山活动有关。本文对庐枞盆地内主要矿区内的侵入岩体进行LA-ICP-MS锆石U-Pb定年的结果显示,主要矿区内部侵入岩体的形成时代集中在134Ma129Ma之间。其中泥河矿区的闪长玢岩、二长斑岩、粗安斑岩、正长岩、正长细晶岩,大岭闪长玢岩,小岭粗安斑岩,大鲍庄闪长玢岩,井边安山斑岩,杨山闪长玢岩以及岳山粗安斑岩属于早阶段的侵入岩,与龙门院旋回和砖桥旋回的火山岩浆活动密切相关。泥河矿区的正长斑岩和马口矿区的石英正长斑岩属于晚阶段的侵入岩,与双庙旋回和浮山旋回的火山岩浆活动有关。对比表明,庐枞盆地主要矿区内的侵入岩的形成时间明显晚于长江中下游成矿带中断隆区与成矿有关的高钾钙碱性侵入岩体的形成时间,但与该区的其它火山岩盆地中的侵入岩浆活动的时代几乎相同。庐枞盆地内的侵入岩是区域第二期(135Ma127Ma)和第三期(126Ma123Ma)岩浆作用的产物。岩石地球化学特征显示,庐枞盆地四个旋回的火山岩和两期三种类型侵入岩的岩浆具有同源性关系,其岩浆源区为成分接近EMI型富集地幔的交代地幔,交代地幔的形成与古板块的俯冲交代作用有关。岩浆演化经历了岩浆分异、分离结晶作用和同化混染作用,岩浆分异、分离结晶作用主要发生于岩浆房中,早期的龙门院旋回、砖桥旋回火山岩以及早期侵入岩的岩浆分异程度相对较低,而晚期的双庙旋回、浮山旋回火山岩和晚期侵入岩的岩浆分异程度较高,在岩浆演化、上升侵位(喷发)的过程中,发生了一定程度的陆壳同化混染作用。在早白垩世,庐枞盆地的大地构造背景发生了从挤压向拉张过渡的构造背景向典型拉张的构造背景转变,转换的时间约为130Ma。盆地中早阶段的火山侵入岩浆活动(龙门院旋回和砖桥旋回火山岩和早期二长、闪长岩)发生于挤压拉张过渡的构造背景;而晚期火山侵入岩浆活动(双庙旋回和浮山旋回火山岩和晚期正长岩和晚期A型花岗岩)发生于典型的拉张构造背景。运用40Ar-39Ar定年方法对泥河铁矿床、龙桥铁矿床、马鞭山铁矿床、杨山铁矿床、马口铁矿床中的金云母以及井边铜金矿床内石英中流体包裹体进行分析测试得出,上述矿床的形成时代为134Ma127Ma之间。在上述结果的基础上,我们还根据矿区内与成矿关系最为密切的岩浆岩的形成时代间接的约束约束了其它未进行精确定年矿床的形成时代,最终得到庐枞盆地内成矿作用演化的时间序列为:盘石岭铁矿床的形成时代最早,与砖桥旋回火山喷发活动的时间基本一致(134Ma),脉状铜矿床、热液铅锌矿床的形成时代约为133Ma132Ma,其时代与砖桥旋回末期的次火山岩或二长岩类侵入体的形成时代基本一致;盆地中玢岩型铁矿床(包括罗河、泥河、杨山、龙桥、大岭、小岭和大鲍庄)的形成时代基本一致,均为130Ma左右,是在较短时间内集中“爆发式”形成的;矾山明矾石矿床形成时代与玢岩铁矿一致或略晚;形成时代最晚的是产于正长岩和A型花岗岩中的Fe-Cu-Au-U矿床,时代大约≤127Ma。本文对盆地中主要矿床的地质特征进行了详细的总结和描述,并对主要矿床的蚀变矿化期次进行了划分。在此基础上,我们运用电子探针(EPMA)和激光探针(LA-ICP-MS)对主要矿床中的矿石矿物和脉石矿物(黄铁矿、磁铁矿、辉石、石榴石、磷灰石和硬石膏)进行了元素组成分析。运用这些结果总结了不同矿物在不同成矿阶段和不同矿床中的元素富集规律,并与国内外研究成果进行了对比,初步探讨了元素富集变化规律对成矿流体演化和矿床成因的指示。例如,黄铁矿微量元素LA-ICP-MS面扫描图像显示,泥河铁矿床中形成于磁铁矿阶段的黄铁矿核富集Co,Ni,As和Se这一组元素,而形成于硫化物阶段的黄铁矿边除了含有上述元素之外,还富含Cu、Pb、Zn、Ag、Au和Tl等一些元素,指示了相应成矿阶段流体的性质。对磷灰石中微量元素研究结果表明,泥河铁矿床和马口铁矿床中的磷灰石与宁芜盆地陶村铁矿床中的磷灰石相似,而不同于Kiruna型矿床和IOCG型矿床中的磷灰石,这可能表明庐枞盆地中的铁矿床不属于Kiruna型矿床或IOCG型矿床。泥河铁矿床不同阶段的硬石膏具有不同的颜色,我们尝试性的运用LA-ICP-MS方法对其中的微量元素组成进行了研究,结果显示,Ba、Na、Y和REE的含量从紫色硬石膏(磁铁矿阶段)到红色硬石膏(硫化物阶段)再到白色硬石膏(石英-方解石-硫化物阶段)急剧降低。泥河铁矿床的蚀变岩石从空间上可以分为上部浅色蚀变带(晚期),中部深色蚀变带(中期)和下部浅色蚀变带(早期)。蚀变岩石学研究表明,早期矿化蚀变阶段主要形成下部浅色蚀变带,所伴随的物质组分变化有Fe、Ca、Mg从原岩中析出,而有大量的Na从溶液中进入岩石;中期形成矽卡岩的阶段有大量的Fe、Ca、Mg及少量Si的带入,并富含F、P、CO2等挥发分;中期矿化蚀变的末期主要形成矿床中部的绿泥石-绿帘石带,没有明显的组分带入带出现象,主要为挥发份H2O、CO2起作用,使早期无水硅酸盐矿物(辉石、石榴子石)转变为含水硅酸盐矿物(绿泥石、绿帘石)和方解石、菱铁矿等。晚期矿化蚀变阶段主要形成上部浅色蚀变带,伴随有大量的Ca、Fe、S及Si的富集,形成硬石膏矿体及黄铁矿矿体。流体包裹体研究表明,从泥河铁矿床磁铁矿化阶段到硫化物阶段,温度逐渐降低,同时泥河铁矿床磁铁矿阶段的温度高于龙桥铁矿床。脉状铜金矿床的成矿流体显示了中等温度特征,矾山明矾石矿床的流体属于浅成低温热液系统。H、O同位素组成表明泥河铁矿床的成矿流体以岩浆水为主,但体现了流体在上升过程中与围岩发生了同位素交换反应,有地壳组分的加入;龙桥铁矿床的成矿流体来源于岩浆,但与地层水和大气降水发生了混合。脉状铜金矿床的成矿流体显示了以更多比例的大气水加入。龙桥铁矿床C同位素研究表明成矿晚期存在岩浆岩和沉积岩(东马鞍山组地层)的双交代作用。S同位素研究表明金属矿床的硫源主要为岩浆硫和含膏盐地层硫的混合。闪长玢岩是整个庐枞盆地中最为重要的成矿流体驱动器,成矿流体在闪长玢岩体的内部和向外运移过程中在不同的位置与围岩发生反应,与地下水发生混合,成矿流体物理化学性质随之改变,从而导致了成矿物质在不同的部位发生沉淀形成矿床。庐枞盆地的成矿流体系统与长江中下游多金属矿床成矿流体子系统中的“玢岩型铁矿”成矿流体系统相似。本文在上述研究成果基础上,对盆地中的主要矿床进行了成因分析,并与国内外相关、相似地区和矿床进行了详细对比,建立了陆内环境下庐枞盆地的成矿模式,认为庐枞盆地的成岩成矿作用是一个连续而且成因上相互联系的过程,是与早白垩世岩浆热液活动有关的一个完整成矿系统演化作用的产物。庐枞盆地的成岩成矿作用是长江中下游成矿带以致整个中国东部中生代构造-岩浆-成矿系统演化的有机组成部分,受中国东部中生代燕山期地球动力学背景的制约。早白垩世135Ma后,区域完全进入太平洋构造体制,太平洋板块斜向俯冲、岩石圈拆沉、软流圈上升和地幔隆起作用加剧,区域伸展作用加强,在135Ma-123Ma之间形成了一系列火山岩盆地及其中的铁、铜多金属矿床及非金属。

张新虎[10](2007)在《甘肃省区域构造及区域成矿找矿研究》文中指出甘肃省内具有北山、祁连山和西秦岭三个古生代碰撞型造山带,是中国地质构造最为复杂的地区之一。祁连山是中国最为重要的早古生代与海相火山岩有关的块状硫化物(VHMS)铜多金属矿床成矿带,而其北邻的龙首山则为中国元古宙最主要的岩浆铜镍硫化物(铂族金属)矿床成矿带,西秦岭是中国最主要的蚀变岩型金矿成矿区。甘肃省的古板块构造格局是在古生代生成的。早古生代初期至晚古生代末,甘肃省分属西伯利亚板块、哈萨克斯坦板块、塔里木板块、华北板块、柴达木-祁连板块和扬子板块,其古生代地质历史实际就是板块聚敛的过程。这种聚敛过程不是固定的简单的合,而是在不断运动和运移过程中的消。古秦岭、古祁连、古北山洋壳在寒武纪由于板块运移的挤压而破裂,并相对于刚性块体俯冲,或者沿活动陆缘破裂并产生不同期次的俯冲消减,俯冲线逐渐向大洋及洋盆方向移动,洋面收缩,直至大洋及洋盆消亡;同时在活动大陆边缘形成沉积-火山物质的堆积和加积,每次俯冲运动都会相应地产生一部分新生陆壳(增生地体),使陆块逐渐向外增长,最后导致不同大陆板块的最终碰撞,形成了西秦岭、祁连山、北山古生代碰撞型造山带。因此,甘肃省自新元古代以后的构造发展主要为聚敛过程,并在晚古生代末聚合形成统一大陆。后来的各个地质时期的构造运动仅仅是在原有格局的基础上,加以改造并明显地复杂化。如在中新生代受到印度板块与欧亚块板碰撞作用的波及,产生一系列挤压运动,沿原有的一些断裂构造产生区域性的隆起和沉降,形成了现今复杂的地质景观。论述了甘肃省地球物理场特征和造山带的地壳结构,探讨了地球物理场与成矿的关系。以全省的1:20万水系沉积物测量成果为基础,研究省内39种(SiO2、Al2O3、Fe2O3、CaO、MgO、K2O、Na2O、P、Ti、Ba、Mn、Cu、Zn、Pb、Sr、Zr、Cr、Ni、La、V、Th、Co、Nb、Y、Ag、Cd、Li、As、Sb、Hg、W、Mo、B、Be、Bi、Sn、F、Au、U)元素(其中前七种为氧化物)在各时代地层中的分布特征。对全省地球化学场进行了归并和划分,共划出地球化学省7个,地球化学域21个,地球化学带14个,讨论了各地球化学带(省、域)的特征及其与已发现矿产的对应关系。提出了全省共划分出5个成矿域(Ⅰ级成矿区带)、8个成矿省(Ⅱ级成矿区带)、12个成矿区带(Ⅲ级成矿区带)、22个成矿亚区带(Ⅳ级成矿区带)的新见解。论证了每个Ⅳ级成矿区带内的地质成矿背景及矿化异常特征,并划分了矿田(Ⅴ级)。同时通过对省内矿床的形成时代、成矿环境、地质成矿作用及矿床“自然组合”的研究认识,基本确定了省内成矿系列序次,重点是对成矿系列类型及成矿系列、成矿亚系列进行了划分和鉴别,提出全省有11个成矿系列类型、39个成矿系列的新认识。对甘肃省内主要的金属矿产金、铜、铅锌、钨矿成矿控制因素从矿质来源、空间定位、成矿元素富集动力等方面进行了研究和总结,提出了主要金属矿产成矿的控制因素及找矿方向和远景区,论证了找矿突破的可能性。

二、我国某些层控菱铁矿床地质及地球化学特征(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、我国某些层控菱铁矿床地质及地球化学特征(论文提纲范文)

(1)安徽铜陵矿集区中酸性侵入岩及狮子山矿田铜多金属矿床(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 研究背景及选题依据
        1.1.1 国内外研究现状
        1.1.2 选题依据
    1.2 工作内容及研究方法
        1.2.1 工作内容
        1.2.2 研究方法
    1.3 完成工作量及研究进展
        1.3.1 完成工作量
        1.3.2 研究进展
第二章 区域地质背景
    2.1 长江中下游成矿带
        2.1.1 大地构造位置
        2.1.2 深部结构特征
        2.1.3 区域构造演化
    2.2 铜陵矿集区
        2.2.1 地壳结构
        2.2.2 区域构造
        2.2.3 区域地层
        2.2.4 区域地球化学背景
第三章 矿集区岩浆岩与岩浆作用
    3.1 岩浆岩研究现状
    3.2 岩浆岩时空分布
        3.2.1 岩体空间分布
        3.2.2 岩石形成年龄
    3.3 岩浆岩矿物组成和岩石化学特征
        3.3.1 岩石矿物组成特征及岩石种属
        3.3.2 岩石化学成分特征及岩石系列
    3.4 岩浆岩微量元素和稀土元素地球化学特征
        3.4.1 微量元素
        3.4.2 稀土元素
    3.5 岩浆岩同位素地球化学特征
        3.5.1 Sr-Nd同位素
        3.5.2 O同位素
        3.5.3 Pb同位素
    3.6 深部岩浆动力学过程及成岩机制
        3.6.1 岩浆起源
        3.6.2 岩浆演化
        3.6.3 成岩大地构造背景
        3.6.4 成岩动力学过程
    3.7 小结
第四章 矿集区铜多金属矿床
    4.1 矿床时空分布
        4.1.1 矿床空间分布
        4.1.2 矿床时间分布
    4.2 矿床成因类型
    4.3 矿田地质特征
        4.3.1 铜官山矿田
        4.3.2 狮子山矿田
        4.3.3 新桥矿田
        4.3.4 凤凰山矿田
        4.3.5 沙滩角矿田
    4.4 小结
第五章 狮子山矿田铜多金属矿床地质
    5.1 矿田地质概况
        5.1.1 地层
        5.1.2 构造
        5.1.3 岩浆岩
        5.1.4 矿床
    5.2 矿床地质特征
        5.2.1 包村金(铜)矿床
        5.2.2 朝山金矿床
        5.2.3 鸡冠石银(金)矿床
        5.2.4 东狮子山铜(金)矿床
        5.2.5 西狮子山铜(金)矿床
        5.2.6 老鸦岭铜(钼)矿床
        5.2.7 大团山铜(金)矿床
        5.2.8 花树坡铜(金)矿床
        5.2.9 胡村铜(钼)矿床
        5.2.10 冬瓜山铜(金)矿床
    5.3 小结
第六章 狮子山矿田铜多金属矿床地球化学
    6.1 流体包裹体地球化学
        6.1.1 流体包裹体样品采集和实验
        6.1.2 流体包裹体岩相学特征
        6.1.3 流体包裹体均一温度和盐度
        6.1.4 流体包裹体气液相成分
        6.1.5 成矿流体热力学参数的确定
        6.1.6 铜和金的络合物形式及相关热力学计算
        6.1.7 铜和金迁移和沉淀的热力学分析
        6.1.8 小结
    6.2 稳定同位素地球化学
        6.2.1 氢-氧同位素
        6.2.2 硫同位素
        6.2.3 铅同位素
        6.2.4 小结
第七章 结语
参考文献
致谢
攻读博士学位期间发表的论文
附表

(2)西昆仑造山带区域成矿规律研究(论文提纲范文)

中文摘要
Abstract
绪论
    一、依托项目及论文选题
    二、研究区范围
    三、工作程度及存在问题
    四、研究思路及完成工作量
    五、本次研究主要进展
第1章 西昆仑造山带区域地质背景
    1.1 西昆仑区域断裂构造与构造分区
        1.1.1 区域断裂构造
        1.1.2 西昆仑构造分区
    1.2 区域地层
        1.2.1 前寒武纪
        1.2.2 下古生界
        1.2.3 上古生界
        1.2.4 中生界
        1.2.5 新生界
    1.3 区域岩浆岩
        1.3.1 侵入岩
        1.3.2 西昆仑蛇绿岩带
    1.4 区域地球物理特征
        1.4.1 区域重力场特征
        1.4.2 区域磁场特征
第2章 西昆仑地球动力学背景
    2.1 西昆仑地球动力学演化史研究现状
    2.2 西昆仑造山带花岗岩构造背景
        2.2.1 元古代花岗岩浆活动的构造背景
        2.2.2 加里东期花岗岩的构造背景
        2.2.3 海西期花岗岩的构造背景
        2.2.4 西昆南带印支期侵入岩的构造背景
        2.2.5 燕山期花岗岩浆活动的构造背景
        2.2.6 西昆南带喜马拉雅花岗岩的构造背景
    2.3 火山岩活动的构造背景
        2.3.1 中新元古代火山岩的地球化学特征及构造背景
        2.3.2 早古生代火山岩的地球化学特征及构造背景
        2.3.3 晚古生代火山岩的地球化学特征及构造背景
    2.4 西昆仑造山带东西向差异
        2.4.1 地层与沉积建造东西向差异
        2.4.2 火山岩东西向差异
        2.4.3 花岗岩东西向差异
        2.4.4 区域矿产分布的东西向差异
    2.5 西昆仑造山带地球动力学演化
        2.5.1 西昆仑南、北洋的确定
        2.5.2 西昆北洋的演化
        2.5.3 西昆南洋的演化
        2.5.4 西昆仑造山带的隆升
第3章 典型矿床研究
    3.1 造山型金矿
        3.1.1 造山型金矿概述
        3.1.2 西昆仑典型造山型金矿特征
        3.1.3 西昆仑造山型金矿连续成矿模式的建立
    3.2 热水喷流沉积矿床研究
        3.2.1 西昆仑块状硫化物典型矿床研究
        3.2.2 贫硫化物型喷流矿床的研究
    3.3 热液型铜多金属矿床研究
        3.3.1 大同乡布斯拉津岩浆热液脉型铜钼矿点
        3.3.2 塔什库尔干司热洪矽卡岩型铜(铁)矿床
    3.4 塔木中低温热液脉型铅锌矿床研究
        3.4.1 矿区地质特征
        3.4.2 矿床地质特征
        3.4.3 流体包裹体特征
        3.4.4 成矿物质来源
        3.4.5 矿床成矿机理
        3.4.6 塔木铅锌矿床成矿模型
    3.5 特格里曼苏生物化学沉积砂岩型铜矿床研究
        3.5.1 矿区地质特征
        3.5.2 矿床地质特征
第4章 西昆仑造山带区域成矿条件及成矿规律
    4.1 区域成矿地质条件
        4.1.1 不同时代地层与成矿
        4.1.2 特殊岩性与成矿
    4.2 岩浆作用与成矿
        4.2.1 火山作用与成矿
        4.2.2 侵入作用与成矿
    4.3 构造与成矿
        4.3.1 构造演化与成矿
        4.3.2 深大断裂与成矿
    4.4 区域成矿规律
        4.4.1 成矿的时间演化规律
        4.4.2 矿床空间分布规律
    4.5 成矿后的保存条件
        4.5.1 西昆北成矿带保存条件
        4.5.2 西昆中成矿带保存条件
        4.5.3 西昆南成矿带保存条件
        4.5.4 西昆仑成矿带东西保存条件
第5章 区域成矿模式及找矿方向
    5.1 区域成矿模式
    5.2 大型矿田的形成条件及其地球动力学
        5.2.1 形成与产出条件
        5.2.2 动力学条件
    5.3 区域找矿标志及找矿方向
        5.3.1 区域找矿标志特征
        5.3.2 进一步找矿方向
结论
参考文献
图版及图版说明
攻读博士学位期间发表的学术论文
致谢

(3)扬子地台西缘铅锌矿床分布规律及矿源层探讨(论文提纲范文)

0引言
1铅锌矿床时空分布规律
    1.1矿集区划分与成矿系列
    1.2层位赋存规律
    1.3构造分级控制成矿区、带展布规律
    1.4矿石铅锌金属组分分布规律
    1.5时间分布
2铅锌矿床与菱(赤)铁矿床分布的耦合关系
    2.1滇东黔西地区
    2.2会理会东地区
    2.3荥经-甘洛地区
3矿源层及其决定矿床分布的机制
    3.1含铁建造——提供铅锌成矿主要矿质来源
        1)上部(盖层)矿源层
        2)下部(基底)矿源层
        3)两个矿源层是否存在于荥经甘洛地区?
        4)其他需要说明的问题
    3.2成矿之硫的物质来源及其赋存
    3.3矿源层控制的矿床分布之形成机制
        1)古地理控制了矿源层及矿集区分布的形成机制
        2)层控之形成机制
        3)成矿与构造空间同一性机制
        4)综合成矿机制
4结论

(4)安徽庐枞盆地铁矿床成矿系统和成矿模式研究(论文提纲范文)

致谢
摘要
abstract
第一章 前言
    1.1 选题依据及意义
    1.2 研究现状及存在问题
        1.2.1 研究现状
        1.2.2 存在问题
    1.3 研究内容以及技术路线
    1.4 论文实物工作量
    1.5 研究主要成果及创新点
第二章 区域地质概况
    2.1 地层
    2.2 构造
        2.2.1 断裂构造
        2.2.2 褶皱构造
        2.2.3 火山机构
    2.3 岩浆岩
    2.4 区域地质演化
    2.5 区域矿产
第三章 龙桥铁矿床
    3.1 矿床地质特征
        3.1.1 地层
        3.1.2 构造
        3.1.3 岩浆岩
        3.1.4 矿体特征及矿石结构构造
        3.1.5 围岩蚀变及成矿期次
    3.2 辉长闪长岩岩石学和年代学特征
        3.2.1 岩石学特征
        3.2.2 定年结果
    3.3 辉长闪长岩地球化学特征
        3.3.1 全岩地球化学特征
        3.3.2 Sr-Nd-Pb同位素特征
        3.3.3 岩体磷灰石地球化学特征
    3.4 磁铁矿地球化学特征
        3.4.1 磁铁矿矿石全岩分析
        3.4.2 磁铁矿原位微量元素特征
        3.4.3 磁铁矿SHRIMP原位O同位素特征
    3.5 矿床成因
    3.6 关于矿床类型指示图解的启示
第四章 罗河铁矿床
    4.1 矿床地质特征
    4.2 成矿年龄
        4.2.1 样品特征
        4.2.2 榍石LA-ICP-MS定年结果
    4.3 矿床地球化学特征
        4.3.1 蚀变岩全岩地球化学特征
        4.3.2 榍石主微量元素特征
        4.3.3 榍石Nd同位素特征
        4.3.4 磁铁矿原位微量元素特征
        4.3.5 硬石膏及黄铁矿S同位素特征
        4.3.6 矿床典型矿物SHRIMP原位C-O同位素特征
    4.4 矿床成因
第五章 大鲍庄黄铁矿床
    5.1 地质特征
    5.2 矿床地球化学特征
        5.2.1 黄铁矿S同位素特征
        5.2.2 黄铁矿微量元素特征
    5.3 矿床成因
第六章 马口铁矿床
    6.1 马口铁矿床区域填图
    6.2 矿化和矿物特征
    6.3 马口成矿岩体年龄
    6.4 矿床地球化学特征
        6.4.1 矿床岩浆岩全岩分析
        6.4.2 全岩Sr-Nd-Pb同位素特征
        6.4.3 磁铁矿原位微量元素特征
        6.4.4 钠长石、磁铁矿和磷灰石SHRIMP原位O同位素特征
        6.4.5 黄铁矿SHRIMP原位S同位素特征
    6.5 矿床成因
第七章 杨山铁矿床
    7.1 杨山地质特征
    7.2 矿床地球化学特征
        7.2.1 磁铁矿原位微量元素特征
        7.2.2 磁铁矿SHRIMP原位O同位素特征
    7.3 矿床成因
    7.4 磁铁矿出溶对微量元素测试的影响
第八章 何家大岭铁矿床
    8.1 地质特征
        8.1.1 地层
        8.1.2 构造
        8.1.3 岩浆岩
        8.1.4 矿体特征
        8.1.5 矿石特征
        8.1.6 围岩蚀变
    8.2 矿床地球化学特征
        8.2.1 赤铁矿原位微量元素特征及指示意义
        8.2.2 赤铁矿O同位素特征及指示意义
        8.2.3 黄铁矿S同位素特征及指示意义
    8.3 成矿作用和矿床成因
第九章 成矿作用和成矿模式
    9.1 成矿物质来源
        9.1.1 成矿岩浆岩专属性
        9.1.2 矿床中的钠化蚀变岩与正长岩
        9.1.3 泥河铁矿床赋矿围岩岩性
        9.1.4 蚀变矿化物质来源
    9.2 成矿流体特征和成矿作用过程
        9.2.1 水岩反应对流体性质的影响
        9.2.2 成矿过程
    9.3 成矿模式
    9.4 与铜矿化岩浆专属性的对比
    9.5 地质动力学背景
        9.5.1 前陆盆地系统
        9.5.2 “双活化”作用对铁成矿作用的影响
        9.5.3 长江中下游成矿带铁铜成矿特色的原因
第十章 主要结论及研究展望
    10.1 主要结论
    10.2 研究展望
参考文献
攻读博士学位期间学术活动及成果情况
附录1 样品制备及分析方法

(5)扬子地块西南缘前寒武纪铜—铁—金—铀多金属矿床及区域成矿作用(论文提纲范文)

摘要
Abstract
第1章 引言
    1.1 选题的来源、目的和意义
    1.2 国内外研究现状、发展趋势及存在问题
        1.2.1 IOCG 矿床的概念及研究范畴
        1.2.2 国外 IOCG 研究现状
        1.2.3 中国 IOCG 研究现状及意义
        1.2.4 扬子地块西南缘下元古界铜铁多金属矿床研究现状
        1.2.5 存在问题
    1.3 研究思路、方法及创新点
        1.3.1 研究内容
        1.3.2 研究思路
        1.3.3 研究方法及方案
        1.3.4 技术路线
        1.3.5 论文主要成果与创新点
    1.4 完成的主要工作量
第2章 研究区地质背景与成矿地质条件
    2.1 区域地质背景
        2.1.1 地层及含矿岩系
        2.1.2 构造
        2.1.3 岩浆岩
        2.1.4 变质岩
        2.1.5 区域矿产
    2.2 主要矿床地质特征
        2.2.1 拉拉矿床
        2.2.2 大红山矿床
        2.2.3 岔河铜多金属矿床
        2.2.4 迤纳厂稀土铁铜矿床
        2.2.5 小结
第3章 岩石地球化学及年代学特征
    3.1 原岩恢复及地层沉积环境
        3.1.1 变质岩原岩恢复
        3.1.2 地层沉积环境
    3.2 构造环境的元素地球化学证据
        3.2.1 基性侵入岩
        3.2.2 酸性侵入岩
    3.3 岩浆岩时代
        3.3.1 分析方法
        3.3.2 锆石微量元素
        3.3.3 锆石年龄
    3.4 讨论
        3.4.1 年代学意义
        3.4.2 区域构造背景指示意义
        3.4.3 双峰式岩浆岩的意义
第4章 成矿年代学研究
    4.1 硫化物铼锇同位素分析测试方法
    4.2 拉拉矿床铼锇成矿年代
        4.2.1 测试结果
        4.2.2 成矿物质来源指示
    4.3 大红山及岔河矿床铼锇成矿年代
        4.3.1 黄铜矿 Re-Os 同位素年龄
        4.3.2 磁铁矿 Re-Os 同位素年龄及意义
    4.4 矿床中铀的成矿年代
    4.5 区内其他矿床成矿年代
    4.6 讨论及小结
        4.6.1 年龄数据的甄别
        4.6.2 成矿年龄探讨
        4.6.3 小结
第5章 成矿流体地球化学及物源示踪
    5.1 矿物元素地球化学研究
        5.1.1 黄铁矿元素地球化学特征
        5.1.2 磁铁矿元素地球化学特征/磁铁矿矿物学特征
    5.2 稀土元素地球化学示踪
        5.2.1 方解石稀土元素特征
        5.2.2 黄铜矿稀土元素特征
        5.2.3 黄铁矿稀土元素特征
    5.3 成矿流体来源的同位素示踪
        5.3.1 碳、氧同位素研究
        5.3.2 硫同位素地球化学
        5.3.3 稀有气体同位素
    5.4 小结
第6章 前寒武纪地质事件与成矿作用
    6.1 成矿地质事件及重大地质事件的响应
        6.1.1 前寒武纪区域重大地质事件概述
        6.1.2 早元古代末地质事件
        6.1.3 中元古代末地质事件
        6.1.4 新元古代地质事件
    6.2 矿床地质特征及成矿规律
        6.2.1 矿床特征及控矿作用
        6.2.2 矿床类型
        6.2.3 讨论
    6.3 成矿模式
        6.3.1 典型矿床成矿模式
        6.3.2 区域成矿过程及成矿模式
    6.4 小结及讨论
结论
致谢
攻读学位期间取得学术成果
参考文献
附录
    Ⅰ 图版(野外典型照片)
    Ⅱ 图版(流体包裹体照片)
    Ⅲ 附表(已有年代学数据统计)

(6)华北克拉通条带状铁建造中富铁矿成因类型的研究进展、远景和存在的科学问题(论文提纲范文)

1引言
2条带状铁建造中富铁矿研究阶段划分
    2. 1 1949年新中国建立之前
    2. 2 1950 ~ 1965年期间
    2. 3 1978 ~ 1986年期间
    2. 4 1987 ~ 1994年期间
    2. 5 2009年以来
3条带状铁建造中富铁矿的基本地质特征
    3. 1鞍本地区的富铁矿
        3. 1. 1弓长岭二矿区的富铁矿
        3. 1. 2樱桃园地区富铁矿
        3. 1. 3王家堡子富铁矿
        3. 1. 4老岭-八盘岭富铁矿体
        3. 1. 5南芬( 庙尔沟) 富铁矿
        3. 1. 6其他富铁矿
    3. 2冀东、吕梁和河南舞阳地区的富铁矿
        3. 2. 1冀东地区的富铁矿
        3. 2. 2迁安杏山富铁矿
        3. 2. 3吕梁地区袁家村铁矿区的富铁矿
        3. 2. 4河南舞阳地区的富铁矿
    3. 3条带状铁建造中富铁矿成因类型讨论的历史回顾
4富铁矿成因讨论
    4. 1鞍本地区
    4. 2冀东-吕梁地区的富铁矿
        4. 2. 1冀东以滦县司家营-大贾庄为代表的富铁矿
        4. 2. 2迁安杏山的富铁矿
        4. 2. 3吕梁地区袁家村铁矿区的富铁矿体
5鞍本弓长岭二矿区磁铁富矿成因类型的初步归纳
6华北克拉通条带状铁建造中富铁矿的成因类型及其远景
7富铁矿研究中尚存在的主要科学问题

(7)陆相火山岩型铁矿床矿石组构学特征及其成因意义(论文提纲范文)

作者简介
摘要
ABSTRACT
第一章 前言
    §1.1 选题依据及意义
    §1.2 研究现状及存在的问题
        1.2.1 宁芜“玢岩铁矿”研究现状
        1.2.2 庐枞铁矿床研究现状
        1.2.3 攀西地区陆相火山岩型铁矿床研究现状
        1.2.4 矿石组构学研究现状
        1.2.5 等浓度图法元素迁移规律研究现状
        1.2.6 存在的问题
        1.2.7 拟解决的问题
    §1.3 技术路线及研究内容
    §1.4 论文完成的实物工作量
    §1.5 论文取得的主要成果及创新点
第二章 区域成矿地质背景
    §2.1 宁芜盆地
    §2.2 庐枞盆地
    §2.3 攀西平川地区
第三章 典型矿床地质特征
    §3.1 梅山铁矿
        3.1.1 矿区地质特征
        3.1.2 矿床地质特征
    §3.2 泥河铁矿
    §3.3 平川铁矿
        3.3.1 矿区地质特征
        3.3.2 矿体地质特征
    §3.4 成矿时限
        3.4.1 火山岩年龄
        3.4.2 次火山岩年龄
        3.4.3 矿床成矿时代
第四章 样品处理及分析方法简介
    §4.1 样品准备及处理
    §4.2 分析方法
        4.2.1 爆裂温度测试分析
        4.2.2 成矿流体成分分析
        4.2.3 电子探针分析(EMP)
        4.2.4 主、微量地球化学分析
        4.2.5 稳定同位素分析方法
第五章 矿石组构学特征
    §5.1 梅山铁矿
        5.1.1 矿石矿物成分及矿石类型
        5.1.2 矿石结构
        5.1.3 矿石构造
        5.1.4 矿物共生组合及蚀变矿化分带
        5.1.5 成矿期次与矿化阶段
    §5.2 泥河铁矿
        5.2.1 矿石矿物成分及矿石类型
        5.2.2 矿石结构
        5.2.3 矿石构造
        5.2.4 矿物共生组合及蚀变矿化分带
        5.2.5 成矿期与成矿阶段的划分
    §5.3 平川铁矿
        5.3.1 矿石矿物成分及矿石类型
        5.3.2 矿石结构
        5.3.3 矿石构造
        5.3.4 矿物共生组合及蚀变矿化分带
        5.3.5 成矿期次与成矿阶段
第六章 典型矿物标型与蚀变-矿化模型
    §6.1 典型矿物标型及矿石组构成因意义
        6.1.1 磁铁矿
        6.1.2 黄铁矿
        6.1.3 菱铁矿
        6.1.4 磷灰石
        6.1.5 硬石膏
        6.1.6 硅质岩
    §6.2 矿床地球化学特征及流体特征
        6.2.1 泥河铁矿蚀变岩地球化学特征
        6.2.2 梅山铁矿
        6.2.3 平川铁矿
        6.2.4 蚀变矿化作用过程及形成机制探讨
    §6.3 蚀变-矿化找矿模型
第七章 结论与问题
    §7.1 主要结论
    §7.2 存在问题
致谢
参考文献
图版Ⅰ 梅山铁矿床典型矿物及矿石结构显微照片
图版Ⅱ 梅山铁矿床典型矿石构造照片
图版Ⅲ 梅山铁矿床自下而上围岩蚀变分带特征
图版Ⅳ 泥河铁矿床典型矿物及矿石结构显微照片
图版Ⅴ 泥河铁矿床典型矿石构造照片
图版Ⅵ 平川铁矿床典型矿物及矿石结构显微照片
图版Ⅶ 平川铁矿床典型矿石构造照片

(8)鄂东南-赣西北矽卡岩铜金成矿作用研究 ——以九瑞丰山矿田和城门山矿区为例(论文提纲范文)

摘要
Abstract
矿物缩写
1 绪论
    1.1 赋存于碳酸盐岩中金矿化
        1.1.1 研究现状
        1.1.2 丰山矿田
    1.2 长江中下游成矿带层控型矿体
        1.2.1 不同矿床类型的特征总结
        1.2.1.1 喷流沉积矿床
        1.2.1.2 火山成因块状硫化物矿床
        1.2.1.3 Manto交代型矿体
    1.3 稀散金属
        1.3.1 定义和研究意义
        1.3.2 长江中下游稀散金属分布情况及存在问题
    1.4 研究思路
        1.4.1 研究计划
        1.4.2 计划实施及完成工作量
2 区域地质背景
    2.1 区域构造演化
    2.2 区域地层
    2.3 区域构造
    2.4 区域岩浆岩
    2.5 九瑞矿集区
3 丰山矿田脉状金矿化成因研究
    3.1 矿区地质
        3.1.1 矽卡岩型铜金矿床
        3.1.2 脉状金矿床
    3.2 矿相学特征
        3.2.1 矽卡岩铜金矿床
        3.2.2 脉状金矿床矿相学研究
    3.3 碳酸盐成分
    3.4 稳定同位素研究
        3.4.1 碳酸盐碳氧同位素
        3.4.2 硫酸盐硫同位素研究
    3.5 丰山矿田成矿规律及找矿意义
4 城门山矿区层控型矿体成因研究
    4.1 矿区地质
        4.1.1 地层
        4.1.2 矿区构造
        4.1.2.1 断裂
        4.1.2.2 褶皱
        4.1.3 岩浆岩
    4.2 矿石类型
    4.3 矿石组合及生成顺序
    4.4 硫化物微量元素测试
        4.4.1 黄铁矿微量元素
        4.4.1.1 城门山矿区
        4.4.1.2 丰山矿田鸡笼山矿床
        4.4.1.3 黄铁矿Se/As-Co图解
        4.4.2 闪锌矿微量元素
        4.4.2.1 城门山矿区
        4.4.2.2 丰山矿田鸡笼山-曹家山成矿系统
        4.4.2.3 闪锌矿Fe/Mn-In图解
    4.5 硫化物原位硫同位素测试
    4.6 金、银、稀散金属赋存状态
    4.7 城门山矿区成矿规律及找矿意义
5 结论
    5.1 主要认识
    5.2 存在问题和下一步计划
致谢
参考文献
附录
作者简介

(9)安徽庐枞盆地成岩成矿作用研究(论文提纲范文)

摘要
ABSTRACT
致谢
第一章 引言
    1.1 选题依据及意义
    1.2 研究现状及拟解决的主要问题
        1.2.1 研究现状
        1.2.2 拟解决的主要问题
    1.3 技术路线及研究内容
    1.4 论文完成的实物工作量
    1.5 论文取得的主要成果及创新点
第二章 区域地质概况
    2.1 地层
    2.2 构造
        2.2.1 断裂构造
        2.2.2 褶皱构造
        2.2.3 火山构造
    2.3 岩浆岩
        2.3.1 火山岩
        2.3.2 次火山岩
        2.3.3 侵入岩
    2.4 区域壳幔结构及地质演化
        2.4.1 区域壳幔结构
        2.4.2 区域地质演化
    2.5 区域矿产
第三章 样品处理及地球化学分析方法
    3.1 样品的处理
        3.1.1 光薄片、单矿物的分选及样品靶的制备
        3.1.2 全岩粉末样品的制备
    3.2 地球化学分析方法
        3.2.1 主量、微量元素分析
        3.2.3 全岩 Rb-Sr、Sm-Nd 和 Pb 同位素分析
        3.2.4 锆石 LA-ICP MS 定年
        3.2.5 锆石 Lu-Hf 同位素分析
        3.2.6 PIMA 和 XRD 分析
        3.2.7 矿物 EPMA 分析和 LA-ICP-MS 原位微量元素分析
        3.2.8 40Ar-39Ar 定年
        3.2.9 稳定同位素(H、O 和 S)分析
        3.2.10 流体包裹体分析
第四章 岩浆作用的时空格架
    4.1 火山岩的时空分布
    4.2 侵入岩的时空分布
    4.3 主要矿区内岩浆岩的形成时代
        4.3.1 样品特征
        4.3.2 定年结果
    4.4 岩浆岩的时空格架
    4.5 区域岩浆岩的形成时代对比
第五章 岩浆岩地球化学特征及岩石成因
    5.1 火山岩岩石地球化学特征
        5.1.1 主量元素特征
        5.1.2 微量元素特征
        5.1.3 Sr-Nd-Pb 同位素特征
        5.1.4 锆石 Lu-Hf 同位素特征
        5.1.5 岩浆岩中标型矿物的化学组成特征
    5.2 侵入岩岩石地球化学特征
        5.2.1 主量元素特征
        5.2.2 微量元素特征
        5.2.3 Sr-Nd-Pb 同位素特征
        5.2.4 锆石 Lu-Hf 同位素特征
    5.3 岩浆岩的成因及演化
        5.3.1 岩浆源区
        5.3.2 岩浆演化
        5.3.3 构造背景及成岩模式
第六章 典型矿床地质特征
    6.1 泥河铁矿床
    6.2 罗河铁矿床
    6.3 龙桥铁矿床
    6.4 马鞭山铁矿床
    6.5 杨山铁矿床
    6.6 马口铁矿床
    6.7 岳山铅锌矿床
    6.8 井边铜矿床
    6.9 矾山明矾石矿床
    6.10 何家大岭铁矿床
    6.11 何家小岭硫铁矿床
    6.12 大鲍庄硫铁矿床
    6.13 其它矿床
第七章 成矿时代
    7.1 成矿时代
    7.2 成岩-成矿作用的时空格架
    7.3 区域成矿作用时代对比
第八章 矿物及蚀变岩地球化学特征
    8.1 黄铁矿
    8.2 磁铁矿
    8.3 磷灰石
    8.4 石榴子石
    8.5 辉石
    8.6 硬石膏
    8.7 蚀变岩石学研究
第九章 成矿流体特征及演化
    9.1 流体包裹体研究
        9.1.1 流体包裹体类型
        9.1.2 流体包裹体均一温度和盐度
        9.1.3 流体包裹体的气相和液相成分
        9.1.4 流体压力计算
    9.2 同位素研究
        9.2.1 C、H、O 同位素研究
        9.2.2 S 同位素研究
        9.2.3 Pb 同位素研究
    9.3 流体演化
第十章 成矿模式及构造背景
    10.1 矿床成因分析
        10.1.1 控矿要素
        10.1.2 矿床成因
    10.2 成矿作用对比
        10.2.1 与断拗区成矿作用对比
        10.2.2 与断隆区成矿作用对比
        10.2.3 与高硫型浅成低温热液矿床对比
        10.2.4 与斑岩成矿系统的对比
        10.2.5 与 IOCG 型矿床对比
    10.3 成矿模式
    10.4 构造背景
第十一章 主要结论及存在的问题
    11.1 主要结论
    11.2 存在的问题
参考文献
博士期间主要研究经历及已发表论文
附表

(10)甘肃省区域构造及区域成矿找矿研究(论文提纲范文)

中文摘要
Abstract
第一章 前言
    1.1 论文选题的由来及意义
    1.2 论文领域的国内外研究概况
    1.3 论文的主要研究内容和目标
    1.4 学术思想和技术路线
    1.5 论文研究工作简况和完成主要工作量
    1.6 主要创新成果
第二章 区域地质矿产研究的历史和现状
    2.1 研究的历史和现状
        2.1.1 北山地区
        2.1.2 龙首山地区
        2.1.3 祁连地区
        2.1.4 西秦岭地区
        2.1.5 陇东地区
    2.2 相关的主要研究成果及观点
        2.2.1 区域大地构造
        2.2.2 区域矿产研究
第三章 区域成矿地质背景
    3.1 区域地层及其含矿性
        3.1.1 区域地层的分布
        3.1.2 区域地层的含矿性
    3.2 岩浆岩及其含矿性
        3.2.1 岩浆岩的分布
        3.2.2 岩浆岩的含矿性
    3.3 区域构造
        3.3.1 古板块边界及蛇绿岩带及其特征
        3.3.2 构造单元的划分
        3.3.3 区域大地构造演化
    3.4 区域矿产分布概况
第四章 区域地球物理场和地球化学场
    4.1 区域地球物理场
        4.1.1 地球物理工作概况
        4.1.2 区域岩石的物性
        4.1.3 区域重磁场
        4.1.4 区域地球物理场与矿产的关系
    4.2 区域地球化学场
        4.2.1 工作概况
        4.2.2 元素在地层中的分布特征
        4.2.3 元素的空间分布规律
        4.2.4 元素地球化学块体
        4.2.5 地球化学分区和地球化学异常带
第五章 区域成矿带
    5.1 概述
        5.1.1 概念及定义
        5.1.2 研究概况
    5.2 成矿区带划分圈定原则及依据
    5.3 甘肃省成矿区带的划分
        5.3.1 成矿域(Ⅰ级)划分
        5.3.2 成矿省(Ⅱ级)划分
        5.3.3 成矿区(带)划分(Ⅲ、Ⅳ、Ⅴ级成矿区带)
    5.4 主要成矿区(带)特征
第六章 区域矿床成矿系列
    6.1 概述
        6.1.1 概念及定义
        6.1.2 成矿系列的研究方法
    6.2 矿床成矿系列组合和类型的划分
        6.2.1 矿床成矿系列组合划分
        6.2.2 矿床成矿系列类型的划分
    6.3 矿床成矿系列
        6.3.1 元古代矿床成矿系列
        6.3.2 古生代矿床成矿系列
        6.3.3 中新生代矿床成矿系列
第七章 主要金属矿床成矿控制因素及找矿方向
    7.1 金矿成矿的控制因素及找矿方向
        7.1.1 金矿成矿的主要控制因素
        7.1.2 金矿的找矿标志
        7.1.3 金矿的找矿方向和远景区
    7.2 铜(多金属)矿成矿的控制因素及找矿方向
        7.2.1 铜(多金属)矿成矿的控制因素及标志
        7.2.2 铜(多金属)矿的找矿方向和远景区
    7.3 铅锌矿成矿的控制因素及找矿方向
        7.3.1 铅锌矿成矿的控制因素及标志
        7.3.2 铅锌矿的找矿方向和远景区
    7.4 钨矿成矿的控制因素及找矿方向
        7.4.1 钨矿成矿的控制因素及标志
        7.4.2 钨矿的找矿方向和远景区
第八章 结语
    8.1 论文要点
    8.2 对于未来研究的一些思考
致谢
参考文献
附录
    附录Ⅰ 科研成果、已出版专着和发表论文
    附录Ⅱ 主要获奖研究成果

四、我国某些层控菱铁矿床地质及地球化学特征(论文参考文献)

  • [1]安徽铜陵矿集区中酸性侵入岩及狮子山矿田铜多金属矿床[D]. 楼金伟. 合肥工业大学, 2012(05)
  • [2]西昆仑造山带区域成矿规律研究[D]. 于晓飞. 吉林大学, 2010(05)
  • [3]扬子地台西缘铅锌矿床分布规律及矿源层探讨[J]. 陈大. 吉林大学学报(地球科学版), 2015(05)
  • [4]安徽庐枞盆地铁矿床成矿系统和成矿模式研究[D]. 刘一男. 合肥工业大学, 2019
  • [5]扬子地块西南缘前寒武纪铜—铁—金—铀多金属矿床及区域成矿作用[D]. 宋昊. 成都理工大学, 2014(04)
  • [6]华北克拉通条带状铁建造中富铁矿成因类型的研究进展、远景和存在的科学问题[J]. 沈其韩,宋会侠. 岩石学报, 2015(10)
  • [7]陆相火山岩型铁矿床矿石组构学特征及其成因意义[D]. 江满容. 中国地质大学, 2014(11)
  • [8]鄂东南-赣西北矽卡岩铜金成矿作用研究 ——以九瑞丰山矿田和城门山矿区为例[D]. 韩颖霄. 中国地质大学(北京), 2020(01)
  • [9]安徽庐枞盆地成岩成矿作用研究[D]. 张乐骏. 合肥工业大学, 2011(10)
  • [10]甘肃省区域构造及区域成矿找矿研究[D]. 张新虎. 兰州大学, 2007(04)

标签:;  ;  ;  ;  ;  

我国部分地层菱铁矿床地质地球化学特征
下载Doc文档

猜你喜欢