一、矩阵初等变换的推广及其应用(论文文献综述)
文军,屈龙江,刘春林,海昕,钱旭[1](2021)在《“线性代数”课程内容优化研究及其在MOOC教学中的实践》文中研究表明分析了对"线性代数"课程内容进行优化的必要性,总结了国内外高校相关研究的现状。以MOOC课程建设为契机,以课程内容的知识体系、知识点、计算方法、案例等为重点,开展了系统的优化研究与实践。
白方[2](2021)在《几何变换思想在初中几何教学中的渗透与应用研究》文中研究说明几何变换作为一种重要的现代几何思想,其本质是运动变换思想和不变量思想。《义务教育数学课程标准(2011版)》规定,几何证明已从强调欧氏几何公理体系转向基于图形的性质和图形变换。如何在中学几何教学中有效地渗透与应用几何变换思想?本文重点研究在九年级几何教学过程中,几何变换思想的渗透与应用。本文研究以下4个问题:1、在初中几何教学中,几何变换思想的渗透与应用现状如何?2、针对九年级几何教学,有哪些有效的方法渗透几何变换思想?3、渗透几何变换思想的教学对九年级学生几何学习有哪些促进作用?4、对于不同层次的学生,这些促进作用是否具有一定的差异性?本文采用文献研究法,分析几何变换的研究现状,确定本文的研究思路。首先,通过问卷调查,了解目前初中几何教学中几何变换思想渗透的现状。籍由几何测验,了解学生运用几何变换解决几何问题的实际情况,建立研究的现实性基础。其次,挖掘教材中能够渗透几何变换的知识和习题载体,确定渗透教学目标层次与方法,设计教学案例,进行渗透与应用几何变换思想的几何教学的准实验研究。选择平行的两个班级进行单因素被试间的准实验,通过实验来检验几何变换思想的渗透与应用能否提高学生对几何变换的重视与运用,能否培养学生从运动变换的角度看问题的能力,能否提高学生的几何探究能力和发散思维。最后,通过对实验前后学生的问卷调查结果,对五次数学成绩进行量化分析,以及实验后对实验班学生进行“出声思维”的几何测验和测验结果的个案对比的质性分析,得出实验结论。研究得到如下结论:1.在初中几何教学中,教师对几何变换思想的渗透和运用持肯定态度,但是由于种种原因,实际教学中教师对几何变换思想的渗透和运用的现状还有待提高。相应地学生对几何变换不够重视,实际解题中变换的应用也存在不足。2.在教学中教师首先要提高对几何变换思想的重视,自觉地循序渐进地渗透几何变换思想。具体通过梳理教学中的渗透载体,通过图形剪拼来感受几何变换思想,通过变换关系探究来理解几何变换思想。通过探究一题多解来掌握几何变换思想,通过习题探究来灵活运用几何变换思想。3.渗透几何变换思想的几何教学,可提高学生对几何变换思想的重视程度,培养学生运动的几何观念,加深学生对数学知识本质的理解,提高学生的探究能力和几何思维能力。短期实验对成绩提高无显着影响,长期实验对成绩提高有显着影响。4.测试结果的个案对比表明,不同学习成绩的学生对几何变换思想的接受程度存在一定的差异。后进生对几何变换思想的接受存在一定的难度,还无法通过几何变换来解决几何问题。中等程度的学生与优等生比较容易接受几何变换思想,中等生表现在能从多角度看问题,能用几何变换来添加辅助线。优等生的几何探究能力得到提高,在解决复杂几何问题时,能够抓住问题的核心,能够灵活地运用几何变换对几何问题进行拓展研究,能从出题者的角度对试题进行命制。
赵海空[3](2021)在《钢丝绳空间结构与力学特性仿真中的应用研究》文中指出圆股钢丝绳是一种由数量众多的螺旋状钢丝组成的复杂装配体。当钢丝旋向与股旋向相同,则称钢丝绳为同向捻结构,如果旋向相反,则称为交互捻结构。钢丝绳中也可同时存在交互捻与同向捻结构,称为混合捻。多根钢丝围绕中心直钢丝形成直股,直股外层钢丝为一次螺旋线形状。股缠绕中心直股后,其中心钢丝也是一次螺旋线形状,但这些股的外层钢丝均为二次螺旋线形状。现有文献资料均采用微分几何Frenet标架法来构建钢丝绳的几何模型。这种方法对于二次螺旋线的描述是一种很有效的方法,但这种方法不够直观形象,并且求解三次及三次以上螺旋线表达式十分复杂。本文主要研究内容如下第一,本文在一次螺旋线数学模型的研究基础上,通过李群李代数、旋量理论以及用机器人正向运动学,建立了钢丝中心线的指数积公式,给出了三种特殊形状钢丝绳次螺旋线的数学模型;运用微分几何建立了绳芯变形为一般曲线的卷曲次螺旋线的数学方法。第二,本文通过纽结理论,建立了钢丝绳捻法的定量分析方法,所得多项式表明同向捻与交互捻之间并不等价。扭数与拧数之和守恒,满足怀特-富勒公式,即钢丝绳发生变形时,二次螺旋线与一次螺旋线之间应当满足某种几何不变量,本文认为这个不变量是参数关联因子,并讨论了参数因子为整数时对钢丝绳性能的影响。第三,本文以右同向捻为例,运用机器人正向运动学,求解出了钢丝绳结构二次螺旋线的雅可比矩阵的表达式。探讨了一个绳捻距内,二次螺旋线-投影图封闭时,参数关联因子所需要满足的条件。证明了9)应当为整数。第四,根据所建立的钢丝绳结构的几何模型,应用有限元软件,仿真分析了39M股承受拉伸载荷作用时的应变,有限元分析结果与试验数据高度吻合。
霍凯鸽[4](2021)在《基于矩阵变换的多维奇异系统Roesser模型低阶实现》文中研究指明奇异系统是现代控制理论中的热门研究领域。与传统的正则系统相比,奇异系统所能描述的系统范围更广,内涵更加丰富,相关研究也更具挑战性。而状态空间模型实现问题是多维奇异系统研究中的一个基本问题,只有先对奇异系统进行模型实现,才能对其进行后续的系统分析和设计。尤其是模型实现的阶数极大地影响着系统计算的复杂度和仿真设计分析的难度。然而到目前为止,仍然没有任何充要条件可以判断一个多维(三维及以上)奇异系统的模型实现是否为最小。因此多维奇异系统低阶模型实现问题亟待深入研究。本文首先针对多维奇异系统Roesser模型传递函数的右矩阵分式描述形式提出了一种基于矩阵变换的实现方法,将实现问题转换成了如何通过矩阵变换得到目标矩阵的问题。同时给出了相应的实现步骤以及实现过程中所需要的两种实现技术,即列技术和行技术。由于多维奇异系统Roesser模型的传递函数不具有正则系统那样的对偶性,为了解决这一问题,本文引入了分解标准型的概念,从而得到了多维奇异系统Roesser模型传递函数的左矩阵分式描述形式,并给出了相应的实现方法。这使得多维奇异系统Roesser模型的左、右矩阵分式描述可以在同一个理论方法框架下进行处理,为进一步探索奇异系统的结构性质做出了贡献。由于多维奇异系统Roesser模型结构的复杂性,现有实现方法得到的模型阶数仍然较高。针对这一问题,本文提出了一种基于变换矩阵构造的低阶模型实现方法。该方法可以对奇异系统Roesser模型进行降阶得到阶数更低的模型实现。同时还给出了所提新方法对应的低阶实现步骤,并通过实例计算与分析展示了该方法的具体细节和有效性。最后,本文对航天器中的陀螺飞轮系统进行了简单介绍,然后利用所提出的实现方法对该系统进行了状态空间模型实现,相应结果表明新方法所得到的模型阶数低于现有实现方法得到的模型阶数,验证了新方法在实际系统应用中的优越性,为后续设计和分析提供了有效支撑。
沈中宇[5](2021)在《面向教师教育的数学知识研究 ——以S市高中数学教研员为例》文中研究表明百年大计,教育为本。教育大计,教师为本。教师培养的关键是教师教育,要改善教师教育的效果,教师教育者的作用无疑是至关重要的,因此,数学教师教育者在数学教师教育中发挥着重要的作用。近年来,数学教育研究者开始关注数学教师教育者的研究,其中,“面向教师教育的数学知识”(Mathematical Knowledge for Teaching Teachers,简称MKTT)理论为研究一般数学教师教育者所需要的数学知识提供了借鉴。但已有的研究中对于“面向教师教育的数学知识”仍然缺乏清晰准确的刻画,同时,相关研究主要集中在理论构建,相关的实证研究较少。基于以上原因,本文以面向教师教育的数学知识为研究主题,选取高中数学教研员作为研究对象,主要探讨以下三个研究问题:(1)构成面向教师教育的数学知识的要素有哪些?(2)高中数学教研员具备哪些面向教师教育的数学知识?(3)在数学教研活动中,高中数学教研员反映出哪些面向教师教育的数学知识?针对本研究的三个研究问题,将研究设计分为三个阶段,分别为文献分析与框架确立、问卷调查与深度访谈以及现场观察与案例分析。文献分析与框架确立阶段采用了专家论证法。首先通过文献分析梳理已有的数学教师教育者专业知识框架,接着通过对相关的成分和子类别的反复比较,构建初始的面向教师教育的数学知识框架,最后通过三轮专家论证得到最终的面向教师教育的数学知识框架。问卷调查与深度访谈阶段采用了问卷调查法和深度访谈法。其中选取了高中数学中重要的数学主题编制了调查问卷和访谈提纲,通过编码分析高中数学教研员的问卷回答和访谈实录,从而了解高中数学教研员具备的面向教师教育的数学知识。现场观察与案例分析采用了案例研究法。其中观察了不同的高中数学教研员的多次教研活动,在观察过程中对教研活动进行录音并在观测后对高中数学教研员进行访谈,对录音和访谈材料进行编码和统计,从而剖析高中数学教研员在教研活动中反映的面向教师教育的数学知识。本研究的基本结论是:1.构成面向教师教育的数学知识的要素包括4个成分与12个子类别。构成成分为学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识。学科内容知识包含的子类别为一般内容知识、专门内容知识和关联内容知识,教学内容知识包含的子类别为内容与学生知识、内容与教学知识和内容与课程知识,高观点下的数学知识包含的子类别为学科高等知识、学科结构知识和学科应用知识,数学哲学知识包含的子类别为本体论知识、认识论知识和方法论知识。2.高中数学教研员具备的面向教师教育的数学知识情况如下。(1)高中数学教研员在学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识4个成分中并不存在明显的短板;(2)高中数学教研员对不同知识成分的掌握存在一定差异,其中,在学科内容知识和教学内容知识2个方面掌握较好,而在高观点下的数学知识和数学哲学知识2个方面还有所欠缺;(3)高中数学教研员在各个知识成分中有以下具体理解:在学科内容知识方面,对于基本的概念、定理和公式的合理性以及不同概念、定理和公式之间的联系较为熟悉;在教学内容知识方面,对于学生有关特定数学内容学习的困难,不同数学内容的教授方式和相关数学内容在教科书中的编排理解较深;在高观点下的数学知识方面,能够对中学数学知识作出一定程度的推广、涉猎不同学科中数学知识的应用;在数学哲学知识方面,能够大致解释数学定义的基本作用和标准、数学研究的动力、数学证明的作用和价值以及数学的基本思想方法。(4)高中数学教研员在各个知识成分中有以下欠缺之处:在学科内容知识方面,对于定义的多元性、解释的多样性和联系的普遍性方面还有进步的空间;在教学内容知识方面,对于学生数学学习困难的细致理解、不同数学内容的深入教授和教学内容编排意图的全面考虑还有提升的余地;在高观点下的数学知识方面,从高观点理解中学数学知识、分析不同知识的联系和在不同学科中应用数学知识方面还有较多需要完善的地方;在数学哲学知识方面,还不能形成系统的理解。3.在数学教研活动中,高中数学教研员反映出的面向教师教育的数学知识情况如下。(1)高中数学教研员反映的面向教师教育的数学知识大部分属于教学内容知识和学科内容知识,小部分属于数学哲学知识和高观点下的数学知识。(2)高中数学教研员在数学教研活动中的主要知识来源为一般内容知识、内容与教学知识、学科高等知识和方法论知识。(3)高中数学教研员在数学教研活动中反映的面向教师教育的数学知识主要有:在学科内容知识方面有数学中的基本概念、定理、公式和性质及其由来、表征、证明及解释;不同数学概念、定理、公式之间的联系。在教学内容知识方面有学生对特定数学内容理解存在的困难;不同数学内容的引入、辨析、应用和小结的教学方法;特定数学内容在课程标准中的要求和在教科书中的编排。在高观点下的数学知识方面有中学数学课程中的数学概念在高等数学中的推广;高观点下不同数学概念之间的联系;数学知识在现代科学和实际生活中的应用。在数学哲学知识方面有对数学定义的认识;对数学认识过程的理解;推理论证在数学中的作用;数学研究的思想方法。本研究对于教师教育者专业标准的制订、数学教师教育者专业培训的设计和数学教师专业发展项目的规划有一定启示,后续可以在数学教师教育者的专业知识、数学教师教育者的专业发展和数学教师教育者的工作实践等方面进一步开展研究。
王改珍[6](2021)在《职前数学教师专业知识结构及水平的实证研究》文中进行了进一步梳理随着教师专业发展成为教师教育领域的研究热点,各国从对教师“量”的需求逐渐转变到对教师“质”的需求,其中一个核心的研究内容便是教师知识。教师知识是教师专业素质的重要组成部分,也是影响教师教学水平的重要因素。教师教育的质量决定着教育的质量,职前教师教育的质量又是确保教师教育质量的基础环节。职前教师需要具备怎样的专业知识结构和水平,才能满足高质量教育的人才需求,受到教育研究者和教育工作者的广泛关注。教师专业知识是教师专业发展的基础,对职前教师专业知识的研究可以反映教师专业知识的最初状态。本研究聚焦于职前数学教师的专业知识结构及水平,分为三个子问题:一、职前数学教师需要怎样的专业知识结构?通过访谈和调查,从一线教师的视角给出对合格数学教师需要具备的专业知识结构的看法,并将其作为职前数学教师专业知识结构的参考标准。该知识结构是教师主观层面的认识,也可称为教师期望的专业知识结构。二、职前数学教师专业知识的掌握水平如何?通过测试了解职前数学教师专业知识的现状,进而得出实际的专业知识结构,并利用水平划分描述职前数学教师专业知识的掌握程度。三、职前数学教师实际的专业知识结构与一线教师期望的专业知识结构是否一致?通过对比,探讨职前数学教师专业知识结构的合理性,进而明确职前数学教师未来的努力方向。本研究采用量化研究与质化研究相结合的方法,以量化研究为主,质化研究为辅。子问题一通过调查教师视角下各类专业知识的重要程度来了解合格数学教师需要的各类专业知识的权重情况。首先通过文献梳理和访谈构建出数学教师的专业知识框架,并以此编制调查问卷;然后对一线教师展开问卷调查,教师根据教学经验对各类专业知识进行赋权;最后根据调查数据的统计分析得出合格数学教师需要具备的专业知识结构,并通过访谈对量化结果进行补充和说明。子问题二通过测试了解职前数学教师专业知识的现状和掌握水平。首先通过整理历年教师资格考试《数学学科知识与教学能力》(高级中学)科目的真题,明确各类知识的考查比例、题型和分值;然后结合子问题一的调查结果,确定测试所考查的内容、题型及分值,对试题进行抽取、组合、制定评分标准;接着,选取1所部属师范大学、1所省属师范大学和2所省属师范学院的数学师范生作为调查对象,展开测试;最后根据测试数据的统计分析得出职前数学教师的实际专业知识结构及水平。子问题三是基于前两个子问题的数据分析结果,再结合教师访谈,探讨职前数学教师实际的专业知识结构、不同知识掌握水平下的职前数学教师专业知识结构与教师期望的专业知识结构的一致性和合理性。研究结论如下:(1)合格数学教师的专业知识结构中数学学科知识的权重最大。教师视角下的合格数学教师需要具备的三类专业知识按照权重大小依次是数学学科知识(45.20%)、数学教学知识(30.71%)、数学课程知识(24.09%)。该知识结构可划分为三种类型。不同群体教师对各类知识权重的看法基本一致。(2)职前数学教师对所考查的数学专业知识基本能够掌握。实际知识结构中数学学科知识的权重最大。参与本研究的职前数学教师专业知识的掌握程度由低到高可划分为四个水平:前水平、识记水平、关联水平和综合水平。不同类型学校的职前数学教师专业知识测试得分具有显着差异,得分由高到低分别为部属师范大学、省属师范大学、省属师范学院。(3)职前数学教师的实际知识结构中,各类知识的权重大小顺序与教师期望的专业知识结构一致,即职前数学教师的实际知识结构是合理的。知识掌握程度处在四个水平的职前数学教师的专业知识结构也是合理的。教师期望的学科知识权重低于职前数学教师的实际权重,教师期望的教学知识权重却高于职前数学教师的实际权重,导致这一现象的原因在于职前数学教师教学经验的缺乏。根据上述研究结论,对职前数学教师教育提出相关建议:(1)职前数学教师应以理论知识学习为主;(2)职前数学教师应提高教学知识储备。
饶大平[7](2021)在《查理斯密代数学版本及内容的比较研究》文中指出英国查理斯密编纂的《查理斯密小代数学》和《查理斯密大代数学》合称为查理斯密代数学,前者是学习后者的基础,后者是前者在内容上的升华。查理斯密代数学分别以中学和大学为读者群体,由长泽龟之助等翻译传入日本,再由中国留日学者翻译传回国内,是中国近代影响较大的代数学教科书。本研究采用文献研究法、历史研究法、比较分析法,首先通过查阅文献弄清查理斯密代数学已有的研究主要集中在《查理斯密小代数学》的版次、内容特点,《大代数学讲义》的研究集中在符号、术语、内容特点,所以研究查理斯密代数学的传播过程较为缺乏。之后多次前往四川省图书馆、成都市图书馆、重庆市图书馆等地查找资料,并通过线上访问剑桥大学图书馆、加州大学图书馆、日本国立国会图书馆以及孔夫子二手书店、古籍网等收集资料。在导师的帮助下学习日语和搜集、整理、分析各种相关着作共计190余本,其中关于查理斯密代数学的有英文16本、日文69本、中文30本。在此基础上,本文以版本学为研究角度,梳理和比较关于查理斯密代数学着作的中英日各版本内容之间的变化,寻找其传入中国的过程;通过陈文译本与晚清代数译着的内容比较研究,分析陈文翻译的查理斯密代数学中某些内容的特点。具体工作如下:(1)查理斯密代数学的版本学研究:涵盖《查理斯密小代数学》和《查理斯密大代数学》的版本学研究,首先,先对各译本的内容进行解读确定研究的基础;再从中译本、英文原本、日译本的版本演变确定各版本的研究对象;再进一步对比目录、知识点、习题确定中译本所对应的日译本和英文原本,进而得出传播过程和情况。(2)陈文译本与晚清代数学译着中的内容比较研究:以查理斯密代数学为切入点,选择影响较大、具有代表性的陈文译本与相近时期代数学教科书、《代数学》、《代数术》、《代数备旨》进行内容比较,从术语翻译、符号表示、定义三个维度分别展开一元二次方程、行列式、二项式定理专题,借此得出陈文译本在这三方面的内容特点。通过查理斯密代数学版本及内容的比较研究,可丰富中国近代代数学教科书的近代化、本土化过程的研究,对了解传入我国代数学教科书的早期发展情况具有重要意义。
王杰[8](2021)在《高观点下初中方程教学的主要问题与解决策略》文中提出方程是代数思想的起源。面对一个未知的数,我们希望求解它,那么我们利用和未知量有关的限制条件,再结合等量关系组成等式,我们就得到了有关未知量方程或者方程组。有了方程就相当于正式承认变量或者未知数能够作为一个独立的对象。从方程在课程标准中的变化来看,学生不仅仅需要掌握方程的解法,同时还需要学生掌握方程与不等式和函数之间的联系,也就是用函数的观点去看方程。最后需要让学生体会方程思想在解决问题中的便利性,注重培养学生逆向思维。同时也要注重借用方程学习的这一过程,培养学生的核心素养。本文先说明了方程这一内容在课程标准中的变化,再结合方程发展的历史,重点介绍了几种方程的解法,例如公式法,配方法、因式分解法、换元法,同时也介绍了一些方程组的解法。例如克拉默法则、矩阵法等等。这一部分是高等数学中的方程知识,作为教师必须要掌握这部分内容才能将“高观点”更好的融入教学。教师借助在教学中融入“高观点”,提高学生的核心素养和关键能力,为学生后续的学习产生深远的影响。为了更加详细的掌握学习者在学习方程过程中所遇到的问题,采用测试卷和调查问卷结合的方式,分析出真实存在的问题,为教师的教学提供必要的帮助。测试卷将设置五种题型,考察学习者对方程知识的掌握程度。通过分析测试卷,所获得的结论是:(1)有部分学生对生活中或者其他学科中存在的等量关系不太熟悉。(2)学生对二次方程的根的判断和对含有参数的方程组成立条件的判断存在模糊不清的现象。(3)学生在解方程时,方程的解法过于单一,并且对于解方程的通性、通法掌握有点欠缺。(4)学生对方程概念的理解也存在疏忽。(5)学生在方程应用题部分,尤其是对函数与方程结合的应用题存在不少问题。调查问卷主要是为了分析出学生在学习方程时会遇到的问题,调查问卷所获得的结论是:(1)有部分学生在课堂方程学习过程中缺少思考,没有对方程进行一题多解的习惯。(2)学生在做方程内容的作业时,存在不认真完成,不检验方程解的情况。(3)学生在课后没有认真复习课上学习到的方程的解法以及相关概念。(4)部分学生对自己存在错误的方程习题不及时进行错题整理与归纳总结。将“高观点”融入课堂教学的实际执行者是教师,因此,本文采用调查问卷的方式,调查不同学校和年级的中学教师将“高观点”融入教学的实际情况。通过调查后所获得的结论为:(1)大部分的教师都认为“高观点”对中学数学是存在影响的,对于教材分析也会联系到“高观点”。(2)有部分教师会去阅读渗透“高观点”的数学参考书。(3)部分教师会利用已经下放到教材里的高等数学的知识去解决有关方程问题。(4)总的来看,新教师比老教师更乐于利用“高观点”。最后结合对学生和教师的调查结果提出一些将“高观点”融入教学的建议,包括等式概念的教学、方程解法的教学、方程应用的教学以及函数、方程、不等式关系的教学。同时为了更好的进行这些教学又对中学学校和一线中学教师提出一些必要的建议。
王叶[9](2020)在《基于线性代数思想解n元线性方程组》文中提出由于用消元法来解方程组存在一定的局限性,计算起来过于复杂,本文基于线性代数的方法,用行列式中的Cramer法则,逆矩阵的计算,以及矩阵的初等变换来解n元线性方程组,方程组包括齐次的和非齐次的。
曾振柄,黄勇,饶永生[10](2020)在《从教育数学的角度探讨行列式教学》文中指出本文根据教育数学思想,讨论大学《线性代数》公共课中行列式部分的教学,通过设计几个教学场景,帮助学生以更直观的方法掌握行列式本质.所设计的场景包括:从行列式定义的意图出发合情推理行列式的可能表达式;从低阶行列式性质类比证明行列式定义的必然形式;通过矩阵初等变换与等底单形的体积之间的关系建立行列式与单形体积的关联;通过仿射变换保持单形体积比的性质导出Cramer法则的直观证明;以及分析行列式的不同计算方法所对应的计算复杂度.最后,文章列出行列式知识产生和发展的部分数学史材料,供教师在教学中穿插使用,达到更好引导学生理解和应用行列式知识.
二、矩阵初等变换的推广及其应用(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、矩阵初等变换的推广及其应用(论文提纲范文)
(1)“线性代数”课程内容优化研究及其在MOOC教学中的实践(论文提纲范文)
一、引言 |
二、我校“线性代数”课程现状及MOOC课程的需求分析 |
三、在MOOC课程中的实践 |
(一) 优化课程经典内容 |
1.突出课程的主线 |
2.突出课程的主要工具 |
3.突出课程的主要方法 |
(二) 优化课程内容与应用的联系 |
1.科学引入应用性基础内容 |
2.探索建设跨学科的例题化案例 |
四、MOOC课程教学中的反馈及分析 |
(2)几何变换思想在初中几何教学中的渗透与应用研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.1.1 数学教育现代化的要求 |
1.1.2 课程标准对几何变换的要求 |
1.1.3 初中几何教学的实际现状 |
1.2 研究问题 |
1.3 研究方法 |
1.4 研究目的与研究意义 |
1.5 研究思路和研究框架 |
第2章 研究综述与理论基础 |
2.1 核心概念的界定 |
2.1.1 几何变换 |
2.1.2 常见的初等几何变换 |
2.1.3 几何变换思想 |
2.1.4 几何变换思想的渗透 |
2.2 研究综述 |
2.2.1 几何变换思想的价值研究 |
2.2.2 几何变换思想的教学研究 |
2.2.3 国外几何变换的相关研究 |
2.3 现有研究的不足 |
2.4 相关理论基础 |
2.4.1 范希尔几何思维理论 |
2.4.2 出声思维理论 |
第3章 初中几何变换教学现状调查 |
3.1 调查目的与调查对象 |
3.1.1 调查目的 |
3.1.2 调查对象 |
3.2 问卷编制和前测试卷的编制 |
3.3 问卷调查结果的统计分析 |
3.3.1 教师对几何变换的认识以及渗透情况 |
3.3.2 学生对几何变换的认识以及运用情况 |
3.4 学生测试结果的分析 |
3.5 几何变换教学现状的原因分析 |
3.5.1 教师对几何变换思想的应用重视不够 |
3.5.2 学生运动变换的观念有待提升 |
第4章 几何变换思想渗透的教学分析 |
4.1 教材中几何变换思想的渗透载体 |
4.2 几何变换思想渗透的原则 |
4.3 几何变换思想的教学目标层次 |
4.4 渗透几何变换思想的教学措施 |
4.4.1 图形剪拼体会几何变换思想 |
4.4.2 变换关系探究理解几何变换思想 |
4.4.3 尝试一题多解掌握几何变换思想 |
4.4.4 平面镶嵌图形设计活用几何变换思想 |
4.5 渗透几何变换思想的教学设计案例 |
4.5.1 教学设计一:《相似常见模型关系的探究》 |
4.5.2 教学设计二:《渗透几何变换思想的习题探究》 |
第5章 几何变换思想渗透的教学实验 |
5.1 实验对象和过程 |
5.2 实验假设 |
5.3 实验测试工具 |
5.4 实验结果的分析 |
5.4.1 实验前后学生问卷的统计分析 |
5.4.2 实验前后数学学业成绩的数据分析 |
5.4.3 实验后几何测试的出声思维分析 |
5.4.4 实验后几何测试结果的个案对比分析 |
5.5 几何变换思想渗透的教学建议 |
第6章 结论与展望 |
6.1 研究结论 |
6.2 研究不足 |
6.3 展望 |
参考文献 |
附录一 教师问卷 |
附录二 学生问卷 |
附录三 |
致谢 |
(3)钢丝绳空间结构与力学特性仿真中的应用研究(论文提纲范文)
摘要 |
abstract |
主要符号表 |
第一章 绪论 |
1.1 引言 |
1.2 国内外研究现状 |
1.2.1 国外研究现状 |
1.2.2 国内研究现状 |
1.3 研究内容 |
1.4 创新点 |
第二章 钢丝绳几何建模的理论基础 |
2.1 微分几何曲线论与坐标变换 |
2.1.1 微分几何曲线论 |
2.1.2 坐标变换 |
2.2 旋量理论 |
2.2.1 旋量的概念 |
2.2.2 刚体运动与速度旋量 |
2.3 李群与李代数理论 |
2.4 钢丝绳捻制参数与几何关系 |
2.4.1 钢丝绳的捻制参数 |
2.4.2 钢丝绳的几何关系 |
2.5 本章小结 |
第三章 钢丝绳空间结构几何建模 |
3.1 螺旋运动分析 |
3.2 钢丝形状定义与钢丝绳问题基本假设 |
3.2.1 钢丝形状名称定义 |
3.2.2 钢丝绳问题的基本假设 |
3.3 基于POE公式的钢丝绳几何模型建立 |
3.3.1 POE公式的计算 |
3.3.2 J次螺旋线的几何模型建立 |
3.4 基于微分几何的钢丝绳几何模型建立 |
3.4.1 二次螺旋线的几何模型 |
3.4.2 卷曲J次螺旋线的几何模型建立 |
3.4.3 其他方法介绍 |
3.5 钢丝绳三维模型建立 |
3.5.1 右同向捻与右交互捻钢丝绳三维模型建立 |
3.5.2 二次螺旋线表达式修正 |
3.5.3 圆环二次螺旋线三维模型 |
3.6 钢丝绳弧长参数表达式与曲线的相互关系 |
3.6.1 二次螺旋线弧长参数表达式 |
3.6.2 曲线间的相互关系 |
3.7 本章小结 |
第四章 钢丝绳结构定量分析 |
4.1 Jones多项式在钢丝绳问题中的应用 |
4.1.1 Jones多项式术语定义 |
4.1.2 钢丝绳捻法的Jones多项式计算 |
4.2 White-Fuller公式在钢丝绳中的应用 |
4.2.1 扭与拧的关系 |
4.2.2 钢丝绳中的拓扑不变量及其应用 |
4.3 本章小结 |
第五章 钢丝绳的运动学描述与受拉股有限元分析 |
5.1 钢丝绳运动学 |
5.2 .钢丝绳结构的雅可比矩阵计算 |
5.2.1 钢丝绳的空间雅可比矩阵计算 |
5.2.2 钢丝绳物体雅可比矩阵计算 |
5.2.3 空间雅可比矩阵与物体雅可比矩阵的转换关系 |
5.3 基于有限元的受拉股分析 |
5.3.1 39M股的模型建立 |
5.3.2 受拉39M股的有限元分析与讨论 |
5.4 本章小结 |
第六章 结论与展望 |
6.1 结论 |
6.2 后续展望 |
致谢 |
参考文献 |
攻读学位期间发表的论文 |
(4)基于矩阵变换的多维奇异系统Roesser模型低阶实现(论文提纲范文)
中文摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.3 本文的主要工作和章节安排 |
第二章 基础知识 |
2.1 多维奇异系统Roesser状态空间模型 |
2.2 传递函数与实现问题 |
2.3 矩阵变换 |
2.4 矩阵关系特性 |
2.5 本章小结 |
第三章 基于矩阵变换的实现方法 |
3.1 针对右矩阵分式描述的实现方法 |
3.2 两种相关实现技术 |
3.2.1 基于列的实现技术 |
3.2.2 基于行的实现技术 |
3.3 基于分解标准型的左矩阵分式描述实现方法 |
3.3.1 多维奇异系统Roesser模型的分解标准型 |
3.3.2 针对左矩阵分式描述的实现方法 |
3.4 本章小结 |
第四章 变换矩阵构造与低阶实现 |
4.1 变换矩阵的构造方法 |
4.2 低阶实现步骤 |
4.3 数例计算与分析 |
4.4 本章小结 |
第五章 陀螺飞轮系统模型实现 |
5.1 陀螺飞轮系统介绍 |
5.2 陀螺飞轮系统的奇异实现 |
5.3 本章小结 |
第六章 结论与展望 |
6.1 主要结论 |
6.2 研究展望 |
参考文献 |
符号说明 |
在学期间的研究成果 |
致谢 |
(5)面向教师教育的数学知识研究 ——以S市高中数学教研员为例(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景 |
1.1.1 教师教育者的专业发展需要关注 |
1.1.2 数学教师教育者的研究值得重视 |
1.1.3 数学教师教育者的专业知识有待探索 |
1.2 研究问题 |
1.3 研究意义 |
1.3.1 理论意义 |
1.3.2 实践意义 |
1.4 论文结构 |
第2章 文献述评 |
2.1 数学教师教育者的专业知识 |
2.1.1 数学教师教育者的专业知识框架 |
2.1.2 数学教师教育者的专业知识测评 |
2.1.3 文献小结 |
2.2 数学教师教育者的专业发展 |
2.2.1 数学教师教育者的专业发展框架 |
2.2.2 数学教师教育者的专业发展调查 |
2.2.3 文献小结 |
2.3 数学教师教育者的工作实践 |
2.3.1 数学教师教育课堂的学习任务框架 |
2.3.2 数学教师教育课堂的学习任务实践 |
2.3.3 文献小结 |
2.4 文献述评总结 |
第3章 研究方法 |
3.1 研究设计 |
3.1.1 文献分析与框架确立 |
3.1.2 问卷调查与深度访谈 |
3.1.3 现场观察与案例分析 |
3.2 研究对象 |
3.2.1 专家论证对象 |
3.2.2 问卷调查对象 |
3.2.3 深度访谈对象 |
3.2.4 案例研究对象 |
3.3 研究工具 |
3.3.1 论证手册 |
3.3.2 调查问卷 |
3.3.3 访谈提纲 |
3.3.4 观察方案 |
3.4 数据收集 |
3.4.1 专家论证 |
3.4.2 问卷调查 |
3.4.3 深度访谈 |
3.4.4 现场观察 |
3.5 数据分析 |
3.5.1 专家论证 |
3.5.2 问卷与访谈 |
3.5.3 现场观察 |
第4章 研究结果(一):面向教师教育的数学知识框架 |
4.1 文献分析 |
4.1.1 已有框架选取 |
4.1.2 相关成分析取 |
4.1.3 相关类别编码 |
4.2 框架构建 |
4.2.1 相关类别合并 |
4.2.2 相应成分生成 |
4.2.3 初步框架构建 |
4.3 框架论证 |
4.3.1 第一轮论证 |
4.3.2 第二轮论证 |
4.3.3 第三轮论证 |
第5章 研究结果(二):高中数学教研员具备的面向教师教育的数学知识 |
5.1 学科内容知识 |
5.1.1 一般内容知识 |
5.1.2 专门内容知识 |
5.1.3 关联内容知识 |
5.2 教学内容知识 |
5.2.1 内容与学生知识 |
5.2.2 内容与教学知识 |
5.2.3 内容与课程知识 |
5.3 高观点下的数学知识 |
5.3.1 学科高等知识 |
5.3.2 学科结构知识 |
5.3.3 学科应用知识 |
5.4 数学哲学知识 |
5.4.1 本体论知识 |
5.4.2 认识论知识 |
5.4.3 方法论知识 |
5.5 总体分析 |
5.5.1 学科内容知识 |
5.5.2 教学内容知识 |
5.5.3 高观点下的数学知识 |
5.5.4 数学哲学知识 |
第6章 研究结果(三):数学教研活动中反映的面向教师教育的数学知识 |
6.1 案例1 |
6.1.1 第一轮观察:平均值不等式 |
6.1.2 第二轮观察:对数的概念 |
6.1.3 案例1 总体分析 |
6.2 案例2 |
6.2.1 第一轮观察:幂函数的概念 |
6.2.2 第二轮观察:函数的基本性质 |
6.2.3 案例2 总体分析 |
6.3 案例3 |
6.3.1 第一轮观察:幂函数的概念 |
6.3.2 第二轮观察:出租车运价问题 |
6.3.3 案例3 总体分析 |
6.4 案例4 |
6.4.1 第一轮观察:反函数的概念 |
6.4.2 第二轮观察:反函数的图像 |
6.4.3 案例4 总体分析 |
6.5 跨案例分析 |
6.5.1 学科内容知识 |
6.5.2 教学内容知识 |
6.5.3 高观点下的数学知识 |
6.5.4 数学哲学知识 |
6.5.5 案例总体分析 |
第7章 研究结论及启示 |
7.1 研究结论 |
7.1.1 面向教师教育的数学知识框架 |
7.1.2 高中数学教研员具备的面向教师教育的数学知识 |
7.1.3 高中数学教研活动中反映的面向教师教育的数学知识 |
7.2 研究启示 |
7.2.1 教师教育者的专业标准制订需要关注学科性 |
7.2.2 数学教师教育者的专业培训需要提升针对性 |
7.2.3 数学教师专业发展项目规划需要增加多元性 |
7.3 研究局限 |
7.4 研究展望 |
7.4.1 拓展数学教师教育者的专业知识研究 |
7.4.2 深入数学教师教育者的专业发展研究 |
7.4.3 延伸数学教师教育者的工作实践研究 |
参考文献 |
附录 |
附录1 论证手册(第一轮) |
附录2 论证手册(第二轮) |
附录3 论证手册(第三轮) |
附录4 调查问卷(第一版) |
附录5 调查问卷(第二版) |
附录6 调查问卷(第三版) |
附录7 调查问卷(第四版) |
附录8 调查问卷(第五版) |
附录9 访谈提纲 |
附录10 观察方案 |
作者简历及在学期间所取得的科研成果 |
致谢 |
(6)职前数学教师专业知识结构及水平的实证研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
第一节 研究背景 |
第二节 研究问题 |
第三节 研究意义 |
第四节 论文结构 |
第二章 文献综述 |
第一节 教师知识 |
一.知识的内涵及分类 |
二.教师知识的分类 |
第二节 数学教师知识 |
一.数学教师学科知识 |
二.数学教师学科教学知识 |
三.数学教师知识相关文献的量化分析 |
第三节 职前数学教师知识 |
一.职前数学教师知识的现状及来源 |
二.职前数学教师知识中某类具体知识 |
三.职前数学教师综合性知识和技能 |
四.中外职前数学教师知识的对比 |
第四节 本章小结 |
第三章 研究设计与实施 |
第一节 研究思路与方法 |
一.研究思路 |
二.研究方法 |
第二节 相关概念界定 |
一.教师知识 |
二.数学教师专业知识 |
三.职前教师 |
四.知识结构 |
第三节 理论基础与框架 |
一.数学教师专业知识分类框架构建 |
二.职前数学教师专业知识分析层次建构 |
第四节 研究的具体过程 |
第四章 教师视角下的合格数学教师专业知识结构 |
第一节 教师视角下合格数学教师专业知识结构描述分析 |
第二节 教师视角下合格数学教师专业知识结构聚类分析 |
第三节 不同群体教师对合格数学教师各类知识权重看法的量化分析 |
一.不同教龄教师对合格数学教师各类知识权重看法的差异分析 |
二.不同职称教师对合格数学教师各类知识权重看法的差异分析 |
三.不同称号教师对合格数学教师各类知识权重看法的差异分析 |
四.不同学历教师对合格数学教师各类知识权重看法的差异分析 |
第四节 教师视角下合格数学教师各类知识权重看法的质化分析 |
第五节 本章小结 |
第五章 职前数学教师专业知识现状分析 |
第一节 职前数学教师专业知识掌握情况的水平划分 |
一.职前数学教师专业知识测试成绩整体描述 |
二.职前数学教师测试总成绩的水平分布 |
三.职前数学教师主观题作答情况的水平分析 |
第二节 职前数学教师专业知识的实际结构 |
第三节 不同类型学校职前数学教师专业知识得分情况的差异分析 |
一.不同类型学校职前数学教师总成绩的差异分析 |
二.不同类型学校职前数学教师各类知识得分的差异分析 |
第四节 不同性别职前数学教师得分情况的差异分析 |
一.不同性别职前数学教师总成绩的差异分析 |
二.不同性别职前数学教师各类知识得分的差异分析 |
第五节 各类数学专业知识之间的关系分析 |
一.各类数学专业知识得分之间的相关性分析 |
二.数学学科知识对数学教学知识的影响分析 |
三.数学学科知识对数学课程知识的影响分析 |
第六节 本章小结 |
第六章 职前数学教师专业知识实际结构与期望结构的对比分析 |
第一节 职前数学教师专业知识实际结构与期望结构的整体比较 |
第二节 不同水平下职前数学教师专业知识实际结构与期望结构的比较 |
一.前水平的职前数学教师专业知识结构的比较 |
二.识记水平的职前数学教师专业知识结构的比较 |
三.关联水平的职前数学教师专业知识结构的比较 |
四.综合水平的职前数学教师专业知识结构的比较 |
第三节 职前数学教师专业知识结构的讨论 |
第四节 本章小结 |
第七章 结论与建议 |
第一节 研究的结论 |
第二节 研究的建议 |
第三节 研究的局限性与展望 |
参考文献 |
附录 |
附录1 中学数学教师知识结构状况调查与访谈提纲 |
附录2 数学教师专业知识分类框架 |
附录3 中学数学教师知识权重调查问卷 |
附录4 教师资格考试2014-2018 试题汇总 |
附录5 职前数学教师专业知识与基本能力测试 |
附录6 职前数学教师专业知识与基本能力测试参考答案 |
附录7 职前数学教师专业知识结构及其培养策略访谈提纲 |
后记 |
在学期间公开发表论文及着作情况 |
(7)查理斯密代数学版本及内容的比较研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 选题缘起及背景 |
1.2 文献综述和研究问题 |
1.3 研究方法与论文结构 |
1.4 研究目的及意义 |
第2章 编译者小传 |
2.1 原着者 |
2.2 日译者 |
2.3 中译者 |
第3章 《查理斯密小代数学》内容及版本学研究 |
3.1 《查理斯密小代数学》内容 |
3.1.1 译名的由来 |
3.1.2 “代数学”定义和行文特点 |
3.2 《查理斯密小代数学》底本问题的由来 |
3.3 《查理斯密小代数学》版本演变 |
3.4 Elementary Algebra版本演变 |
3.5 《初等代数学》(日)版本演变 |
3.6 《查理斯密小代数学》和Elementary Algebra的关系 |
3.7 其他中译本与《初等代数学》(日)、Elementary Algebra的关系 |
3.8 版本流传路图 |
第4章 《查理斯密大代数学》版本学研究 |
4.1 《查理斯密大代数学》底本问题的由来 |
4.2 《查理斯密大代数学》版本演变 |
4.3 《大代数学讲义》版本演变 |
4.4 《查理斯密大代数学》(日)版本演变 |
4.5 A Treatise on Algebra版本演变 |
4.6 《查理斯密大代数学》、《大代数学讲义》与ATreatiseonAlgebra关系 |
4.7 版本流传图 |
第5章 陈文译本与晚清代数学译着中的内容比较研究 |
5.1 一元二次方程 |
5.1.1 方程相关的术语 |
5.1.2 符号的使用 |
5.1.3 一元二次方程解法 |
小结 |
5.2 行列式 |
5.2.1 《查理斯密大代数学》中行列式内容的由来 |
5.2.2 译名的由来 |
5.2.3 行列式的符号表示 |
5.2.4 行列式的定义 |
小结 |
5.3 二项式定理 |
5.3.1 多项式和级数相关的术语 |
5.3.2 排列组合的定义及符号表示 |
5.3.3 二项式定理的定义、引入方式及其符号表示 |
5.3.4 二项式定理的证明 |
小结 |
第6章 查理斯密代数学的影响和特点 |
6.1 查理斯密代数学的影响 |
6.2 查理斯密代数学的特点 |
结语 |
参考文献 |
附录1 《查理斯密小代数学》中英日文本 |
附录2 《查理斯密大代数学》中英日文本 |
附录3 《查理斯密小代数学》目录对比 |
附录4 《查理斯密小代数学》习题对比 |
致谢 |
(8)高观点下初中方程教学的主要问题与解决策略(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 研究问题 |
1.3 研究意义 |
1.4 研究方法 |
第二章 文献综述与理论基础 |
2.1 相关概念界定 |
2.2 国内外研究现状 |
2.2.1 国外研究现状 |
2.2.2 国内研究现状 |
2.2.3 文献述评 |
2.3 理论基础 |
2.3.1 数学与数学教育相关理论 |
2.3.2 教师专业发展相关理论 |
第三章 方程的发展及教学要求 |
3.1 方程的发展历史 |
3.2 初中课程标准中有关方程的内容 |
3.3 方程的教学意义 |
第四章 高观点下对初中方程的概念及主要解法的解读 |
4.1 方程概念与分类 |
4.1.1 等式的定义 |
4.1.2 关于方程的定义 |
4.1.3 方程的分类 |
4.2 方程同解定理 |
4.2.1 同解方程的原理 |
4.2.2 导出方程原理 |
4.3 方程解法综述 |
4.3.1 方程和方程组解法的一般原理 |
4.3.2 公式法 |
4.3.3 因式分解法 |
4.3.4 换元法 |
4.3.5 方程组的解法 |
4.4 方程应用及其应用题 |
4.5 方程与函数、不等式关系分析 |
4.5.1 不等式的定义及性质 |
4.5.2 三者之间的关系 |
第五章 高观点下对初中生方程学习现状的调查及分析 |
5.1 调查方案的设计与实施 |
5.1.1 调查目的 |
5.1.2 调查内容 |
5.1.3 调查对象 |
5.1.4 调查实施过程 |
5.2 调查的结果分析 |
5.2.1 测试卷的情况分析 |
5.2.2 测试卷的调查结论 |
5.2.3 调查问卷的结果分析 |
5.2.4 问卷调查的结论 |
5.3 教师访谈 |
第六章 中学教师利用“高观点”指导教学的调查及分析 |
6.1 调查目的及意义 |
6.2 调查对象 |
6.3 信度、效度分析 |
6.3.1 信度分析 |
6.3.2 效度分析 |
6.4 调查结果及分析 |
第七章 高观下提高初中方程教学质量的策略与建议 |
7.1 关于方程概念的教学 |
7.2 关于方程解法的教学 |
7.3 关于方程应用的教学 |
7.4 关于方程与函数、不等式关系的教学 |
第八章 结论和建议 |
8.1 结论 |
8.2 建议 |
8.2.1 对一线中学数学教师的建议 |
8.2.2 对中学学校的建议 |
参考文献 |
附录1:测试卷 |
附录2:初中生方程学习现状调查问卷 |
附录3:教师采用高观点进行教学现状调查问卷 |
致谢 |
(9)基于线性代数思想解n元线性方程组(论文提纲范文)
1 引言 |
2 定义与定理 |
3 解n元一次线性方程组的方法 |
3.1 利用行列式中的Cramer法则来解方程组 |
3.2 利用矩阵中的逆矩阵来解方程组 |
3.3 利用矩阵的变换来解方程组 |
3.4 解方程组方法的推广 |
4 小结 |
(10)从教育数学的角度探讨行列式教学(论文提纲范文)
1 引言 |
2 行列式定义的目的和定义的自然性 |
3 行列式性质教学中的几何直观 |
4 行列式计算中的算法观念 |
5 行列式相关的数学史资料 |
(1)行列式概念的建立和发展的简单历史. |
(2)Cramer法则的证明. |
6 总结 |
四、矩阵初等变换的推广及其应用(论文参考文献)
- [1]“线性代数”课程内容优化研究及其在MOOC教学中的实践[J]. 文军,屈龙江,刘春林,海昕,钱旭. 高等教育研究学报, 2021(02)
- [2]几何变换思想在初中几何教学中的渗透与应用研究[D]. 白方. 上海师范大学, 2021(07)
- [3]钢丝绳空间结构与力学特性仿真中的应用研究[D]. 赵海空. 西安石油大学, 2021(09)
- [4]基于矩阵变换的多维奇异系统Roesser模型低阶实现[D]. 霍凯鸽. 兰州大学, 2021(11)
- [5]面向教师教育的数学知识研究 ——以S市高中数学教研员为例[D]. 沈中宇. 华东师范大学, 2021(08)
- [6]职前数学教师专业知识结构及水平的实证研究[D]. 王改珍. 东北师范大学, 2021(09)
- [7]查理斯密代数学版本及内容的比较研究[D]. 饶大平. 四川师范大学, 2021(12)
- [8]高观点下初中方程教学的主要问题与解决策略[D]. 王杰. 合肥师范学院, 2021(09)
- [9]基于线性代数思想解n元线性方程组[J]. 王叶. 农家参谋, 2020(23)
- [10]从教育数学的角度探讨行列式教学[J]. 曾振柄,黄勇,饶永生. 高等数学研究, 2020(04)