数学教学中如何引导学生掌握正确的学习方法

数学教学中如何引导学生掌握正确的学习方法

一、在数学教学方面怎样指导学生掌握正确的学习方法(论文文献综述)

张先波[1](2019)在《中学数学思想的培养研究 ——基于深度教学的视角》文中研究指明从原始的结绳记事,到对于数与形的重视;从楔形文字、象形文字的表达,到初等数学符号的出现;从面向生活实践的零散数学规律,到系统性的数学学科体系。数学这门古老的学科,在迈过其漫长的发展历史之后,在学校教学的过程中继续生根发芽。作为学校教育中的一门基础性学科,数学不仅致力于传递古今中外的数学知识和定律,更重要的是在与学校生活中其他学科的交融过程中,使学生通过知识的学习,领会数学思想,感悟数学之美。曾有学者指出,数学是关于美的学科,数学是关于艺术的学科,数学是不断反思发展的学科。数学之美,体现在其数字的变幻之美,体现在数学公式的平衡之美,体现在数学发现的探索之美,同时也蕴含在学生学习数学过程中所体会到的获得之美。数学同时还是关于思想的学科,历代数学家根据自己对相关数学领域的研究,不断充实数学思想库,在传承与创新的过程中实现数学学科的不断发展。关于数学是一门艺术还是一门科学性学科的争论至今仍然存在,数学是一门艺术体现在数学通过艺术化的语言、简练的公式表达,使得数学思想得以发展,数学学科也称为学科发展史上的一朵奇葩。数学是一门科学,数学的语言及表达要求精确而凝练地指出相应的意图,要求数学学习者和研究者对于相应数学思想的深刻化理解,并在此基础上做到运用时的精准化。数学同时是一门生活化的学科,原始的数学便发端于人们对于生活问题的解决过程。如古埃及数学文明的发展,便是由于尼罗河三角洲的河道淤积以及洪水泛滥等问题,迫使数学家开始研究淤积的面积,并提供相应的预测。数学的发展往往受到社会经济发展的影响,数学发展的每一个重要阶段必然伴随着社会发展的需要,并且也在顺应社会的需求。这一点在近现代数学发展史中得到了印证,尤其是在现代社会中数学与信息技术的融合,以及基础数学研究的日益专门化和数学教育的大众化等趋势,均是数学与社会经济发展相适应的表现。无论是古典时期阿基米德的几何《原本》,还是现代数学家所取得的重要成就和关键突破,均为数学的发展画上了浓墨重彩的一笔。当前数学的发展,除了需要数学家和相关研究者持续不断的努力,同时需要学校教育培养出对数学感兴趣、能够领悟数学之美的人才。学校教育的产生,在人类历史上无疑是具有划时代意义的事件,它使得人类文明的传承有了相对规范化和制度化的途径。学校教育的产生以及与之相伴随的学科教育的发展,使得人类发展史上的重要成果能够分门别类的进行传递和发展。正如学者所言,我们的数学教育并非是使每个孩子的都成为数学家,而是要在他们心中埋下数学的种子,使他们感悟和理解数学之美。学科教学的过程,不应当只是知识的传递过程,更重要的是学科教学应该成为思想领悟的过程,成为数学知识向数学思想跨越的过程。数学知识的学习是数学思想领悟与获得的基础,是数学深度学习达成的必要前提。基于深度教学的视角探讨中学数学思想的培养过程意味着,从知识观、学习观和教学观等方面进行中学主要数学思想进行培养。从深度教学的视角而言,知识的结构分为符号表征、逻辑结构和意义系统三个层次。数学知识教学过程中,应当是超越知识的符号性教学和表层化教学,进而深入到知识的内部结构之中,使学生在领悟数学学科知识的结构的基础之上,获得数学思想的熏陶。从数学知识到数学思想,不仅是数学教学的飞跃式发展,同时也是教学走向深度的必然要求。当前对于学生关键能力和核心素养培养的重视,最终需要回归到各个学科教学的过程中来,通过学科教学逐步渗透相应的学科思想,培养学生优秀的学科思维,进而促使学科能力和学科素养的提升。尤其是对于中学数学教学而言,中学处于义务教育阶段是学生相应学科思想学习的黄金时期,这一阶段的数学思想学习尤其需要引起教师和学生的重视,课堂教学应当以学科思想,即重要的数学思想为线索,将数学知识串点成线成面。学生的数学学习过程,经由学科思想的浸润,通常能够加深对于数学学科的认识,加深对数学知识的理解以及促进其对于学科结构的把握。因而,数学思想的教学之于数学教学过程而言至关重要,从数学知识到数学思想的跨越是当前课堂教学应当关注的重点。同时,如何在中学教学过程中培养学生的数学思想以及数学思维品质,也是一线教师及研究者应关注的的问题之一。

马文杰[2](2014)在《高一函数教学中学生数学解题错误的实证研究》文中进行了进一步梳理从学生数学学习的总体过程而言,数学学习错误,包括解题错误在某种程度上是不可避免的。因而,在数学学习过程中产生一定的数学学习错误是必然的,也是合理的。但从教学角度而言,我们又期望学生能够比较顺利地掌握相应的数学知识。因此,深入研究学生在数学学习中出现的各种错误,进行科学、合理的归因,并研究有效地避免或矫正学生数学学习错误的方法等具有重要的实践价值与理论意义。函数概念内涵丰富、思想深刻、应用广泛,是高一数学的核心知识与关键内容。另一方面,高一学生在学习函数的相应内容时,也暴露出了一系列的问题,在解决与函数有关的问题时,也出现了各种各样的错误。因此,以函数内容为载体研究高一学生的数学学习(解题)错误,具有重要的实践价值。本研究以人教版《高一数学必修1》(A版)为载体,主要研究了以下三个基本问题:(1)在解决与函数有关的问题时,高一学生主要出现哪些类型的错误?(2)导致这些解题错误的主要原因是什么?(3)如何有效地矫正高一学生的数学解题错误?在梳理与分析国内外有关学生数学学习(解题)错误的相关研究的基础上,作者确定了本研究的研究方法、分析框架和研究工具,等等。本研究用到的主要研究方法有:文献分析法、访谈法、作业(试卷)分析法、个案研究,以及问卷调查,等等,这些研究方法互相支持,互相补充,使作者在研究过程中能够不断“攻坚克难”,顺利完成研究任务。本研究构建的分析与矫正高一学生数学解题错误的基本框架为:识别解题错误、分析解题错误、矫正解题错误、评价与完善矫正方案。从一般层面分析高一学生解答与函数有关的问题的过程中出现的解题错误时,本研究主要采用以下分析框架:知识性错误、逻辑性错误、策略性错误,以及疏忽性错误。从具体层面分析高一学生在解答某一个数学问题的过程中出现的错误解答时,除了使用以上一般层面解题错误的四分类法,另外还主要采用“错误模式”和错误“复现率”对其进行分析与研究。本研究用到的基本研究工具主要有:作者专门为本研究开发的《高一学生数学学习问卷》和七套《高一数学测试卷》。通过这两个研究工具,笔者收集到了十分丰富、非常生动的第一手研究资料,为本研究的深入开展奠定了坚实的“物质基础”。在综合已有研究的基础上,作者初步构建了数学解题错误矫正的基本原则,以及数学解题错误矫正的基本框架与基本流程。并在教学实践的基础上,反思与总结了基于“解题错误”的个别辅导矫正方式和基于“解题错误”的课堂教学矫正方式。通过本研究,笔者主要得到以下结论:首先,高一学生在解答与函数有关的问题时出现的解题错误主要是知识性错误与疏忽性错误,同时,逻辑性错误与策略性错误也在解答过程中不同程度地出现。另外,通过深入分析本研究的系列测试,作者发现高一学生的数学解题错误是有一定“模式”与“结构”的。这在一定程度上可以为我们提供一个对解题错误进行分类的标准,也有利于对错因进行推断,以及合理确定矫正起点,对其进行适当矫正,等等。其次,综合已有的相关研究,并通过对本研究系列测试的分析,以及与学生的访谈、与任课老师的交流等,作者从大的方面把导致高一学生数学解题错误的主要原因归结如下:数学内容方面的原因、数学教学方面的原因,以及数学学习方面的原因。再次,个别辅导是分析错误,矫正错误的一种有效而重要的方式。个别辅导矫正比较自由、灵活,易于调整,便于深入,有利于深入观察解题者的解题过程,有利于发现其个别化的错因。通过个别辅导,可以对学生的解题错误理解的更深入,更全面。另外,通过个别辅导矫正,可以和学生进行“深度交流”,可以了解学生的个性特点、习惯爱好、思想动向,等等。这都对研究与矫正学生的数学解题错误有一定益处。第四,基于“解题错误”的课堂教学矫正方式完全有潜力发展成为一个高效的错误矫正方式。基于“解题错误”的课堂教学矫正的取材十分方便,操作简单易行。基于“解题错误”的课堂教学矫正的立足点是学生的“解题错误”,基本的教学素材也是学生的“解题错误”,以及学生在教学过程中即时生成的一些教学资源,基于“解题错误”的课堂教学矫正的最终目的,则是为了更好地矫正学生的解题错误,最大可能地消除学生的错误认识。

周淑红[3](2017)在《小学数学核心素养培养研究》文中认为小学教育作为国民教育序列的起点,承载着打基础的重要作用,这个基础不仅是知识的基础,更重要的是人格发展的基础,小学教育有责任给学生发展施以明亮的底色。作为小学教育的主要学科——小学数学,其任务也不仅仅局限于传授数学的基础知识,小学数学教育的最终目标是发展人,发展人的思维、培养现代社会每一个公民应该具备的数学核心素养。没有任何一门学科能像数学一样在培养学生的理性思维方面发挥如此强大的作用,而面对刚刚步入数学大门,思维尚处于懵懂状态的小学生,如何教会他们数学地思考,培养他们的理性思维,提升他们的数学核心素养,必然有着区别于其他学段学生培养方式的独特方法。新课程改革以来,小学数学教学曾经一度出现了过分强调热闹的形式而忽略了数学本真的现象,这引起了数学教育者的重视和轰轰烈烈的讨论,《义务教育数学课程标准(2011年版)》(以下简称为《标准(2011年版)》)的颁布起到风向标的作用,让一线教师看到了数学本质的回归。2016年9月13日《中国学生发展核心素养》报告发布,以“培养全面发展的人”为核心,具体细化为“国家认同”等18个基本要点。报告推出后,有关各学科的核心素养的讨论方兴未艾。在实际教学中,把握怎样的尺度才能既符合新课程的理念又实现了数学启迪思维、提升素养培养人的作用?这是本研究的重点。为此,将本研究问题确定为基于探究小学数学核心素养的内涵和建构模型的基础之上的有效培养策略的寻求,故采用文献研究法进行理论研究的同时,深入小学追踪课堂教学、开展调查研究,采用田野研究法开展实践研究。本研究结论认为:小学数学教学应顺应小学生思维发展规律,重在教学生学会思考,培养学生的数学核心素养,提出了小学数学“有趣有思考”的教学主张,倡导自然教育。具体如下:本研究分为六章。第一章:绪论。提出研究的背景、目的、意义和方法,对数学思考、数学思维、数学思想方法、数学素养等相关概念进行界定,明确概念间的逻辑关系。第二章:文献综述。梳理了国内外关于数学思考、数学思维、数学思想方法、数学素养的研究成果,对小学数学教育研究的文献不足现状做简要原因分析。文献综述梳理了既有研究成果,明确了本研究的方向。第三章:理论基础。小学数学核心素养的培养研究首先建立在生理学理论上,脑科学的研究提供了学生思维培养可行的物质基础;心理学研究指出612岁期间(小学阶段)的儿童思维发展处于重要转折阶段,皮亚杰的认知发展理论是本研究的重要心理学支撑理论;教育学理论认为对于小学生思维与核心素养培养应顺其自然,西方自苏格拉底起的自然教育理论对本研究有很大启发;由于数学教育的特殊性,弗赖登塔尔的“再创造数学”教育理论对小学数学核心素养培养有具体指导价值。第四章:素养建构。在第三章理论研究基础之上探讨了小学数学核心素养模型的内涵,并构建了小学数学核心素养从生成到表征的完整模型。第五章:存在问题。为清晰把握小学数学核心素养培养的现状,在大量听课基础上,结合学生和教师两方面进行了问卷调查和访谈调查,指出了小学数学核心素养培养存在的问题。第六章:教学策略。这是本文的主要内容。针对小学数学核心素养培养存在的问题,在核心素养建构理论基础上,从培养小学生学习兴趣、独立思考、全面思维、活动体验、感悟思想、应用强化、整体教学不同角度提出小学数学核心素养培养的策略。提出了顺其自然的“三不原则”和小学数学核心素养培养的“教阅读——教提问——教探究——教表达——教总结”的“RQSES”五步训练法,倡导“有趣有思考”的数学教学。最后是本研究结论与反思。对小学数学核心素养建构理论再次回顾整理,反思“有趣有思考”的小学数学在教学实施时应思考的问题,并对后续研究做展望。

吴宏[4](2018)在《小学数学深度教学研究》文中指出随着计算机科学、人工智能,以及脑科学和学习科学研究的深化,深度学习的概念及其思想再次进入教育科学的视野。注重深度学习与深度教导的关联性和一致性,需要实现从深度学习转向深度教学。如何借助深度教学的理念,结合学科本质和学科学习的特点,促进学生深度学习,达成学科素养培育的目标,成为学科教学研究的现实课题。本文基于深度学习(教学)的内涵、理论基础、教育价值和策略等国内外文献的综述,运用国际比较、教学现状调查和案例分析的方法,阐述小学数学深度教学的内涵、基础分析和目标追求。基于深度教学剖析我国小学数学教学的现状,探讨小学数学深度教学的策略。论文主要由三部分组成:(一)小学数学深度教学的理论基础。从知识的教育学立场出发,既从知识的解构,又从学生学习的多层级水平思考深度教学,做到以学科知识为重要资源,帮助学生在知识学习过程中,达成知识的发展性价值。首先,结合小学数学学科本质和学生学习的特点,明确小学数学深度教学的内涵和特征,建构小学数学深度教学概念的结构模型;其次,小学数学深度教学的基础分析。从思想认识角度为小学数学深度教学确立观念基础;最后,在比较研究国际小学数学素养标准的基础上,从学生学习的价值观、思想方法、活动经验和能力方面,确定小学数学深度教学的目标追求。(二)以深度教学的视角,剖析我国小学数学教学的现状。结合小学数学听评课的经验,进行大面积、系统地调查,分析小学数学教学的现状和问题。调查研究既涉及教师的“教”与学生的“学”的观念,又涉及教师教学和学生学习策略的选择。此外,从学科素养目标达成的层面上,将能力表现作为考查学生数学学习现状的一个侧面。调查结果表明:学生数学学科能力表现的层次水平较低、差异较大和数学关键能力缺失。教师的教学观念没有必然地转化为教学行为,学生的数学学习处于浅表层面。观念方面,小学数学教师主要持柏拉图主义的数学教学观,且不同学历组之间存在显著差异;小学生对数学本质缺乏正确的认识。实践方面,教师教学采用教师中心的方式;学生的学习倾向记忆策略。除了教学观念的转变,深度教学需要全方位的策略指导。(三)有针对性地探讨小学数学深度教学的策略。小学数学深度教学策略,能够促进学生的深度学习。第一,以能力培养为目标的教学设计;第二,为学生提供数学活动的机会,丰富学生的数学活动经验;第三,恰当地渗透数学思想方法;第四,有机地融入数学文化;第五,以小学生数学深度学习的成果为依据,确立深度学习的评价目标,选择表现性评价方式。明确表现性评价涵义的基础上,掌握确定评价目标、开发评价任务和制定评分规则的技术。学生数学学习表现性评价的内涵、目标、任务的选择与开发,以及结果的评定和合理解释,与教学、标准构成统整的评价体系。

宋运明[5](2014)在《我国小学数学新教材中例题编写特点研究》文中提出课程是学校教育工作的核心,教材是课程的载体。教材作为一种体现国家意志的印刷品,作为教与学的重要媒介、学习活动的基本线索,在学校课堂教学中具有不可替代的作用。教材编写质量某种程度上决定着教学质量,教材是否有编写特色是衡量其编写质量的重要标志,而教材编写特色是否鲜明是衡量其编写水平的重要标志,对其易教利学程度有重要影响。然而,教材编写研究长期以来被忽视,尤其是小学数学教材编写特色研究更少,远远不能满足当今小学数学教材建设的需要。例题是小学数学教材的最重要组成部分和教学属性的集中体现,其编写特点直接影响教材质量也影响小学数学课堂教学质量,在教材编写特色中占据突出地位。本研究以例题编写特色为切入点对我国小学数学新教材(小学数学新教材是指我国自2001年实施新课改以来依据国家数学课程标准编写并经教育部审定通过的小学数学教材,下同)的编写特色进行研究。研究的问题为:我国小学数学新教材中例题编写有哪些利教利学的特点,有何凸显例题编写特点的建议?具体可以分解为4个子问题:1)如何构建小学数学新教材中例题文本分析的框架,也即是从哪些类目分析教材文本中例题的编写特点?2)在教材文本中,各版本例题编写在框架各类目上存在哪些特点?3)小学数学教师对教材文本中例题编写特点的利教利学认同度如何?4)我国小学数学新教材中例题编写有哪些利教利学的特点,有何彰显例题编写特点的建议?其中第1)和2)个问题是研究的重点,第3)个问题是研究的难点,第4)个问题是研究的归宿。研究与凸显小学数学教材的例题编写特点,对于提升小学数学教材编写质量、促进小学数学教材多样化发展、提高小学数学课堂教学水平进而促进小学生的数学学习发展乃至促进教育公平都具有重要意义。论文以我国义务教育数学课程标准为指导,借鉴有关研究成果,采用文献法、内容分析法、比较研究法、调查法和统计分析法等研究方法对人教版、西师版和苏教版四至六年级数学新教材中的例题编写特点进行了文本分析与利教利学认同度调查研究。具体而言,首先基于对课程教材政策文件、小学数学教材特别是其中例题的编写特点及其他相关(数学)教育与心理学研究成果、小学数学教材文本的综合分析,构建小学数学新教材文本中例题的分析框架。其次采用该框架对所选择的教材文本中的例题进行分析、统计,进而比较得出各版本教材例题在分析框架各个类目上的共同特点与各自特点。再次基于文本研究的典型结论制定问卷,对383名小学数学教师进行例题编写特点利教利学认同度的调查研究,采用18.0版SPSS软件对调查结果进行统计分析。最后综合上述静态和动态研究的主要结论,概括提炼我国小学数学新教材中例题编写的利教利学特点,针对存在局限提出彰显我国小学数学新教材尤其是其中例题编写特色的建议。通过研究,主要得到以下结论:其一,例题文本分析框架分为12个类目:所占篇幅,所含情境类型,所属情境倾向,所含插图类型,所含解题阶段,对知识的处理方式,所含启发方法,所含问题解决方法多样化,开放性,所含对话交流引导,所含动手操作引导,知识主题中例题间的关系。其中大多类目分为若干亚类目或若干类型,如开放性分为所含“问题”信息是否充足、答案是否唯一、是否含“提出问题”提示语三个亚类目;所属情境倾向分为农村情境倾向、中性情境和城市情境倾向三种类型。其二,在文本分析中,三版本教材例题编写的共同点:平均每道例题长度占半个正文页面多一点。属于生活情境类型的例题占比约六成,属于其他学科和动画情境类型的例题占比较低。具有中性情境的例题个数占八成以上,隶属农村情境倾向的例题占比很低。含插图例题比重占七成以上;在三个知识领域(如不特别说明,三个知识领域指数与代数、空间与图形、统计与概率三个领域,下同)中,空间与图形领域中含功能性插图例题比重最高。在波利亚解题理论的四个解题阶段中,含弄清题意阶段的例题比例最小,含拟定计划阶段的比例次小,而含执行计划阶段的比例最高,回顾阶段得到足够重视;留白例题比例约六成;执行计划阶段含关键处点拨例题比重超过含该阶段例题的两成。用以获取知识的例题比重在54.7%-86.9%之间。使用启发方法的例题比重在三成以上;寻找模式和绘图处在教材例题启发方法使用频率的前三位,而且这两种启发方法主要分布在数与代数领域。含问题解决方法多样化例题比重在15%-22%之间;在三个知识领域中,数与代数领域含有问题解决方法多样化例题比重明显高于其他两个领域。“问题”信息不充足和含“提出问题”提示语的例题很少,答案不唯一例题比重在14%-18%之间。含对话交流引导的例题比重在43%-58%之间。含动手操作引导的例题比重在15%-30%之间;四至六年级中,四年级含动手操作引导的例题比重最高。重视例题间深层结构变异与概念连接,同时注重通过例题后的“提示或小结”诱发学生的自我解释。三版本各自例题编写也有特性,如人教版例题较注重联系其他学科,西师版较重视农村情境,苏教版在问题解决多样化方面较突出等。其三,在对32个例题编写特点的利教利学认同度调查研究中,小学数学教师认同度最高的特点是:含插图例题个数比重在72.9%-80.5%之间,平均为76.2%;认同度最低的特点是:具有农村情境的例题个数比重在0.6%-10.5%之间,平均为4.5%。小学数学教师是否使用过人教版、苏教版和北师版教材对其认同度的影响较小;数学学科教龄、职称和最后学历的影响一般;学校位置(城市或农村)与是否使用过西师版教材对认同度的影响非常明显。其四,我国小学数学新教材中例题编写利教利学的共同特点有:呈现形式注重图文并茂,情境设置联系生活实际,学习方式倡导对话交流,例题功能注重新知获得,例题之间注意变式连接,活动设计强调动手操作。各版本教材例题也有一些利教利学特性,在三版本中,如西师版使用启发方法的次数最多,使用启发方法的例题个数比重最高;苏教版含回顾反思阶段的例题个数比重最高等。其五,在研究的基础上,提出了以下建议。对彰显我国小学数学新教材中例题编写特色的建议:1)全力彰显例题编写的个性化特色;2)加强空间与图形、统计与概率知识领域例题编写的教学属性;3)关注农村小学数学教学,尤其适当提高农村情境倾向例题比重;4)增强例题与动画情境、其他学科的联系;5)适度增强例题的开放性;6)适度增加含弄清题意阶段的例题比重,减少裸例题比重。对我国小学数学教材编写特色发展的建议:1)小学数学教材的内容选取和组织、难度等应多样化;2)坚持联系学生生活实际与活动化的编写思路;3)关注小学数学教材的地方特色,尤应关注农村地区、少数民族地区学生的数学学习需要:4)重视借鉴发达国家小学数学教材编写经验;5)深入挖掘教材编写特色切入点,进行理论与实验研究;6)教育行政部门应适当放宽教材审查标准,特别是对教材形式的规定。论文分为8章。分别为导论,概念界定与文献述评,研究设计,例题文本分析框架的构建,例题文本编码结果的统计与分析,例题编写特点的利教利学认同度调查研究,结论与建议,结束语。本研究创新之处:1)该研究是国内首例对小学数学教材中例题编写特点进行研究的博士论文,相关研究甚少,这也增加了研究的难度。2)以定量分析为主对小学数学教材编写特色进行研究,其中构建了例题的文本分析框架,而国内大多已有教材研究是以定性分析为主。3)提出了彰显小学数学新教材中例题编写特点的建议。本研究不足之处:1)研究者仅对三个版本的教材例题进行了研究,而对有些比较有特色的教材版本没有涉及,致使有些所得结论说服力不强。2)调查研究中,问卷需进一步改进,调查对象没有涉及小学数学教研员和高校数学教育研究者。

王成营[6](2012)在《数学符号意义及其获得能力培养的研究》文中提出为什么随着年级的增加,许多学生感觉数学越来越难学、越来越枯燥,普遍出现“听而不懂”、“懂而不会”、“会而不对”问题?对小学和初中数学教材中的数学概念、数学符号、数学图表、数学公式、数学定理、数学关键词进行分类统计的结果表明,小学生平均每学期需要学习42个新符号,而初中生每学期需要学习120个新符号,几乎是小学生学习量的3倍。对小学、初中、高中三个阶段学生的问卷调查表明,学生的数学符号意义获得能力普遍较低,38%的学生不认识学过的数学符号,45%的学生只能说出数学符号的一个意义,只有17%的学生能够想到二个或二个以上的意义,而且三个学段学生的数符号意义获得能力无显著差异。这些数据表明,随着年级增加,数学符号的数量急剧增加,形式越来越简洁,意义越来越复杂,学生的数学符号意义获得能力却仍处在低水平,没有得到相应提升,是导致学生数学学习困难的根本原因。为此,本课题提出了研究假设:培养和提高学生的数学符号意义获得能力是解决上述问题的有效方法。首先,概括阐述了符号学的基本方法和基本原理,作为本研究的理论基础。符号学理论认为,任何事物的存在状态和变化规律既受内部组成要素的影响,也受外部环境因素的影响,始终处在由内部要素和外部因素组成的关系结构中;符号是包含符号形式(记号)和符号意义(记号表象)的统一体,不能脱离记号谈论符号意义,也不能脱离符号意义谈论记号;符号都不是孤立存在的,它本身是一个结构,又处于更大的符号结构中;研究符号意义需要全面构建相互关联的包括要素结构、联结结构和意义结构三个层次的符号结构。其次,应用符号学理论分析教学活动中的符号现象,探讨符号学理论和方法的教学意蕴,对传统的“符号”、“知识”、“学习”、“教学”进行新的诠释。符号本质上是一种能够刺激人的感官,使人产生意义联想的客观存在形式,是一种可以替代认识对象的“感官刺激物”。教学活动中可以刺激学生产生意义联想,帮助学生理解教学内容的实物、模型、手势、视频、教材等一切东西都可看作符号,视作教学资源。知识是由知识外部表征(记号结构)与知识内部表征(认知结构)组成的统一体,本质上是一种符号结构。人的任何想法都可以通过符号以“直观”的方式直接地或通过符号结构以“意会”方式间接地传递给他人。个体知识的外部表征构成了与现实世界相对应的个体的“记号世界”,个体知识的内部表征构成了与“记号世界”相对应的个体的“经验世界”。由记号结构和认知结构构成的符号结构,代表了个体的所有知识和经验,代表了个体适应和改造现实世界的综合能力。人类的某一感官不可能同时感知整个客观事物,只能感知它的部分属性。感知到的属性被感知者赋予意义后就建立了一个刺激物(记号)与意义(感觉表象)的联结,成为自然符号。当感觉表象被感性思维加工成与客观事物对应的知觉表象(感性经验)时,与感觉表象对应的符号就联结成自然符号结构,并与客观事物建立了对应关系。当感觉表象被理性思维加工成客观世界中不存在的知觉形象(概念)时,人类就需要创造人工符号来表征它,并使建立在概念基础上的理性经验与人工符号结构形成对应关系。因此,学习知识的过程本质上是建构符号结构的过程,具体包括客观事物的经验化、经验的符号化、符号的经验化三个相互转换过程。知识的教学就是教师帮助学生建构符号结构的过程。再次,应用符号学理论和方法重新界定了数学符号、数学符号意义、数学符号意义获得能力的内涵,分析了影响数学符号意义获得能力培养的主要因素和困难,并结合数学概念教学、数学命题教学和数学问题教学进行了案例研究。在教学活动中,数学符号是一切承载数学信息的符号,主要包括数学自然符号、数学模型符号、数学语音符号、数学文字符号、数学专业符号、数学图表符号、数学行为符号七大类。数学符号意义是指在数学符号刺激下被激活的整个数学符号结构,主要包括数学符号的语符意义、基本意义、转换意义、隐性意义、美学意义、个性化意义、操作意义七种意义,它可通过联想到的所有数学符号的记号的数量来测量。数学符号意义获得能力是指在数学符号刺激下建构包含这该数学符号的数学符号结构的能力,主要包括数学符号的形式感性能力、意义联想能力、意义转换能力、意义整合能力和记号操作能力五大能力。影响数学符号意义获得能力培养的因素主要是数学教师的数学符号观和教学资源观、数学教学观和教学方法观。在数学教学实践,数学教师应转变观念,依据《数学课程》的“三维”教学目标要求,科学选择、安排、呈现数学符号资源,灵活应用符号结构分析方法,传授学生建构数学符号意义结构的基本方法和思维模式,探讨数学符号的多元表征,全面建构数学符号意义结构,并使之内化为学生自己的认知结构,提升学生的数学素养,促进学生的全面发展。最后,概括了本研究的基本逻辑:(1)无法获得数学符号丰富的数学意义是学生害怕、讨厌数学,感觉数学难学的主要原因;(2)教师忽视数学符号教学是导致学生数学符号意义获得能力较低的主要原因;(3)教师片面的数学符号观和知识观是导致教师忽视数学符号教学的主要原因;(4)数学符号结构中蕴含了数学知识的所有信息,需要学习者去感知、发现、领悟和建构;(5)获得数学符号结构中的数学信息需要学生具备较高的数学符号意义获得能力;(6)培养数学符号意义获得能力的核心是超越数学符号“是什么”的传统思维,努力思考它“意味着什么”;(7)培养学生的数学符号意义获得能力需要教师转变片面的符号观、知识观、学习观和教学观。本研究的最终结论是:培养和提高学生的数学符号意义获得能力是解决“数学难学”、“数学枯燥”,“听而不懂”、“懂而不会”“会而不对”等教学难题的一种有效的、可行的、具有操作性的途径和方法。

黄友初[7](2014)在《基于数学史课程的职前教师教学知识发展研究》文中提出在教师教育中,课程的设置多以经验性为主,以实证研究作为决策基础的现象还不多。教师教学知识是教师专业化程度的重要标志,研究教师教育课程对教师教学知识有怎样的影响具有重要的意义。本研究对数学史课程与职前教师教学知识的联系进行了研究,主要探讨两个方面的问题:(1)在学习数学史课程前后,职前教师的教学知识有了哪些变化?(2)在学习数学史课程过程中,职前教师的教学知识是怎么变化的?其中每个问题再分成两个小问题进行研究。本研究的教师教学知识以MKT理论框架为基础,从学科内容知识和教学内容知识两个方面,分析职前教师在学习数学史的过程中教学知识的变化情况。研究分为量化研究和质性研究两个部分,在量化研究中编制了教学知识问卷在学期前后对研究对象和控制班的职前教师进行了测量;质性研究则选取了11位职前教师,要求他们先对某知识点进行模拟教学,然后在数学史课程中听取了与该知识点相关的数学史内容后,对之前的模拟教学进行反思。研究者通过访谈,了解在数学史课堂后,职前教师在教学上出现了什么变化,哪些变化是由于数学史的因素引起的;并分析不同的类型的数学史内容和教学方式,对职前教师教学知识的影响有什么区别。研究发现:(1a)数学史对职前教师的学科内容知识和教学内容知识都产生了影响,从总体上说在学科内容知识方面影响程度小于教学内容知识。(1b)数学史对A类职前教师(师范类)教学知识的影响大于B类职前教师(非师范生),尤其在教学内容知识方面。(2a)在学习数学史的过程中,职前教师学科内容知识的变化是不连续的,与学习数学史的时间长短没有直接的联系,而与数学史内容的类型,以及史料的丰富程度有关;而教学内容知识的变化则存在连续性,不但与数学史内容有关,还与学习数学史时间的长短有关。(2b)演进史类型的数学史内容对职前教师教学知识变化最大,枚举史类型的内容对职前教师的教学知识变化最小;知识性和趣味性兼具的内容最受职前教师欢迎;数学史内容与HPM教学案例结合的方式最适合职前教师学习。课堂中组织讨论的教学方式有利于职前教师教学知识的提升;布置适当的作业有助于职前教师加深数学史与数学教育联系的理解;视频案例的教学方式可以帮助职前教师更好的将数学史内容转化成教学知识。根据研究所获得的启示,研究者在基于教师教学知识的数学史课程建设和数学史融入数学教学的教学设计流程这两个方面提出了一些建议。在探讨了研究的不足之处后,对后续研究提出了若干展望。

李海[8](2019)在《职前数学教师实践知能发展的设计研究 ——以三个初中几何定理证明教学为例》文中研究表明实践知能是上海“青浦经验”发展到今天最核心的概念,是顾泠沅先生、鲍建生教授及其研究团队经过青浦实验、教师行动教育模式和教师发展指导者三个阶段40年左右的实践研究所形成的中国特色数学教育理论的重要组成部分。在顾泠沅先生、鲍建生教授及其团队关于实践知能研究的基础上,本文从词源学、哲学的视角出发,分析了与实践知能有关的词语“知识”、“能力”、“实践”的生活来源及其发展,分析了与这些词语相关的哲学观点以及各个不同哲学观点的共同之处。然后结合相关理论尤其是结合德国哲学家康德的四个问题,进一步探寻了数学教师实践知能的理论基础,重新界定了数学教师实践知能的概念。在鲍建生教授关于数学教师实践知能框架的基础上,对数学教师实践知能的框架进行了细化。在这个细化了的数学教师实践知能框架下,以《数学教育学》、《数学教学技能训练》和《数学课程标准解读与教材研究》为主要干预性课程,选择初中几何定理证明教学内容中的三角形内角和定理、勾股定理和垂径定理教学对某高校的2015级44名职前数学教师、2016级76名职前数学教师在2017年秋季学期和2018年秋季学期分别进行了一个学期的数学教师实践知能发展的干预性教学。本文以设计研究为研究的方法论,在细化了的数学教师实践知能框架基础上,编制职前数学教师实践知能问卷调查表和访谈提纲,采用问卷调查、访谈和讨论等收集研究数据的方法,对职前数学教师的实践知能发展进行实证研究,主要解决四个研究问题:(1)职前数学教师实践知能的现状是怎样的?(2)职前数学教师在学习干预课程中的教学理论时,对三个定理证明的教学进行了什么样的分析?这些分析对他们理解这三个定理的教学有什么帮助?(3)在数学教师实践知能模型框架之下,职前数学教师对研究者提供的三角形内角和定理、勾股定理和垂径定理教学设计文本案例的学习、思考和研讨,对职前数学教师理解三个定理的教学有什么作用?(4)经过数学教师实践知能干预性课程的学习和训练,职前数学教师实践知能产生了哪些变化?经过研究,得出以下主要结论:1.职前数学教师的数学教学实践知能现状不容乐观,但同时职前数学教师的数学教学实践知能并非空白,虽然职前数学教师没有真正做数学教师的经验,但他们在数学教师实践知能的知识基础、教学过程和支持系统领域都存在着一定的积累,这些积累来自于他们受教育的过程,包括中小学的教育过程和大学教育过程和部分职前数学教师做中小学数学家教的过程;职前数学教师通过接受中小学教育和大学教育尤其是数学教育,他们在教育教学理论、心理学理论、数学素养和信息技术方面已经有了一定的积累,但对数学课堂教学的教学经验尤其是课堂把控能力还比较薄弱;2.通过运用数学教师实践知能模型进行教学干预,职前数学教师的实践知能得到很大的发展,表现为实践知能的前后测存在显著性差异;3.实践知能模型应用于职前数学教师的培养具有一定的应用潜力,但在应用过程中需做好设计,即需要一个科学的教学干预过程;4.在实践知能干预性课程教学中既要重视理论的教和学,也要注重随时将理论与三个定理证明教学的实践相结合,在这一结合过程中,组织、引导职前数学教师对数学教学理论的学习、思考、分析和研讨,不但有利于他们理解数学教学理论,也有利于理解具体数学教学内容的教学;5.为职前数学教师提供比较成熟的三个定理证明教学的教学案例,并且组织他们对案例进行比较系统的学习、讨论、交流,对他们理解三个定理的证明教学具有积极的意义;6.通过数学教学理论学习、数学教学技能训练、设计教学、讨论和信心宣告,职前数学教师在实践知能的支持系统(信念与态度)得到提高。7.本研究设计的职前数学教师实践知能干预性教学,对提高职前数学教师的实践知能具有明显的作用。这些研究结论,对数学教师实践知能的研究、我国的数学教师教育具有一定的启示。最后,结合本研究的研究过程和结论,对高校数学教师教育数学专业任课教师和数学教育类课程任课教师给出了一些建议。并且对数学教师实践知能的未来研究进行了展望,提出了一些需要进一步研究的问题。本研究相信,为开拓新的数学教育研究广阔天地,建立具有鲜明中国特色的研究领域,本研究做出了些许的进展工作。

秦桂花[9](2015)在《人教版小学“数学广角”教学现状的调查研究》文中研究指明第八次基础教育课程改革实施以来,从课程内容、教学观念、教学方法都发生了巨大的变化。人民教育出版社小学数学教材中新增加了“数学广角”这一内容,对这部分新增加的内容,学生的学习和教师的教学基本情况如何,有必要进行调查研究,以方便在教学中更好的落实课程标准的精神和理念。这项研究总体上要探讨三个问题:其一,教师的“数学广角”教学知识处于什么状况?其二,“数学广角”课学生怎么学,教师怎么教?其三,“数学广角”课程的教学结果与学生的学习结果是什么情况?研究中主要使用的方法有:调查访谈法,文献分析法,案例研究法,辅之以课堂观察法和个案研究法。围绕论文要解决的三项问题,通过对昆明市、成都市和贵阳市三地部分小学数学教师的调查,从教师的观念、教师的实践、学生对“数学广角”学习的结果进行调查研究,研究中注意定量分析与定性分析相结合。这项研究的主要结论是:“数学广角”教学内容对部分教师和学生来说在认知上有一定的困难,但是被调查学校的教师和学生相对而言比较喜欢这部分教学内容,原因是这部分内容的学习可以更好的渗透数学思想方法、培养问题意识和解决问题的能力;通过对“数学广角”教学的常态课与优质课进行分析,发现教师们关注教学目标的达成,教学方式上使用多元化的方法,讲授、课堂讨论、小组合作等多种方式相结合,重视双基,但是数学思想方法渗透不足,教师提问较频繁但是深层问题少;若要充分发挥“数学广角”的教育功能,教师教学观念的改变和切实有效的培训是关键。希望通过这项研究,能够真实地了解小学数学思想方法在课堂教学渗透方面的情况,小学一线教师们的专业成长需求;也希望通过研究为小学一线教师教学提供一些便利。

袁凤婷[10](2019)在《小学生推理教学现状的调查研究 ——以昆明市RC小学五年级为例》文中研究表明《义务教育数学课程标准(2011年版)》指出“推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。推理能力的发展应贯穿于整个数学学习过程中”。因此,在发展学生推理能力上,数学学科起到的作用是其他学科无法比拟和替代的,对学生成长和发展具有持久的影响力,而且数学推理能力的培养是一个渐进的过程,从小学数学开始就必须予以重视。这项研究通过设计适合五年级水平的数学推理能力测试题以及数学教师问卷,并辅以访谈法与课堂观察法等,主要研究:昆明市RC小学五年级学生推理水平现状和推理学习状况;RC小学数学教师对“推理”相关理论内涵的理解,以及对学生推理的教学情况。通过调查发现:在教师方面,关于“推理”等内涵的理解与学生推理能力培养的认识,还有待加强和深入,缺乏培养小学生数学推理能力的意识,教学中未能系统全面地培养学生推理能力。在学生方面,RC小学五年级学生的数学推理水平整体还有待提高;学习态度、学习兴趣的有待进一步的提升;良好推理习惯未养成。这一研究在分析了以上现状的基础上,针对培养小学生数学推理能力提出了几个方面的建议:第一,学校的重视与行动;第二,数学教师教学的优化;做到准确深入理解内涵,重视学生推理的培养;遵循学生发展特点,多方面完善培养方法;第三,学生自身端正数学学习态度、积极主动投入学习、培养良好的数学思维习惯。第四,家长的教育观念与行为一致,与学校、教师保持密切联系。

二、在数学教学方面怎样指导学生掌握正确的学习方法(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、在数学教学方面怎样指导学生掌握正确的学习方法(论文提纲范文)

(1)中学数学思想的培养研究 ——基于深度教学的视角(论文提纲范文)

摘要
Abstract
导论
    第一节 问题的提出
        一、数学育人价值实现与当前课堂教学实施的矛盾
        二、数学学科思想教学与当前教学变革的错位
        三、学生深度学习达成与课堂教学效果的偏离
    第二节 研究意义
    第三节 国内外研究综述
        一、国内研究综述
        (一) 关于数学课程的研究
        (二) 关于数学知识及其教学的研究
        (三) 关于学科思想方法的研究
        (四) 关于数学思想的研究
        二、国外文献综述
    第四节 研究方法
    第五节 研究内容
第一章 数学思想:内涵与意义
    第一节 数学思想的发展回溯
        一、数学思想的发展历史及阶段
        二、我国数学思想在教学中的发展
    第二节 数学思想的含义
    第三节 数学思想的特征分析
        一、内隐性
        二、连续性
        三、可迁移性
    第四节 数学思想的价值分析
        一、数学思想的教学价值
        二、数学思想的发展价值
        三、数学思想的应用价值
第二章 中学主要数学思想及相关概念辨析
    第一节 数学发展史上的主要数学思想
    第二节 中学数学教学中的数学思想
        一、数形结合思想
        二、分类讨论思想
        三、转化或化归思想
        四、类比或递推思想
        五、构造或建模思想
    第三节 相关概念辨析
        一、数学知识与数学思想
        二、数学能力与数学思想
        三、数学方法与数学思想
        四、数学素养与数学思想
第三章 当前中学数学思想教学现状分析
    第一节 中学数学思想教学现状调查的描述分析
        一、中学数学教师思想教学的基本情况
        二、中学教师数学思想教学现状
    第二节 中学教师数学思想教学的影响因素分析
        一、教师自身对于数学思想的认知
        二、学生数学学习的阶段性与连续性
        三、教材与学生发展之间的关联性
        四、教学活动组织的适切性
    第三节 问题与讨论
第四章 基于深度教学的中学生数学思想建立过程
    第一节 中学生数学思想的形成过程
        一、以观察能力为基础
        二、以猜想能力为辅助
        三、论证思维的建立
    第二节 深度学习以培养学生的数学思想
        一、深度学习之内涵
        二、深度学习与数学思想的建立
        三、深度学习以培养学生的数学思想
    第三节 深度教学以促进数学思想的培养
        一、深度教学之意涵
        二、深度教学与数学思想的建立
        三、深度教学以促进数学思想的培养
第五章 中学数学思想及其培养策略
    第一节 学科思想的特性与数学思想的价值
        一、学科思想的普遍性与特殊性
        二、数学思想的学科意蕴
    第二节 中学主要数学思想的形成过程
        一、中学数学思想培养所必备的学习经历
        二、中学数学思想培养的教学过程
        三、中学主要数学思想的培养
    第三节 中学主要数学思想的培养策略
        一、分类讨论思想的培养策略
        二、数形结合思想的培养策略
        三、转化或化归思想的培养策略
        四、递推或类比思想的培养策略
        五、构造或建模思想的培养策略
结语
参考文献
附录
致谢

(2)高一函数教学中学生数学解题错误的实证研究(论文提纲范文)

摘要
ABSTRACT
第1章 引论
    1.1 研究的背景
        1.1.1 数学教育实践层面
        1.1.2 数学教育理论研究层面
        1.1.3 对高中生数学解题错误的基本认识
    1.2 研究的问题
    1.3 研究的意义
    1.4 论文的结构
第2章 文献综述
    2.1 基于一般层面的数学学习(解题)错误的分类与归因研究述评
        2.1.1 基于一般层面的数学学习(解题)错误的分类与归因研究概述
        2.1.2 基于一般层面的数学学习(解题)错误的分类与归因研究专述
    2.2 基于具体(特殊)数学内容的解题错误分类与归因研究述评
        2.2.1 基于具体(特殊)数学内容的解题错误分类与归因研究概述
        2.2.2 基于具体(特殊)数学内容的解题错误分类与归因研究专述
    2.3 Newman等基于解题过程的解题错误研究述评
        2.3.1 Newman基于解题过程的解题错误研究
        2.3.2 Newman的错误分析指导
        2.3.3 Casey等对Newman解题错误分析框架的修改与拓展
    2.4 关于数学学习(解题)错误矫正研究的述评
        2.4.1 基于一般层面的数学解题错误矫正研究概述
        2.4.2 Riccomini关于教师识别和分析学生数学学习错误的相关研究
        2.4.3 “指导性教学”的基本环节
        2.4.4 Borasi基于数学错误的个案式探究教学实验
        2.4.5 Siemer等构建的智能辅导系统的基本原则和基本内容
第3章 研究方法
    3.1 基本研究流程
    3.2 研究对象
    3.3 教学内容
    3.4 主要研究方法
    3.5 主要分析框架
        3.5.1 分析与矫正数学解题错误的基本框架
        3.5.2 数学解题错误的分析框架
        3.5.3 数学解题错误的矫正框架
    3.6 基本研究工具
        3.6.1 《高一学生数学学习问卷》
        3.6.2 七套《高一数学测试卷》
第4章 高一学生数学解题错误调查:来自学生的观点
    4.1 《高一学生数学学习问卷》简介
    4.2 调查时间、调查对象
    4.3 调查结果的统计与分析
第5章 高一学生数学解题错误研究:基于测试的分析
    5.1 基于《测试卷一》的高一学生数学解题错误分析
        5.1.1 《测试卷一》简介
        5.1.2 测试时间、测试对象
        5.1.3 参加测试学生的“解题错误”的统计与分析
        5.1.4 小结
    5.2 基于《测试卷二》的高一学生数学解题错误分析
        5.2.1 《测试卷二》简介
        5.2.2 测试时间、测试对象
        5.2.3 参加测试学生的“解题错误”的统计与分析
        5.2.4 小结
    5.3 基于《测试卷三》的高一学生数学解题错误分析
        5.3.1 《测试卷三》简介
        5.3.2 测试时间、测试对象
        5.3.3 参加测试学生的“解题错误”的统计与分析
        5.3.4 小结
    5.4 基于《测试卷四》的高一学生数学解题错误分析
        5.4.1 《测试卷四》简介
        5.4.2 测试时间、测试对象
        5.4.3 参加测试学生的“解题错误”的统计与分析
        5.4.4 小结
    5.5 基于《测试卷五》的高一学生数学解题错误分析
        5.5.1 《测试卷五》简介
        5.5.2 测试时间、测试对象
        5.5.3 参加测试学生的“解题错误”的统计与分析
        5.5.4 小结
    5.6 基于《测试卷六》的高一学生数学解题错误分析
        5.6.1 《测试卷六》简介
        5.6.2 测试时间、测试对象
        5.6.3 参加测试学生的“解题错误”的统计与分析
        5.6.4 小结
    5.7 基于《测试卷七》的高一学生解题错误分析
        5.7.1 《测试卷七》简介
        5.7.2 测试时间、测试对象
        5.7.3 参加测试学生的“解题错误”的统计与分析
        5.7.4 小结
    5.8 基于测试分析的主要研究结论
第6章 高一学生数学解题错误矫正:基于实践的研究
    6.1 数学解题错误矫正的基本原则
    6.2 数学解题错误矫正的基本流程
        6.2.1 呈现错误
        6.2.2 分析错误
        6.2.3 回顾总结
        6.2.4 巩固练习
        6.2.5 评估矫正
        6.2.6 补充矫正
        6.2.7 反思矫正过程、完善矫正方案
    6.3 基于“解题错误”的个别辅导矫正案例一
        6.3.1 矫正对象
        6.3.2 矫正内容
        6.3.3 矫正实录与矫正分析
        6.3.4 矫后反思
    6.4 基于“解题错误”的个别辅导矫正案例二
        6.4.1 矫正对象
        6.4.2 矫正内容
        6.4.3 矫正实录与矫正分析
        6.4.4 矫后反思
    6.5 基于“解题错误”的个别辅导矫正案例三
        6.5.1 矫正对象
        6.5.2 矫正内容
        6.5.3 矫正实录与矫正分析
        6.5.4 矫后反思
    6.6 基于“解题错误”的个别辅导矫正案例四
        6.6.1 矫正对象
        6.6.2 矫正内容
        6.6.3 矫正实录与矫正分析
        6.6.4 矫后反思
    6.7 基于个别辅导矫正的主要研究结论
第7章 基于“解题错误”的课堂教学矫正案例与分析
    7.1 基于“解题错误”的课堂矫正的教学设计
        7.1.1 典型错例
        7.1.2 巩固作业
    7.2 基于“解题错误”的课堂教学矫正过程
        7.2.1 基于“解题错误”的试卷讲评课简介
        7.2.2 基于“解题错误”的课堂矫正(一)简介
        7.2.3 基于“解题错误”的课堂矫正(二)
        7.2.4 基于“解题错误”的课堂教学矫正的总结与反思
第8章 研究结论与展望
    8.1 研究结论
        8.1.1 高一学生数学解题错误的主要类型
        8.1.2 导致高一学生数学解题错误的主要原因
        8.1.3 对本研究运用的两种“解题错误”矫正方式的概括与反思
    8.2 反思与展望
        8.2.1 本研究的创新之处
        8.2.2 本研究的不足之处
        8.2.3 后续研究展望
中文文献
英文文献
附录
    附录一 《高一学生数学学习问卷》
    附录二 《测试卷一》
    附录三 《测试卷二》
    附录四 《测试卷三》
    附录五 《测试卷四》
    附录六 《测试卷五》
    附录七 《测试卷六》
    附录八 《测试卷七》
    附录九 典型错例
    附录十 巩固作业(一)
    附录十一 典型错例
    附录十二 巩固作业(二)
致谢
攻读博士学位期间发表的论文

(3)小学数学核心素养培养研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    一、问题的提出
        (一)深化教育教学改革的需要
        (二)提高数学教学质量的必由之路
        (三)培养小学生数学素养的目标驱动
        (四)自己的研究兴趣
    二、研究的目的与意义
        (一)研究目的
        (二)研究意义
    三、研究方法与研究路径
        (一)研究方法
        (二)研究路径
    四、相关概念的界定
        (一)小学数学教育
        (二)数学思考
        (三)数学思维
        (四)数学思想方法
        (五)数学素养与数学核心素养
        (六)数学思考、数学思维、数学思想方法与数学素养的关系
    五、论文的逻辑结构
第二章 文献综述
    一、关于数学思考的文献研究
        (一)数学思考研究
        (二)小学数学思考研究
    二、关于数学思维的文献研究
        (一)数学思维研究
        (二)小学数学思维研究
    三、关于数学思想方法的文献研究
        (一)数学数学方法研究
        (二)小学数学思想方法研究
    四、关于核心素养的文献研究
        (一)核心素养内涵研究
        (二)核心素养课程研究
        (三)核心素养教学研究
        (四)核心素养评价研究
    五、关于数学素养的文献研究
        (一)数学素养研究
        (二)数学核心素养研究
    六、小学数学教育研究文献不足的原因分析
第三章 小学数学核心素养培养研究的理论基础
    一、小学数学核心素养培养的生理学理论
    二、小学数学核心素养培养的儿童智力发展阶段心理学理论
    三、小学数学核心素养培养的自然教育理论
    四、小学数学核心素养培养的“再创造”数学教育理论
    五、小学数学核心素养培养的理论支撑框架
第四章 小学数学核心素养模型的理论建构
    一、小学数学核心素养的内涵
        (一)小学数学核心素养的界定原则
        (二)小学数学核心素养的特性
        (三)小学数学核心素养的定位
        (四)小学数学核心素养的构成要素
        (五)小学数学核心素养的表征
    二、小学数学核心素养模型的建构
        (一)小学数学核心素养模型的建构原理
        (二)建构模型
第五章 小学数学核心素养培养存在的问题
    一、小学教师的数学专业知识薄弱
        (一)在数学专业钻研上用力不足
        (二)不了解数学知识体系的内在演绎
        (三)对概念的数学本质认识肤浅
        (四)数学习题设计出现知识性错误
        (五)数学证明出现逻辑性错误
        (六)缺少数学思想方法引领
    二、小学生数学学习兴趣不高
    三、小学生独立思考能力欠缺
    四、教学缺乏思维训练的系统化
    五、数学活动的本质认识不清
第六章 小学数学核心素养培养的有效教学策略
    一、培养小学生数学学习兴趣的策略
        (一)设计适合儿童学习数学的起点
        (二)加强数学文化的感染力
        (三)恰到好处地给予积极评价
        (四)培养小学生的优秀学习习惯
    二、提高小学生独立思考能力的策略
        (一)构造问题牵引的情境
        (二)营造有利于思考的氛围
        (三)顺其自然的“三不”原则
        (四)关键时刻“示弱”的教学艺术
    三、在数学活动中感悟数学思想方法的策略
        (一)让数学活动有“数学味”
        (二)重视活动经验的积累
        (三)用发现的眼光感悟数学思想方法
    四、提高小学生全面思维能力的策略
        (一)逐渐加强小学生逻辑思维能力
        (二)格外重视非逻辑思维能力培养
        (三)培养小学生良好的思维品质
    五、在应用中强化数学素养的教学策略
        (一)用数学的多方面联系丰富小学生的视野
        (二)在应用中体验数学的成功
        (三)组织多样化数学兴趣小组
    六、课堂教学“RQSES”五步策略
        (一)教学生阅读(Reading)
        (二)教学生提问(Question)
        (三)教学生探究(Study)
        (四)教学生表达(Expression)
        (五)教学生总结(Summary)
    七、塑造“有趣有思考”的整体教学
        (一)全方位促进数学核心素养发展
        (二)“有趣有思考”的整体教学实施
研究结论与反思展望
    一、研究结论
    二、反思展望
参考文献
附录
    附录1 小学数学核心素养培养调研学生问卷
    附录2 小学数学核心素养培养学生访谈提纲
    附录3 小学数学核心素养培养调研教师问卷
    附录4 小学数学核心素养培养教师访谈提纲
攻读博士学位期间取得的学术成果
攻读博士学位期间参加的学术活动
致谢

(4)小学数学深度教学研究(论文提纲范文)

摘要
Abstract
绪论
    第一节 研究背景与意义
        一、问题的提出
        二、研究意义
    第二节 国内外研究成果评述
        一、国内相关研究成果
        二、国外相关研究成果
        三、文献述评
    第三节 研究思路与方法
        一、研究内容
        二、研究思路
        三、研究方法
第一章 小学数学深度教学的内涵与特征
    第一节 小学数学深度教学的内涵
        一、深度教学
        二、小学数学需要深度教学
        三、小学数学深度教学
    第二节 小学数学深度教学的特征
        一、在教学内容上,从形象直观提升到抽象概括
        二、在教学过程上,由数学知识学习到数学观念建立
        三、在教学方式上,回应性学习促进学习的纵深发展
第二章 小学数学深度教学的基础分析
    第一节 小学数学知识观
        一、数学知识及其性质
        二、数学知识的内在结构
        三、小学数学知识的基础性与结构
    第二节 小学数学教学观
        一、小学数学教学的价值取向
        二、小学生数学深度学习的机制与必要条件
        三、小学数学的教学目标与方式
第三章 小学数学深度教学的目标追求
    第一节 国外小学数学素养标准的比较研究
        一、加拿大小学数学素养标准的分析
        二、日本小学数学素养标准的分析
        三、美国小学数学素养标准的分析
        四、南非小学数学素养标准的分析
        五、英国和爱尔兰对数学素养的界定和培育
        六、比较与启示
    第二节 促进小学生数学深度学习的目标
        一、知识技能目标
        二、活动经验目标
        三、思想方法目标
        四、能力发展目标
        五、价值观目标
第四章 小学数学教学的现状基于深度教学的剖析
    第一节 调查的目的、意义与方法
        一、目的与意义
        二、研究方法
    第二节 调查的过程、结果与讨论
        一、数据的收集与处理
        二、调查结果
        三、学生的能力表现
        四、研究结论与讨论
第五章 小学数学深度教学的策略
    第一节 小学数学深度教学的设计
        一、学习的本质
        二、教学的设计
        三、《平行四边形的面积》案例与分析
    第二节 丰富学生的数学活动经验
        一、关照学生已有的活动经验
        二、为形成数学基本活动经验提供机会
    第三节 渗透数学思想
        一、数学思想在小学数学中的应用
        二、小学数学思想的特点与层次水平
        三、知识的形成过程中渗透数学思想
    第四节 融入数学文化
        一、开发数学文化的课程资源
        二、数学文化融入数学教学的途径
第六章 小学生数学深度学习的表现性评价
    第一节 评价目标
    第二节 评价方式与评价任务
        一、表现性评价
        二、评价任务的开发
    第三节 结果的评定与评价体系
        一、开发评分规则
        二、评价体系
附录
    附录1: 小学数学教师教学观的调查问卷
    附录2: 小学生数学学习的调查问卷
参考文献
攻读博士学位期间发表的论文和科研项目
致谢

(5)我国小学数学新教材中例题编写特点研究(论文提纲范文)

摘要
Abstract
第1章 导论
    1.1 教材功能及其在教学中的重要性
    1.2 国内外教材编写特色发展与研究概况
    1.3 例题在数学教材与数学课堂教学中的重要地位
    1.4 研究问题的提出及其意义
        1.4.1 研究问题
        1.4.2 研究意义
第2章 概念界定与文献述评
    2.1 数学教材特别是小学数学教材的相关研究
        2.1.1 对数学教材的认识
        2.1.2 数学教材的静态研究
        2.1.3 数学教材的动态研究
    2.2 小学数学教材编写特点的相关研究
        2.2.1 对小学数学教材编写特点的认识
        2.2.2 小学数学教材编写特点的相关研究
    2.3 样例的相关研究
        2.3.1 对样例、例题及样例学习的认识
        2.3.2 样例内特征设计
        2.3.3 样例间特征设计
        2.3.4 样例与问题间特征设计
    2.4 数学教材中例题的相关研究
        2.4.1 数学教材中例题的重要性
        2.4.2 数学教材中例题的文本分析
        2.4.3 数学教材中例题的使用及其教学
第3章 研究设计
    3.1 研究目标
    3.2 研究思路
    3.3 研究方法
    3.4 研究对象
第4章 例题文本分析框架的构建
    4.1 我国数学课程与例题编写相关的主要特点
        4.1.1 数学课程标准中与例题编写相关的主要内容
        4.1.2 数学教学与例题编写相关的主要特点
        4.1.3 数学教育测评中学生表现与例题编写相关的主要特点
    4.2 例题文本分析框架的构建
        4.2.1 例题所占篇幅
        4.2.2 例题所含情境类型
        4.2.3 例题所属情境倾向
        4.2.4 例题所含插图类型
        4.2.5 例题所含解题阶段
        4.2.6 例题对知识的处理方式
        4.2.7 例题所含启发方法
        4.2.8 例题所含问题解决方法多样化
        4.2.9 例题的开放性
        4.2.10 例题所含对话交流引导
        4.2.11 例题所含动手操作引导
        4.2.12 知识主题中例题间的关系
    4.3 例题文本分析框架的实施方法
第5章 例题文本编码结果的统计与分析
    5.1 例题文本编码结果的统计与分析
        5.1.1 例题所占篇幅
        5.1.2 例题所含情境类型
        5.1.3 例题所属情境倾向
        5.1.4 例题所含插图类型
        5.1.5 例题所含解题阶段
        5.1.6 例题对知识的处理方式
        5.1.7 例题所含启发方法
        5.1.8 例题所含问题解决方法多样化
        5.1.9 例题的开放性
        5.1.10 例题所含对话交流引导
        5.1.11 例题所含动手操作引导
        5.1.12 知识主题中例题间的关系
    5.2 例题文本分析的主要结论
        5.2.1 三版本教材的例题编写共同点
        5.2.2 三版本教材各自的例题编写特色
第6章 例题编写特点的利教利学认同度调查研究
    6.1 调查过程
        6.1.1 问卷调查的目的
        6.1.2 问卷的基本情况
        6.1.3 样本的选取
    6.2 调查结果的统计分析
        6.2.1 统计分析的整体图景
        6.2.2 例题编写特点利教利学认同度的差异检验
    6.3 调查研究的主要结论
第7章 结论与建议
    7.1 我国小学数学新教材中例题编写的利教利学特点
        7.1.1 呈现形式注重图文并茂
        7.1.2 情境设置联系生活实际
        7.1.3 学习方式倡导对话交流
        7.1.4 例题功能注重新知获得
        7.1.5 例题之间注意变式连接
        7.1.6 活动设计强调动手操作
    7.2 对彰显我国小学数学新教材中例题编写特色的建议
        7.2.1 全力彰显例题编写的个性化特色
        7.2.2 加强空间与图形、统计与概率知识领域例题编写的教学属性
        7.2.3 关注农村小学数学教学,尤其适当提高农村情境倾向例题比重
        7.2.4 增强例题与动画情境、其他学科的联系
        7.2.5 适度增强例题的开放性
        7.2.6 适度增加含弄清题意阶段的例题比重,减少裸例题比重
    7.3 对我国小学数学教材编写特色发展的建议
        7.3.1 对我国小学数学教材编写特色发展的建议
        7.3.2 我国小学数学教材编写特色发展新成效探析——以西师版为例
第8章 结束语
参考文献
附录
攻读博士学位期间科研成果
后记

(6)数学符号意义及其获得能力培养的研究(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 问题提出
        1.1.1 现实问题
        1.1.2 问题分析
        1.1.3 研究假设
    1.2 国内外研究现状
        1.2.1 数学语言的研究现状
        1.2.2 数学符号的研究现状
        1.2.3 数学符号感的研究现状
        1.2.4 数学多元表征的研究现状
        1.2.5 小结与思考
    1.3 研究方法和思路
        1.3.1 研究方法
        1.3.2 研究思路
    1.4 研究意义
        1.4.1 研究的理论意义
        1.4.2 研究的实践意义
2 符号学理论及其教学意蕴
    2.1 符号学基本研究方法:结构分析法
        2.1.1 结构的内涵
        2.1.2 结构分析法
    2.2 符号学基本原理:符号结构的建构
        2.2.1 符号的要素结构
        2.2.2 符号的联结结构
        2.2.3 符号的意义结构
    2.3 符号学视域中的知识学习与教学
        2.3.1 符号学视域中的教学活动
        2.3.2 符号学视域中的“知识”
        2.3.3 符号学视域中的“知识学习”
        2.3.4 符号学视域中的“知识教学”
3 数学符号及其意义结构
    3.1 数学符号的内涵界定
        3.1.1 数学符号的三种理解
        3.1.2 数学符号的分类
        3.1.3 数学符号的特征
        3.1.4 数学符号的功能
        3.1.5 义务教育阶段数学教材中数学符号分布状况的统计与分析
    3.2 数学符号的意义结构
        3.2.1 数学符号的语符意义
        3.2.2 数学符号的基本意义
        3.2.3 数学符号的转换意义
        3.2.4 数学符号的隐性意义
        3.2.5 数学符号的美学意义
        3.2.6 数学符号的操作意义
        3.2.7 数学符号的个性化意义
4 数学符号意义获得能力及其培养
    4.1 中小学生数学符号意义获得能力的现状调查
        4.1.1 调查过程的设计
        4.1.2 调查结果的统计与分析
        4.1.3 调查结论
    4.2 中小学生数学符号意义获得过程中的主要困难和错误
        4.2.1 数学符号意义获得过程中的主要困难
        4.2.2 减少数学符号意义获得困难应注意的几个问题
    4.3 数学符号意义获得能力的基本特征
        4.3.1 数学符号意义获得能力的内涵
        4.3.2 数学符号意义获得能力的基本结构
        4.3.3 数学符号意义获得能力的综合表现形式——符号感及其培养
    4.4 数学符号意义获得能力培养的影响因素
        4.4.1 数学教师的数学符号观
        4.4.2 数学教师的教学资源观
        4.4.3 数学教师的教学观
        4.4.4 数学教师的教学方法观
    4.5 数学符号意义获得能力培养的教学案例
        4.5.1 数学概念教学中的培养案例
        4.5.2 数学命题教学中的培养案例
        4.5.3 数学问题解决教学中的培养案例
5 结论与展望
    5.1 研究结论
    5.2 研究的创新点
    5.3 研究展望
参考文献
附录
    附录1 小学与初中数学教材中数学符号的统计表
    附录2 中小学生数学符号意义获得能力调查问卷
    附录3 中小学生数学符号意义获得能力的调查统计表
    附录4 数学符号感的行为结构表
攻读学位期间发表的学术论文
后记

(7)基于数学史课程的职前教师教学知识发展研究(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 研究背景
        1.1.1 职前教师教育的意义与困境
        1.1.2 教师教学知识的研究趋势
        1.1.3 职前教师教育中的数学史教育现状
    1.2 研究问题
        1.2.1 研究问题的产生
        1.2.2 研究问题的设定
        1.2.3 研究问题的说明
    1.3 研究意义
        1.3.1 基于教学知识的教师教育课程研究范式的构建
        1.3.2 在教师教育课程中发展职前教师教学知识的探索
        1.3.3 以教学知识为发展目标的数学史课程建设的尝试
    1.4 名词释义
    1.5 论文的框架结构
第2章 文献述评
    2.1 教师教学知识的内涵及其发展
        2.1.1 教师教学知识内涵的研究
        2.1.2 教师教学知识的测量与发展研究
        2.1.3 MKT的内涵及其发展研究
    2.2 数学史与教师教育
        2.2.1 数学史对教师教育的价值
        2.2.2 数学史与教师教学知识
        2.2.3 职前教师教育中的数学史课程
    2.3 文献小结
第3章 研究的设计与过程
    3.1 研究方法
        3.1.1 准实验研究策略
        3.1.2 质性研究策略
        3.1.3 行动研究策略
        3.1.4 收集资料的方法
    3.2 研究工具
        3.2.1 理论指导
        3.2.2 量化测试工具
        3.2.3 质性分析工具
        3.2.4 研究信度与效度
    3.3 研究对象
        3.3.1 基本信息
        3.3.2 量化研究对象
        3.3.3 质性研究对象
    3.4 研究过程
        3.4.1 前期准备
        3.4.2 预研究
        3.4.3 实施过程
        3.4.4 后期整理
    3.5 数据的收集与处理
        3.5.1 数据收集
        3.5.2 数据编码
        3.5.3 数据处理
第4章 研究结果与分析(一)
    4.1 课程前职前教师的教学知识
        4.1.1 W校职前教师的教学知识
        4.1.2 W校两类职前教师教学知识的比较
        4.1.3 S校职前教师的教学知识
        4.1.4 两校职前教师教学知识的比较
        4.1.5 W校职前教师对数学史教育性的认识
        4.1.6 小结
    4.2 课程后职前教师的教学知识
        4.2.1 W校职前教师的教学知识
        4.2.2 W校两类职前教师教学知识的比较
        4.2.3 S校职前教师的教学知识
        4.2.4 两校职前教师教学知识的比较
        4.2.5 W校职前教师对数学史教育性的认识
        4.2.6 小结
    4.3 课程前后职前教师教学知识的比较
        4.3.1 W校职前教师教学知识课程前后的比较
        4.3.2 W校A类职前教师教学知识课程前后的比较
        4.3.3 W校B类职前教师教学知识课程前后的比较
        4.3.4 S校职前教师教学知识课程前后的比较
        4.3.5 小结
    4.4 研究(一)的总结
        4.4.1 数学史课程前后学科内容知识和教学内容知识的变化
        4.4.2 数学史课程前后两类职前教师教学知识的变化
第5章 研究结果与分析(二)
    5.1 参与质性研究职前教师的基本状况
        5.1.1 参与职前教师的产生及基本信息
        5.1.2 数学史与教师教学知识联系的认识
        5.1.3 课程前的数学史素养水平
    5.2 职前教师在实数教学中教学知识的变化
        5.2.1 教学知识点的教研背景
        5.2.2 职前教师教学知识在数学史前后的变化
        5.2.3 研究小结
    5.3 职前教师在有理数乘法教学中教学知识的变化
        5.3.1 教学知识点的教研背景
        5.3.2 职前教师教学知识在数学史前后的变化
        5.3.3 研究小结
    5.4 职前教师在勾股定理教学中教学知识的变化
        5.4.1 教学知识点的教研背景
        5.4.2 职前教师教学知识在数学史前后的变化
        5.4.3 研究小结
    5.5 职前教师在一元二次方程解法教学中教学知识的变化
        5.5.1 教学知识点的教研背景
        5.5.2 职前教师教学知识在数学史前后的变化
        5.5.3 研究小结
    5.6 职前教师在相似三角形的性质及其应用教学中教学知识的变化
        5.6.1 教学知识点的教研背景
        5.6.2 职前教师教学知识在数学史前后的变化
        5.6.3 研究小结
    5.7 研究(二)的总结
        5.7.1 职前教师学科内容知识和教学内容知识的变化情况
        5.7.2 课程内容和教学方式对职前教师教学知识的影响
第6章 研究结论与建议
    6.1 研究结论
        6.1.1 数学史课程前后职前教师教学知识的变化程度
        6.1.2 数学史课程中职前教师的教学知识的变化过程
    6.2 研究启示
        6.2.1 基于教师教学知识的数学史课程建设
        6.2.2 数学史融入数学教学的教学设计流程
    6.3 研究局限
    6.4 研究展望
参考文献
附录
后记

(8)职前数学教师实践知能发展的设计研究 ——以三个初中几何定理证明教学为例(论文提纲范文)

摘要
abstract
第1章 导论
    1.1 研究背景
        1.1.1 从我国教育的战略地位到教师在教育中的核心作用
        1.1.2 从师范教育到教师教育的重要转型
        1.1.3 我国职前数学教师培养概要及其主要问题
        1.1.4 初中几何证明教学的重要性及其现实教学困难
        1.1.5 重视实践性知识和能力的教师专业发展
    1.2 主要概念界定
        1.2.1 职前数学教师
        1.2.2 实践知能
    1.3 研究目的与意义
        1.3.1 了解职前数学教师实践知能的现状
        1.3.2 优化高等师范院校对职前数学教师培养的方式
        1.3.3 为数学教师实践知能的进一步研究提供参考和借鉴
    1.4 研究问题
    1.5 论文结构
第2章 文献综述
    2.1 实践知能
        2.1.1 实践知能相关词语的词源分析
        2.1.2 知识的哲学理论概览
        2.1.3 知识及其分类
        2.1.4 实践的哲学理论概览
        2.1.5 教师知识及其分类
        2.1.6 教师知识的实践取向
        2.1.7 已有实践取向的教师知识研究
    2.2 发展职前数学教师实践性知识与能力的模式、方法与措施
    2.3 职前数学教师数学推理与证明教学知识研究
    2.4 几何证明教学研究
        2.4.1 什么是推理与证明
        2.4.2 数学推理与证明历史发展的简要轮廓
        2.4.3 数学证明的教育价值
    2.5 本章小结
第3章 数学教师实践知能的理论框架
    3.1 已有“知能”研究文献述评
    3.2 数学教师实践知能的概念和结构
        3.2.1 顾泠沅先生和鲍建生教授关注实践知能的缘起及基本研究思路
        3.2.2 数学教师实践知能概念及其结构发展的简要脉络
        3.2.3 已有数学教师实践知能概念及其结构述评
        3.2.4 数学教师实践知能研究的展望
        3.2.5 数学教师实践知能的理论基础
        3.2.6 本研究的数学教师实践知能定义及其框架
        3.2.7 对数学教师实践知能框架的进一步细化
第4章 研究方法与研究设计
    4.1 研究对象
    4.2 初中几何定理证明教学三个定理的选定
    4.3 实践知能发展干预性课程的教学
        4.3.1 干预课程的教学目标
        4.3.2 干预课程的教学内容
        4.3.3 干预课程的教学方法与教学措施
    4.4 研究方法
        4.4.1 设计研究概述及其与本研究的关系
        4.4.2 本研究的研究问题及其子问题对应的研究方法
    4.5 研究流程
        4.5.1 设计研究的研究流程
        4.5.2 第一轮、第二轮研究研究流程
    4.6 研究工具
        4.6.1 职前数学教师实践知能问卷调查表(前后测)的形成
        4.6.2 职前数学教师实践知能变化情况访谈提纲的形成
    4.7 问卷调查和访谈的具体实施
        4.7.1 职前数学教师实践知能问卷调查的实施
        4.7.2 职前数学教师实践知能访谈的实施
    4.8 研究数据的收集
    4.9 研究数据的分析方式
    4.10 研究的信度、效度与伦理
        4.10.1 研究的信度
        4.10.2 研究的效度
        4.10.3 研究的伦理
第5章 第一轮研究结果
    5.1 职前数学教师实践知能的现状
        5.1.1 职前数学教师对三角形内角和定理等三个定理及其证明的掌握
        5.1.2 职前数学教师实践知能中知识基础的现状
        5.1.3 职前数学教师实践知能中教学过程的现状
        5.1.4 职前数学教师实践知能中支持系统的现状
    5.2 职前数学教师在教学理论学习时对三个定理教学的分析
        5.2.1 职前数学教师对青浦经验的四条数学教学原理的学习和理解
        5.2.2 职前数学教师应用脚手架理论对三个证明教学的分析
        5.2.3 职前数学教师学习弗赖登塔尔的教学理论时对三个定理教学的分析
        5.2.4 小结
    5.3 职前数学教师实践知能的变化
        5.3.1 整体上实践知能的前后测差异情况
        5.3.2 职前数学教师在实践知能各个子成分的变化
        5.3.3 通过对个别研究对象的访谈看研究对象实践知能的变化
第6章 第二轮研究结果
    6.1 职前数学教师实践知能的现状
        6.1.1 职前数学教师对三角形内角和定理等三个定理及其证明的掌握
        6.1.2 职前数学教师实践知能中知识基础的现状
        6.1.3 职前数学教师实践知能中教学过程的现状
        6.1.4 职前数学教师实践知能中支持系统的现状
    6.2 职前数学教师在教学理论学习中对三个定理教学的分析
        6.2.1 职前数学教师对青浦经验的四条数学教学原理的学习和理解
        6.2.2 职前数学教师应用脚手架理论对三个证明教学的分析
        6.2.3 职前数学教师学习弗赖登塔尔的教学理论时对三个定理教学的分析
    6.3 职前数学教师对三个定理教学设计案例的学习和研讨
        6.3.1 职前数学教师对三角形内角和定理教学设计案例的学习和研讨
        6.3.2 职前数学教师对勾股定理教学设计案例的学习和研讨
        6.3.3 职前数学教师对垂径定理教学设计案例的学习和研讨
        6.3.4 案例学习、思考和研讨对职前数学教师理解三个定理教学的意义
    6.4 职前数学教师实践知能的变化
        6.4.1 整体上实践知能的前后测差异情况
        6.4.2 职前数学教师实践知能各个子成分的变化
        6.4.3 通过对个别研究对象的访谈看研究对象实践知能的变化
第7章 对两轮研究的总结
    7.1 职前数学教师实践知能的现状
        7.1.1 职前数学教师对三个定理内容及其证明掌握的现状
        7.1.2 职前数学教师实践知能的现状
    7.2 教学理论的学习、讨论和分析对掌握三个定理教学的价值
    7.3 教学案例对职前数学教师理解三个定理教学的意义
    7.4 两轮研究问卷数据合并后职前数学教师实践知能的变化
        7.4.1 整体上实践知能的前后测差异情况
        7.4.2 两轮问卷调查数据合并后职前数学教师实践知能各个子成分的变化
        7.4.3 从两轮研究中访谈个别研究对象而发现研究对象实践知能的变化
第8章 研究结论与启示
    8.1 研究结论
    8.2 启示与建议
        8.2.1 研究启示
        8.2.2 建议
    8.3 有待进一步研究的问题
    8.4 研究的主要贡献
    8.5 研究局限
参考文献
附录
    附录1 :职前数学教师对其他同学三个定理证明的讨论提纲
    附录2 :研究职前数学教师实践知能变化情况访谈提纲
    附录3 :职前数学教师从业信心宣告书
    附录4 :职前数学教师数学教学实践知能问卷调查表
    附录5 :三角形内角和定理、勾股定理、垂径定理教学设计案例
        1.三角形内角和定理教学设计案例
        2.勾股定理教学设计案例
        3.垂径定理教学设计案例
    附录6 :职前数学教师三个定理证明教学设计案例学习思考提纲
    附录7 :职前数学教师三个定理证明教学设计案例研讨讨论提纲
    附录8 :职前数学教师干预性课程教学满意度问卷调查表
作者简历及在学期间所取得的科研成果
    1.个人简历
    2.参与或主持科研项目
    3.发表论文
致谢

(9)人教版小学“数学广角”教学现状的调查研究(论文提纲范文)

中文摘要
Abstract
术语及符号说明
第1章 绪论
    1.1 研究背景
        1.1.1 当今世界对人才的要求
        1.1.2 新课改背景下小学数学课堂的变革
        1.1.3 课程改革背景下“数学广角”教学的需要
    1.2 核心概念界定
    1.3 研究的内容与意义
        1.3.1 研究的问题
        1.3.2 研究的意义
    1.4 研究的思路
        1.4.1 研究的计划
        1.4.2 研究的技术路线
    1.5 论文的结构
第2章 文献综述
    2.1 文献收集的途径
    2.2 何为教学
    2.3 小学数学思想方法教学研究
        2.3.1 数学思想方法概述
        2.3.2 小学数学思想方法教学现状
        2.3.3 小学典型数学思想方法概述
    2.4“数学广角”相关研究
        2.4.1 为何在小学数学教材中编入“数学广角”
        2.4.2“数学广角”教与学的已有研究
    2.5 评述与小结
第3章 研究设计
    3.1 研究目的
    3.2 研究对象的确立
    3.3 研究方法的选取
    3.4 研究工具的设计
        3.4.1 小学数学教师“数学广角”教学情况调查问卷
        3.4.2 小学生“数学广角”学习情况调查问卷
        3.4.3 小学生“数学广角”学习结果测试卷
        3.4.4 教师“数学广角”教学访谈提纲
        3.4.5 教学案例分析框架
    3.5 数据收集整理
    3.6 问卷信度效度检验、数据的编码与分析
    3.7 研究伦理
    3.8 小结
第4章 数学广角内容概述
    4.1 典型名题、趣题
        4.1.1 体现的数学思想方法及分析
        4.1.2 教材编排与教学要求
    4.2 运筹学中的基本问题
        4.2.1 统筹思想、对策方法概述
        4.2.2 教材编排与教学要求
    4.3 排列组合的教学建议
        4.3.1 排列组合中常见的情况和体现的思想方法
        4.3.2 教材编排与教学要求
    4.4 重叠问题
        4.4.1 重叠问题的思想分析
        4.4.2 教材编排与教学要求
    4.5 等量代换
        4.5.1 等量代换思想
        4.5.2 教材编排与教学要求
    4.6 抽屉原理
        4.6.1 抽屉原理的思想方法分析
        4.6.2 教材编排与教学要求
    4.7 其他问题
        4.7.1 数字编码
        4.7.2 找次品
    4.8 小结
第5章 小学“数学广角”教学现状的调查结果
    5.1 教师教学情况调查结果分析
        5.1.1 调查结果分析(一):教师的态度信念
        5.1.2 调查结果分析(二):教师的知识
        5.1.3 调查结果分析(三):教师对学生的认识力
        5.1.4 调查结果分析(四):教师的教学策略
    5.2 学生学习情况调查结果分析
        5.2.1“数学广角”学习中学生的学习特点分析
        5.2.2 学生“数学广角”学习态度的分析
        5.2.3 学生“数学广角”学习结果分析
        5.2.4 学生对教师教学“数学广角”的认知
    5.3 学生测试卷结果分析
        5.3.1 五、六年级学生测试的总体表现
        5.3.2 两个年级学生在不同题目上的表现
    5.4 小结
第6章 教学案例研究
    6.1 数学广角优质课分析
        6.1.1 优质课的概况
        6.1.2 教学目标
        6.1.3 课的结构
        6.1.4 教学内容
        6.1.5 教学方法
        6.1.6 教师教学能力素质体现
        6.1.7 小结
    6.2 常态课分析
        6.2.1 教学案例一教师C的课堂教学情况
        6.2.2 教学案例二教师D的课堂教学情况
    6.3 教师“数学广角”课堂教学特征分析
        6.3.1 优质课特征
        6.3.2 常态课特征
    6.4 教学建议与小结
第7章 结论与思考
    7.1 研究的结论
    7.2 研究对教师和学校的意义
    7.3 研究的不足之处
    7.4 关于进一步研究的建议
    7.5 结束语
参考文献
附录A 教师问卷调查表
附录B 学生问卷调查表
附录C 学生“数学广角”学习结果测试卷
附录D 教师访谈提纲
附录E 师生互动类型记录表
附录F 课的结构观察表
附录G 教师提问技巧观察表格
附录H 开发多元智力的课程策略检查表
附录I 常态课课堂教学照片
攻读硕士期间发表的论文
致谢

(10)小学生推理教学现状的调查研究 ——以昆明市RC小学五年级为例(论文提纲范文)

中文摘要
Abstract
术语及符号说明
第1章 绪言
    1.1 研究的背景
        1.1.1 数学对培养推理能力的重要性
        1.1.2 数学课程标准的要求
        1.1.3 推理是数学学科核心素养体系的成分之一
        1.1.4 数学教学的现实依据
        1.1.5 相关研究的失衡
    1.2 核心名词界定
    1.3 研究的内容与意义
        1.3.1 研究的内容
        1.3.2 研究的意义
    1.4 研究的思路
        1.4.1 研究的计划
        1.4.2 研究的技术路线
    1.5 论文结构
第2章 文献综述
    2.1 文献的来源
    2.2 文献综述
        2.2.1 推理的基本形式与分类
        2.2.2 我国数学课程标准(或教学大纲)中“推理”的历史演变
        2.2.3 数学学科核心素养中的“推理”
        2.2.4 小学数学学习的特点
        2.2.5 国内外研究现状
    2.3 文献评述
    2.4 小结
第3章 研究的理论基础
    3.1 皮亚杰认知发展理论
    3.2 弗赖登塔尔数学教育思想
    3.3 波利亚数学教育理论
    3.4 小结
第4章 研究设计
    4.1 研究目的
    4.2 研究的方法
        4.2.1 文献法
        4.2.2 测试法
        4.2.3 痕迹分析法
        4.2.4 问卷法
        4.2.5 访谈法
        4.2.6 观察法
        4.2.7 案例分析法
    4.3 研究工具说明
        4.3.1 学生水平测试卷
        4.3.2 教师调查问卷
        4.3.3 教师访谈提纲
        4.3.4 课堂观察表
        4.3.5 教学案例选取
    4.4 数据收集与整理
    4.5 数据编码与分析
    4.6 研究的伦理
    4.7 小结
第5章 调查研究
    5.1 关于学生推理现状的分析
        5.1.1 对学生推理水平测试的调查分析
        5.1.2 对学生学习情况的调查分析
        5.1.3 对课堂观察中学生“学”的调查分析
    5.2 关于教师推理教学现状的分析
        5.2.1 对教师问卷的调查分析
        5.2.2 对教师访谈的调查分析
        5.2.3 对课堂观察中教师“教”的调查分析
    5.3 对调查结论的分析
        5.3.1 学生推理水平和学习情况的结论分析
        5.3.2 教师问卷与教师访谈的结论分析
        5.3.3 师生课堂观察的结论分析
    5.4 小结
第6章 讨论
    6.1 教学案例分析
        6.1.1 RC小学课堂教学案例分析
        6.1.2 名师课堂教学片断分析
        6.1.3 典型例题讨论分析
    6.2 培养小学生数学推理能力的策略探究
        6.2.1 学校的重视与行动
        6.2.2 数学教师教学的优化
        6.2.3 学生正确学习习惯的养成
        6.2.4 家长观念行为的一致
    6.3 小结
第7章 结论与反思
    7.1 研究的结论
    7.2 研究反思
    7.3 可以继续研究的问题
    7.4 结束语
参考文献
附录
    附录A 小学五年级数学测试卷
    附录B 小学数学教师课堂教学基本情况调查问卷
    附录C 小学数学教师访谈提纲
    附录D 课堂观察表
攻读学位期间发表的学术论文和研究成果
致谢

四、在数学教学方面怎样指导学生掌握正确的学习方法(论文参考文献)

  • [1]中学数学思想的培养研究 ——基于深度教学的视角[D]. 张先波. 华中师范大学, 2019(01)
  • [2]高一函数教学中学生数学解题错误的实证研究[D]. 马文杰. 华东师范大学, 2014(11)
  • [3]小学数学核心素养培养研究[D]. 周淑红. 哈尔滨师范大学, 2017(05)
  • [4]小学数学深度教学研究[D]. 吴宏. 华中师范大学, 2018(01)
  • [5]我国小学数学新教材中例题编写特点研究[D]. 宋运明. 西南大学, 2014(04)
  • [6]数学符号意义及其获得能力培养的研究[D]. 王成营. 华中师范大学, 2012(06)
  • [7]基于数学史课程的职前教师教学知识发展研究[D]. 黄友初. 华东师范大学, 2014(10)
  • [8]职前数学教师实践知能发展的设计研究 ——以三个初中几何定理证明教学为例[D]. 李海. 华东师范大学, 2019(02)
  • [9]人教版小学“数学广角”教学现状的调查研究[D]. 秦桂花. 云南师范大学, 2015(04)
  • [10]小学生推理教学现状的调查研究 ——以昆明市RC小学五年级为例[D]. 袁凤婷. 云南师范大学, 2019(01)

标签:;  ;  ;  ;  ;  

数学教学中如何引导学生掌握正确的学习方法
下载Doc文档

猜你喜欢