一、我国4个陆地棉核雄性不育系的遗传研究(论文文献综述)
刘维妙[1](2021)在《芸薹属基本种扩展蛋白基因家族的进化分析及花粉发育相关扩展蛋白基因的功能分化研究》文中进行了进一步梳理花粉发育和授粉受精过程是开花植物完成有性生殖的重要环节。花粉发育异常会影响其功能的正常完成,进而影响后代的繁衍。授粉受精过程的顺利进行离不开花粉管正常的萌发和伸长。花粉管的萌发通常起始于成熟花粉粒的内壁。在花粉管快速伸长的过程中尤其需要细胞壁的快速扩展,众多细胞壁合成和重塑蛋白都参与其中。植物扩展蛋白(expansins,EXP)是一类重要的细胞壁重塑蛋白,可以与细胞壁的多糖组分结合,通过破坏细胞壁组分之间的非共价键引起植物细胞壁的松弛,促进植物细胞的生长。扩展蛋白基因家族被细分为四个亚家族,分别是EXPA(expansin A subfamily,扩展蛋白A亚家族)、EXPB(expansin B subfamily,扩展蛋白B亚家族)、EXLA(expansin like A subfamily,扩展蛋白类A亚家族)和EXLB(expansin like B subfamily,扩展蛋白类B亚家族)。虽然近年来扩展蛋白基因的功能被广泛研究,但是有关扩展蛋白基因在植物生殖发育阶段的功能以及有关EXPA和EXPB亚家族基因协调作用都还鲜有报道。本文以白菜‘矮脚黄’(Brassica campestris ssp.chinensis,syn.B.rapa ssp.chinensis cv.Aijiaohuang)核雄性不育两用系ajhGMS‘Bcajh97-01A/B’和黑芥(B.nigra cv.Z1411-02)以及甘蓝(B.oleracea cv.Jingfeng 1)为材料,对芸薹属三个二倍体基本种的扩展蛋白基因家族进行鉴定、进化和表达分析,明确三个基本种扩展蛋白基因家族的进化特征,为探究扩展蛋白基因在花粉和花粉管发育过程中的功能提供相关基础;由基因家族分析筛选到两个在白菜花粉发育后期和花粉管中高表达的基因BrEXPB4和BrEXPB9,通过人工microRNA技术研究BrEXPB4和BrEXPB9在白菜花粉和花粉管发育中的功能;采用CRISPR/Cas9技术和过表达技术对两者在模式植物拟南芥中的同源基因AtEXPB5进行生物学功能的分析,并对与其在花粉和花粉管发育阶段具有冗余功能的AtEXPA4进行验证;通过酵母单杂交和双荧光素酶实验对AtEXPB5和BrEXPB4/9可能参与的转录调控路径进行研究。取得的主要结果与结论如下:(1)通过三步分析法,鉴定了芸薹属三个基本种(白菜、甘蓝和黑芥)的扩展蛋白基因家族,并经与模式植物拟南芥的系统发育、基因结构和理化特性的比较分析对它们的扩张模式和进化细节进行了研究,发现经过独立的进化,扩展蛋白基因家族在这三个基本种中的相似性较多,而分歧较少。通过比较启动子和编码序列的差异,发现在拟南芥和三个基本种的直系同源物之间存在显着正相关性。随后的表达分析表明这三个物种的扩展蛋白基因家族中存在广泛的功能差异,特别是在生殖发育过程中筛选到两个在白菜花粉和花粉管发育阶段强烈表达的基因BrEXPB4和BrEXPB9。(2)通过烟草和洋葱瞬时表达体系进行亚细胞定位的结果表明,BrEXPB4和BrEXPB9都定位在细胞壁上,这与它们都具有信号肽结构的预测结果一致。通过荧光定量PCR和GUS基因报告系统进行的时空表达分析表明,BrEXPB4和BrEXPB9的表达模式也很相似,都是从单核花粉后期开始表达,并随着花粉的发育,表达量逐步升高,并且可以一直持续到花粉管中。(3)采用人工microRNA技术分别和同时抑制BrEXPB4和BrEXPB9的表达,进而对它们的生物学功能进行鉴定。当它们被单独抑制时,对植株的生长发育并没有造成明显的影响。然而当它们的表达被同时抑制时,却造成约50%的花粉败育,并不能正常萌发。对败育花粉的细致观察显示,花粉的败育起始于单核花粉晚期,进一步使小孢子细胞质和花粉内壁降解,最终造成花粉败育和萌发异常。(4)通过亚细胞定位和时空表达分析,发现AtEXPB5定位在细胞壁上,并且其编码基因在成熟花粉粒和花粉管中强烈表达。然而,无论是敲除AtEXPB5还是过表达AtEXPB5都未对拟南芥的生长发育造成显着影响。结合前人相关电子表达谱的研究,发现仅有AtEXPA4在生殖发育阶段与AtEXPB5具有相似的表达模式。构建了AtEXPA4的敲除和过表达材料,并通过杂交获得AtEXPA4和AtEXPB5的双突变体,观察发现在双突变体中,花粉管伸长的速度显着减缓,并且无论是AtEXPB5还是AtEXPA4都可以恢复双突变体花粉管伸长减缓的表型,说明AtEXPA4和AtEXPB5冗余地参与了花粉管的发育。(5)通过亚细胞定位和时空表达分析,发现AtEXPA4定位在细胞壁上,其编码基因不仅在生殖发育阶段表达,也在拟南芥的根中优势表达。主根长度和根分生区的测量结果表明,AtEXPA4对于主根的生长具有促进作用。(6)通过酵母单杂交和双荧光素酶实验表明,AtEXPB5的表达可由AtTDF1和AtAMS共同激活,而这一调控途径在白菜中并不保守。这说明AtEXPB5和BrEXPB4/9的生物学功能产生分化,并且参与不同的转录调控路径。BrEXPB4/9及其同源基因AtEXPB5在表达模式、功能和调控网络上显示出巨大差异说明在进化过程中,同源基因物也会产生功能和调控的变化。
康浩东[2](2020)在《陆地棉同质异核雄性不育系的解剖学与细胞学观察》文中认为棉花是重要的经济作物,具有显着的杂种优势。随着现代经济社会发展对棉花需求的不断提高,棉花的研究价值也在不断增升。我国在20世纪90年代开始大规模研究杂种优势的利用,这不仅对了解植物生命内部的遗传机制具有重要价值,而且为植物杂种优势的利用奠定了基础。但迄今为止,植物杂种优势在棉花生产上仍未大规模栽培利用,其原因是前人研究的棉花细胞质雄性不育系主要为哈克尼西棉。但因其细胞质单一,恢复系少,杂种优势不强,有的杂交组合出现负效应。因此,发掘新的棉花细胞质雄性不育系种质资源仍是棉花杂种优势必须解决的主要问题。本研究以周瑞阳教授选育的6种不同细胞质来源的同质异核细胞质雄性不育系为材料,针对不同花蕾发育时期所确定的大小进行测量及细胞学观察,得出以下主要结果:1、通过对6种不同棉花细胞质雄性不育系进行观察,发现这6种同质异核雄性不育系花药的败育时期均开始于花粉母细胞时期,在四分体时期彻底败育。中16S、276S、07-113S、J-4S、NS11-10S、H06S的败育特征表现为:花粉母细胞时期,小孢子母细胞发育正常,核大质浓,四层细胞壁排列紧密,结构清晰完整;四分体时期,小孢子开始发生降解现象,细胞核溶解,呈空泡化现象,绒毡层还是紧密的同其他细胞壁连在一起,未发生变化,并未观察到四分体;单核早期,随着小孢子的降解,花粉囊内细胞核存在穿透细胞膜和细胞壁现象,且降解后呈半月形形状,后续随着小孢子的解体,腔内仅剩下部分胼胝质;单核晚期,降解的小孢子弥散于腔内,细胞核存在高度液泡化,中层也未发生退化现象;后续小孢子降解完毕,只留有少量残体;成熟花粉粒时期,绒毡层开始呈径向增长,花粉囊内无花粉粒,后续向内收缩成实心状。2、通过对这6种棉花不育系花药绒毡层进行解剖学研究,结果表明:这6个质核异源雄性不育系材料在造孢细胞时期,绒毡层细胞结构完整,排列紧密、表皮层细胞、中层及内皮层均无异常现象,结构完整清晰,排列规则,花粉囊腔里的花粉母细胞被着色较深的胼胝质包裹。后续在单核晚期,绒毡层出现膨化现象,腔内留有解体后少量残迹。药室内壁未出现条纹状木化增厚现象,且中层不能正常退化。但在成熟花粉粒时期时发现07-113S中的C3鄂长2号A出现异常,中层存在严重膨化现象,推测是中层进一步发育导致膨胀化。后续随着花粉囊腔的绒毡层细胞继续伸长、膨大,挤压腔体,最终变成周缘质团。
李敏[3](2020)在《陆地棉转GhbZIP1基因CMS种质创新及其不育机理研究》文中认为棉花(Gossypium hirsutum L.)是世界上最主要的天然纤维作物之一,也是重要的油料作物。棉花的杂种优势十分显着,但目前棉花细胞质雄性不育(Cytoplasmic male sterility,CMS)种质资源匮乏,利用的CMS系主要为哈克尼西棉细胞质。其细胞质供体为二倍体,细胞核供体为四倍体,因质核互作严重不协调,恢复系少,难以推广利用。为了解决远源杂交核置换回交所致的质核严重不协调问题,亟需选育质核同源CMS系。本研究基于陆地棉细胞核雄性不育两用系“洞A”的转录组测序结果,筛选到一个在不育株和可育株差异表达的基因GhbZIP1,并将其转入一个性状优良的陆地棉栽培种J4B中。在获得转基因雄性不育突变株后,将其与J4B进行饱和回交成功创制出了CMS系J4A。随后对J4A进行形态学和细胞学观察、线粒体基因组水平、全转录组水平和生化指标测定分析,得出以下主要结果:(1)形态学观察发现,与J4B相比,J4A花器官缩小、花柱突出、花药干瘪而不开裂,败育类型为无花粉型。(2)花粉败育特征观察发现,J4A的花药败育发生在减数分裂期,表现为在花药发育的整个过程中绒毡层细胞不发生降解,无四分体结构。亚细胞超微结构观察发现:J4A花药四分体时期绒毡层细胞的线粒体内嵴模糊。(3)线粒体重测序结果显示:3个CMS系(J4A-1、J4A-2和J4A-3)与其保持系J4B的线粒体基因组差异较小,同源性均高于99%;筛选到4个与CMS相关的ORFs(orf116b、orf186a-1、orf186a-2和orf305a)。(4)通过Illumina Hiseq 4000测序平台进行转录组测序,结果显示:在检测到的62,270个基因中,共筛选到4,461个差异表达基因(7.16%),其中2,940个基因上调表达,1,521个基因下调表达。生物信息学分析发现,489个差异表达基因富集在氧化还原反应条目;47个差异表达基因参与糖酵解代谢途径,且下调基因数大于上调基因数。(5)通过Illumina Hiseq 4000测序平台进行miRNA测序,共获得1,293个miRNA,其中已知miRNA 734个,新miRNA 559个;预测到1,009个靶基因和1,054个靶基因位点;筛选到26差异表达miRNA。根据miRNA与其靶基因负调控关系,将m RNA测序结果与miRNA测序结果进行关联分析,筛选到一对可能与小孢子减数分裂异常有关的靶基因对:ghi-MIR7484-10/MAPKK6。(6)花药发育3个时期(花粉母细胞时期、减数分裂期和单核期)主要生化指标检测。活性氧(Reactive oxygen species,ROS)代谢相关生化指标(SOD、Mn-SOD、POD、CAT、H2O2和MDA)测定结果显示,在减数分裂期和单核期,J4A的SOD、Mn-SOD、POD和CAT酶活均显着低于J4B,H2O2和MDA含量均显着高于J4B。推测由于减数分裂期抗氧化酶(SOD、Mn-SOD、POD和CAT)活性降低,活性氧清除能力降低,导致活性氧(H2O2和MDA)积累。糖代谢相关生化指标(蔗糖、淀粉、可溶性糖和果糖)测定发现,在花药发育的减数分裂期和单核期,J4A花药中的蔗糖含量均高于J4B;而淀粉、可溶性糖和果糖含量均低于J4B。推测由于蔗糖发生积累,使葡萄糖和果糖的生成减少,进而导致淀粉含量降低和可溶性糖含量下降。
张梦[4](2020)在《高温胁迫下DNA甲基化调控棉花CMS-D2恢复系育性的表观机制初探》文中研究表明近年来,随着人工杂交制种成本的逐年提升,细胞质雄性不育(CMS)已经逐渐成为棉花杂种优势利用领域研究的热点。然而,哈克尼西棉细胞质雄性不育(CMS-D2)恢复系花药发育容易受持续高温胁迫影响,从而限制了棉花“三系”杂交种的大面积推广应用。虽然已有一些研究报道DNA甲基化参与调控植物花药发育,但是对高温胁迫下全基因组DNA甲基化动态在棉花CMS-D2恢复系育性中的潜在调控角色目前仍缺乏系统的分析和探究。本研究首先利用全基因组甲基化测序(WGBS)技术对保持系ZB(耐高温)及其近等基因恢复系ZBR(高温敏感)在高温胁迫和适宜温度条件下花药发育关键时期(长度约为3mm的花蕾)的4个样品进行比较分析,并绘制了高温胁迫下棉花花药发育的单碱基分辨率胞嘧啶甲基化图谱;随后,通过整合的转录组数据进一步探究了ZB和ZBR花药发育过程中响应高温胁迫的表观基因组变化差异与转录表达变化之间的关系,并结合体外喷施处理的实验结果,初步解析了高温胁迫引起棉花CMS-D2恢复系花药不育的潜在表观机制。主要研究结果如下:1.以保持系ZB为例,棉花花药基因组在所有测序的胞嘧啶位点以及CG、CHG和CHH序列环境下分别呈现出大约31.6%、68.7%、61.8%和21.8%的甲基化水平,这代表了花药全基因组的DNA甲基化水平百分比。在棉花染色体上的基因富集区域,转座元件(TEs)的密度较低,并伴随着相对较低的甲基化水平;正相反,TEs富集区域具有较高密度的胞嘧啶甲基化分布。棉花花药中胞嘧啶甲基化位点偏好性与DNA序列环境以及具有高或低胞嘧啶甲基化密度的序列区域均高度相关,但是在高温胁迫下并没有发生改变。在高温胁迫下,ZBR中CG和CHG甲基化水平仅呈现出稍微的增加,然而ZB尤其在启动子和重复序列区域发生了明显的CHH去甲基化。2.在棉花花药基因组中,启动子区甲基化程度似乎与基因表达水平并没有明显的关联,只有启动子区未发生甲基化的基因呈现出相对更高的表达水平;然而,基因主体区DNA甲基化程度与基因表达水平之间具有明显的正相关关系。此外,大多数响应高温胁迫的差异表达基因(DEGs)并没有与对应的DNA甲基化变异相关联。3.通过系统分析棉花花药中转座元件的DNA甲基化模式,发现不同转座元件的DNA甲基化水平高低与其序列长度高度相关。在高温胁迫下,保持系ZB在CG、CHG和CHH序列环境下均有更多的差异甲基化转座元件(DMTEs)发生了明显的去甲基化;相反,与ZB相比其近等基因恢复系ZBR中呈现出更多高甲基化的TEs。4.整合甲基化组和转录组数据分析表明,DNA甲基化介导氧化磷酸化通路相关基因(包括GhNDUS7、GhCOX6A、GhCX5B2和GhATPBM)的转录变化,可能在高温胁迫下的花药发育过程中发挥着至关重要的角色。5.在高温胁迫下对ZBR的花蕾和叶片进行不同浓度的DNA甲基转移酶抑制剂5-氮杂胞苷(5-azaC)喷施处理,结果表明DNA去甲基化有助于棉花花药的正常发育;然而,在高温胁迫下对ZB的花蕾和叶片进行不同浓度的DNA甲基化促进剂三氟甲烷磺酸甲酯(MTFMS)喷施处理,结果发现增加的DNA甲基化水平只能部分抑制花药发育。
王永琦[5](2020)在《西瓜核雄性不育两用系Se18不育特性的生理生化与分子机制研究》文中研究指明西瓜[Citrullus lanatus(Thunb.)Matsum.&Nakai]是异花授粉植物,具有明显的杂种优势,利用雄性不育系配制杂交种是西瓜杂种优势利用的重要途径。西瓜细胞核雄性不育两用系‘Se18’是本课题组发现的核基因雄性不育材料,其不育性状十分稳定。本研究以西瓜细胞核雄性不育两用系‘Se18’为材料,对其花药败育时期的细胞学特征进行观察比较;并通过比较不育株与可育株雄花花蕾发育过程中抗氧化酶活性、氧化物质代谢、内源激素含量等生理生化指标的变化,以探明雄性不育发生过程中生理生化特性;同时,结合BSA(Bulked Segregant Analysis,BSA)和RNA-Seq技术对不育株与可育株雄花蕾进行转录组测序,系统分析DEGs的生物学功能,以及初步预测雄性不育基因的候选区域,并对候选区域内的基因进行功能注释,为探究西瓜雄性不育发生的分子机理奠定基础。主要研究结果如下:1.利用光学显微镜观察了西瓜不育和可育花药的发育过程,发现不育花药败育时期发生在小孢子母细胞减数分裂末期。败育的原因可能是由于绒毡层细胞发育异常,引起小孢子母细胞只进行核分裂,而未进行细胞质分裂,不能形成四分体,导致小孢子母细胞减数分裂异常,最终引发雄性不育。2.通过对西瓜不育和可育雄花蕾不同发育时期抗氧化酶活性、抗氧化物质含量及活性氧含量的测定,发现不育雄花蕾超氧化物歧化酶(SOD)活性在单—双核小孢子期和花粉粒成熟期均显着高于相应时期可育雄花蕾;过氧化物酶(POD)活性在各时期均显着高于相应时期可育雄花蕾;超氧阴离子(O2-·)、过氧化氢(H2O2)和丙二醛(MDA)含量也一直高于可育雄花蕾。而过氧化氢酶(CAT)活性、谷胱甘肽还原酶(GR)活性、抗坏血酸过氧化物酶(APX)活性和抗坏血酸(AsA)含量、谷胱甘肽(GSH)含量变化与可育雄花蕾的变化趋势相比呈下降趋势。以上结果表明抗氧化酶活性的改变和抗氧化物质含量的降低以及活性氧含量升高可能与花药败育有关。3.通过对西瓜不育和可育雄花蕾不同发育时期物质含量的测定,发现不育雄花蕾在各发育时期的可溶性蛋白含量明显低于可育雄花蕾。随着花蕾的生长发育,不育雄花蕾的游离脯氨酸含量变化呈下降趋势,而可育雄花蕾的游离脯氨酸含量则迅速积累,含量显着高于不育雄花蕾。表明可溶性蛋白的缺乏和游离脯氨酸含量的减少可能与花药败育有关。4.利用酶联免疫法测定了西瓜植株叶片和不同发育时期花蕾中生长素(IAA)、脱落酸(ABA)、赤霉素(GA3)、玉米素核苷(ZR)、茉莉酸(JA)、油菜素内酯(BR)及异戊烯基腺嘌呤核苷(IPA)的动态变化,发现在花蕾不同发育时期,不育株和可育株内源激素含量变化趋势不同,且含量高低差异明显。在不育株系中不论是叶片还是花蕾,其IAA、ZR和BR含量都表现缺乏,而ABA和JA含量却高于可育株;同时,各激素间的平衡关系也被打破。表明内源激素含量的异常及各激素间比例的失衡可能与花药败育有关。5.采用Illumina HiSeqTM 2500平台对不育株与可育株雄花蕾进行转录组测序,共得到43.27Gb的高质量数据。有2507个差异表达基因,其中593个为上调表达,1914个为下调表达。在差异表达基因中有2443个基因获得注释。GO分析结果显示这些差异表达基因涉及到了信号传递、生物调节、生殖生育、物质代谢、转录因子和蛋白合成等过程。在KEGG分析中,451个差异表达基因映射到95个不同的通路中,分析结果显示氮代谢、丙氨酸、天冬氨酸和谷氨酸代谢、精氨酸和脯氨酸代谢等代谢途径被显着富集。该研究结果为阐明西瓜核雄性不育的分子机制和调控基因鉴定提供了参考。6.通过BSR-Seq(Bulked segregant RNA-Seq)方法,选取不育与可育雄花蕾分别构建混池,利用ED算法和关联分析,初步将不育基因定位在Chr5和Chr9染色体上的2个区域内,总长度10.71Mb,差异表达的基因112个,其中20个基因上调表达,92个基因下调表达。GO分析结果显示候选区域内的基因涉及到了信号传递、物质代谢、转录因子和蛋白合成等过程。在KEGG分析中,候选区域内的14个基因映射到19个不同的通路中,分析结果显示二萜类生物合成、光合生物的固碳作用、精氨酸和脯氨酸代谢以及丙酮酸代谢等代谢途径被显着富集。在COG分析中,有36个基因映射到16个功能类别中,分析结果显示候选区域内的基因涉及到了信号传导机制、碳水化合物的运输与代谢、氨基酸转运与代谢等功能。以上研究结果为下一步西瓜雄性不育相关基因的精细定位奠定了基础。
徐舶[6](2020)在《苜蓿单倍体培育及其杂交结实性与主要性状杂种优势分析》文中指出利用同源四倍体苜蓿花药(花粉)组培获得的单倍体植株与苜蓿二倍体野生种质杂交可以把野生种质携带的许多优异性状基因导入四倍体栽培苜蓿品种中,对拓宽苜蓿的遗传基础、加快突破性新品种培育等具有重要的研究价值和实践意义。本研究对新疆大叶紫花苜蓿(Medicago Sativa L.‘Xinjiang Daye’)利用花药组培法,通过优化培养条件,经流式细胞术鉴定倍性以获得单倍体植株;进一步利用不同浓度秋水仙素对单倍体进行加倍获得双单倍体植株;并在二倍体水平下进行种间远缘杂交,通过SRAP标记法探究亲本间遗传距离及杂种的真实性;通过杂种生长当年的株高、单株生物量等性状表现,明确不同倍性的各杂交组合杂种优势效应的差异,为筛选新种质及杂交亲本选配提供依据。主要研究结果如下:(1)优化后的苜蓿花药组培的再生体系提高了愈伤组织分化率(87.5%)和苜蓿单倍体植株(二倍体)的获得率(23.7%)。单倍体植株(二倍体)组培扦插适宜的生根培养基为1/2MS+0.1mg/L NAA+2%蔗糖+0.7%琼脂,炼苗移栽时采用无菌营养土成活率最高。以苜蓿花药组培二倍体植株的叶片为外植体,于0.2%秋水仙素+1.5%DMSO条件下,液体悬浮振荡培养24h,可获得再生植株中2.86%~8.6%的双单倍体植株。(2)在二倍体水平下配制14个正反交组合,其结荚率、单荚种子数、相对结实率在不同的杂交时期差异显着,多数杂交组合在初花期和终花期结实性较好。(3)以14对SRAP引物对12个亲本材料进行遗传距离分析,并鉴定了20个杂交组合的杂交种真实性,各杂交组合杂交种纯度为75~100%。真杂交种主要表现为双亲互补带型,而12.5%~66.67%的真杂交种中出现了亲本条带缺失和新带型,这可能也是其杂种优势的一种表现。(4)在生长表现强优势的组合中,有2/3组合为遗传距离较大的亲本组合,如苜蓿单倍体植株与扁蓿豆(M.ruthenica)种间远缘杂交组合在产量性状上表现出正向杂种优势。(5)亲本倍性差异和亲本间遗传距离对杂种优势形成均有显着影响,二倍体水平间杂交组合与四倍体水平间组合产量表现具有一定的等效性,且杂种优势强于四倍体组合。
董承光,周小凤,马晓梅,王娟,王新,田琴,李保成[7](2020)在《三个陆地棉芽黄突变体的遗传及育种利用研究》文中研究说明棉花芽黄性状是一种优良的指示性状,在棉花杂种优势研究中具有重要的利用价值。本研究以3个芽黄突变体71-7、62-17和115-23为试验材料,配制了33个杂交组合,研究芽黄性状分离规律、芽黄性状的回交转育和优势组合选配。结果表明:71-7和115-23两个突变体的芽黄基因为单基因控制的隐性性状,62-17材料为单基因控制的不完全显性性状;通过回交转育方法,创制了9份带有芽黄标记性状的陆地棉三系种质资源;通过配制的12个优势组合综合性状分析,筛选出组合Y34和Y26具有较高的籽棉产量和皮棉产量,并可作为早熟杂交棉新品系选送新疆维吾尔自治区早熟陆地棉组进行品种参试。本研究结果可为新疆棉花种质创制、新基因挖掘及新品种培育提供新的亲本及基因来源。
沈丽[8](2020)在《基于陆地棉ms1突变体转录组的育性基因挖掘和调控机理研究》文中提出棉花是重要的纤维和油料作物,能提供天然纺织纤维材料,丰富蛋白质和油料。棉花具有明显的杂种优势,杂交后代在生长活力、生物量和纤维产量等方面都强于双亲,杂种优势的利用能显着提高棉花产量和纤维品质。目前棉花育种方式主要是通过三系(不育系、恢复系、保持系)配套系统利用杂种优势进行育种。然而在杂种优势利用研究中,棉花育性相关功能基因的研究比较缓慢,育性相关基因功能和分子机理尚不清楚。本文以陆地棉(Gossypium hirsutium L.)雄性不育突变体ms1和陆地棉野生型C312(ms1的背景植株)为硏究对象,对其花药发育早期、中期和晚期三个不同发育时期进行转录组测序(RNA-sequencing,RNA-seq),基于转录组数据,系统挖掘突变体不育性形成的相关差异表达基因。然后应用生物信息学、遗传学和分子生物学等方法,解析棉花雄性不育相关基因的功能和调控机理。具体包括运用q RT-PCR技术对转录组和差异表达极其显着的育性相关基因进行验证,筛选与育性相关的候选基因;利用生物信息学分析候选基因Gh OLE9编码蛋白(Glucan endo-1,3-beta-D-glucosidase)的性质、结构、功能;基于病毒介导遗传转化体系CLCr V载体系统构建病毒干涉载体p CLCr VA-Gh OLE9,利用农杆菌侵染法沉默陆地棉内源Gh OLE9基因,并对转基因干涉株系进行表型分析(花粉活性检测,花药发育组织观察,自花授粉结铃性等),基因表达分析;同时构建PK7GWIWG2(I)-Gh OLE9干涉载体,通过农杆菌介导侵染棉花下胚轴及胚性愈伤,建立棉花转基因再生体系,获得再生Gh OLE9干涉转基因植株,进行Gh OLE9功能分析和不育材料的创制。主要研究结果如下:(1)对陆地棉野生型C312和雄性不育突变体ms1的花器官表型分析,发现在花药发育早期,花器官形态几乎没有差异;但在花药发育后期,突变体的柱头明显长于野生型,柱头裸露,花药未开裂时就表现出萎缩、干瘪、畸形,花丝短;在开花当天突变体花药干瘪不开裂,无花粉散出。(2)对陆地棉野生型C312和雄性不育突变体ms1不同发育时期花药的转录组进行分析,在发育早期、中期和晚期,分别鉴定了3355,7002,7415个差异表达基因。对差异基因进行GO功能分类和KEGG通路富集,多涉及在碳水化合物代谢,氨基酸代谢、类黄酮代谢、脂肪酸代谢、信号转导等代谢途径。(3)对转录组进行q RT-PCR验证,结果显示q RT-PCR数据与转录组数据相一致,表明转录组数据是可靠的。同时在q RT-PCR和转录组中验证了关于果胶裂解酶和果胶酯酶基因的表达量,发现在雄性不育突变体中均显着下调,推测这些基因的下调表达影响果胶的降解,进而影响花粉发育。(4)对Gh OLE9基因进行生物信息学分析,Gh OLE9基因为405 bp,编码134个氨基酸,在第49位至133位氨基酸序列之间有一个X8结构域,该结构域能识别并结合β-1,3-葡聚糖的碳水化合物,是糖基水解酶家族GH-17的保守结构域。推测编码的蛋白属于糖基水解酶第17家族,是β-1,3-葡聚糖酶,具有水解β-1,3-葡聚糖的功能。前期研究表明β-1,3-葡聚糖酶在花药发育中通过胼胝质代谢途径来调控花粉发育,或是参与花粉萌发过程中花粉壁的重组。因此,我们对Gh OLE9基因在棉花花粉发育中的功能展开研究。(5)对Gh OLE9基因的表达模式进行分析,发现该基因在陆地棉XC20和C312的雄蕊、柱头等生殖器官中特异表达,且在突变体ms1花药中的表达量明显低于C312,推测该基因在棉花花药发育过程中起着重要作用。(6)利用病毒诱导的基因沉默(VIGS)技术沉默基因Gh OLE9,发现10株阳性植株,6株Gh OLE9干涉株系开花当天棉花花药干瘪,数量少,不散粉;花粉稀少,畸形无活力,四分体时期小孢子发育异常,胼胝质增厚。利用q RT-PCR技术,对其中4株表型明显且稳定的干涉株系进行检测,发现在干涉株系(开花当天)雄蕊中的表达量显着甚至极显着降低。Gh OLE9干涉株系的其他表型与对照植株相比没有明显差别,Gh OLE9基因沉默并不影响棉花植株除育性外其它的农艺性状。研究结果初步表明:Gh OLE9基因在棉花花药发育过程中发挥重要的作用。(7)构建PK7GWIWG2(I)-Gh OLE9干涉载体,通过农杆菌介导侵染陆地棉YZ1和S1下胚轴及胚性愈伤组织,已获得转基因胚性愈伤组织及植株,正在进行分子生物学鉴定和农艺性状分析。结果表明:陆地棉野生型C312和雄性不育突变体ms1不同时期花药的差异表达基因主要集中在碳水化合物代谢,氨基酸代谢,类黄酮代谢等途径中,表明这些代谢途径参与棉花花药的发育,调控棉花育性。同时发现陆地棉Gh OLE9基因表达量的下调,将导致棉花四分体时期胼胝质增厚,小孢子发育异常,其通过胼胝质代谢来影响植株育性,其具体功能还需进一步深入开展。
朱晔[9](2020)在《陆地棉细胞质雄性不育系的创制和应用》文中研究表明棉花世界上最重要的经济作物之一。棉花的主要育种目标是增加棉花产量。棉花杂种优势的利用是提高棉花产量和改善棉花综合性状的最重要的途径之一。由于越来越高的劳动力成本等因素,细胞质雄性不育三系法杂交制种势在必行。本实验室于1998年在陆地棉(G.hirsutum)重组自交系中发现一株不育突变体,结合南繁加代,获得一个新型的陆地棉细胞质雄性不育种质系。2015年育成新型陆地棉细胞质雄性不育系的陆地棉恢复系“浙恢-08”。2016年配制三个杂交组合,杂种恢复率达到100%,但是产量竞争优势不强。本研究拟通过新型陆地棉不育系与10个高配合力强优势的亲本进行回交转育,以提高不育系的配合力,配制三系杂交棉组合,并在安徽当涂对其进行产量和纤维品质性状等鉴定,主要研究结果如下:通过回交转育,将新型陆地棉细胞质雄性不育基因转育到10个强优势杂交棉组合的亲本中,成功转育成了10个新型细胞质雄性不育系,不育株率达到100%。10个新转育成的陆地棉细胞质雄性不育系群体内整齐一致,植株整体性状与其保持系相似。用保持系对不育系进行授粉,不育系结铃和吐絮正常,铃型和纤维外观如同保持系,但皮棉产量、衣分和种子发芽性状低于保持系,纤维比强度度和伸长率略低于保持系,纤维长于保持系。用10个陆地棉细胞质雄性不育系与恢复系(浙恢-08)进行杂交,配制10个三系杂交组合。10个三系杂交棉组合的单株皮棉产量为114.77152.4 kg/亩,平均为135.77 kg/亩,对照为131.57 kg/亩。单铃重为5.376.47 g,平均为6.0 g,对照为5.5g。衣分为38.6345.17%,平均为41.27%,对照为41.4%。纤维长度为28.3831.62 mm,平均为29.54 mm,对照为29.36 mm。断裂比强度为29.6732.42 cN/tex,平均为31.23 cN/tex,对照为29.6 cN/tex。马克隆值为4.24.73,平均为4.53,对照为4.55。10个陆地棉细胞质雄性不育系组合的杂种优势分析结果表明,不育系组合皮棉产量的中亲优势为9.2531.34%,平均为21.13%,竞争优势为-12.7715.83%,平均为3.19%。纤维长度的中亲优势为0.33.23%,平均为2.45%,竞争优势为-3.34%到7.7%,平均为0.62%。断裂比强度的中亲优势为0.5810.22%,平均为4.77%,竞争优势为0.249.53%,平均为5.51%。陆地棉细胞质雄性不育基因对于三系杂交棉的产量和纤维品质无负效应。不育系杂交棉的产量高于对应的无细胞质雄性不育基因的杂交组合,纤维品质性状无显着差异。筛选出两个强优势组合-ZDH124A*浙恢复-08和ZDY012A*浙恢-08。这两个组合的皮棉产量分别为148.27 kg/亩和145.93 kg/亩,分别比对照增产16.7 kg和14.36 kg,且纤维品质性状优势,具有较大的利用价值和应用前景。本研究培育的10个陆地棉细胞质雄性不育系能够有效地缓解杂交棉生产实践中人工去雄杂交制种高成本问题,同时也为陆地棉细胞质雄性不育系的选育和研究提供亲本材料。
陈莹,张法铭,姜辉,柴启超,王秀丽,高明伟,王家宝,张超,王永翠,郑锦秀,赵军胜[10](2019)在《我国棉花形态标记性状应用研究进展》文中指出本文综述棉花主要形态标记性状的相关应用研究进展,旨在为形态标记性状在棉花遗传育种和分子育种中的应用提供参考。通过对我国目前具备形态标记性状的审定棉花品种进行分类和统计发现,芽黄标记主要被用于与不育基因连锁实现不育系在苗期的早期鉴定选择,有助于提高棉花杂交制种产量和效益,育成品种1个。鸡脚叶标记棉具有良好的冠层结构及光合生理特性,因此具有一定的早熟性、耐旱性和较好的抗病虫性,在三系杂交棉生产上也有较好的应用前景,育成品种3个。红花标记作为非常直观的形态性状标记,可用于简便高效地鉴别真假杂种,其中山东棉花研究中心培育审定了4个红花标记新品种。腺体标记除了是直观的形态性状标记以外,还具有低酚少腺体的特点,山东棉花研究中心培育审定2个低酚标记的抗虫杂交棉新品种,邯郸市农业科学院与河北农业大学审定了3个抗虫低酚棉品种。其他形态标记如窄卷苞叶性状、红叶性状等在杂种优势利用方面也有较好的生产应用潜力。以上各类形态性状标记在棉花生产上均具有广泛的应用前景,需进一步提高标记利用率,加强其应用基础研究。
二、我国4个陆地棉核雄性不育系的遗传研究(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、我国4个陆地棉核雄性不育系的遗传研究(论文提纲范文)
(1)芸薹属基本种扩展蛋白基因家族的进化分析及花粉发育相关扩展蛋白基因的功能分化研究(论文提纲范文)
致谢 |
缩略词 |
摘要 |
Abstract |
前言 |
1 文献综述 |
1.1 植物扩展蛋白基因家族的研究进展 |
1.1.1 扩展蛋白的结构特点和起源 |
1.1.1.1 扩展蛋白的结构特点 |
1.1.1.2 扩展蛋白基因的起源 |
1.1.2 不同植物扩展蛋白基因家族成员的比较 |
1.1.3 进化过程中扩展蛋白基因亚家族的基因结构和结构域较保守 |
1.1.4 扩展蛋白基因在染色体上广泛分布 |
1.1.5 染色体片段重复是扩展蛋白基因家族主要扩张模式 |
1.1.6 扩展蛋白基因在不同植物组织中的表达丰度不同 |
1.2 扩展蛋白在植物生长发育中的作用 |
1.2.1 扩展蛋白基因在植物营养生长中的功能 |
1.2.1.1 种子萌发 |
1.2.1.2 根的生长发育 |
1.2.1.3 叶片的生长发育 |
1.2.2 扩展蛋白基因在植物生殖生长中的功能和调控 |
1.2.2.1 花粉管发育 |
1.2.2.2 果实成熟软化 |
1.3 花粉内壁的发育和调控 |
1.3.1 花粉壁的形成 |
1.3.2 花粉内壁发育的调控 |
1.3.2.1 参与拟南芥花粉内壁发育的基因及其调控机制 |
1.3.2.2 参与水稻花粉内壁发育的基因及其调控机制 |
1.4 花粉管的发育和调控 |
1.4.1 花粉管壁的组成和发育 |
1.4.2 细胞壁组分对花粉管生长的影响 |
1.4.2.1 果胶合成 |
1.4.2.2 纤维素合成 |
1.4.3 花粉管生长过程中细胞壁的重塑 |
1.4.3.1 细胞壁扩展蛋白和糖苷酶水解蛋白 |
1.4.3.2 阿拉伯半乳糖蛋白 |
1.4.3.3 果胶甲酯酶和果胶乙酰化酶 |
1.4.4 花粉管细胞壁结构蛋白的信号通路 |
1.4.4.1 细胞壁结构蛋白LRXs |
1.4.4.2 快速碱化因子家族RALFs |
1.4.4.3 类受体激酶CrRLK1Ls——ANX1/2和BUPS1/2 |
2 芸薹属三个基本种扩展蛋白基因家族的鉴定和进化分析 |
2.1 材料与方法 |
2.1.1 植物材料和主要试剂 |
2.1.2 扩展蛋白家族成员的鉴定和理化性质预测 |
2.1.3 扩展蛋白家族成员系统发育遗传树的构建与结构分析 |
2.1.4 扩展蛋白家族基因的染色体分布、共线性和保留率分析 |
2.1.5 扩展蛋白家族基因编码序列和启动子的进化分析 |
2.1.6 扩展蛋白家族基因的表达分析 |
2.2 结果 |
2.2.1 芸薹属基本种扩展蛋白基因家族的鉴定 |
2.2.2 扩展蛋白基因的系统发育、基因结构和功能域分析 |
2.2.3 扩展蛋白基因的染色体分布、复制机制和保留比例 |
2.2.4 扩展蛋白基因的编码序列和启动子的进化分析 |
2.2.5 扩展蛋白家族成员的表达模式 |
2.3 讨论 |
2.3.1 全基因组三倍化后芸薹属三个基本种的扩展蛋白基因家族规模 |
2.3.2 芸薹属三个基本种中EXLB亚家族在进化上最为保守 |
2.3.3 启动子的变异与扩展蛋白基因的编码序列进化密切相关 |
2.3.4 扩展蛋白基因在白菜生殖发育中可能扮演重要的角色 |
3 白菜扩展蛋白基因BrEXPB4和BrEXPB9 的表达模式和功能鉴定 |
3.1 材料与方法 |
3.1.1 植物材料和主要试剂 |
3.1.2 CTAB法提取基因组DNA |
3.1.3 总RNA 的提取(试剂盒法)与cDNA 的合成 |
3.1.4 BrEXPB4和BrEXPB9 的基因编码序列和启动子序列的扩增 |
3.1.5 氨基酸序列的特征分析 |
3.1.6 荧光定量PCR分析 |
3.1.7 proBrEXPB4::GUS和 proBrEXPB9::GUS融合表达载体的构建 |
3.1.8 BrEXPB4::eGFP和 BrEXPB9::eGFP融合表达载体的构建 |
3.1.9 人工microRNA(amiRNA)载体的构建 |
3.1.9.1 amiRNA序列的设计与合成 |
3.1.9.2 p35S::ami REXPB4/9、p35S::amiREXPB4和p35S::ami REXPB9 载体的构建 |
3.1.10 proBrEXPB4::GUS和 proBrEXPB9::GUS载体的遗传转化 |
3.1.10.1 proBrEXPB4::GUS和 proBrEXPB9::GUS载体浸花法转化野生型拟南芥 |
3.1.10.2 阳性转基因拟南芥植株的筛选 |
3.1.10.3 阳性植株组织的GUS染色观察 |
3.1.11 BrEXPB4和BrEXPB9 的亚细胞定位 |
3.1.11.1 利用烟草表皮细胞瞬时转化体系观察目标蛋白的亚细胞定位 |
3.1.11.2 利用洋葱表皮细胞瞬时转化体系观察目标蛋白的亚细胞定位 |
3.1.12 利用抽真空浸花法将amiRNA载体转化‘油青四九’菜心 |
3.1.13 菜心阳性转基因植株的筛选鉴定 |
3.1.13.1 转基因菜心基因组DNA的提取 |
3.1.13.2 利用PCR对转基因菜心植株进行初次筛选 |
3.1.13.3 利用qRT-PCR对转基因菜心植株进行再次筛选 |
3.1.14 阳性转基因菜心植株的表型观察 |
3.1.14.1 植株的形态学观察和角果长度的统计 |
3.1.14.2 花粉的细胞学染色观察 |
3.1.14.3 花粉的扫描电镜观察 |
3.1.14.4 花粉的半薄切片和透射电镜观察 |
3.1.14.5 花粉的体内萌发 |
3.1.14.6 花粉的体外萌发 |
3.2 结果 |
3.2.1 成功扩增‘油青四九’菜心中BrEXPB4和BrEXPB9 的编码序列和启动子序列 |
3.2.2 BrEXPB4和BrEXPB9 主要在成熟花粉粒和花粉管中表达 |
3.2.2.1 BrEXPB4和BrEXPB9 主要在‘Bcajh97-01’的花序、三核花粉期以及授粉受精后优势表达 |
3.2.2.2 BrEXPB4和BrEXPB9 从单核晚期花粉中起始表达并持续到花粉管中 |
3.2.3 BrEXPB4和BrEXPB9 定位在细胞壁上 |
3.2.4 BrEXPB4和BrEXPB9 定位在细胞壁上 |
3.2.5 同时抑制BrEXPB4和BrEXPB9 的表达造成花粉和花粉管的发育异常 |
3.2.5.1 利用amiRNA技术实现对菜心中BrEXPB4和BrEXPB9 的表达抑制 |
3.2.5.2 抑制BrEXPB4和BrEXPB9 的表达不会影响菜心的营养生长和花器官形态 |
3.2.5.3 同时抑制BrEXPB4和BrEXPB9 的表达导致花粉败育以及花粉萌发和伸长异常 |
3.2.5.4 BrEXPB4/9~(KD)的花粉败育发生在单核花粉晚期,导致花粉内容物含量降低并伴随异常的内壁沉积 |
3.3 讨论 |
3.3.1 BrEXPB4和BrEXPB9 具有相似的表达模式和亚细胞定位 |
3.3.2 BrEXPB4和BrEXPB9 冗余地参与白菜花粉发育和花粉管萌发 |
3.3.3 BrEXPB4和BrEXPB9 通过调控花粉内壁的沉积影响花粉管的萌发 |
4 拟南芥EXPA4和EXPB5 的表达模式和功能鉴定 |
4.1 材料与方法 |
4.1.1 植物材料和主要试剂 |
4.1.2 CTAB法提取基因组DNA |
4.1.3 总RNA 的提取与cDNA 的合成 |
4.1.3.1 Trizol法提取总RNA |
4.1.3.2 cDNA的合成 |
4.1.4 AtEXPA4和AtEXPB5 的基因全长序列、编码序列和启动子序列的扩增 |
4.1.5 氨基酸序列的特征分析和启动子顺式作用元件分析 |
4.1.6 荧光定量PCR分析 |
4.1.7 proAtEXPA4::GUS和 proAtEXPB5::GUS融合表达载体的构建 |
4.1.8 AtEXPA4::eGFP和 AtEXPB5::eGFP融合表达载体的构建 |
4.1.9 AtEXPA4和AtEXPB5 敲除载体的构建 |
4.1.9.1 AtEXPA4和AtEXPB5 sgRNA的设计合成及中间载体的构建 |
4.1.9.2 构建以proYAO启动子驱动Cas9 表达的CRISPR/Cas9 载体 |
4.1.10 过表达载体proAtEXPA4::EXPA4和proAtEXPB5::EXPB5 的构建 |
4.1.11 利用浸花法将各载体转化野生型拟南芥以及T_1代抗性植株的筛选 |
4.1.11.1 通过浸花法对拟南芥进行遗传转化 |
4.1.11.2 T_1代抗性植株的筛选 |
4.1.12 proAtEXPA4::GUS和 proAtEXPB5::GUS植株的筛选和观察 |
4.1.13 AtEXPA4和AtEXPB5 的亚细胞定位 |
4.1.13.1 利用烟草表皮细胞瞬时转化体系观察目标蛋白的亚细胞定位 |
4.1.13.2 利用洋葱表皮细胞瞬时转化体系观察目标蛋白的亚细胞定位 |
4.1.14 敲除植株的筛选鉴定 |
4.1.14.1 通过PCR检测敲除植株的T-DNA插入情况 |
4.1.14.2 敲除植株的基因编辑检测 |
4.1.14.3 敲除纯合植株的筛选 |
4.1.15 双突变体atexpa4expb5 的获得和F_2代基因分离比的统计 |
4.1.16 利用PCR和 qRT-PCR对过表达植株进行筛选和鉴定 |
4.1.17 双突变体atexpa4expb5 的回补实验 |
4.1.17.1 过表达载体proAtEXPA4::EXPA4和proAtEXPB5::EXPB5对atexpa4expb5 的遗传转化 |
4.1.17.2 利用PCR和 qRT-PCR对回补植株进行筛选 |
4.1.18 敲除、过表达以及回补植株的表型观察 |
4.1.18.1 植株的形态学观察 |
4.1.18.2 花粉的细胞学染色观察 |
4.1.18.3 花粉的扫描电镜观察 |
4.1.18.4 花粉的体内萌发 |
4.1.18.5 主根长度和根尖分生区长度的测量与统计 |
4.2 结果 |
4.2.1 AtEXPA4和AtEXPB5 的基因全长序列、编码序列和启动子序列 |
4.2.2 AtEXPA4和AtEXPB5 的表达分析 |
4.2.3 AtEXPA4和AtEXPB5 定位在细胞壁上 |
4.2.4 AtEXPA4和AtEXPB5 突变体、过表达以及回补植株的获得 |
4.2.4.1 atexpa4和atexpb5株系T-DNA插入和基因编辑类型的统计 |
4.2.4.2 AtEXPA4和AtEXPB5 敲除植株的脱靶检测 |
4.2.4.3 通过杂交获得AtEXPA4和AtEXPB5 双突变体atexpa4expab5 |
4.2.4.4 导入过表达载体使野生型拟南芥和atexpa4expab5 中相应基因的表达量升高 |
4.2.5 AtEXPA4和AtEXPB5 的同时突变使花粉管伸长速度减缓 |
4.2.5.1 AtEXPA4和AtEXPB5 的突变和过量表达对植株形态和花粉发育未观察到显着影响 |
4.2.5.2 双突变体atexpa4expab5 的花粉管伸长速度减缓 |
4.2.5.3 AtEXPA4和AtEXPB5 的突变对花粉的竞争力和配子传递无明显影响 |
4.2.6 AtEXPA4或AtEXPB5 都可以恢复atexpa4expab5 花粉管的伸长速度 |
4.2.7 AtEXPA4 促进主根的伸长 |
4.2.8 AtEXPA4和AtEXPB5 的启动子上顺式作用元件的分布情况 |
4.2.9 AtEXPA4和AtEXPB5 的启动子上顺式作用元件的分布情况 |
4.3 讨论 |
4.3.1 AtEXPA4和AtEXPB5 冗余地参与花粉管的发育 |
4.3.2 AtEXPA4 参与主根的生长发育 |
4.3.3 AtEXPA4和AtEXPB5 可能在MYB转录因子的调控下参与花粉管的发育 |
5 AtEXPA4和AtEXPB5 与其白菜中的同源基因的功能分化 |
5.1 材料与方法 |
5.1.1 植物材料和主要试剂 |
5.1.2 转录因子TDF1、AMS和 MYB结合位点的分析 |
5.1.3 酵母单杂交实验 |
5.1.3.1 TFs-AD和 proBrEXPB4A-E-AbAi、proBrEXPB9A-C-Ab Ai、pAtEXPB5A-Ab Ai载体的构建 |
5.1.3.2 线性化启动子载体并转化Y1H感受态细胞 |
5.1.3.3 检测转录因子对目的基因的调控作用 |
5.1.4 双荧光素酶实验 |
5.1.4.1 报告器载体proBrEXPB4-LUC、proBrEXPB9-LUC、pAtEXPB5A-LUC和效应器载体TFs-SK的构建 |
5.1.4.2 效应器和报告器质粒电击法转化农杆菌GV3101(MP90)感受态细胞 |
5.1.4.3 效应器和报告器载体瞬时转化烟草叶片并检测荧光强度 |
5.1.5 qRT-PCR分析 |
5.2 结果 |
5.2.1 TDF1和AMS对白菜EXPB4/9 和拟南芥EXPB5 的转录激活分析 |
5.2.2 其他转录因子与BrEXPB4和BrEXPB9 的启动子结合分析 |
5.2.3 BrEXPA11/19/22 的表达模式及其在BrEXPB4/9~(KD)中的表达分析 |
5.3 讨论 |
5.3.1 AtEXPB5 与其在白菜中的同源基因BrEXPB4和BrEXPB9 产生功能分化 |
5.3.2 AtEXPB5和BrEXPB4/9 参与不同的调控路径 |
5.3.3 白菜扩展蛋白基因家族在进化过程中产生功能分化 |
结论 |
参考文献 |
附录 |
在读期间发表的论文 |
(2)陆地棉同质异核雄性不育系的解剖学与细胞学观察(论文提纲范文)
摘要 |
ABSTRACT |
1 前言 |
1.1 棉花杂种优势利用研究进展 |
1.1.1 植物杂种优势的利用 |
1.1.2 棉花杂种优势的利用 |
1.2 细胞质雄性不育研究进展 |
1.2.1 细胞质雄性不育 |
1.2.2 细胞核雄性不育 |
1.3 花药发育与绒毡层研究进展 |
1.3.1 植物花药发育过程 |
1.3.2 植物绒毡层发育研究 |
1.4 植物CMS细胞学败育特征 |
1.4.1 棉花形态学研究 |
1.4.2 棉花细胞学研究 |
1.5 棉花雄性不育细胞学机理研究 |
1.5.1 棉花CMS胞质效应研究 |
1.5.2 棉花在细胞学、生理生化及分子生物学基础研究 |
1.5.3 石蜡切片方法研究 |
1.6 本研究的目的意义与技术路线 |
2 材料与方法 |
2.1 供试材料 |
2.1.1 棉花材料与来源 |
2.1.2 实验主要试剂和仪器 |
2.2 实验方法——石蜡切片的制备 |
3 结果与分析 |
3.1 中16S细胞质棉花花药细胞学结构观察结果 |
3.1.1 棉花不育系C1PKA棉花花药细胞学结构观察 |
3.1.2 棉花不育系C1 新陆中47A棉花花药细胞学结构观察 |
3.1.3 不育系C1 中棉41A棉花花药细胞学结构观察 |
3.1.4 不育系C10520A棉花花药细胞学结构观察 |
3.2 H276S细胞质棉花花药细胞学结构观察结果 |
3.2.1 不育系C2PKA棉花花药细胞学结构观察 |
3.2.2 不育系C2 新陆中47A棉花花药细胞学结构观察 |
3.2.3 不育系C2 中棉41A棉花花药细胞学结构观察 |
3.2.4 不育系C20520A棉花花药细胞学结构观察 |
3.3 07-113S细胞质棉花花药细胞学结构观察结果 |
3.3.1 不育系C3PKA棉花花药细胞学结构观察 |
3.3.2 不育系C3 鄂长2 号A棉花花药细胞学结构观察 |
3.3.3 不育系C3 中棉41A棉花花药细胞学结构观察 |
3.3.4 不育系C30520A棉花花药细胞学结构观察 |
3.4 J-4S细胞质棉花花药细胞学结构观察结果 |
3.4.1 不育系C4PKA棉花花药细胞学结构观察 |
3.4.2 不育系C4 鄂长2 号A棉花花药细胞学结构观察 |
3.4.3 不育系C40520A棉花花药细胞学结构观察 |
3.5 NS11-10S细胞质棉花花药细胞学结构观察结果 |
3.5.1 不育系C5PKA棉花花药细胞学结构观察 |
3.5.2 不育系C5 新陆中47A棉花花药细胞学结构观察 |
3.5.3 不育系C5 鄂长2 号A棉花花药细胞学结构观察 |
3.5.4 不育系C50520A棉花花药细胞学结构观察 |
3.6 H06S细胞质棉花花药细胞学结构观察结果 |
3.6.1 不育系C6PKA棉花花药细胞学结构观察 |
3.6.2 不育系C6 鄂长2 号A棉花花药细胞学结构观察 |
3.6.3 不育系C6 中棉41A棉花花药细胞学结构观察 |
3.6.4 不育系C60520A棉花花药细胞学结构观察 |
3.7 六种同质异核CMS的不育株花蕾大小与小孢子发育程度的关系 |
4 讨论与结论 |
4.1 讨论 |
4.1.1 质核同源雄性不育系与质核异源雄性不育系的细胞学败育特征与败育时期的关系 |
4.1.2 绒毡层延迟解体与花粉败育之间的关系 |
4.1.3 花药败育与胼胝质的研究 |
4.2 结论 |
4.3 本研究的创新点 |
4.4 问题与展望 |
参考文献 |
致谢 |
攻读硕士学位期间发表的学术论文 |
(3)陆地棉转GhbZIP1基因CMS种质创新及其不育机理研究(论文提纲范文)
摘要 |
abstract |
1 前言 |
1.1 植物雄性不育的概述 |
1.2 棉花CMS系种质创新的现状 |
1.3 植物CMS败育的细胞学特征 |
1.3.1 植物CMS与绒毡层细胞结构异常 |
1.3.2 植物CMS与线粒体超微结构 |
1.3.3 棉花CMS败育的细胞学特征 |
1.4 基于线粒体基因组重测序研究植物CMS |
1.4.1 植物CMS与线粒体基因组 |
1.4.2 线粒体基因组测序在植物CMS研究中的应用 |
1.4.3 植物CMS与嵌合开放阅读框 |
1.5 基于全转录组测序研究植物CMS |
1.5.1 转录组测序的应用 |
1.5.2 基于转录组测序研究植物CMS机理 |
1.5.3 基于small RNA测序研究植物CMS机理 |
1.5.4 基于miRNA-m RNA联合分析研究植物CMS机理 |
1.6 植物CMS与活性氧代谢 |
1.6.1 活性氧的来源和作用 |
1.6.2 ROS积累对育性的影响 |
1.7 植物CMS与糖代谢 |
1.8 本研究目的意义 |
2 GhbZIP1 的克隆与表达分析 |
2.1 材料与方法 |
2.1.1 植物材料 |
2.1.2 主要试剂 |
2.1.3 主要仪器设备 |
2.1.4 总RNA的提取 |
2.1.5 c DNA的合成、克隆及生物信息学分析 |
2.1.6 目的基因的表达量分析 |
2.1.7 目的片段的获得 |
2.1.8 质粒的提取 |
2.1.9 重组质粒的获得与鉴定 |
2.1.10 亚细胞定位 |
2.2 结果与分析 |
2.2.1 “洞A”花药RNA的提取 |
2.2.2 GhbZIP1 基因全长的获得 |
2.2.3 GhbZIP1 的三维结构图 |
2.2.4 进化树分析 |
2.2.5 GhbZIP1 基因的表达模式分析 |
2.2.6 目的片段的获得 |
2.2.7 质粒的少量提取 |
2.2.8 重组GhbZIP1-T载体酶切鉴定 |
2.2.9 重组质粒GhbZIP1-pBI121 的酶切鉴定 |
2.2.10 亚细胞定位 |
2.3 讨论 |
3 雄性不育种质资源的创制与鉴定 |
3.1 材料与方法 |
3.1.1 研究材料 |
3.1.2 质粒DNA的提取(大量提取) |
3.1.3 花粉管通道法转GhbZIP1 基因 |
3.1.4 陆地棉J4B转基因植株的形态学观察与育性调查 |
3.1.5 陆地棉g DNA的提取 |
3.1.6 转基因突变体后代的PCR验证 |
3.1.7 绝对定量进行转基因拷贝数检测 |
3.1.8 陆地棉CMS系J4A的获得与命名 |
3.1.9 CMS系 J4A与其保持系 J4B的压片观察 |
3.1.10 CMS系 J4A与其保持系 J4B的扫描电镜观察 |
3.1.11 CMS系 J4A与其保持系 J4B的石蜡切片观察 |
3.1.12 CMS系 J4A与其保持系 J4B的透射电镜观察 |
3.1.13 J4A和J4B花药3 个发育时期的生化指标测定 |
3.2 结果与分析 |
3.2.1 PCR检测转基因不育株 |
3.2.2 阳性植株拷贝数的检测 |
3.2.3 转基因后代育性调查与形态学观察 |
3.2.4 农艺性状及花器官观察 |
3.2.5 花药扫描电镜观察 |
3.2.6 I_2-KI压片观察 |
3.2.7 石蜡切片观察 |
3.2.8 叶片透射电镜观察 |
3.2.9 花药透射电镜观察 |
3.2.10 活性氧测定 |
3.2.11 糖代谢物质测定 |
3.3 讨论 |
3.3.1 花粉管通道法转基因的应用 |
3.3.2 花粉管通道法转基因的机理 |
3.3.3 花粉管通道法转基因的验证 |
3.3.4 陆地棉CMS系J4A败育发生时期 |
4 陆地棉J4B、J4A-1、J4A-2和J4A-3 线粒体基因组重测序及完成图构建 |
4.1 材料与方法 |
4.1.1 研究材料 |
4.1.2 陆地棉mt DNA的提取 |
4.1.3 陆地棉mt DNA的测序与组装 |
4.1.4 陆地棉mt DNA的分析与注释 |
4.1.5 SNPs的检测与标注 |
4.1.6 In Dels检测 |
4.1.7 SV检测 |
4.2 结果与分析 |
4.2.1 mt DNA质量检测 |
4.2.2 测序数据概况 |
4.2.3 线粒体基因组组装 |
4.2.4 线粒体基因组分分析 |
4.2.5 重复序列分析 |
4.2.6 mt DNA与叶绿体和核基因组同源序列 |
4.2.7 CMS系中的特有的ORFs |
4.2.8 SNP检测及注释 |
4.2.9 In Dels检测及注释 |
4.2.10 SV检测与分析 |
4.3 讨论 |
5 CMS系 J4A与保持系 J4B花药m RNA测序 |
5.1 材料与方法 |
5.1.1 植物材料 |
5.1.2 总RNA提取 |
5.1.3 转录组测序流程 |
5.1.4 mRNA表达量分析 |
5.1.5 基因表达差异分析 |
5.1.6 差异表达m RNA的 GO和 KEGG富集分析 |
5.1.7 qRT-PCR验证 |
5.2 结果与分析 |
5.2.1 总RNA的提取与质量检测 |
5.2.2 高通量测序数据的处理 |
5.2.3 可变剪切类型分析 |
5.2.4 mRNA差异表达量分析 |
5.2.5 差异表达mRNA的 GO富集分析 |
5.2.6 差异表达mRNA的 KEGG富集分析 |
5.2.7 糖酵解途径的差异表达基因 |
5.2.8 参与电子传递链的差异表达基因 |
5.2.9 转录因子差异表达基因 |
5.2.10 花粉发育相关的差异表达基因 |
5.2.11 mRNA表达水平的qRT-PCR验证 |
5.3 讨论 |
5.3.1 差异表达基因参与糖酵解途径 |
5.3.2 差异表达基因参与线粒体电子传递链 |
6 不育系 J4A与保持系 J4B花药miRNA测序 |
6.1 测序材料与方法 |
6.1.1 植物材料 |
6.1.2 RNA的提取 |
6.1.3 原始数据的过滤与长度分布统计 |
6.1.4 miRBase数据库比对 |
6.1.5 miRNA丰度差异分析 |
6.1.6 差异表达mi RNA的 GO和 KEGG富集分析 |
6.1.7 miRNA表达水平qRT-PCR验证 |
6.2 结果与分析 |
6.2.1 测序数据概况 |
6.2.2 miRBase数据库比对 |
6.2.3 miRNA丰度差异分析 |
6.2.4 差异表达miRNA的 GO富集分析 |
6.2.5 差异表达miRNA靶基因的KEGG富集分析 |
6.2.6 miRNA表达水平qRT-PCR |
6.2.7 miRNA与其靶基因mRNA的互作 |
6.3 讨论 |
7 全文结论与讨论 |
7.1 主要结论 |
7.2 CMS系J4A不育分子机理推测 |
7.3 本研究的创新点 |
7.4 问题与展望 |
参考文献 |
附录 |
致谢 |
研究生期间科研、论文发表和专利发明情况 |
(4)高温胁迫下DNA甲基化调控棉花CMS-D2恢复系育性的表观机制初探(论文提纲范文)
摘要 |
abstract |
主要符号对照表 |
第一章 绪论 |
1.1 棉花细胞质雄性不育及其育性恢复研究进展 |
1.1.1 棉花细胞质雄性不育研究 |
1.1.2 棉花细胞质雄性不育恢复基因研究 |
1.2 高温胁迫与植物雄性生殖器官发育的关系 |
1.2.1 高温胁迫影响植物花药发育 |
1.2.2 植物响应外界高温的信号转导途径 |
1.2.3 植物花药发育对高温胁迫的响应 |
1.3 DNA甲基化简介及其调控角色 |
1.3.1 DNA甲基化概述 |
1.3.2 DNA甲基化的发生机制与去甲基化 |
1.3.3 DNA甲基化动态参与胁迫响应 |
1.3.4 DNA甲基化动态参与生殖发育 |
1.4 全基因组DNA甲基化图谱研究 |
1.4.1 DNA甲基化测序技术介绍 |
1.4.2 WGBS技术与全基因组DNA甲基化图谱分析 |
1.4.3 植物花药发育的全基因组DNA甲基化图谱 |
1.5 本研究的目的和意义 |
第二章 材料与方法 |
2.1 实验材料 |
2.1.1 植物材料和生长条件 |
2.1.2 材料取样及处理 |
2.2 实验方法 |
2.2.1 DNA提取、质量检测及浓度测定 |
2.2.1.1 花药组织基因组DNA提取 |
2.2.1.2 DNA样品质量检测 |
2.2.2 重亚硫酸盐处理DNA、文库构建和测序 |
2.2.3 全基因组DNA甲基化测序数据分析 |
2.2.3.1 测序数据质控 |
2.2.3.2 测序数据与参考序列比对分析 |
2.2.3.3 测序深度和覆盖度统计 |
2.2.3.4 甲基化位点检测及质量控制 |
2.2.3.5 C位点甲基化水平评估 |
2.2.3.6 甲基化位点motif识别 |
2.2.3.7 差异甲基化胞嘧啶位点鉴定和分析 |
2.2.3.8 差异甲基化转座元件鉴定和分析 |
2.2.3.9 差异甲基化修饰区域鉴定和分析 |
2.2.3.10 差异甲基化基因鉴定 |
2.2.3.11 差异甲基化基因GO和 KEGG富集分析 |
2.2.4 RNA提取、质量检测及浓度测定 |
2.2.4.1 花药组织总RNA提取 |
2.2.4.2 总RNA样品质量检测 |
2.2.5 RNA文库构建和测序 |
2.2.6 RNA测序数据分析 |
2.2.6.1 原始测序数据质量过滤 |
2.2.6.2 参考序列比对与数据分析 |
2.2.7 反转录和实时荧光定量PCR分析 |
2.2.8 高温胁迫下进行DNA甲基转移酶抑制剂和促进剂喷施处理 |
2.2.9 花药表型分析及花粉活力测定 |
2.2.10 McrBC-qPCR分析 |
2.2.11 ATP和H_2O_2含量测定 |
2.2.12 数据统计分析 |
第三章 结果与分析 |
3.1 棉花CMS-D2系统材料花药发育对高温胁迫反应具有明显差异 |
3.1.1 保持系和恢复系在田间持续高温胁迫下花药出现不同的表型 |
3.1.2 高温胁迫下保持系和恢复系花粉活力差异较大 |
3.2 高温胁迫下棉花花药发育的单碱基分辨率甲基化图谱分析 |
3.2.1 棉花花药全基因组胞嘧啶甲基化水平分析 |
3.2.2 棉花各染色体以及基因组功能区域甲基化水平分析 |
3.2.3 棉花花药基因组中胞嘧啶甲基化的序列偏好性分析 |
3.3 响应高温胁迫的表观基因组差异与转录表达变化之间的潜在联系 |
3.3.1 棉花花药中DNA甲基化状态与基因表达水平之间的关系 |
3.3.2 棉花花药中转座元件的DNA甲基化模式 |
3.3.3 高温胁迫下转座元件中广泛的甲基化变异 |
3.3.4 棉花花药中响应高温胁迫的全基因组动态甲基化模式 |
3.3.5 差异甲基化基因的GO和 KEGG富集分析 |
3.3.6 高温胁迫改变ZB和 ZBR中 DNA甲基化模式与差异基因表达 |
3.4 DNA甲基化在高温胁迫下棉花花药发育过程中的潜在调控角色 |
3.4.1 高温诱导氧化磷酸化途径基因的甲基化动态变化来维持花药正常发育 |
3.4.2 高温胁迫下DNA甲基化抑制剂促进花药发育而促进剂部分抑制花药发育 |
第四章 讨论 |
4.1 棉花花药发育的全基因组单碱基分辨率胞嘧啶甲基化图谱分析 |
4.1.1 棉花花药全基因组胞嘧啶甲基化图谱概况 |
4.1.2 花药基因组中转座元件分布与DNA甲基化水平的潜在关系 |
4.1.3 花药基因组中胞嘧啶甲基化分布具有序列偏好性 |
4.2 棉花花药中响应高温胁迫的甲基化动态与转录表达变化之间的关系 |
4.2.1 高温胁迫下棉花花药基因组中转座元件的甲基化图谱分析 |
4.2.2 高温胁迫下棉花花药中DNA甲基化变异与基因表达之间的关系 |
4.3 高温胁迫下棉花花药发育的潜在表观调控机制 |
4.3.1 DNA甲基化变异参与调控花药发育过程中ATP合成和ROS产生的动态平衡 |
4.3.2 全基因组去甲基化有助于高温胁迫下花药的正常发育 |
第五章 全文结论 |
参考文献 |
附录A |
附录B |
致谢 |
作者简历 |
(5)西瓜核雄性不育两用系Se18不育特性的生理生化与分子机制研究(论文提纲范文)
摘要 |
abstract |
第一章 文献综述 |
1.1 植物雄性不育的研究概况 |
1.1.1 植物雄性不育的起源 |
1.1.2 植物雄性不育的类型 |
1.1.3 植物雄性不育的遗传 |
1.1.4 花粉发育与雄性不育形成机制 |
1.2 植物雄性不育的生理生化研究进展 |
1.2.1 雄性不育与物质代谢 |
1.2.2 雄性不育与能量代谢 |
1.2.3 雄性不育与活性氧代谢 |
1.2.4 雄性不育与内源激素 |
1.3 植物雄性不育相关基因研究进展 |
1.3.1 植物细胞核雄性不育相关基因 |
1.3.2 拟南芥花药和花粉发育相关基因 |
1.4 植物雄性不育的转录组分析 |
1.4.1 转录组测序技术的发展 |
1.4.2 RNA-seq技术测序流程 |
1.4.3 RNA-seq技术在植物雄性不育研究中的应用 |
1.5 西瓜雄性不育的研究与利用 |
1.5.1 西瓜雄性不育的类型及遗传研究 |
1.5.2 西瓜雄性不育的研究与利用 |
1.6 本研究的目的、意义和内容 |
1.6.1 研究目的意义 |
1.6.2 研究内容 |
第二章 西瓜细胞核雄性不育系的细胞学研究 |
2.1 材料与方法 |
2.1.1 试验材料 |
2.1.2 方法 |
2.2 结果与分析 |
2.2.1 不育株与可育株花的形态特征 |
2.2.2 可育株花药发育过程 |
2.2.3 不育株花药发育过程 |
2.3 讨论与结论 |
第三章 西瓜细胞核雄性不育与膜脂过氧化的关系 |
3.1 材料与方法 |
3.1.1 试验材料 |
3.1.2 取样 |
3.1.3 测定项目与方法 |
3.2 结果与分析 |
3.2.1 花蕾抗氧化酶活性的变化 |
3.2.2 花蕾抗氧化物质含量的变化 |
3.2.3 花蕾活性氧含量的变化 |
3.3 讨论与结论 |
3.3.1 雄性不育与抗氧化酶活性的关系 |
3.3.2 雄性不育与抗氧化物质含量的关系 |
3.3.3 雄性不育与活性氧含量的关系 |
第四章 西瓜细胞核雄性不育与物质代谢的关系 |
4.1 材料与方法 |
4.1.1 试验材料 |
4.1.2 取样 |
4.1.3 测定项目与方法 |
4.2 结果与分析 |
4.2.1 花蕾可溶性蛋白含量的变化 |
4.2.2 花蕾游离脯氨酸含量的变化 |
4.3 讨论与结论 |
4.3.1 雄性不育与可溶性蛋白含量的关系 |
4.3.2 雄性不育与游离脯氨酸含量的关系 |
第五章 西瓜细胞核雄性不育与内源激素的关系 |
5.1 材料与方法 |
5.1.1 试验材料 |
5.1.2 取样 |
5.1.3 测定项目与方法 |
5.2 结果与分析 |
5.2.1 花蕾内源激素含量的变化 |
5.2.2 叶片内源激素含量的变化 |
5.2.3 花蕾中内源激素之间的平衡关系 |
5.3 讨论与结论 |
5.3.1 雄性不育与内源激素含量的关系 |
5.3.2 雄性不育与激素比值的关系 |
第六章 西瓜细胞核雄性不育花蕾转录组分析 |
6.1 材料与方法 |
6.1.1 试验材料 |
6.1.2 取样 |
6.1.3 文库建立和RNA-Seq分析 |
6.1.4 数据处理和分析 |
6.1.5 qRT-PCR分析 |
6.2 结果与分析 |
6.2.1 转录组测序及数据分析 |
6.2.2 差异表达基因的功能注释和分类 |
6.2.3 植物内源激素相关的差异表达基因 |
6.2.4 花发育相关的差异表达基因 |
6.2.5 差异表达的转录因子相关基因 |
6.2.6 差异表达基因的qRT-PCR验证 |
6.3 讨论 |
6.3.1 转录组测序数据和花药发育相关的DEGs |
6.3.2 内源激素相关的DEGs |
6.3.3 转录因子相关的DEGs |
6.4 结论 |
第七章 西瓜细胞核雄性不育候选基因区段的预测与分析 |
7.1 材料与方法 |
7.1.1 试验材料 |
7.1.2 取样 |
7.1.3 文库建立和RNA-Seq分析 |
7.1.4 SNP标记检测 |
7.1.5 关联分析 |
7.1.6 候选区域基因的功能注释 |
7.2 结果与分析 |
7.2.1 SNP检测 |
7.2.2 BSR关联分析 |
7.2.3 候选区域内基因功能注释 |
7.3 讨论与结论 |
第八章 结论与创新点 |
8.1 结论 |
8.2 创新点 |
8.3 展望 |
参考文献 |
缩略词 |
致谢 |
作者简介 |
(6)苜蓿单倍体培育及其杂交结实性与主要性状杂种优势分析(论文提纲范文)
摘要 |
Abstract |
缩略语表 |
1 前言 |
1.1 单倍体诱导及应用 |
1.2 单倍体的鉴定 |
1.2.1 染色体计数法与流式细胞术鉴定法 |
1.2.2 形态学鉴定法与气孔数鉴定法 |
1.2.3 分子标记法与遗传标记法 |
1.2.4 放射线辐射法与其他方法 |
1.3 单倍体的加倍方法 |
1.3.1 秋水仙素的加倍原理 |
1.3.2 秋水仙素加倍技术在双单倍体植株诱导中的应用 |
1.4 苜蓿单倍体研究利用现状 |
1.4.1 国外苜蓿单倍体研究利用现状 |
1.4.2 国内苜蓿单倍体研究利用现状 |
1.5 真假杂交种的鉴定方法 |
1.5.1 形态学鉴定法 |
1.5.2 细胞学鉴定法 |
1.5.3 物理化学鉴定法 |
1.5.4 生化标记鉴定法 |
1.5.5 分子标记鉴定法 |
1.5.6 SRAP技术原理与方法 |
1.5.7 SRAP技术在杂交种鉴定中的应用 |
1.6 杂交育种与杂种优势分析 |
1.6.1 杂种优势利用现状 |
1.6.2 配合力与杂种优势 |
1.6.3 育性与杂种优势 |
1.6.4 不同倍性材料的杂交利用 |
1.7 杂交亲本的选择与杂种优势预测 |
1.7.1 遗传距离与杂种优势预测 |
1.7.2 杂种优势群与杂种优势模式 |
1.8 研究目的与意义 |
1.9 主要研究内容 |
1.10 研究技术路线 |
2 苜蓿单倍体培养及育性鉴定 |
2.1 试验材料与药品 |
2.1.1 材料来源 |
2.1.2 试验药品来源 |
2.2 试验方法 |
2.2.1 组培再生体系的优化 |
2.2.2 再生植株倍性鉴定 |
2.2.3 单倍体植株扩繁 |
2.2.4 炼苗移栽 |
2.2.5 花粉育性鉴定 |
2.2.6 自交结实率 |
2.3 数据分析方法 |
2.4 结果与分析 |
2.4.1 愈伤组织分化培养基的优化 |
2.4.2 流式细胞术鉴定法的优化 |
2.4.3 根尖染色体鉴定法的优化 |
2.4.4 不同倍性苜蓿组培茎段扦插生根率 |
2.4.5 不同倍性苜蓿材料炼苗移栽成活率 |
2.4.6 不同倍性新疆大叶苜蓿部分器官形态差异 |
2.4.7 不同倍性苜蓿自交结荚情况与种子活力 |
2.5 讨论 |
2.5.1 外源激素对苜蓿花药分化培养的影响 |
2.5.2 流式细胞术对植物倍性鉴定的影响因素 |
2.5.3 根尖染色体鉴定的影响因素 |
2.5.4 不同倍性苜蓿的自交不亲和性 |
2.6 小结 |
3 苜蓿双单倍体植株的诱导 |
3.1 试验材料与药品 |
3.1.1 材料来源 |
3.1.2 试验药品来源 |
3.2 试验方法 |
3.2.1 固体和液体秋水仙素培养基 |
3.2.2 愈伤组织的继代培养 |
3.2.3 分化与生根培养 |
3.2.4 再生植株的倍性鉴定 |
3.3 数据分析方法 |
3.4 结果与分析 |
3.4.1 秋水仙素处理对出愈率的影响 |
3.4.2 愈伤组织继代改良培养 |
3.4.3 秋水仙素处理对茎段生根率的影响 |
3.4.4 秋水仙素加倍处理后再生植株倍性鉴定 |
3.4.5 双单倍体植株的再分化 |
3.5 讨论 |
3.5.1 不同培养方式对加倍效果的影响 |
3.5.2 不同外植体对加倍效果的影响 |
3.5.3 不同处理因素对加倍效果的影响 |
3.5.4 愈伤组织的继代改良 |
3.6 小结 |
4 不同倍性和育性材料间杂交结实率的比较 |
4.1 试验材料与杂交组合 |
4.2 研究内容与方法 |
4.2.1 物候期观测 |
4.2.2 人工杂交 |
4.3 数据分析方法 |
4.4 结果与分析 |
4.4.1 物候期 |
4.4.2 不同育性苜蓿杂交组合结实率分析 |
4.4.3 不同倍性苜蓿杂交组合结实率分析 |
4.4.4 二倍体苜蓿种间杂交结实率分析 |
4.4.5 二倍体苜蓿与扁蓿豆种间杂交结实率分析 |
4.4.6 杂交时期对杂交结荚率的影响 |
4.4.7 各因素对杂交结实率的影响 |
4.5 讨论 |
4.5.1 育性对杂交结实率的影响 |
4.5.2 倍性对杂交结实率的影响 |
4.5.3 种间杂交对杂交结实率的影响 |
4.5.4 杂交时期与杂交结实率 |
4.6 小结 |
5 杂交亲本遗传距离分析及杂交种真实性鉴定 |
5.1 试验材料与药品 |
5.1.1 试验材料 |
5.1.2 试验药品 |
5.2 试验方法 |
5.2.1 DNA的提取与检测 |
5.2.2 SRAP引物 |
5.2.3 SRAP-PCR扩增反应体系及程序 |
5.2.4 PCR产物检测 |
5.3 数据分析方法 |
5.4 结果与分析 |
5.4.1 12个杂交亲本SRAP标记图谱分析 |
5.4.2 12个苜蓿亲本间的遗传距离与聚类分析 |
5.4.3 杂交种真实性的鉴定 |
5.4.4 各杂交组合杂交种纯度 |
5.4.5 影响杂交种纯度的主要因素 |
5.5 讨论 |
5.5.1 苜蓿亲本材料种质遗传多样性与遗传距离分析 |
5.5.2 苜蓿杂交种分子标记特异带与纯度鉴定 |
5.5.3 影响杂交种纯度的因素 |
5.6 小结 |
6 不同倍性的杂种产量性状优势分析 |
6.1 试验材料 |
6.2 试验方法 |
6.3 数据分析方法 |
6.4 结果与分析 |
6.4.1 苜蓿亲本材料的单株地上生物量比较 |
6.4.2 苜蓿亲本材料产量性状表现 |
6.4.3 育性和倍性对苜蓿亲本材料产量性状的影响 |
6.4.4 杂交组合牧草产量优势表现 |
6.4.5 苜蓿强优势杂交组合的筛选 |
6.4.6 杂交组合牧草产量性状的相关性 |
6.4.7 不同倍性杂交组合牧草产量性状表现 |
6.4.8 不同倍性杂交组合牧草产量优势表现 |
6.4.9 杂交组合牧草产量性状优势与遗传距离相关性 |
6.4.10 亲本倍性与遗传距离对杂交组合牧草产量杂种优势的影响 |
6.5 讨论 |
6.5.1 产量性状对杂种优势形成的影响 |
6.5.2 苜蓿强优势杂交组合的筛选 |
6.5.3 倍性与杂交组合产量相关性状优势形成的关系 |
6.5.4 遗传距离对杂交组合产量相关性状优势形成的影响 |
6.5.5 遗传距离和倍性与杂交组合产量相关性状优势形成的关系 |
6.6 小结 |
7 全文讨论 |
7.1 苜蓿单倍体与双单倍体获得的影响因素 |
7.2 苜蓿SRAP分子标记特异带与杂种优势相关性 |
7.3 苜蓿种内与种间杂交结实性的差异 |
8 结论 |
9 本研究创新 |
10 下一步研究设想 |
致谢 |
参考文献 |
作者简介 |
(7)三个陆地棉芽黄突变体的遗传及育种利用研究(论文提纲范文)
1 材料与方法 |
1.1 试验材料 |
1.2 组合配制及性状调查 |
1.3 试验设计及数据分析 |
2 结果与分析 |
2.1 3个芽黄突变体的遗传分析 |
2.2 3个芽黄突变体的回交转育研究 |
2.3 3个芽黄突变体的优势组合筛选研究 |
3 讨论 |
(8)基于陆地棉ms1突变体转录组的育性基因挖掘和调控机理研究(论文提纲范文)
摘要 |
Abstract |
缩略语 |
第一章 绪论 |
1.1 植物雄性不育概念 |
1.1.1 棉花细胞质雄性不育研究 |
1.1.2 棉花细胞核雄性不育研究 |
1.1.3 棉花生态敏感型雄性不育研究 |
1.2 植物花药发育 |
1.2.1 花药构成 |
1.2.2 花药发育过程 |
1.2.3 花粉壁发育 |
1.2.4 花药开裂 |
1.3 植物β-1,3-葡聚糖酶 |
1.3.1 β-1,3-葡聚糖酶的分类 |
1.3.2 β-1,3-葡聚糖酶基因功能研究 |
1.4 转录组学在植物雄性不育上的应用 |
1.5 实验方案设计 |
1.5.1 研究目的与意义 |
1.5.2 主要研究内容 |
1.5.3 实验技术路线 |
第二章 陆地棉雄性不育突变体ms1花器官表型分析 |
2.1 材料 |
2.2 方法 |
2.3 结果与分析 |
2.3.1 花药观察 |
2.3.2 花粉观察 |
2.4 讨论 |
第三章 陆地棉雄性不育突变体ms1转录组分析 |
3.1 材料 |
3.2 方法 |
3.2.1 测序建库 |
3.2.2 基因表达分析 |
3.2.3 差异基因生物信息学分析 |
3.2.4 筛选qRT-PCR基因及引物设计 |
3.2.5 RNA的提取及qRT-PCR |
3.3 结果与分析 |
3.3.1 差异基因表达分析 |
3.3.2 不同时期差异基因分析 |
3.3.3 差异基因功能富集分析 |
3.3.4 qRT-PCR分析 |
3.4 讨论 |
第四章 GhOLE9基因的克隆与功能分析 |
4.1 材料 |
4.1.1 实验中用到的载体 |
4.1.2 CTAB提取液的配制 |
4.1.3 培养基的配制 |
4.1.4 抗生素的配制 |
4.1.5 农杆菌侵染液的配制 |
4.1.6 染色液配制 |
4.2 方法 |
4.2.1 生物信息学分析 |
4.2.2 目的基因克隆及VIGS载体的构建 |
4.2.3 农杆菌介导的遗传转化----注射侵染棉花子叶 |
4.2.4 CTAB法提取DNA |
4.2.5 四分体时期花药染色观察 |
4.2.6 RNA提取及qRT-PCR |
4.3 结果与分析 |
4.3.1 GhOLE9基因保守性分析 |
4.3.2 GhOLE9蛋白生物信息学分析 |
4.3.3 GhOLE9蛋白同源分析 |
4.3.4 GhOLE9基因组织特异性分析 |
4.3.5 GhOLE9基因干涉株系鉴定 |
4.3.6 GhOLE9基因干涉株表型 |
4.3.7 干涉株基因表达分析 |
4.4 讨论 |
第五章 农杆菌介导GhOLE9遗传转化及转基因植株再生体系建立 |
5.1 材料 |
5.1.1 植物材料 |
5.1.2 母液的配制 |
5.1.3 培养基的配制 |
5.2 方法 |
5.2.1 胚性愈伤的培养 |
5.2.2 RNAi载体的构建 |
5.2.3 棉花胚性愈伤遗传转化 |
5.2.4 CTAB法提取DNA |
5.3 结果与分析 |
5.3.1 YZ1和S1植株再生培养 |
5.3.2 转基因植株再生培养及鉴定 |
5.4 讨论 |
第六章 总结与展望 |
6.1 总结 |
6.2 展望 |
参考文献 |
硕士期间的研究成果 |
致谢 |
(9)陆地棉细胞质雄性不育系的创制和应用(论文提纲范文)
摘要 |
abstract |
1 文献综述 |
1.1 我国棉花生产情况 |
1.2 棉花杂种优势利用 |
1.2.1 杂种优势及其表现 |
1.2.2 棉花杂种优势的表现 |
1.2.3 棉花杂种优势利用现状 |
1.2.4 棉花杂种优势利用途径 |
1.2.4.1 人工去雄授粉 |
1.2.4.2 化学杀雄法 |
1.2.4.3 细胞核雄性不育的利用 |
1.2.4.4 细胞质雄性不育的利用 |
1.3 棉花雄性不育系的研究和利用 |
1.3.1 棉花细胞质雄性不育系的选育 |
1.3.2 棉花细胞质雄性不育系育种与应用现状 |
1.3.3 棉花细胞质雄性不育系的缺陷 |
1.3.3.1 不育基因对后代性状的影响 |
1.3.3.2 恢复基因来源狭窄 |
1.4 研究的目的和意义 |
2 研究报告 |
2.1 材料和方法 |
2.1.1 实验材料 |
2.1.2 回交转育 |
2.1.3 杂交组合配制 |
2.1.4 田间试验 |
2.1.5 性状考察 |
2.1.6 种子发芽 |
2.1.7 数据处理 |
2.2 结果和分析 |
2.2.1 陆地棉细胞质雄性不育系的选育 |
2.2.1.1 陆地棉雄性不育系的产量表现 |
2.2.1.2 陆地棉细胞质雄性不育系的种子性状 |
2.2.1.3 陆地棉细胞质雄性不育系的种子发芽表现 |
2.2.1.4 陆地棉细胞质雄性不育系的纤维品质 |
2.2.2 10个陆地棉细胞质雄性不育系的杂种优势分析 |
2.2.2.1 皮棉产量 |
2.2.2.2 单铃重 |
2.2.2.3 衣分 |
2.2.2.4 纤维长度 |
2.2.2.5 断裂比强度 |
2.2.2.6 马克隆值 |
2.2.3 陆地棉细胞质雄性不育系基因的遗传效应 |
2.2.3.1 陆地棉细胞质雄性不育基因对产量性状的遗传效应 |
2.2.3.2 陆地棉细胞质雄性不育系基因对纤维品质性状的遗传效应 |
2.4 全文小结 |
2.4.1 陆地棉细胞质雄性不育系选育 |
2.4.2 陆地棉细胞质雄性不育系杂种优势分析 |
2.4.3 陆地棉细胞质不育基因效应 |
3 讨论 |
3.1 陆地棉高配合力细胞质雄性不育系的应用价值 |
3.2 陆地棉细胞质雄性不育系经济性状 |
3.3 陆地棉细胞质雄性不育系的杂种优势表现 |
3.4 陆地棉细胞质雄性不育基因对杂种的经济性状影响 |
3.5 陆地棉细胞质雄性不育系在杂交棉制种中的经济效益 |
参考文献 |
附表 |
致谢 |
(10)我国棉花形态标记性状应用研究进展(论文提纲范文)
1 我国棉花形态标记应用研究现状 |
2 棉花形态标记性状类型 |
2.1 芽黄标记 |
2.2 鸡脚叶标记 |
2.3 红花标记 |
2.4 腺体标记 |
2.5 其他标记 |
3 问题与展望 |
四、我国4个陆地棉核雄性不育系的遗传研究(论文参考文献)
- [1]芸薹属基本种扩展蛋白基因家族的进化分析及花粉发育相关扩展蛋白基因的功能分化研究[D]. 刘维妙. 浙江大学, 2021(01)
- [2]陆地棉同质异核雄性不育系的解剖学与细胞学观察[D]. 康浩东. 广西大学, 2020(07)
- [3]陆地棉转GhbZIP1基因CMS种质创新及其不育机理研究[D]. 李敏. 广西大学, 2020
- [4]高温胁迫下DNA甲基化调控棉花CMS-D2恢复系育性的表观机制初探[D]. 张梦. 中国农业科学院, 2020
- [5]西瓜核雄性不育两用系Se18不育特性的生理生化与分子机制研究[D]. 王永琦. 西北农林科技大学, 2020
- [6]苜蓿单倍体培育及其杂交结实性与主要性状杂种优势分析[D]. 徐舶. 内蒙古农业大学, 2020(01)
- [7]三个陆地棉芽黄突变体的遗传及育种利用研究[J]. 董承光,周小凤,马晓梅,王娟,王新,田琴,李保成. 植物遗传资源学报, 2020(05)
- [8]基于陆地棉ms1突变体转录组的育性基因挖掘和调控机理研究[D]. 沈丽. 浙江理工大学, 2020(06)
- [9]陆地棉细胞质雄性不育系的创制和应用[D]. 朱晔. 浙江大学, 2020(01)
- [10]我国棉花形态标记性状应用研究进展[J]. 陈莹,张法铭,姜辉,柴启超,王秀丽,高明伟,王家宝,张超,王永翠,郑锦秀,赵军胜. 江苏农业科学, 2019(18)