平面几何教学中习题的深度与要求

平面几何教学中习题的深度与要求

一、試談平面几何教学中习題的深度与要求(论文文献综述)

西峰山[1](2015)在《平面几何教学研究之研究 ——以《数学通报》(1951~1966)为例》文中研究指明本研究主要利用文献研究法、历史研究法、比较研究法等研究方法,依据教学论和课程论,把教学活动分成“教”和“学”两个维度,从每个维度的各个环节(即前期准备、内容分析、方法的选择、遵循的原则、计划与实施、评价与反思)对《数学通报》中的有关平面几何教学的文章进行统计分析,揭示我国建国初期15年间的平面几何教学特点及发展脉络。具体研究的过程中,首先,根据当时的历史背景和《数学通报》中文章的体现将该时期分为三个阶段,即1951—1957,学习苏联时期;1958—1960,教育改革时期;1961—1966,自我完善时期。其次,对每一阶段从背景的概述、平面几何教学文章的总体特点及趋势和平面几何教学的特点及发展脉络等三个层次对其进行统计分析。背景概述主要对该阶段的数学教育政策和当时的教学大纲两个方面进行概述;平面几何教学文章的总体特点及趋势对该阶段发表的平面几何文章在总体文章中所占比重和对它的变化趋势进行统计分析;平面几何教学的特点及发展脉络先从教学的六个环节对这些文章进行进一步分块统计,再对每一块(环节)所包含的内容进行深入分析(先对每环节进行类化,再深入探究)。通过上述研究得到建国初期平面几何教学的如下特点:1.教学准备:备学生方面,了解学生认知发展水平并注意个体差异;备教材方面,选材注重数学在历史上的贡献;教师能力方面,主要是注重教育实习。当时为了提高备课质量,还注意到了集体备课方面的问题。2.教学内容分析:学习苏联时期受到苏联的影响,教材的选择和编排非常重视系统性和严密性;教学改革时期更注重与实际的结合;自我完善时期,意识到改革的极端性,教学内容方面在不损坏内容系统性的和适当联系实际的基础上,以学生为核心对教材进行筛选和精简。3.教学方法选择:当时常用的教学方法有直观教学演示法、练习法、讲授法、谈话法、启发式教学法、因材施教等。练习法中有案例分析法和复习法;而案例分析法可分为定理的证明方法、典型案例的分析和实际问题解决法等三种。4.教学原则:当时遵循的教学原则有理论联系实际的原则、系统性原则、顺序渐进原则、量力性原则、巩固性原则、思想性原则、直观性原则和启发式原则等。培养学生能力时初级阶段遵循直观性原则,有一定知识储备能力时再以启发式原则为主,并且教学过程中注意对这些知识与方法的即时巩固与练习,因此要用巩固性原则。5.教学设计与实施:教学的目的从“社会本位”转向“个人本位”和“社会本位”相结合的理念。1963年第一次通过大纲提出“三大能力”的培养。教材的编排方面:学习苏联时期主要侧重知识间的系统性和逻辑性;教育改革时期主要根据生产实际的需要;自我完善时期主要围绕学生的特点和发展进行编排。6.教学评价与反思:当时数学教育者们已经开始关注教学评价与反思,并组织发表了一些很有参考价值的文章。通过分析《通报》上的文章可以了解到:当时已经关注到了教学的每个环节,即教前反思、教学内容的反思、有教学过程的反思(方法、设计、原则)等。

张彩云[2](2019)在《中国中学几何作图教科书发展史(1902-1949)》文中指出正如柏拉图所言,数学是从现实世界到理念世界的桥梁,图是用思维把握客观世界的空间形式和数量关系的工具。造型艺术中的设计图、各种工程中的设计图和数学中的图或图像,无论是简单还是复杂,其出发点都是作图,这就决定了几何作图的极端重要性。作图是一种掌握技能、养成习惯、锻炼思维和培养能力的过程。自1607年欧几里得的《几何原本》被译介到中国以来,逐渐地改变了中国的数学教育,中国人对几何作图有了崭新的认识。尤其在清末民国时期,几何作图已成为中小学数学教育乃至美术教育的核心内容之一。本研究以1902-1949年中国中学几何作图教科书及几何教科书中的作图为研究对象,以数学教育史为背景和视角,以文献研究法、历史研究法、分析法、比较研究法等为主要研究方法,将中国中学几何作图教科书在1902-1949年的近半个世纪的发展历程依照国家政体的变革、教育史上的大事件及其自身的发展趋势,分为清末时期(1902-1911)、民国初期(1912-1922)、民国中期(1923-1935)、民国后期(1936-1949),旨在全面、系统、深入地研究中国中学几何作图教科书在1902-1949年间的发展脉络,总结其发展特点,分析影响其发展的因素,力求为当今的几何教育及几何教科书的编写提供借鉴和启示。本研究从如下六个部分展开论述,各部分主要内容如下:一、清末时期(1902-1911)中学几何作图教科书。这一时期,学制初创,新式的学堂亟需与之相匹配的、合用的教科书,中国中学几何作图教科书的种类有引进、翻译、编译、自编四种形式,出版发行的总数超过20种,涉及的出版机构有13家,编撰者有20多位,在今日看来,可谓“百花齐放”。这些教科书风格迥异地表现出两种派系的各自风貌,国人自编本和非自编本透露出不同文化的差异性,即使是来自不同国家的非自编本之间也有明显的不同。所以,该时期从自编本和非自编本中选取了由孙钺自编的《最新中学教科书用器画》,闫永辉编译自日本的《新式中学用器画》,张廷金、余亮翻译自英国的《中学应用几何画教科书》为例,从教科书编撰理念、编排形式、内容结构、名词术语等维度进行了分析。二、民国初期(1912-1922)中学几何作图教科书。这一时期政体发生了变革,教育制度开始影响几何作图教科书的发展,继清末之后进入稳步发展阶段,虽然数量上有所减少,但质量更胜一筹。几何作图教科书在进入课堂以后经历实践的考验和淘汰,基本实现了从清末引进、翻译、编译到自编的嬗变。自编教科书的编撰能从本国国情出发,实事求是,在进入课堂后更深入人心,促进了几何作图的教学,也实现了其创新发展。本章在阐述教育制度及教科书编审制度的基础上,对这一时期出版的,在当时影响较大、再版次数较多、使用周期较长、著名出版社出版的,由黄元吉编撰的《共和国教科书用器画》、王雅南编撰的《新制用器画》、求是学社编撰的《新撰平面几何画法》进行了多个维度的考察。三、民国中期(1923-1935)中学几何作图教科书。1922年的“新学制”颁布后,随之新的教育规章制度出炉,在1923颁布的《中学算学课程纲要》中出现了几何作图教学的具体要求,1929颁布的《中学算学暂行课程标准》亦然,1932年颁布的《中学算学课程标准》中更有“在教授图形相关性质时与图画科联络或宜与用器画取得联系”、“几何作图题,要用器画好,力求整洁”等明确的规定,这在一定程度上对几何作图教科书的编撰、出版产生了影响,促进了中学几何作图教科书的繁荣发展。该部分在阐述课程标准及教科书编审制度的基础上,对这一时期出版的,在当时使用周期较长、影响较大、特色鲜明的,由冯编撰的《应用用器画教科书》、王济仁编撰的《平面立体几何画法》、薛德炯编译的《用器画法平面几何之部》和《用器画法立体几何之部》进行了详细的分析。四、民国后期(1936-1949)中学几何作图教科书。在1936-1949年间又进行了三次数学课程标准的修订,其中对几何作图的要求更详细、更具体。1937年抗战的爆发使得国民政府借机成立了“七联社”及后来的“十一联社”,结束了清末以来40多年教科书市场自由竞争的局面,实现了教科书的国定制,产生了国定本教科书。这对此时期的几何作图教科书产生了非常大的影响,导致仅有商务印书馆一家出版了几何作图教科书,还是针对职业学校编撰的。故此,该部分在概述当时社会背景和数学课程标准中几何作图的相关要求的基础上,对这一时期使用和出版的,由朱铣、徐刚合编的《平面几何画法》、《立体投影画法》、《简易透视画法》和王品端编撰的《平面几何画法》、《投影画法》进行了考察。五、1902-1949年中国中学几何教科书中的作图。该部分又分为两方面进行考察:一是几何教科书中的作图,分初中和高中;二是几何教科书外的作图研究,首先对该时期期刊论文中几何作图研究进行整体梳理,然后以著名数学教育家傅种孙为代表对其几何作图思想进行了个案分析。以期从侧面揭示影响几何作图教科书发展的因素。六、结论。首先,从宏观和微观上归纳了1902-1949年中国中学几何作图教科书发展过程中表现出的诸多特点;其次,分析了影响1902-1949年中国中学几何作图教科书建设和发展的因素;再次,提炼了1902-1949年中国中学几何作图教科书发展史研究的启示与借鉴;最后,提出了继本研究之后,可以进一步研究的问题。本研究主要解决了如下三个问题:第一,以1902-1949年为时间域,探讨了中国中学几何作图教科书的发展历程。第二,根据各学制、课程标准(或课程纲要)及教科书审定制度的颁布和实施,对几何作图教科书的编写背景、编撰理念、编写体例、编排形式、内容结构、名词术语、几何作图典型案例等方面逐一进行考察,总结了中国中学几何作图教科书在这一时期呈现出的宏观和微观特点。第三,考察了1902-1949年中国中学几何教科书中的作图内容,从侧面揭示了影响1902-1949年中国中学几何作图教科书发展的因素。

胡晋宾[3](2015)在《基于数学课程知识观的高中数学教科书编写策略研究》文中进行了进一步梳理对于学校教育来说,知识毫无疑问是课程和教学的核心。而从历史上来看,知识观决定着课程观和教学观,有什么样的知识观,就会有什么样的课程设计和教学实施。每一次课程改革都是在特定的知识观影响下展开的,知识观是历次课程改革的分歧焦点。对于课程物化载体的教科书来说,它的编写也是知识观指导下的创作活动。基于当下的高中数学课改现实,研究教科书编写策略既有理论意义也有实践意义。从数学哲学、心理学和教育学这样3个视角来透视知识观发现:数学哲学视角的知识观强调对宏观的数学知识发生、确证、发展、结构、属性、应用等方面的反思和追问,心理学视角的知识观强调对微观的认知过程与机制、知识分类与传递等方面的解析和实证,教育学视角的知识观强调对学校中的数学知识的价值、筛选、组织、传递、教授、习得等方面的关切和侧重。数学知识观是隐藏在数学课程观和数学教学观背后的前提性根源,有什么样的数学知识观,就有什么样的数学课程观、数学教学观和数学学习观。在数学教育领域,数学观和数学知识观不是一个概念,但是经常被混淆着使用。本文认为,前者是有关数学发展的“世界观”,使用场合主要是数学研究,隶属于“数学哲学”;后者是关照数学教育的“知识观”,使用场合主要是数学教育,隶属于“数学教育哲学”。如果把数学教育当作基于数学知识的教育,并从知识的角度来考察和反思数学教育的话,那么形成的关于数学知识的看法就是数学知识观。而数学课程知识观是数学知识观的一个子集,就是指关于数学课程知识的观念,它是立足数学课程、关照数学课程、服务数学课程的一种数学知识观。数学教科书中体现的数学课程知识不同于数学科学知识,不同于生活数学知识,而是学校教育中的数学知识。同时,它是以客观的、共同的数学科学知识为基础,整合了同龄人中的生活情境、个人知识中的共性成分以及其他学科知识(如物理、化学等)等知识形态,揉进了教学法加工和编辑技术等元素,预设教学方式并以纸质文本呈现出来的整合知识。数学教科书知识的特点是,它假借以静态陈述的数学知识为躯壳,负载了教育理念的课程价值,预设有知识获得的教学方式。借鉴有关知识观的理论框架研究,我们赋予数学学科含义,认为数学课程知识观有3个维度,即数学知识本质观、数学知识价值观和数学知识获得观。理想的数学课程知识观理论图景是:数学知识本质是一种模式化的思维创造,数学知识价值是一种辩证性的复杂谱系,数学知识获得是一种参与式的社会建构。特别地,我们指出,应该强调借助数学教科书的编写去引导师生形成全面的、辩证的、现代的数学知识观。基于上述三维框架,对历史上数学教科书中隐匿的数学知识观进行了考察,对现实中教科书作者和数学教师的数学课程知识观以及数学教科书编写策略认同进行了问卷调查和相关分析。无论是从历史上6个版本教科书的文本考察来看,还是从现实中26名中学数学教科书作者和515名数学教师的问卷调查来看,知识观都影响了教科书编写策略;反过来,教科书编写策略中预设了不同的知识本质、知识价值和知识获得观念,从而又导致教学中不同数学知识观的形成。它们之间的关系,是统一的、辩证的。对于教科书作者来说,不同知识观导致了编写策略的不同认同,这种认同直接影响了编写策略,从而导致不同的教科书编写方式,间接影响了使用教科书的广大师生的数学知识观。正因为编写策略导致不同的教科书编写方案,因此优质的教科书编写应该寻求或者采用先进的数学课程知识观来做为指导。数学教科书编写是教科书作者在数学课程知识观显性或者隐性影响下的创造性活动,有什么样的数学课程知识观,就有什么样的高中数学教科书编写策略认同——持有传统的、机械的、静态的数学课程知识观,认同传统的、机械的、静态的高中数学教科书编写策略(大致强调知识、结果、显性、学科、传授、内部等);持有现代的、辩证的、动态的数学课程知识观,认同现代的、辩证的、动态的高中数学教科书编写策略(大致强调文化、过程、隐性、活动、建构、外部等)。基于数学课程知识观理论图景,对高中数学教科书编写策略进行了理论建构,并以3个课时的内容进行了微型实证和验证反思。首先,本文认为基于数学课程知识观视角的高中数学教科书编写策略的指导思想有3个,即:数学教科书应该具有学科性,数学教科书应该具有教学性,数学教科书应该具有人文性。其次,在此基础上我们提出如下6条具体的编写设想。第一条,经历数学化:衔接知识的过程与结果样态。第二条,揭示潜隐性.:兼顾知识的外显和内敛价值。第三条,渗透心理化:整合知识的逻辑和心理顺序。第四条,创设关联性:搭建知识的内部和外部链接。第五条,彰显主体性.:协调知识的科学和人文特质。第六条,体现交互性:铺设知识的传授和建构渠道。对于我国实际来说,数学教科书编写以前主要是国家行为,受到传统的教育理念的深刻影响;现在教科书多元化以后,编写策略是教科书建设的一个重要研究课题。因此,我们主张高中数学教科书在编写的时候,立足于数学知识的结果、显性、逻辑、内部、传授维度的基础上,尤其要注意数学知识的过程、隐性、心理、外部和建构维度,把它们辩证地平衡起来,防止矫枉过正的简单化和一分为二的片面性,从而实现数学知识的最大教育价值和最佳育人效果。

李区婷[4](2020)在《应用动态数学技术解决初中平面几何开放题的教学研究》文中指出我国教育部《教育信息化2.0行动计划》指出,信息技术应深度融入学科教学,并创新教学模式,提升学科教学有效性。我国《义务教育数学课程标准(2011年版)》特别强调:鼓励教师和学生使用现代技术手段处理繁杂的计算、解决实际问题,以取得更多的时间和精力去探索和发现数学的规律,培养创新精神和实践能力。数学开放题教学有助于落实《义务教育数学课程标准(2011年版)》倡导的“四能”和创新精神的培养。平面几何开放题是培养学生直观感知、直观想象、抽象思维和逻辑推理等核心素养的重要载体。但因为这些开放题具有条件的开放性、方法的多样性、结论的可变性等特点,即使学生深度参与观察、试验、猜测、类比和归纳等数学活动,也不一定顺利解答。如何提效平面几何开放题教学,仍然是数学教育研究的话题。Hawgent皓骏动态数学技术具有操作对象数学化、数学对象动态化、数学思维可视化等功能,将该技术融入平面几何开放题教学中,也许能有效改善平面几何开放题教学。本研究尝试以波利亚数学解题理论和数学多元表征学习理论为指导,探讨应用皓骏动态数学技术解决平面几何开放题的教学研究,主要包括理论研究和实践研究两个方面。在理论方面,通过文献梳理和归纳总结相结合的方法,首先,概述了平面几何、数学开放题、动态数学技术等研究的基本情况,提出研究的基本问题。然后,概述波利亚数学解题理论、数学多元表征学习理论的基本观点;最后,提出应用动态数学技术解决平面几何开放题的教学策略:表征多元信息、凸显关键信息、探索多元途径、动态变式问题,对每一个策略进行详细的解释,并提供相应的应用案例说明。在实践研究方面,通过教学实验、课例研究和调查访谈相结合的方法,以三角形线段的和差倍关系的开放题为例进行教学实践,探讨如上策略对学生学习过程与结果的影响。研究结果表明:应用动态数学技术解决平面几何开放题的教学策略对学生平面几何的学习有促进作用。具体表现在:实验班学生的数学学习成绩、学习效率显著高于对照班;实验班学生的认知负荷明显低于对照班的学生;与对照班相比,实验班学生的课堂参与度、数学理解能力、问题解决能力、积极情意的投入度等都有所提高。

张冬莉[5](2020)在《中国数学教科书中勾股定理内容设置变迁研究(1902-1949)》文中认为正如约翰尼斯·开普勒(Johannes Kepler)所言:“几何学有两件伟大的瑰宝:第一件是毕达哥拉斯定理,第二件是黄金分割。”勾股定理作为平面几何中最基础的定理,它是联系数学中数与形的第一定理,导致不可公度量的发现,揭示了无理数与有理数的区别,引发了第一次数学危机。勾股定理开始把数学由计算与测量的技术转变为论证与推理的科学。千百年来人们给出勾股定理的证明至今已有五百多种,是证明方法最多的一个定理,其中蕴含了大量丰富的数学思想和技巧。自徐光启翻译欧几里得的《几何原本》以来,中国不仅对古希腊算学史有了新的认识,又更深层次地了解勾股定理在中西文化中的价值。尤其在清末民国时期,勾股定理已成为中学数学教育的核心内容之一。本研究以1902-1949年中国中学数学教科书的勾股定理内容为研究对象,以文献研究法、历史研究法、个案分析法、比较研究法等为主要研究方法,将中国中学数学教科书在1902-1949年的发展历程依照学制和课程标准的颁布,分为清末时期(1902-1911)、民国初期(1912-1922)、民国课程纲要时期(1923-1928)、民国课程标准时期(1929-1949)四个发展阶段,旨在全面、系统、深入地研究勾股定理在中国中学数学教科书中的发展特点,分析影响及其变迁的因素,力求为当今的中学数学教科书中勾股定理的编写提供借鉴和启示。本研究从如下五个部分论述,具体内容如下:一、清末时期(1902-1911)中学几何教科书的勾股定理。这一时期,学制初订,中国的中学数学教育主要以学习日本数学教育为主,几何教科书的编写主要是翻译和编译日本以及一些欧美国家的几何教科书。首先从纵向上分析在这十年中几何教科书中勾股定理内容的证明方法以及定理表述上的变迁特点;其次横向的分别选取翻译日本和美国的几何教科书进行个案分析,从教科书编撰理念、编排形式、内容设置结构等维度进行了对比分析,以便从微观上详细了解这一时期数学教科书中勾股定理的变迁特点及教育价值。二、民国初期(1912-1922)中学几何教科书的勾股定理。这一时期中国的传统教育思想理念、制度模式和知识体系在西方文明的冲击下开始了艰难的转型,同时也影响几何教科书的发展。民国初期的教育继承了清末教育改革的成果,中学数学教科书的发展也日新月异。此时,自编教科书也在逐步成熟。这一时期,虽然中国自编几何教科书,通常是参考欧美教科书并加以适当筛选和增删,但是知识内容的组织与呈现,都有了显著的改进。但是其中勾股定理内容的编排上特点并不明显,还没有彻底摆脱之前教科书中的内容和形式,仍然有清末时期几何教科书的痕迹。分别选取该时期具有代表性的教科书《共和国教科书平面几何》、《民国新教科书几何学》以及汉译本《温德华士几何学》中勾股定理内容的编排设置进行详细对比分析。三、民国课程纲要时期(1923-1928)中学数学教科书的勾股定理。1922年的“新学制”颁布后,中小学实行六三三制。无论是教学方法还是教科书的编写,都在不同程度上有所变革,凸显着美国数学教育的影响。中学教科书把代数、几何、算术和三角等内容融合在一起混合教学,将原来的几何教科书架构完全打破。中国首次采用混合编写教科书的方法,不仅能使学生明白各科之间的内在联络,而且可以建构知识的统一体系。也正是在混合教学的风靡下,勾股定理内容的编排也因此受到极大的影响,无论是在章节的设置上,还是定理证明的方法、课后习题的设置上都与以往不同。故分别选取该时期具有重要研究价值的数学教科书《布利氏新式算学教科书》、《初级混合数学》、《新学制混合算学教科书》和《现代初中教科书几何》中勾股定理内容的编排设置内容特点进行详细对比分析。四、民国课程标准时期(1929-1949)中学数学教科书的勾股定理。在此阶段我国又进行了三次数学课程标准的修订,这一时期颁布的初中和高中课程标准中都要求学习平面几何。勾股定理内容则分别出现在初中和高中教科书中,但是由于对定理掌握的目标要求不同,故所在章节不同,导致使用的证明方法、表述方法和难易程度也不同。另外1932年首次设置了实验几何课程,明确实验几何教学的目标和要求,无论是在理解几何还是实验几何中都编排了勾股定理内容。虽然重视程度和教学目标都不同,但是分别从代数和几何的角度体现了勾股定理的重要性以及在教科书中有重要的地位。故选取《复兴中学教科书》和《实验几何教科书》中勾股定理内容编排进行详细分析。在该部分中,又将1912-1949年间中学数学教科书中勾股定理内容编排变迁进行了特点分析。五、以上研究中,在简要呈现各阶段的历史文化背景的同时,适当地介绍了代表性教科书作者的生平及数学教育贡献。六、结论。首先,从宏观和微观上归纳1902-1949年中国中学数学教科书中勾股定理编排特点;其次,分析了影响1902-1949年中国中学数学教科书勾股定理编排变迁的因素;再次,阐明了1902-1949年中国中学数学教科书勾股定理证明方法编排变迁的特点;最后,总结了勾股定理的编排变迁为当今数学教科书编写提供的启示与借鉴。综上所述,本研究主要以1902-1949年为时间域,研究了中国中学数学教科书中勾股定理的编排之变迁。根据各学制、课程标准(或课程纲要)对中学数学教科书的编写背景、编撰理念的要求不同,选取各阶段具有代表性的教科书中勾股定理的编排形式、证明方法等方面进行个案分析,总结了勾股定理内容编排之特点。厘清了1902-1949年中国中学数学教科书中的勾股定理内容的编排,揭示了勾股定理编排的变迁特点和影响变迁的因素,展示了清末民国时期中学勾股定理内容的设置、编排、内容选取等诸特点对当今教科书建议和教学改革的借鉴作用。

王娟[6](2020)在《建国以来我国高中数学课程中几何内容设置的变迁研究 ——基于教学大纲与课程标准的视角》文中认为建国以来,我国高中数学课程改革已走过了七十年的历史,在此过程中,共计颁布了1部精简纲要、1部标准草案、12部教学大纲及2部课程标准,其中几何课程的发展一直是国际数学课程改革的重点关注对象,虽然在我国针对几何的研究较多,但是专门针对于几何内容在课程改革过程中变迁情况的研究却极少,且在已有研究中对于几何内容及其设置的变迁情况研究的系统性及研究深度还远远不够,这种在研究方式及研究内容上的缺憾容易导致对已有经验的忽视与已有问题的轻视;此外,随着高中数学课程改革的逐渐深入,数学核心素养成为高中数学课程的主要培养目标,而几何内容相应的成为发展学生直观想象、逻辑推理、数学运算、数学抽象、数学建模等数学核心素养的重要载体。因此,为课程改革不断发展的需要及发展学生数学学科核心素养的诉求,对建国以来我国高中数学课程中几何内容设置的变迁情况进行深入的研究,可以以史为鉴,从几何课程发展的历史过程中总结经验。高中数学教学大纲与课程标准是数学学科内容在高中教育教学中具体落实的顶层设计,本研究主要从教学大纲与课程标准的视角,来分析建国以来我国高中数学课程中几何内容设置的变迁情况,具体包括以下几个问题:(1)建国以来我国高中数学教学大纲与课程标准中几何内容在理念目标、内容结构、内容要求、内容难度及课程实施建议等维度的设置上发生的变迁及其特点有哪些?(2)影响我国高中数学课程中几何内容设置发生变迁的主要因素有哪些?(3)建国以来我国高中数学课程中几何内容设置的变迁对我国高中数学几何课程改革的启示有哪些?本研究主要运用历史文献法、比较研究法、计量分析法等研究方法,对建国以来我国国家教育部颁布的普通高中数学教学大纲与课程标准中几何内容的理念目标、内容结构、内容要求、内容难度及课程实施建议等方面进行比较分析,从而得出几何内容在各个维度上设置的变迁特点。由高中数学教学大纲与课程标准中几何内容设置的变迁特点,总结出建国以来我国高中数学课程中几何内容设置的总体变迁特点:(1)高中数学课程理念与目标的发展与完善,逐渐增强了高中数学课程顶层定位与几何具体培养目标的贯通与落实;(2)内容结构从纵向与横向发生了由量到质的转变与突破,形成了较为成熟的高中几何内容结构体系;(3)高中数学课程中几何部分在内容要求上经历了“知识掌握→知识应用→知识创新”的发展过程,促进了个性化几何课程内容体系的构成与发展;(4)几何内容广度、深度及难度的变迁趋势,逐渐体现出新时代我国高中数学课程培养学生数学学科核心素养的夙愿与追求;(5)紧扣时代发展脉搏,高中几何课程的实施理念转向以人为本的教学观与以发展为目的的评价观。基于高中数学课程中几何内容设置的变迁特点及影响因素分析,从促进我国高中数学几何课程改革与发展的视角,得出几点启示:(1)我国高中数学几何课程的改革与发展总体上应处理好本土化与国际化、传承与变迁、统一性与多样性的关系;(2)我国高中数学几何课程内容的宏观安排,应与学科知识结构的发展规律、学生的实际需求及教师的教学能力相适应;(3)我国高中数学几何课程内容的微观要求,应以发展学生的数学学科核心素养为导向;(4)我国高中数学几何课程的实施,应逐步升级与践行以人为本的教学观与以发展为目的的评价观;(5)应建立健全课程标准的实施指导与监测制度,促进我国高中数学几何课程的有效实施。

张先波[7](2019)在《中学数学思想的培养研究 ——基于深度教学的视角》文中进行了进一步梳理从原始的结绳记事,到对于数与形的重视;从楔形文字、象形文字的表达,到初等数学符号的出现;从面向生活实践的零散数学规律,到系统性的数学学科体系。数学这门古老的学科,在迈过其漫长的发展历史之后,在学校教学的过程中继续生根发芽。作为学校教育中的一门基础性学科,数学不仅致力于传递古今中外的数学知识和定律,更重要的是在与学校生活中其他学科的交融过程中,使学生通过知识的学习,领会数学思想,感悟数学之美。曾有学者指出,数学是关于美的学科,数学是关于艺术的学科,数学是不断反思发展的学科。数学之美,体现在其数字的变幻之美,体现在数学公式的平衡之美,体现在数学发现的探索之美,同时也蕴含在学生学习数学过程中所体会到的获得之美。数学同时还是关于思想的学科,历代数学家根据自己对相关数学领域的研究,不断充实数学思想库,在传承与创新的过程中实现数学学科的不断发展。关于数学是一门艺术还是一门科学性学科的争论至今仍然存在,数学是一门艺术体现在数学通过艺术化的语言、简练的公式表达,使得数学思想得以发展,数学学科也称为学科发展史上的一朵奇葩。数学是一门科学,数学的语言及表达要求精确而凝练地指出相应的意图,要求数学学习者和研究者对于相应数学思想的深刻化理解,并在此基础上做到运用时的精准化。数学同时是一门生活化的学科,原始的数学便发端于人们对于生活问题的解决过程。如古埃及数学文明的发展,便是由于尼罗河三角洲的河道淤积以及洪水泛滥等问题,迫使数学家开始研究淤积的面积,并提供相应的预测。数学的发展往往受到社会经济发展的影响,数学发展的每一个重要阶段必然伴随着社会发展的需要,并且也在顺应社会的需求。这一点在近现代数学发展史中得到了印证,尤其是在现代社会中数学与信息技术的融合,以及基础数学研究的日益专门化和数学教育的大众化等趋势,均是数学与社会经济发展相适应的表现。无论是古典时期阿基米德的几何《原本》,还是现代数学家所取得的重要成就和关键突破,均为数学的发展画上了浓墨重彩的一笔。当前数学的发展,除了需要数学家和相关研究者持续不断的努力,同时需要学校教育培养出对数学感兴趣、能够领悟数学之美的人才。学校教育的产生,在人类历史上无疑是具有划时代意义的事件,它使得人类文明的传承有了相对规范化和制度化的途径。学校教育的产生以及与之相伴随的学科教育的发展,使得人类发展史上的重要成果能够分门别类的进行传递和发展。正如学者所言,我们的数学教育并非是使每个孩子的都成为数学家,而是要在他们心中埋下数学的种子,使他们感悟和理解数学之美。学科教学的过程,不应当只是知识的传递过程,更重要的是学科教学应该成为思想领悟的过程,成为数学知识向数学思想跨越的过程。数学知识的学习是数学思想领悟与获得的基础,是数学深度学习达成的必要前提。基于深度教学的视角探讨中学数学思想的培养过程意味着,从知识观、学习观和教学观等方面进行中学主要数学思想进行培养。从深度教学的视角而言,知识的结构分为符号表征、逻辑结构和意义系统三个层次。数学知识教学过程中,应当是超越知识的符号性教学和表层化教学,进而深入到知识的内部结构之中,使学生在领悟数学学科知识的结构的基础之上,获得数学思想的熏陶。从数学知识到数学思想,不仅是数学教学的飞跃式发展,同时也是教学走向深度的必然要求。当前对于学生关键能力和核心素养培养的重视,最终需要回归到各个学科教学的过程中来,通过学科教学逐步渗透相应的学科思想,培养学生优秀的学科思维,进而促使学科能力和学科素养的提升。尤其是对于中学数学教学而言,中学处于义务教育阶段是学生相应学科思想学习的黄金时期,这一阶段的数学思想学习尤其需要引起教师和学生的重视,课堂教学应当以学科思想,即重要的数学思想为线索,将数学知识串点成线成面。学生的数学学习过程,经由学科思想的浸润,通常能够加深对于数学学科的认识,加深对数学知识的理解以及促进其对于学科结构的把握。因而,数学思想的教学之于数学教学过程而言至关重要,从数学知识到数学思想的跨越是当前课堂教学应当关注的重点。同时,如何在中学教学过程中培养学生的数学思想以及数学思维品质,也是一线教师及研究者应关注的的问题之一。

秦小双[8](2019)在《初中生尺规作图能力水平划分及提升研究》文中进行了进一步梳理尺规作图对培养学生的数学表达能力、锻炼学生的逻辑思维能力有着重要作用.本研究主要采用定性研究方法,旨在对初三学生的尺规作图能力进行定性分析,探究其尺规作图存在的问题,并提出相应的教学建议.通过对文献的查阅建立了尺规作图能力水平划分框架,并制定了相应测试卷进行验证和探究;通过“出声思考法”探究了学生进行尺规作图时的思维;通过对4位初中生的个案研究,探究学生进行尺规作图时存在的问题,并对此提出教学建议.本研究的结论是:(1)提出了从操作、描述、分析三个维度来评价学生尺规作图能力的框架,每个维度各含三个水平.经测试,该框架具有实用性;(2)影响学生尺规作图的内因分为非智力因素(审题、解题习惯、学习兴趣)和智力因素(知识的储备和运用)两方面;(3)根据测试结果提出四点教学建议:注重本质教学、注重逻辑教学、注重串联教学、注重分层教学.

王雪[9](2020)在《提高初中生几何思维水平的策略研究》文中指出初中阶段是学生几何思维发展的关键时期,了解该阶段学生的几何思维特征、进行正确的引导对提高学生的几何思维能力以及培养学生的数学核心素养有着重要意义。研究旨在了解七年级学生的几何思维水平现状,分析影响学生思维水平发展的相关因素,提出有效提高初中生几何思维水平的教学策略。研究以范希尔理论为基础,对相关文献进行梳理,以针对七年级学生设计的范希尔几何思维水平测试卷作为研究工具,抽取天津地区市、郊区各一所中学的七年级四个班级的323名学生作为研究对象进行测试,通过SPSS数据分析软件对收集的测试数据进行分析,通过对学生和教师的访谈对影响学生几何思维水平的因素进行定性分析。通过调查统计,得出在以范希尔理论对几何思维的水平划分作为评判标准的前提下,有5.3%的学生的几何思维仍停留在水平一;处于水平二的学生有68.4%;处于水平三的学生占25%;仅有1.4%的学生达到了水平四,大部分七年级学生的几何思维都达到水平二,只有极少部分的学生还停留在水平一或已经发展到水平四;经相关影响因素分析得出,不同性别、年龄的七年级学生的几何思维水平不存在显著性差异;市区与郊区学校的学生的几何思维水平存在显著性差异,且市区学生的几何思维水平高于郊区学生;根据调查结果分析得出,学生的空间想象能力越强、自我提高内驱力越高,学生的学习效果越好;教师的几何能力与素养越高,课堂效果越好。

王瑞芳[10](2019)在《初中平面几何作图研究发展史(1949-2012) ——基于《数学通报》文献分析》文中研究指明在平面几何学习中,作为几何学根基的作图一直处于核心地位,这不仅因为作图是平面几何学习过程中必须掌握的一项基本技能,也是锻炼学生逻辑思维、养成学生良好学习习惯、培养学生问题解决能力的重要手段。而初中生正处于从形象思维向抽象思维的过渡阶段,同时也是严谨逻辑思维的形成阶段。因此无论是从初中生对作图基本技能的掌握,还是为后续数学学习和思维发展角度出发,探寻初中平面几何作图研究一方面能够丰富几何教育史的研究,为今后中国数学课程改革及数学教科书的编写提供借鉴,另一方面能为几何课堂教学提供积极的指导作用,有利于数学教师的专业发展。1949年新中国成立初期,学校数学教育处于转型阶段,随着八次基础教育课程改革以及计算机等信息技术的逐渐融入,学校教育中的作图以及对其进行的研究已逐渐形成了自己的发展特色。随着八次基础教育课程改革,数学教学大纲(或课程标准)提出的作图要求无论是在作图设备还是具体学习要求都在逐渐降低,随之对作图的研究亦减少。基于以上背景,本研究依据初中数学教学大纲(或课程标准)中的作图要求,以发表在《数学通报》和《中学数学》的作图研究文章为主要研究素材,将1949-2012年的发展历程分为1949-1957年、1958-1966年、1978-1985年、1986-2000年以及2001-2012年(其中文化大革命期间的十年不做研究)五个时期,采用文献研究法、历史研究法、统计分析法和比较研究法,分别从作图理论、作图解决问题、单具作图、作图与代数间联系、作图教学、作图争论及作图谬误性问题七个方面进行研究,并结合具体作图实例做进一步阐释,以期清晰地再现1949—2012年间初中平面几何作图研究的发展历程。本研究得到如下发展特点:(1)在初中平面几何的学习过程中,作图的范围及难度逐渐缩小,许多作图要求被放宽甚至淡出人们的视野;(2)作图研究背景逐渐趋向多元化;(3)作图题的解题程序虽在弱化,但逐渐重视挖掘作图过程中蕴含的思维方法。本研究总结结论如下:(1)初中平面几何作图研究队伍不断壮大,一线教师在作图研究中的参与度逐渐增强。(2)作图研究文章的重心逐渐发生变化,1949-1960年间侧重于对作图理论的介绍,1960-1966年对之前数学教育进行调整,以作图教学为主,1978-1985年虽然作图教学研究仍然占据研究主流,但此时更侧重于作图基础的教学;1986-2000年间作图教学及作图解决问题成为研究主流;而信息技术的融入,使得2001-2012年间作图研究的重心开始转向研究初中数学课堂中使用计算机等进行作图的理论研究。(3)虽然在1949-2012年间都比较重视对作图理论方面的研究,但研究重心各有不同。1949-1957年间侧重于翻译和引进,1958-1966年以及1978-1985年间更侧重于作图教学建议以及教学经验,1986年之后作图理论的研究重心转向作图的变式教学以及几何画板在数学课堂的融入。

二、試談平面几何教学中习題的深度与要求(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、試談平面几何教学中习題的深度与要求(论文提纲范文)

(1)平面几何教学研究之研究 ——以《数学通报》(1951~1966)为例(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 问题的提出
    1.2 研究目的和意义
    1.3 国内研究现状
    1.4 研究方法
        1.4.1 文献研究法
        1.4.2 历史研究法
        1.4.3 比较研究法
    1.5 创新之处
第2章 平面几何教学相关理论概述
    2.1 关于“教”的理论基础
        2.1.1 教的准备
        2.1.2 教的内容分析
        2.1.3 教学方法选择
        2.1.4 教学原则
        2.1.5 教学设计与实施
        2.1.6 教的评价与反思
    2.2 关于“学”的理论基础
        2.2.1 学的准备
        2.2.2 训练内容分析
        2.2.3 学习方法选择
        2.2.4 学习策略
        2.2.5 学习计划与实施
        2.2.6 学习评价与反思
    2.3 平面几何教学概述
        2.3.1 平面几何教学基本概念
        2.3.2 平面几何教学特点
第3章 学习苏联时期《数学通报》中关于平面几何教学研究
    3.1 背景的概述
    3.2 平面几何教学文章的总体特点及趋势
    3.3 平面几何教学的特点及发展脉络
        3.3.1 平面几何教学各个环节的统计分析
        3.3.2 平面几何教学的发展脉络
第4章 教育改革时期《数学通报》中关于平面几何教学研究
    4.1 背景概述
    4.2 平面几何教学文章的总体特点及趋势
    4.3 平面几何教学发展脉络及特点
        4.3.1 平面几何教学各个环节的统计分析
        4.3.2 平面几何教学的发展脉络
第5章 自我完善时期《数学通报》中关于平面几何教学研究
    5.1 背景概述
    5.2 平面几何教学文章的总体特点及趋势
    5.3 平面几何教学特点及发展脉络
        5.3.1 平面几何教学各个环节的统计分析
        5.3.2 平面几何教学的发展脉络
第6章 结论与建议
    6.1 结论
        6.1.1 历史背景
        6.1.2 平面几何教学文章
    6.2 教学启示
    6.3 进一步研究方向
参考文献
致谢

(2)中国中学几何作图教科书发展史(1902-1949)(论文提纲范文)

中文摘要
abstract
第1章 绪论
    1.1 研究缘由
    1.2 研究目的与意义
        1.2.1 研究目的
        1.2.2 研究意义
    1.3 研究范围及研究内容
        1.3.1 研究范围
        1.3.2 研究内容
    1.4 文献综述
        1.4.1 国内研究现状
        1.4.2 国外研究现状
    1.5 研究方法
    1.6 研究过程与思路
    1.7 创新之处
第2章 清末时期(1902-1911)中学几何作图教科书
    2.1 背景
    2.2 学制初定及教科书编写
        2.2.1 清末学制的初定
        2.2.2 教科书编写概况
    2.3 个案分析
        2.3.1 孙钺编《最新中学教科书·用器画》
        2.3.2 闫永辉编《新式中学用器画》
        2.3.3 张廷金、余亮译《中学应用几何画教科书》
        2.3.4 个案教科书内容分类量化比较分析
        2.3.5 个案教科书作图题比较分析
        2.3.6 个案教科书名词术语比较分析
    2.4 小结
第3章 民国初期(1912-1922)中学几何作图教科书
    3.1 背景
    3.2 教科书审定及编写
    3.3 个案分析
        3.3.1 黄元吉编《共和国教科书·用器画》
        3.3.2 王雅南编《新制用器画》
        3.3.3 求是学社编《新撰平面几何画法》
        3.3.4 个案教科书内容设置比较分析
        3.3.5 个案教科书作图题比较分析
        3.3.6 个案教科书名词术语比较分析
    3.4 小结
第4章 民国中期(1923-1935)中学几何作图教科书
    4.1 教育制度
        4.1.1 背景
        4.1.2 课程纲要中对作图的要求
    4.2 教科书审定及编写
    4.3 个案分析
        4.3.1 冯编《应用用器画教科书几何画》
        4.3.2 王济仁编《平面立体几何画法》
        4.3.3 薛德炯编《用器画法平面几何之部》、《用器画法立体几何之部》
        4.3.4 个案教科书内容设置比较分析
        4.3.5 个案教科书作图题比较分析
        4.3.6 个案教科书名词术语比较分析
    4.4 小结
第5章 民国后期(1936-1949)中学几何作图教科书
    5.1 教育制度
        5.1.1 背景
        5.1.2 课程标准中对作图的要求
    5.2 教科书审定及编写概况
    5.3 个案分析
        5.3.1 朱铣、徐刚编《平面几何画法》、《立体投影画法》、《简易透视画法》
        5.3.2 王品端编《平面几何画法》、《投影画法》
        5.3.3 个案教科书内容设置比较分析
        5.3.4 个案教科书作图题比较分析
        5.3.5 个案教科书名词术语比较分析
    5.4 小结
第6章 1902-1949年中国中学几何教科书中的作图
    6.1 初中几何教科书中的作图
        6.1.1 清末时期以《普通教育几何教科书·平面之部》为例
        6.1.2 民国初期以《共和国教科书·平面几何》为例
        6.1.3 民国中期以《现代初中教科书》为例
        6.1.4 民国后期以《实验几何学》为例
    6.2 高中几何教科书中的作图
        6.2.1 清末时期以《最新中学教科书几何学·立体部》为例
        6.2.2 民国初期以《共和国教科书·立体几何》为例
        6.2.3 民国中期以《新中学教科书高级几何学》为例
        6.2.4 民国后期以《复兴高级中学教科书立体几何学》为例
    6.3 几何作图研究
        6.3.1 期刊论文中的几何作图研究
        6.3.2 著名数学教育家几何作图思想—以傅种孙为例
    6.4 小结
第7章 结论
    7.1 1902-1949年中国中学几何作图教科书发展特点
        7.1.1 宏观特点
        7.1.2 微观特点
    7.2 影响几何作图教科书发展的因素
        7.2.1 政治、经济、文化的影响
        7.2.2 教育制度、课程标准、教科书审定制度的影响
        7.2.3 教科书编撰者群体的影响
    7.3 启示与借鉴
    7.4 进一步研究的问题
参考文献
附录1 个案几何作图教科书目次
附录2 个案中学几何教科书目次
致谢
攻读博士学位期间发表的学术论文目录

(3)基于数学课程知识观的高中数学教科书编写策略研究(论文提纲范文)

摘要
Abstract
第1章 缘起和目标:绪论
    1.1 研究缘起及问题
        1.1.1 研究缘起
        1.1.2 问题提出
    1.2 研究价值
        1.2.1 理论价值
        1.2.2 实践价值
    1.3 概念界定
        1.3.1 数学课程知识观
        1.3.2 高中数学教科书
        1.3.3 编写策略
    1.4 研究路径及方法
        1.4.1 研究路径
        1.4.2 研究方法
第2章 综述和评论:相关研究及其进展
    2.1 关于知识观及数学(知识)观的研究
        2.1.1 关于知识观的研究
        2.1.2 关于数学(知识)观的研究
    2.2 关于高中数学教科书编写策略的相关研究
        2.2.1 关于功能目标和编写原则的研究
        2.2.2 关于内容素材和组织呈现的研究
        2.2.3 关于语言图表和教材评价的研究
        2.2.4 关于编辑技术和其他学科的研究
    2.3 关于知识观、数学(知识)观和课程教材关系的研究
        2.3.1 课程和教材对数学(知识)观形成的影响
        2.3.2 课程和教材中的数学(知识)观前提及其体现
        2.3.3 利用课程和教材去培养数学(知识)观的建议
    2.4 本章小结
第3章 梳理和考察:多维视角的知识观审视及其对数学课程和教科书的影响
    3.1 知识与知识观
        3.1.1 知识
        3.1.2 知识观与认识论、知识论
    3.2 多维视角下的知识观审视
        3.2.1 数学哲学视角下的知识观
        3.2.2 心理学视角下的知识观
        3.2.3 教育学视角下的知识观
    3.3 知识观对数学课程和教科书编写的影响
        3.3.1 从数学哲学视角来看
        3.3.2 从心理学视角来看
        3.3.3 从教育学视角来看
    3.4 本章小结
第4章 厘清和界定:数学课程知识观涵义、图景及其观照下的高中数学教科书
    4.1 数学观与数学知识观辨析
        4.1.1 数学观是有关数学发展的“世界观”
        4.1.2 数学知识观是面向数学教育的知识观
    4.2 数学课程知识观的提出及其图景
        4.2.1 数学课程知识观的概念及其特点
        4.2.2 数学课程知识观是知识教育立场的价值综合
        4.2.3 数学课程知识观的理论图景概述
    4.3 数学课程知识观下的高中数学教科书编写透视
        4.3.1 基于数学课程知识观精选的学科知识
        4.3.2 作为编写策略加工过的课程知识
        4.3.3 借助教科书编写引导数学(知识)观发展
    4.4 本章小结
第5章 检视和辩驳:数学课程知识观及教科书编写策略的历史存在和现实认同
    5.1 中外教科书里隐匿的数学课程知识观
        5.1.1 以《几何原本》和《九章算术》为例:1949年以前的典型
        5.1.2 以SMP版和人教大纲版为例:1970年前后的典型
        5.1.3 以CPMP版和苏教课标版为例:2000年以来的典型
    5.2 数学课程知识观及高中数学教科书编写策略问卷设计
        5.2.1 理论维度设计
        5.2.2 项目鉴别度、信度和效度
    5.3 对中学数学教科书作者的调查
        5.3.1 教科书作者的数学课程知识观
        5.3.2 教科书作者的编写策略认同
        5.3.3 教科书作者的数学课程知识观和编写策略认同的相关研究
    5.4 对高中数学教师的调查
        5.4.1 高中数学教师的数学课程知识观
        5.4.2 高中数学教师的编写策略认同
        5.4.3 高中数学教师的数学课程知识观和编写策略认同的相关研究
    5.5 本章小结
第6章 反思和建构:数学课程知识观下的高中数学教科书编写策略设想
    6.1 数学课程知识观下高中数学教科书编写策略的指导思想
        6.1.1 数学教科书应该具有学科性
        6.1.2 数学教科书应该具有教学性
        6.1.3 数学教科书应该具有人文性
    6.2 数学课程知识观下高中数学教科书编写策略的具体设想
        6.2.1 经历数学化:衔接知识的结果与过程样态
        6.2.2 揭示潜隐性:兼顾知识的外显与内敛价值
        6.2.3 渗透心理化:整合知识的逻辑和心理顺序
        6.2.4 创设关联性:搭建知识的内部和外部链接
        6.2.5 彰显主体性:协调知识的科学和人文特质
        6.2.6 体现交互性:铺设知识的传授和建构渠道
    6.3 本章小结
第7章 尝试和探索:基于策略设想编写的3个微型实证研究案例
    7.1 微型实验1:棱柱、棱锥和棱台(课时)
        7.1.1 实验设计
        7.1.2 信息处理
        7.1.3 研究启示
    7.2 微型实验2:两个基本计数原理(课时)
        7.2.1 实验设计
        7.2.2 信息处理
        7.2.3 研究启示
    7.3 微型实验3:基本不等式(课时)
        7.3.1 调查设计
        7.3.2 信息处理
        7.3.3 研究启示
    7.4 本章小结
第8章 总结和展望:结论、不足及前景
    8.1 研究结论
    8.2 研究不足
    8.3 研究展望
附录
    附录1 数学课程知识观调查问卷
    附录2 高中数学教科书编写策略认同调查问卷
    附录3 棱柱、棱锥和棱台(静态陈述式)
    附录4 棱柱、棱锥和棱台(动态发生式)
    附录5 棱柱、棱锥和棱台(测试问卷)
    附录6 两个基本计数原理(旁观式)
    附录7 两个基本计数原理(参与式)
    附录8 两个基本计数原理(测试问卷)
    附录9 基本不等式(孤立式)
    附录10 基本不等式(关联式)
    附录11 基本不等式(访谈问卷)
参考文献
在读期间发表的学术论文及研究成果
致谢

(4)应用动态数学技术解决初中平面几何开放题的教学研究(论文提纲范文)

中文摘要
Abstract
第1章 绪论
    一、研究背景与问题
        (一)研究背景
        (二)研究问题
    二、研究目的与意义
        (一)研究目的
        (二)研究意义
    三、研究思路与方法
        (一)研究思路
        (二)研究方法
第2章 相关研究综述
    一、初中平面几何相关研究综述
        (一)平面几何的相关概念界定
        (二)初中平面几何的研究综述
        (三)对初中平面几何研究的思考
    二、动态数学技术相关研究综述
        (一)动态数学技术的概念界定
        (二)动态数学技术在初中平面几何的应用研究综述
        (三)对动态数学技术的思考
    三、数学开放题相关研究综述
        (一)数学开放题的概述
        (二)数学开放题的早期研究发展史
        (三)数学开放题在初中平面几何的应用研究综述
        (四)对数学开放题的思考
    四、小结
第3章 应用动态数学技术解决平面几何开放题的教学策略和应用案例
    一、基本理论概述
        (一)波利亚数学解题理论
        (二)认知负荷理论
        (三)数学多元表征学习理论
    二、应用动态数学技术解决平面几何开放题的教学设计原则
        (一)信息打包原则
        (二)空间邻近原则
        (三)时间邻近原则
        (四)一致性原则
        (五)双通道原则
        (六)增强深度学习原则
    三、应用动态数学技术解决平面几何开放题的教学策略及应用案例
        (一)表征多元信息
        (二)凸显关键信息
        (三)探索多元途径
        (四)动态变式问题
第4章 应用动态数学技术解决平面几何开放题的教学实验研究
    一、实验方案设计
        (一)实验假设
        (二)实验对象
        (三)实验变量
        (四)实验方式
        (五)实验材料
    二、实验数据分析与结果
        (一)前测成绩结果与分析
        (二)后测成绩的结果与分析
        (三)三角形线段和差倍关系学习的认知负荷结果与分析
        (四)三角形线段和差倍关系学习的学习效率结果与分析
    三、三角形线段和差倍关系的学生问卷调查结果分析
    四、对数学教师调查结果分析
    五、实验结果的讨论
        (一)实验结果的总体分析
        (二)学习效果的讨论
        (三)认知负荷的讨论
        (四)关于学习效率的讨论
    六、结论
第5章 应用动态数学技术解决平面几何开放题的课例研究
    一、《三角形线段和差倍关系》教学设计
        (一)分析学情
        (二)分析教材
        (三)设计目标
        (四)重难点分析
        (五)设计策略
        (六)教学设计过程
        (七)教学实录对比及评析
    二、课后反思
        (一)自我反思
        (二)专家点评
第6章 研究结论、反思与展望
    一、研究结论
    二、研究反思
        (一)对实验结果的反思
        (二)对教学的反思
    三、研究展望
参考文献
附录
    附录1 《三角形线段的和差倍关系》前测试题
    附录2 《三角形线段的和差倍关系》后测试题
    附录3 用动态数学技术进行《三角形线段的和差倍关系》学习的调查问卷
    附录4 用动态数学技术进行《三角形线段的和差倍关系》教学的调查问卷
    附录5 访谈提纲
读硕期间发表的论文目录
致谢

(5)中国数学教科书中勾股定理内容设置变迁研究(1902-1949)(论文提纲范文)

中文摘要
abstract
第1章 绪论
    1.1 问题提出
    1.2 研究目的与意义
        1.2.1 研究目的
        1.2.2 研究意义
    1.3 文献综述
        1.3.1 国外研究现状
        1.3.2 国内研究现状
        1.3.3 研究现状评述
    1.4 研究方法与思路
        1.4.1 研究方法
        1.4.2 研究思路
    1.5 创新之处
第2章 清末中学数学教科书中的勾股定理
    2.1 历史背景
        2.1.1 “癸卯学制”的中学数学教育
        2.1.2 清末中学数学教科书编译概况
    2.2 翻译日本的几何教科书中勾股定理内容个案分析
        2.2.1 编译者简介
        2.2.2 编写理念及编排形式
        2.2.3 勾股定理内容的结构
        2.2.4 特点分析
    2.3 翻译美国的几何教科书中勾股定理内容个案分析
        2.3.1 编译者简介
        2.3.2 编写理念及编排形成
        2.3.3 勾股定理内容的结构
        2.3.4 特点分析
    2.4 清末教科书中勾股定理内容的结构及其特点(1902-1911)
        2.4.1 编写理念及编排形式
        2.4.2 勾股定理内容设置的形式
        2.4.3 勾股定理的内容表述之变迁及特点分析
        2.4.4 勾股定理证明方法特点及教育价值分析
    2.5 小结
第3章 民国初期中学数学教科书中的勾股定理
    3.1 历史背景
        3.1.1 “壬子癸丑学制”的数学教育
        3.1.2 中学数学教科书编译概况
    3.2 《共和国教科书平面几何》中“勾股定理”内容编排概述
        3.2.1 编者简介
        3.2.2 编写理念及编排形成
        3.2.3 勾股定理内容的结构
        3.2.4 特点分析
    3.3 《民国新教科书几何学》中的“勾股定理”内容编排概述
        3.3.1 编译者简介
        3.3.2 编写理念及编排形成
        3.3.3 勾股定理内容的结构
        3.3.4 特点分析
    3.4 汉译本《温德华士几何学》中的“勾股定理”内容编排概述
        3.4.1 编译者简介
        3.4.2 编写理念及编排形成
        3.4.3 勾股定理内容的结构
        3.4.4 特点分析
    3.5 小结
        3.5.1 勾股定理证明方法无明显差异
        3.5.2 从面积和射影角度讨论钝角和锐角三角形的不同情形
        3.5.3 习题数量参差不齐
        3.5.4 对几何作图的认识逐渐加强
第4章 课程纲要时期的中学数学教科书中勾股定理
    4.1 历史背景
        4.1.1 “壬戌学制”下的数学教育
        4.1.2 中学数学教科书编纂概况
    4.2 混合教学数学教科书中的“勾股定理”
        4.2.1 《布利氏新式算学教科书》中“勾股定理”内容编排概述
        4.2.2 《初级混合数学》中“勾股定理”内容编排概述
        4.2.3 《新学制混合算学教科书》中“勾股定理”内容的编排概述
    4.3 《现代初中教科书几何》中“勾股定理”内容的编排概述
        4.3.1 编译者简介
        4.3.2 编写理念及编排形成
        4.3.3 勾股定理内容的结构
        4.3.4 特点分析
    4.4 小结
        4.4.1 勾股定理内容分布在多个章节中
        4.4.2 证明方法由一到多,割补法逐渐成为主要方式
        4.4.3 由勾股定理向任意三角形推广
        4.4.4 习题中理解型题目与作图题目相结合
第5章 课程标准时期的中学数学教科书中勾股定理
    5.1 历史背景
        5.1.1 中学算学课程标准下的中学数学教育
        5.1.2 中学数学教科书编译概况
    5.2 复兴中学教科书中“勾股定理”内容编排概述
        5.2.1 部分编撰者简介
        5.2.2 编写理念及编排形成
        5.2.3 勾股定理内容的结构
        5.2.4 特点分析
    5.3 实验几何教科书中的勾股定理—以《初级中学实验几何学》为例
        5.3.1 编撰者简介
        5.3.2 编写理念及编排形式
        5.3.3 勾股定理内容的结构
        5.3.4 特点分析
    5.4 课程标准时期教科书中勾股定理变迁之特点分析
        5.4.1 数学史的融入
        5.4.2 定理证明实验法与演绎法并重
        5.4.3 体现从特殊到一般的归纳思想方法
    5.5 民国时期数学教科书中勾股定理内容编排变迁特点分析(1912-1949)
        5.5.1 定理证明以方法为经,以教材为纬
        5.5.2 三角形内对锐角或钝角之三边情况贯穿于教科书中
        5.5.3 从正方形到任意相似图形
第6章 结论
    6.1 清末民国中学数学教科书中勾股定理编排特点
        6.1.1 数学教科书中定理命名的演变
        6.1.2 作为小节内容编排在单元中
        6.1.3 定理表述以“形的勾股定理”为主
        6.1.4 结构体系独特,勾股定理的推广内容丰富
        6.1.5 自编数学教科书中勾股定理史料贯彻爱国精神
    6.2 影响中学数学教科书中勾股定理内容编排的因素
        6.2.1 外部因素
        6.2.2 内部因素
    6.3 清末民国中学数学教科书中勾股定理证明方法编排之变迁
        6.3.1 欧几里得证法始终贯穿在教科书中
        6.3.2 证明方法由一变多,从演绎法过渡到拼补法
        6.3.3 中国古代“赵爽弦图”仅在课后习题中出现
        6.3.4 实验几何时期证法主要以综合法为主
        6.3.5 清末民国时期中学勾股定理编排中存在的问题
    6.4 清末民国中学数学教科书中勾股定理内容变迁的启示与借鉴
        6.4.1 编排形式与内容体系应力求严谨
        6.4.2 勾股定理内容编排重视趣味性、启发性与探究性
        6.4.3 实验证明和理论证明相辅相成
        6.4.4 从勾股定理到我们的思想
    6.5 研究的不足与展望
参考文献
致谢
攻读博士学位期间的科研成果

(6)建国以来我国高中数学课程中几何内容设置的变迁研究 ——基于教学大纲与课程标准的视角(论文提纲范文)

摘要
abstract
一、问题的提出
    (一)研究背景
        1.丰富与完善我国数学课程史研究的需要
        2.开拓数学课程文化视野的需要
        3.推进我国高中数学课程改革与发展的需要
        4.促进我国高中数学课程中几何内容体系建设的需要
    (二)研究目的及意义
        1.研究目的
        2.研究意义
    (三)核心概念界定
        1.高中数学课程
        2.几何内容
        3.几何内容设置
        4.教学大纲与课程标准
        5.变迁
    (四)研究问题表述
二、相关文献综述
    (一)关于我国高中数学课程变迁或发展历程的研究
    (二)关于我国高中数学教学大纲与课程标准文本的研究
    (三)关于我国高中数学课程中几何内容的研究
    (四)文献述评
三、研究设计
    (一)研究思路
    (二)研究对象
    (三)研究方法
        1.历史文献法
        2.比较研究法
        3.计量分析法
四、高中数学教学大纲与课程标准中几何内容设置的变迁及特点
    (一)关于理念与目标的变迁及特点
        1.课程理念的变迁
        2.目标要求的变迁
        3.课程理念与目标要求的变迁特点
    (二)关于内容结构的变迁及特点
        1.文本整体结构体系的变迁
        2.内容设置框架的变迁
        3.内容结构的变迁
        4.内容结构的变迁特点
    (三)关于内容要求的变迁及特点
        1.内容要求的变迁
        2.内容要求的变迁特点
    (四)关于内容难度的变迁及特点
        1.内容广度的变迁
        2.内容深度的变迁
        3.内容难度的变迁
        4.内容难度的变迁特点
    (五)关于课程实施建议的变迁及特点
        1.课程实施建议的变迁
        2.课程实施建议的变迁特点
五、研究结论
    (一)高中数学课程中几何内容设置的变迁特点
    (二)影响我国高中数学课程中几何内容设置发生变迁的主要因素
    (三)对我国高中数学几何课程改革的启示
六、结语
参考文献
致谢
攻读学位期间公开发表的论文

(7)中学数学思想的培养研究 ——基于深度教学的视角(论文提纲范文)

摘要
Abstract
导论
    第一节 问题的提出
        一、数学育人价值实现与当前课堂教学实施的矛盾
        二、数学学科思想教学与当前教学变革的错位
        三、学生深度学习达成与课堂教学效果的偏离
    第二节 研究意义
    第三节 国内外研究综述
        一、国内研究综述
        (一) 关于数学课程的研究
        (二) 关于数学知识及其教学的研究
        (三) 关于学科思想方法的研究
        (四) 关于数学思想的研究
        二、国外文献综述
    第四节 研究方法
    第五节 研究内容
第一章 数学思想:内涵与意义
    第一节 数学思想的发展回溯
        一、数学思想的发展历史及阶段
        二、我国数学思想在教学中的发展
    第二节 数学思想的含义
    第三节 数学思想的特征分析
        一、内隐性
        二、连续性
        三、可迁移性
    第四节 数学思想的价值分析
        一、数学思想的教学价值
        二、数学思想的发展价值
        三、数学思想的应用价值
第二章 中学主要数学思想及相关概念辨析
    第一节 数学发展史上的主要数学思想
    第二节 中学数学教学中的数学思想
        一、数形结合思想
        二、分类讨论思想
        三、转化或化归思想
        四、类比或递推思想
        五、构造或建模思想
    第三节 相关概念辨析
        一、数学知识与数学思想
        二、数学能力与数学思想
        三、数学方法与数学思想
        四、数学素养与数学思想
第三章 当前中学数学思想教学现状分析
    第一节 中学数学思想教学现状调查的描述分析
        一、中学数学教师思想教学的基本情况
        二、中学教师数学思想教学现状
    第二节 中学教师数学思想教学的影响因素分析
        一、教师自身对于数学思想的认知
        二、学生数学学习的阶段性与连续性
        三、教材与学生发展之间的关联性
        四、教学活动组织的适切性
    第三节 问题与讨论
第四章 基于深度教学的中学生数学思想建立过程
    第一节 中学生数学思想的形成过程
        一、以观察能力为基础
        二、以猜想能力为辅助
        三、论证思维的建立
    第二节 深度学习以培养学生的数学思想
        一、深度学习之内涵
        二、深度学习与数学思想的建立
        三、深度学习以培养学生的数学思想
    第三节 深度教学以促进数学思想的培养
        一、深度教学之意涵
        二、深度教学与数学思想的建立
        三、深度教学以促进数学思想的培养
第五章 中学数学思想及其培养策略
    第一节 学科思想的特性与数学思想的价值
        一、学科思想的普遍性与特殊性
        二、数学思想的学科意蕴
    第二节 中学主要数学思想的形成过程
        一、中学数学思想培养所必备的学习经历
        二、中学数学思想培养的教学过程
        三、中学主要数学思想的培养
    第三节 中学主要数学思想的培养策略
        一、分类讨论思想的培养策略
        二、数形结合思想的培养策略
        三、转化或化归思想的培养策略
        四、递推或类比思想的培养策略
        五、构造或建模思想的培养策略
结语
参考文献
附录
致谢

(8)初中生尺规作图能力水平划分及提升研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景
    1.2 研究问题
    1.3 研究意义
第2章 研究综述
    2.1 尺规作图的相关研究
        2.1.1 历史哲学层面
        2.1.2 课程层面
        2.1.3 解题层面
        2.1.4 教学层面
        2.1.5 学习层面
    2.2 范希尔几何思维水平
    2.3 小结
第3章 研究设计
    3.1 尺规作图能力的阐述
    3.2 研究框架和流程
        3.2.1 研究框架
        3.2.2 研究流程
    3.3 研究对象和方法
        3.3.1 研究对象
        3.3.2 研究方法
第4章 测试题的编制
    4.1 设计思路
    4.2 预研究
    4.3 试题分析
    4.4 测试时间
第5章 测试结果及分析
    5.1 生1的测试结果及分析
        5.1.1 测试结果及局部分析
        5.1.2 整体分析
    5.2 生2的测试结果及分析
        5.2.1 测试结果及局部分析
        5.2.2 整体分析
    5.3 生3的测试结果及分析
        5.3.1 测试结果及局部分析
        5.3.2 整体分析
    5.4 生4的测试结果及分析
        5.4.1 测试结果及局部分析
        5.4.2 整体分析
    5.5 小结
第6章 研究结论及建议
    6.1 研究结论
        6.1.1 提出了尺规作图能力水平划分框架
        6.1.2 影响学生尺规作图能力的内因
    6.2 尺规作图教学建议
        6.2.1 注重本质教学
        6.2.2 注重逻辑教学
        6.2.3 注重串联教学
        6.2.4 注重分层教学
    6.3 研究不足与展望
参考文献
附录1 尺规作图测试题
附录2 生1测试题答卷
附录3 生2测试题答卷
附录4 生3测试题答卷
附录5 生4测试题答卷
致谢

(9)提高初中生几何思维水平的策略研究(论文提纲范文)

摘要
abstract
第一章 绪论
    1.1 研究背景
    1.2 研究问题
    1.3 核心概念界定
    1.4 研究意义
    1.5 研究思路
    1.6 研究方法
    1.7 研究的重点难点以及创新点
    1.8 论文结构
第二章 文献综述与理论基础
    2.1 文献综述
    2.2 理论基础
第三章 研究设计与实施情况
    3.1 研究流程
    3.2 研究对象
    3.3 测试卷的编制
    3.4 评判标准
    3.5 测试卷的实施情况
    3.6 工具信度
    3.7 访谈
第四章 结果与分析
    4.1 七年级学生几何思维水平总体分布情况
    4.2 影响七年级学生几何思维水平的相关因素分析
    4.3 学生在各思维水平上的解题情况分析
第五章 研究结论与培养策略
    5.1 研究结论
    5.2 培养策略
    5.3 案例研究
第六章 研究不足与展望
参考文献
附录
    附录1 学生的访谈内容
    附录2 教师的访谈内容
    附录3 七年级范希尔几何思维水平测试卷
致谢

(10)初中平面几何作图研究发展史(1949-2012) ——基于《数学通报》文献分析(论文提纲范文)

中文摘要
abstract
第1章 绪论
    1.1 研究缘起
    1.2 研究目的和意义
        1.2.1 研究目的
        1.2.2 研究意义
    1.3 国内外研究现状
        1.3.1 国外研究现状
        1.3.2 国内研究现状
    1.4 研究方法及创新之处
        1.4.1 研究方法
        1.4.2 研究思路
        1.4.3 创新之处
第2章 几何作图历史简介及相关概念
    2.1 几何作图历史简述
    2.2 三大作图难题历史及解决历程简述
        (1)化圆为方
        (2)倍立方体
        (3)三等分角
    2.3 研究对象简介
    2.4 作图研究分类
        (1)作图理论
        (2)作图解决问题
        (3)单具作图
        (4)作图与代数间联系
        (5)作图教学
        (6)作图争论
        (7)作图中的谬误性问题
第3章 1949-1966 年间初中几何作图研究及其特点
    3.1 1949-1957年间初中几何作图研究情况
        3.1.1 教学大纲中初中几何作图要求变迁概述
        3.1.2 初中几何作图研究者群体
        3.1.3 作图专有名词
        3.1.4 平面几何作图研究情况
        3.1.5 初中几何作图研究整体概况及其原因分析
    3.2 1958-1966年间初中几何作图研究情况
        3.2.1 教学大纲中初中几何作图要求变迁概述
        3.2.2 初中几何作图研究者群体
        3.2.3 平面几何作图研究情况
        3.2.4 初中几何作图研究整体概况
    3.3 小结
第4章 1978-2000 年间初中几何作图研究及其趋势
    4.1 1978-1985年间初中几何作图研究情况
        4.1.1 教学大纲中初中几何作图要求变迁概述
        4.1.2 初中几何作图研究者群体
        4.1.3 作图专有名词
        4.1.4 平面几何作图研究情况
        4.1.5 初中几何作图研究整体概况及其原因分析
    4.2 1986-2000年间初中几何作图研究情况
        4.2.1 教学大纲对初中几何作图要求变迁概述
        4.2.2 初中几何作图研究者群体
        4.2.3 平面几何作图研究情况
        4.2.4 作图研究整体概况
    4.3 小结
第5章 2001-2012 年间初中几何作图研究及其特点
    5.1 课程标准对初中几何作图要求的变迁
    5.2 初中几何作图研究者群体
    5.3 初中几何作图研究情况
    5.4 小结
第6章 结论
    6.1 研究结论
        6.1.1 教学大纲(课程标准)中作图要求之变迁
        6.1.2 初中平面几何各类作图研究之变迁
    6.2 初中平面几何作图研究发展特点
    6.3 初中平面几何作图研究影响因素
    6.4 进一步研究的问题
参考文献
附录
致谢
攻读硕士研究生期间论文发表情况

四、試談平面几何教学中习題的深度与要求(论文参考文献)

  • [1]平面几何教学研究之研究 ——以《数学通报》(1951~1966)为例[D]. 西峰山. 内蒙古师范大学, 2015(03)
  • [2]中国中学几何作图教科书发展史(1902-1949)[D]. 张彩云. 内蒙古师范大学, 2019(07)
  • [3]基于数学课程知识观的高中数学教科书编写策略研究[D]. 胡晋宾. 南京师范大学, 2015(05)
  • [4]应用动态数学技术解决初中平面几何开放题的教学研究[D]. 李区婷. 广西师范大学, 2020(02)
  • [5]中国数学教科书中勾股定理内容设置变迁研究(1902-1949)[D]. 张冬莉. 内蒙古师范大学, 2020(07)
  • [6]建国以来我国高中数学课程中几何内容设置的变迁研究 ——基于教学大纲与课程标准的视角[D]. 王娟. 西北师范大学, 2020(01)
  • [7]中学数学思想的培养研究 ——基于深度教学的视角[D]. 张先波. 华中师范大学, 2019(01)
  • [8]初中生尺规作图能力水平划分及提升研究[D]. 秦小双. 苏州大学, 2019(06)
  • [9]提高初中生几何思维水平的策略研究[D]. 王雪. 天津师范大学, 2020(08)
  • [10]初中平面几何作图研究发展史(1949-2012) ——基于《数学通报》文献分析[D]. 王瑞芳. 内蒙古师范大学, 2019(08)

标签:;  ;  ;  ;  ;  

平面几何教学中习题的深度与要求
下载Doc文档

猜你喜欢