南京地质矿产研究所——科研工作总结

南京地质矿产研究所——科研工作总结

一、NANJING INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文文献综述)

CHEN Baoguo,ZHANG Jiuchen,YANG Mengmeng[1](2016)在《The Present Research and Prospect of Chinese Geosciences History》文中进行了进一步梳理It has been over a hundred years since the birth of research on Chinese geosciences history, which was accompanied by the continuous progress of Chinese geosciences. For hundreds of years, it has grown out of nothing to brilliant performance by several generations of Chinese geologists committing their hearts and minds with the spirit of exert and strive without stop to promote the process of China’s industrialization and to produce the significant impact on serving the society. The study of Chinese geosciences history reflects objectively and historically the history of geosciences in China, which has recorded, analyzed and evaluated the dynamic process sitting in the background and clue of the history of Chinese geosciences development. The study of the history of geological science has roughly experienced two stages in China. The first stage is the study of individual researchers. It spanned approximately 70 years from the early 20th century to the end of the 1970s. The research contents were mainly based on the evolution of geological organizations, the development and utilization of individual mineral species, the history of deposit discovery and the research of geological characters. The main representatives are Zhang Hongzhao, Ding Wenjiang, Weng Wenhao and Li Siguang, Ye Liangfu, Huang Jiqing, Yang Zhongjian, Xie Jiarong, Gao Zhenxi, Wang Bingzhang and etc. The most prominent feature of this period is the accumulation of a very valuable document for the study of the history of China’s geological history and lays a foundation for the exchange of geological science between China and foreign countries. The second stage is organized group study. It took around 60 years from the 1920s to 1980s. It includes the history of Chinese geology, the history of geological organizations, the history of geological disciplines, the history of geological education, the history of geological philosophy, the history of Chinese and foreign geological science communication, the history of geologists and etc. The most chief feature of this stage is the birth of academic research institute―the establishment of the Commission on the History of Geology of the Geological Society of China.

黄旭栋[2](2018)在《南岭中—晚侏罗世含铜铅锌与含钨花岗岩及其矽卡岩成矿作用 ——以铜山岭和魏家矿床为例》文中研究指明花岗岩及其相关成矿作用一直是全球地质学家高度关注的热点科学问题。过去十年,大量高水平研究工作的开展大大加深了对花岗岩及其相关成矿作用的认识。这些工作主要集中于如下几个方面:花岗岩起源与演化、花岗岩与矿床的时空和成因联系、岩浆-热液演化过程中成矿元素的地球化学行为、描述性矿床地质研究和构造分析、成矿物质和流体来源、成矿过程物理化学演化、热液流体动力学、数值模拟和成矿机制等。毋庸置疑,花岗岩相关的成矿作用是花岗岩源区、部分熔融、岩浆-热液演化、外来物质影响、成矿流体迁移、水岩反应和构造控制等多种因素综合作用的结果。南岭地区是全球最着名的多金属成矿带之一,尤其以大规模的钨锡成矿作用闻名于世。中-晚侏罗世是南岭地区最重要的花岗质岩浆活动和成矿作用时期。尽管前人对南岭地区中-晚侏罗世含矿花岗岩及其相关成矿作用已做了大量研究,但尚有许多争议和问题仍未解决,尤其是含铜铅锌与含钨花岗岩的起源及其矽卡岩成矿作用。根据暗色包体的存在和地球化学研究,前人普遍认为含铜铅锌花岗岩为壳幔混合起源的I型花岗岩。然而,这些暗色包体并不存在可靠的岩浆混合证据,其锆石Hf同位素组成与寄主花岗岩一致,都具有典型的壳源特征。虽然含钨花岗岩一般被认为是高分异S型花岗岩,但也有部分学者认为它们是高分异I型花岗岩。这两类含矿花岗岩之间是否存在成因联系尚不清楚。尽管大量年代学和地球化学研究都证明南岭地区中-晚侏罗世矽卡岩矿床在成因上和花岗岩有关,但它们之间的构造联系过程却鲜有问津,值得进一步研究。南岭地区中-晚侏罗世矽卡岩铜铅锌矿床常呈现出成矿元素(例如Cu、Mo、Pb、Zn、Ag等)和不同成矿类型(例如矽卡岩型、碳酸盐交代型和硫化物-石英脉型等)的复杂分带,其形成机制尚未明确。全球范围内的矽卡岩钨矿绝大多数都是钙质矽卡岩钨矿,赋存在镁质矽卡岩中的钨矿鲜有报道。然而,南岭地区晚侏罗世魏家超大型镁质矽卡岩钨矿的发现揭示和突出了镁质矽卡岩对钨成矿作用的重要性。镁质矽卡岩钨矿的形成过程和控制因素尚不清楚,亟待研究。基于前人研究工作,关于南岭地区中-晚侏罗世含铜铅锌与含钨花岗岩及其矽卡岩成矿作用方面,提出以下科学问题:(1)南岭地区中-晚侏罗世含铜铅锌与含钨花岗岩的成因差异和联系。(2)南岭地区中-晚侏罗世含矿花岗岩与相关矽卡岩矿床的构造联系。(3)南岭地区中-晚侏罗世矽卡岩铜铅锌矿床中不同成矿类型之间的成因联系和复杂分带的形成机制。(4)控制南岭地区晚侏罗世镁质矽卡岩钨矿形成的关键因素。本文选取南岭西段湘南铜山岭-魏家地区为研究区域,以该区域内中-晚侏罗世的铜山岭矽卡岩铜铅锌矿床和魏家矽卡岩钨矿床为主要研究对象,对两类含矿花岗岩及其矽卡岩成矿作用开展了详细研究。主要研究内容和相关研究方法包括:(1)铜山岭含铜铅锌花岗闪长岩与魏家含钨花岗岩的成因,南岭中-晚侏罗世含铜铅锌与含钨花岗岩的对比:锆石U-Pb定年和Hf同位素分析、全岩主微量元素和Sr-Nd同位素分析、前人已发表数据的统计分析;(2)铜山岭花岗闪长岩中暗色微粒包体的成因和形成过程:岩相学观察、EMP(电子探针)矿物主量元素分析、LA-ICP-MS(激光剥蚀电感耦合等离子体质谱)矿物微量元素分析、矿物温压计;(3)铜山岭-魏家地区的区域构造特征,铜山岭铜铅锌矿床中由岩浆侵位引起的对矽卡岩化的构造控制:构造和变形解析、碳酸盐岩RSCM(含碳物质拉曼光谱)温度计、方解石EBSD(电子背散射衍射)面扫;(4)铜山岭铜钼铅锌银矽卡岩矿田的分带和成因:矿床地质研究、岩相学观察、石榴子石和榍石U-Pb定年、辉钼矿Re-Os定年、硫化物S和Pb同位素分析、石英H-O同位素分析;(5)魏家矽卡岩钨矿床的成矿过程,控制魏家镁质矽卡岩钨成矿作用的关键因素:矿床地质研究、岩相学观察、碳酸盐岩RSCM温度计、全岩主微量元素分析、SEM(扫描电镜)能谱面扫、EMP矿物主量元素分析、LA-ICP-MS矿物微量元素分析。作为东亚大陆的主要构成组分,华南板块经历了复杂的构造演化历史。普遍认为,华南板块通过扬子板块和华夏板块的拼贴作用形成于新元古代(1.0-0.8 Ga),江南造山带作为两者的缝合带介于其间。扬子和华夏板块拼贴之后,华南板块在800-690Ma经历了一次区域尺度的伸展作用,导致裂谷盆地、硅质碎屑沉积物和双峰式火山岩的形成。之后,华夏板块在震旦纪到早古生代(690-460 Ma)经历了一个稳定的板内浅海-半深海沉积阶段,导致巨厚硅质碎屑沉积物的形成。早古生代(460-390Ma),华南板块经历了一期强烈的陆内造山事件,具体表现为志留系地层的缺失或中泥盆统和志留系地层之间的角度不整合、普遍的挤压变形和高级变质作用。此后,华南板块在晚古生代(390-240 Ma)处于一个稳定的板内滨浅海沉积环境,形成了一系列碳酸盐岩。早中生代(240-200 Ma),华南板块经历了一期陆内挤压变形事件,具体表现为晚三叠纪角度不整合、褶皱、逆冲断层、韧性剪切和变质作用。晚中生代华南板块的构造体制主要受控于古太平洋板块的俯冲作用。对应于上述多期构造事件,华南地区广泛发育有新元古代、早古生代、三叠纪、侏罗纪和白垩纪的多时代花岗岩和相关多金属矿床。其中,晚中生代的花岗岩和相关矿床占绝对主导地位。一般认为,古太平洋板块俯冲引起软流圈上涌和玄武质岩浆底侵,促使地壳发生部分熔融,从而导致晚中生代的大规模花岗质岩浆活动和成矿大爆发。在南岭地区,中-晚侏罗世(165-150 Ma)是最重要的花岗质岩浆活动和成矿作用时期。根据成矿元素组合、岩相学和地球化学特征,南岭地区中-晚侏罗世含矿花岗岩可以分为含钨、含锡、含铌钽和含铜铅锌花岗岩四类。含钨花岗岩主要为壳源S型二云母、白云母和黑云母花岗岩,而锡矿化主要和铝质A型(A2型)黑云母花岗岩有关。含铌钽花岗岩多为高度分异演化的钠长石花岗岩。铜铅锌矿化主要和含角闪石的I型准铝质钙碱性花岗闪长岩有关。不同花岗岩具有明显不同的成矿专属性。湘南铜山岭-魏家地区位于桂林向东120 km处,地处道县、江永和江华三县交界带。除了志留系和上二叠统到下三叠统地层缺失以外,奥陶系到三叠系地层在本区域都有出露。其中,泥盆系和石炭系地层占主导地位。中泥盆统棋梓桥组、上泥盆统佘田桥组和锡矿山组和上石炭统大塘阶石蹬子段是铜山岭-魏家地区的主要含矿层位。区域构造格架总体上呈南-北到南西-北东向。褶皱变质的奥陶系地层和下泥盆统与上奥陶统地层之间的角度不整合记录了华南地区早古生代的陆内造山事件。三叠纪的陆内挤压变形导致该区域内泥盆系和石炭系地层褶皱和逆冲断层以及上三叠统和下伏地层之间角度不整合的形成。中-晚侏罗世,铜山岭花岗闪长岩和魏家花岗岩分别呈岩株状和岩瘤、岩滴岩脉和岩枝状侵入于泥盆系和石炭系地层中,并导致了铜铅锌和钨成矿作用。围绕铜山岭岩体分布的铜山岭铜铅锌矿床、江永铅锌银矿床和玉龙钼矿床共同构成了铜山岭铜钼铅锌银矿田。魏家钨矿床位于铜山岭多金属矿田东北15 km处。尽管前人对南岭地区中-晚侏罗世含铜铅锌与含钨花岗岩已做了大量研究,但产生这两类含矿花岗岩差异的机制尚不清楚。一般认为含钨花岗岩主要来自古老变质沉积基底的部分熔融,但含铜铅锌花岗岩的成因尚有很大争议。对于含铜铅锌花岗岩的起源,主要存在以下三种观点:(1)源岩主要为亏损地幔部分熔融形成的玄武岩,并混入了古老的地壳物质;(2)主要源自变质沉积基底的部分熔融,并混入了幔源玄武质岩浆;(3)主要源自下地壳镁铁质岩石的部分熔融。南岭地区这两类含矿花岗岩虽然都集中形成于中-晚侏罗世,但含钨花岗岩的形成稍晚于含铜铅锌花岗岩,时差的存在该如何解释。两类含矿花岗岩是否同一母岩浆在不同演化阶段先后结晶的产物。这些问题有待进一步研究。铜山岭花岗闪长岩为含角闪石的准铝质钙碱性花岗岩,形成于160-164 Ma,分异演化程度较低。其Sr-Nd-Hf同位素组成具有典型的壳源特征,(87Sr/86Sr)i比值为0.708955-0.710682,εNd(t)值为-6.9--4.2,锆石εHf(t)值为-11.6--6.3。Ⅰ型花岗岩的特征指示铜山岭花岗闪长岩源自镁铁质下地壳的部分熔融。魏家花岗岩属于高硅过铝质的碱性系列花岗岩,形成于158 Ma左右,为高分异花岗岩。其Nd-Hf同位素组成具有壳源特征,εNd(t)值为-4.6--1.7,锆石εHf(t)值为-5.4--4.5。S型花岗岩的特征指示魏家花岗岩源自中-上地壳变质沉积物的部分熔融。南岭地区中-晚侏罗世含铜铅锌与含钨花岗岩的矿物学和地球化学特征截然不同。含铜铅锌花岗岩主要为准铝质含角闪石的花岗闪长岩,具有较高的CaO/(Na2O+K2O)比值、LREE/HREE(轻/重稀土)比值和δEu(Eu异常指数)值,较低的Rb/Sr比值,Ba、Sr、P、Ti轻微亏损,分异演化程度较低,显示出I型花岗岩的特征。而含钨花岗岩为高分异演化的过铝质S型花岗岩,其CaO/(Na2O+K2O)比值、LREE/HREE 比值和δEu值较低,Rb/Sr比值较高,Ba、Sr、P、Ti强烈亏损。含铜铅锌与含钨花岗岩的(87Sr/86Sr)i 比值分别为0.708-0.712和0.712以上,εNd(t)值分别为-10--2(峰值-7--6)和-14--7(峰值-10--9),锆石 εHf(t)值分别为-13--7(峰值-11--10)和-14--8(峰值-13--12),都具有典型的壳源特征,说明两类含矿花岗岩都是地壳物质部分熔融的产物。两类含矿花岗岩的年龄统计表明,含铜铅锌花岗岩主要形成于155.2-167.0 Ma,峰值为160.6 Ma,而含钨花岗岩主要形成于151.1-161.8 Ma,峰值为155.5 Ma,两者存在约5 Ma的时差。在湘南铜山岭含铜铅锌和魏家含钨花岗岩系统研究的基础上,结合南岭地区中-晚侏罗世含铜铅锌与含钨花岗岩的对比,提出了两类含矿花岗岩的成因模式。古太平洋板块俯冲导致软流圈上涌和玄武质岩浆底侵。底侵玄武质岩浆加热促使下地壳的镁铁质角闪岩相基底首先发生部分熔融,形成与铜铅锌矿化有关的花岗闪长质岩浆。随着玄武质岩浆底侵,中-上地壳的富白云母变质沉积基底随后发生部分熔融,形成与钨矿化有关的花岗质岩浆。花岗岩源区成分的差异导致花岗岩成矿专属性不同。含铜铅锌与含钨花岗岩之间5 Ma左右的侵位时差是由于源区深度不同,由玄武质岩浆底侵引发的部分熔融时间先后所致。暗色包体因其对寄主花岗岩具有重要的成因指示意义而受到广泛关注。南岭地区中-晚侏罗世含铜铅锌花岗闪长岩中暗色包体普遍存在。前人认为此类暗色包体及其寄主花岗闪长岩是幔源镁铁质岩浆和壳源长英质岩浆混合的产物。然而,最近的研究表明南岭地区中-晚侏罗世含铜铅锌花岗闪长岩主要源自镁铁质下地壳的部分熔融。以上两种观点主要基于地球化学和年代学证据。本文对铜山岭花岗闪长岩及其暗色包体开展了详细的岩相学和矿物学研究,为岩石成因机制提供了全新的结构和成分制约。铜山岭花岗闪长岩中的暗色包体具有闪长质成分,主要由他形至半自形的斜长石、角闪石和黑云母组成。暗色包体的Sr-Nd和锆石Hf同位素成分与寄主花岗闪长岩一致。淬冷边、岩浆流动构造、石英眼斑和钾长石环斑结构等支持岩浆起源和岩浆混合的现象在暗色包体中并不存在。然而,镁铁质矿物团块、继承锆石、变质锆石和富钙斜长石核等残留物质在暗色包体中大量存在,指示其为残留包体。铜山岭花岗闪长岩及其暗色包体中存在三类不同的角闪石:岩浆角闪石、变质角闪石和岩浆改造的变质角闪石。岩浆角闪石呈包裹体状和自形孤立状,仅出现于花岗闪长岩中。其Al和Si含量分别为1.34-2.12 apfu(单位化学式中的原子数)和6.25-6.88 apfu,∑REE(总稀土)含量为307-764 ppm。变质角闪石呈聚集状,以花岗变晶三联点结构相接,主要分布于暗色包体内,少量出现于花岗闪长岩中。此类角闪石具有阳起石质成分,其Al和Si含量分别为0.31-0.81 apfu和7.33-7.72 apfu,不相容元素含量明显较低(ΣREE:99-146 ppm)。岩浆改造的变质角闪石具有介于岩浆角闪石和变质角闪石之间的过渡成分。其Al和Si含量分别为0.81-1.59 apfu和6.71-7.35 apfu,ΣREE含量为317-549 ppm。暗色包体内的角闪石大部分是岩浆改造的变质角闪石。暗色包体中环带状富角闪石团块的内部颜色较浅,并具有花岗变晶结构,而外部颜色较深,具有他形粒状结构。从团块内部到外部以及其中角闪石颗粒的核部到边部,角闪石成分上都显示出A1含量增高和Si含量降低的变化规律。富角闪石团块为源区部分熔融后的富辉石残留物经岩浆改造而形成。暗色包体中锆石的岩浆边由低ThO2+UO2含量和高Zr/Hf比值的内部和高ThO2+UO2含量和低Zr/Hf 比值的外部组成,分别由残留包体中的初始熔体和演化的寄主岩浆结晶形成,记录了寄主岩浆改造残留包体的过程。暗色包体中岩浆斜长石边与花岗闪长岩中斜长石一致的成分,包体中斜长石斑晶的反应边结构以及嵌晶状钾长石和石英的存在都反映了寄主岩浆对残留包体的改造。因此,铜山岭花岗闪长岩中的暗色包体为岩浆改造的残留包体。这一结论得到矿物温压计计算结果的进一步支持。基于改造残留包体和寄主花岗闪长岩的特征以及前人的部分熔融实验结果认为铜山岭花岗闪长岩源自镁铁质下地壳中角闪岩的脱水熔融。华夏地块古元古代角闪岩的出露进一步证明了这一成因机制的合理性。南岭地区中-晚侏罗世含铜铅锌花岗闪长岩具有一致的矿物学和地球化学特征,典型的壳源同位素组成指示其更可能源自镁铁质下地壳的角闪岩脱水熔融而非壳幔混合。南岭地区角闪岩相源区中丰富的成矿元素有利于含铜铅锌花岗闪长岩的形成。作为许多金属元素的主要成矿类型之一,矽卡岩矿床一直受到地质学家的广泛关注。前人对矽卡岩矿床的研究主要集中于交代蚀变、分带性、矽卡岩矿物学、地球化学和岩石成因等方面。然而,构造对矽卡岩化的控制很少涉及,尤其是岩浆侵位引起的构造控制。岩浆侵位引起的构造控制对理解矽卡岩矿床的形成过程和进一步找矿勘探具有重要意义。本文以铜山岭铜铅锌矿床为例,利用构造分析、RSCM温度计和EBSD面扫等手段,对岩浆侵位引起的对矽卡岩化的构造控制开展了详细研究。铜山岭地区泥盆系和石炭系地层中发育的断层总体上呈南-北到南西-北东走向,大部分是向东到南东逆冲的断层和走滑断层,只有少数是正断层。无论是位于铜山岭岩体东部还是西部的正断层,其走向都和逆冲断层一致,倾向都一致向西到北西。正断层附近的碳酸盐岩除了脆性破裂以外没有任何变形。正断层面上分布有两期不同的方解石:早期方解石粒度较小,硬度较大,可包含围岩角砾;晚期方解石呈自形,粒度较大,硬度较小,相对比较纯净。铜山岭地区的逆冲断层和走滑断层形成于三叠纪陆内挤压变形时期,正断层很可能形成于晚三叠世到早侏罗世的减压作用,而与中-晚侏罗世铜山岭花岗闪长岩的侵位无关。在铜山岭岩体和围岩的接触带上,碳酸盐岩发生了强烈的大理岩化和变形。重结晶的方解石晶体大部分呈现出拉长的形态。在北东部接触带上,变形围岩的面理以更陡的倾角切穿层理,倾向北到北东,表现为正向移动。从接触带向外,大理岩化的强度和面理的密度逐渐降低,过渡到未变质变形的碳酸盐岩。相对于北东部接触带,南部接触带的围岩具有更强的大理岩化和变形程度以及更高的面理密度。在南部接触带上,靠近岩体处的围岩层理不可见,面理发生揉皱。值得注意的是,南部接触带上变形围岩的面理随着岩体边界旋转并始终与接触带保持平行。相对于北东部接触带,南部接触带上变形围岩的面理具有更大的倾角。RSCM测温结果显示,从接触带向外,变质温度由620℃左右逐渐降低到约300℃。EBSD面扫结果表明,接触带上的变形方解石呈现出强烈的SPO(形态择优取向)和CPO(晶体择优取向)。根据上述地质现象和RSCM测温与EBSD面扫结果得出,铜山岭花岗闪长岩的侵位始于南部并引起了接触带上围岩的强烈大理岩化和变形。铜山岭铜铅锌矿床中的外矽卡岩脉和硫化物-石英脉具有和接触带上变形围岩的面理一致的产状,同样以更陡的倾角切穿层理。外矽卡岩脉附近的变形大理岩具有和地表接触带上的变形大理岩类似的RSCM测温(595-619℃)与EBSD面扫结果。外围的硫化物-石英脉为矽卡岩体系演化到晚期的产物,其围岩的大理岩化温度相对较低(500-547℃),围岩中方解石的CPO较弱,无SPO。大理岩化过程中方解石的重结晶会显着降低围岩的渗透性。铜山岭花岗闪长岩的侵位深度为10 km左右(根据角闪石A1压力计计算)。如此深度下,未破裂的大理岩几乎是不可渗透的。然而,裂隙的产生可以极大增加围岩的渗透性。因此,岩浆侵位引起的围岩变形显着增加了围岩的渗透性,促进岩浆流体沿着变形裂隙渗透,从而在构造上控制了外矽卡岩脉和硫化物-石英脉的形成。不同成矿元素和成矿类型的空间组合与分带在自然界的岩浆-热液体系中常见。南岭地区中-晚侏罗世的铜铅锌矿床,比如铜山岭、宝山、水口山、黄沙坪和大宝山矿床,都以多种成矿元素和成矿类型的空间组合与分带为特征。这些成矿类型主要包括矽卡岩型、硫化物-石英脉型、碳酸盐交代型和斑岩型等,其间是否具有成因联系尚不清楚。铜山岭多金属矿田发现于1958年,自1977年开始被开采,总共蕴含金属量铜5.3万吨(平均品位1.23 wt.%)、钼0.6万吨(平均品位0.30 wt.%)、铅12.6万吨(平均品位2.58 wt.%)、锌13.8万吨(平均品位3.95 wt.%)和银780吨(平均品位144克/吨)。此外,还有伴生的铋0.6万吨(平均品位0.16 wt.%)、镉1900吨(平均品位0.016 wt.%)、硒195吨(平均品位0.001 wt.%)和碲95吨(平均品位0.003 wt.%)。铜山岭多金属矿田由铜山岭岩体北东部的铜山岭铜铅锌矿、北西部的江永铅锌银矿和南部的玉龙钼矿组成。铜山岭铜铅锌矿床显示出复杂的蚀变和成矿分带,从岩体向外依次为近端的团块状内矽卡岩铜矿体、近端的脉状外矽卡岩铜铅锌矿体、外围灰岩中的硫化物-石英脉铜铅锌矿体和远端的层状矽卡岩铜铅锌矿体。此外,在近端还分布有少量晚期的铅锌硫化物-石英脉和碳酸盐交代型铅锌硫化物脉。江永铅锌银矿床和玉龙钼矿床分别以碳酸盐交代型和脉状矽卡岩型成矿为主。对铜山岭铜铅锌矿床中近端外矽卡岩内的石榴子石进行LA-ICP-MS U-Pb定年得出162.0±3.7 Ma 的 207Pb/235U-206Pb/238U谐和年龄,其加权平均 206Pb/238U 年龄为 162.4±4.2 Ma。铜山岭铜铅锌矿床近端内矽卡岩、近端外矽卡岩和远端矽卡岩中的辉钼矿具有一致的Re-O模式年龄,其加权平均值为161.9±1.1 Ma,由这些不同成矿类型的辉钼矿共同构成的187Re-187Os等时线年龄为161.8±1.7 Ma。玉龙钼矿矽卡岩中辉钼矿的187Re-187Os等时线年龄为160.0±5.8 Ma,其加权平均模式年龄为160.1±0.8 Ma。蚀变花岗闪长岩中热液榍石的LA-ICP-MS U-Pb定年分别在Wetherill和Tera-Wasserburg谐和图解中得出155.5±3.1 Ma和155.6±3.1 Ma的下交点年龄,其206Pb/238U年龄的加权平均值为154.4±1.9 Ma。结合前人的定年结果得出铜山岭矿田的三个矿床几乎同时形成于160-162 Ma,和铜山岭花岗闪长岩(160-164 Ma)一致。较年轻的热液榍石U-Pb年龄指示了一期较晚的热液事件,可能与铜山岭矿区晚期的碳酸盐交代成矿作用有关。S,Pb和H-O同位素研究表明铜山岭矿区的成矿物质和成矿流体都来源于铜山岭岩体。Cu和Zn很可能通过部分熔融来自镁铁质角闪岩相下地壳,然而,Pb为上升的花岗闪长质岩浆对上地壳萃取所得。基于矿床地质、年代学和同位素地球化学研究认为,铜山岭矿区的不同成矿类型和矿床在成因上相互关联,是同一个和铜山岭花岗闪长质岩体有关的矽卡岩系统演化和分带的产物。南岭地区中-晚侏罗世铜铅锌矿床与钨矿床的对比显示花岗质岩浆是铜铅锌与钨成矿作用中重要的成矿物质和成矿流体来源。两类矿床中的硫化物具有一致的上地壳铅同位素成分。钨矿床的上地壳铅同位素特征可能继承自含钨花岗岩的中-上地壳源区,而铜铅锌矿床的上地壳铅同位素特征可能指示了下地壳来源的含矿岩浆对上地壳铅的萃取。值得注意的是,铜铅锌矿床的辉钼矿Re-Os年龄集中于153.8-166.0 Ma,峰值为159.9 Ma,而钨矿床的辉钼矿Re-Os年龄集中于146.9-160.0 Ma,峰值为154.5 Ma。两者存在约5 Ma的时差,与含铜铅锌与含钨花岗岩之间约5 Ma的时差一致,进一步证明了两类含矿花岗岩分别形成于镁铁质角闪岩相下地壳和由富白云母变质沉积物组成的中-上地壳的依次部分熔融。钨矿床中辉钼矿的低Re含量(0.003-14.6 ppm)与含钨花岗岩的中-上地壳起源吻合,而铜铅锌矿床中辉钼矿的高Re含量(16.3-1841 ppm)与含铜铅锌花岗岩的镁铁质下地壳起源有关,不一定通过壳幔混合形成。世界上镁质矽卡岩钨矿的例子极少。相对于钙质矽卡岩钨矿,镁质矽卡岩钨矿的规模一般较小,通常不具有重要的经济价值。前人普遍认为,白云岩虽然有利于铁、锡、金的矽卡岩成矿作用,却趋向于阻碍含钨矽卡岩的形成。然而,以镁质矽卡岩为主的超大型魏家钨矿的发现颠覆了前人的认识,揭示了镁质矽卡岩对钨成矿作用的重要性。魏家钨矿的WO3资源量为30万吨(边界品位0.12 wt.%),其中镁质矽卡岩钨矿占24万吨,平均品位为0.18 wt.%,钙质矽卡岩钨矿占6万吨,平均品位为0.24 wt.%。另外,魏家钨矿还含有大量的萤石资源。一般矽卡岩钨矿的含矿花岗岩为深部侵位的粗粒花岗岩,而魏家钨矿和高分异花岗斑岩有关,该花岗斑岩显示出和次火山岩相花岗岩类似的岩相学特征。如此特殊的矽卡岩钨矿为进一步理解钨成矿作用提供了绝佳的机会。魏家花岗斑岩的基质具有霏细-细粒结构,六方双锥状石英斑晶常具有港湾状结构,微文象结构在钾长石中常见,一些钾长石斑晶的边缘可见特殊的“珠边”结构。矽卡岩矿体附近的花岗岩普遍被蚀变,镁质矽卡岩附近的花岗岩比钙质矽卡岩附近的花岗岩具有更强的蚀变程度。岩体顶部发育大量长英质网脉,主要包括第一期钾长石-石英伟晶岩脉、第二期(钾长石)-石英脉或细脉和第三期网状石英细脉。镁质矽卡岩矿体呈顺层状产于棋梓桥组中段白云岩中,埋深200-900 m。镁质矽卡岩呈网状细脉产于白云岩的裂隙中,主要由蛇纹石和金云母构成。钙质矽卡岩矿体呈团块状或层状产于棋梓桥组上段灰岩中,埋深小于300 m。硅灰石、石榴子石和辉石是主要的钙质矽卡岩矿物。白钨矿呈浸染状分布于镁质和钙质矽卡岩中。矽卡岩矿石的WO3和CaF2品位呈明显的正相关。根据详细的矿床地质观察、RSCM测温学、全岩地球化学和矿物学研究得出以下主要认识:魏家花岗岩由富氟岩浆结晶形成。花岗质熔体的高氟活度导致低岩浆粘度,从而促进花岗质岩浆的分离结晶和钨富集。随着温度逐渐降低,最终魏家花岗斑岩在水饱和条件下形成。岩浆到热液演化过程中,首先富氟水盐熔体通过液态不混溶作用分离,之后是贫氟热液流体的分离。富氟水盐熔体和贫氟热液流体都可以把钨从岩浆搬运到围岩中。镁质矽卡岩的形成温度明显低于钙质矽卡岩的形成温度。镁质矽卡岩化过程中相对较低的温度和较高的氟活度不利于无水进变质矽卡岩矿物(镁橄榄石和尖晶石等)的形成,却可以导致特殊的富氟石榴子石的形成。矽卡岩矿石中WO3和CaF2品位的正相关性主要受控于钙对氟和钨的同时沉淀。钙质矽卡岩矿石比镁质矽卡岩矿石具有更高的WO3品位是由于灰岩矽卡岩化过程比白云岩矽卡岩化过程具有更高的钙活度。控制南岭地区晚侏罗世镁质矽卡岩钨矿形成的关键因素主要包括:富集源区的存在、富氟岩浆的形成、高度结晶分异和富氟水盐熔体的分离。本文主要结论总结如下:(1)南岭地区中-晚侏罗世含铜铅锌与含钨花岗岩分别以分异程度较低的准铝质I型含角闪石花岗闪长岩和高分异过铝质的S型花岗岩为主。这两类含矿花岗岩分别源自下地壳镁铁质角闪岩相基底和中-上地壳富白云母变质沉积基底的非同时部分熔融。花岗岩源区成分的差异导致花岗岩成矿专属性不同,源区部分熔融的时间先后导致了含铜铅锌与含钨花岗岩之间存在5 Ma左右的时差。(2)南岭地区中-晚侏罗世含铜铅锌花岗闪长岩中暗色包体普遍存在。铜山岭花岗闪长岩中的暗色包体含有大量的镁铁质矿物团块、继承锆石、变质锆石和富钙斜长石核等残留物质,为残留体和寄主岩浆反应形成的改造残留包体。富角闪石团块为源区部分熔融后的富辉石残留物经岩浆改造而形成。铜山岭花岗闪长岩源自镁铁质下地壳中角闪岩的脱水熔融。南岭地区角闪岩相源区中丰富的成矿元素有利于含铜铅锌花岗闪长岩的形成。(3)铜山岭地区的正断层很可能形成于晚三叠世到早侏罗世的减压作用,而与中-晚侏罗世铜山岭花岗闪长岩的侵位无关。根据构造分析、RSCM温度计和EBSD面扫研究得出铜山岭花岗闪长岩的侵位始于南部并引起了接触带上围岩的强烈大理岩化和变形。岩浆侵位引起的围岩变形显着增加了围岩的渗透性,促进岩浆流体沿着变形裂隙渗透,从而在构造上控制了外矽卡岩脉和硫化物-石英脉的形成。(4)地质年代学研究揭示铜山岭多金属矿区的三个矿床几乎同时形成于160-162 Ma,和铜山岭花岗闪长岩(160-164Ma)一致。S,Pb和H-O同位素研究表明铜山岭矿区的成矿物质和成矿流体都来源于铜山岭岩体。Cu和Zn很可能通过部分熔融来自镁铁质角闪岩相下地壳,然而,Pb为上升的花岗闪长质岩浆对上地壳萃取所得。铜山岭矿区的不同成矿类型和矿床在成因上相互关联,是同一个和铜山岭花岗闪长质岩体有关的矽卡岩系统演化和分带的产物。(5)魏家花岗岩由经历了长期结晶分异和钨富集的富氟低粘度岩浆结晶形成。岩浆到热液演化过程中富氟水盐熔体通过液态不混溶作用的分离对钨的搬运起到重要作用。镁质矽卡岩化过程中相对较低的温度和较高的氟活度不利于无水进变质矽卡岩矿物的形成。钙作为氟和钨共同的沉淀剂导致了矽卡岩矿石的WO3和CaF2品位呈现明显的正相关。灰岩矽卡岩化过程比白云岩矽卡岩化过程具有更高的钙活度,导致钙质矽卡岩矿石比镁质矽卡岩矿石具有更高的WO3品位。

Lisaia Daria(达丽娅)[3](2019)在《俄罗斯城市可持续发展及其对中国城市的启示研究》文中研究表明城市可持续发展是我们地球繁荣未来的一个重要方面。根据2005年联合国世界峰会的成果,可持续发展的概念包含三个基本要素:社会、经济和环境。社会经济发展问题是国家政策的核心。从方法和途径到解决(具体)问题的方案取决于国家的繁荣和国民的经济生活水平。面对严峻的全球竞争,城市居住模式的管理以及寻求组织和管理人力、国土和生产资源的最佳解决方案是社会经济发展的途径之一。目前国家最高一级的国土开发规划和管理流程的演变正在进行,并与其他各级政府的规划系统进行协调。根据在2017年5月8日至12日举行的联合国人类住区规划署理事会第二十六届会议的报告,这是在城市(市政)层面提高国家政策执行效率和改善城市环境质量的关键要求之一。国家政策发展的另一个重要要求是将传统经济转变为知识经济,并带领该国走向世界技术领先,这是最可持续的经济发展方式。建立国家的创新基础设施是实现这些任务的必要条件之一。在此背景下,对世界上最大的两个国家(俄罗斯和中国)的城市发展经验的研究正在成为城市规划、设计和建筑广阔领域专家的宝贵知识来源。本文的研究目标是明确俄罗斯和中国社会经济政策的优先事项并对其在国土和城市规划层面的实施机制进行比较分析,这两者是国家可持续发展的重要条件。全文分为五个部分,共八章。其中第一部分(第1章)对课题相关的文献进行综述和分析,并制定研究目标、研究对象、研究假设和研究方法。第二部分(第2-3章)介绍第一项研究成果,即俄罗斯和中国城市可持续发展的比较分析,并对可持续城市规划和城市化进程两个主题进行详细描述与对第一项研究的结果进行讨论。第三部分(第4-7章)介绍第二项研究成果,即俄罗斯的案例研究,相关主题包括:俄罗斯城市可持续发展的社会经济问题;俄罗斯的创新基础设施;从科学定居点到斯科尔科沃创新中心的苏联科学城市发展历史回顾;斯科尔科沃创新中心的城市规划理念。第四部分(第8章)对第二项研究的结果进行讨论,探讨城市发展在国家可持续发展过程中的作用。第五部分介绍结论并对后续的科研工作提出建议。论文作者对俄罗斯和中国的历史,以及两国在20世纪和当下建设现代国家的过程中所经历的困难道路深表敬意和理解。尽管在经济、社会、文化和地缘上存在差异,两个国家都是在现在和未来为和平与稳定做出巨大努力的强大的现代国家。

Maoyan ZHU,Aihua YANG,Jinliang YUAN,Guoxiang LI,Junming ZHANG,Fangchen ZHAO,Soo-Yeun AHN,Lanyun MIAO[4](2019)在《Cambrian integrative stratigraphy and timescale of China》文中提出The Cambrian Period is the first period of the Phanerozoic Eon and witnessed the explosive appearance of the metazoans, representing the beginning of the modern earth-life system characterized by animals in contrary to the Precambrian earth-life system dominated by microbial life. However, understanding Cambrian earth-life system evolution is hampered by regional and global stratigraphic correlations due to an incomplete chronostratigraphy and consequent absence of a highresolution timescale. Here we briefly review the historical narrative of the present international chronostratigraphic framework of the Cambrian System and summarize recent advances and problems of the undefined Cambrian stage GSSPs, in particular we challenge the global correlation of the GSSP for the Cambrian base, in addition to Cambrian chemostratigraphy and geochronology. Based on the recent advances of the international Cambrian chronostratigraphy, revisions to the Cambrian chronostratigraphy of China, which are largely based on the stratigraphic record of South China, are suggested, and the Xiaotanian Stage is newly proposed for the Cambrian Stage 2 of China. We further summarize the integrative stratigraphy of South China, North China and Tarim platforms respectively with an emphasis on the facies variations of the Precambrian-Cambrian boundary successions and problems for identification of the Cambrian base in the different facies and areas of China. Moreover, we discuss stratigraphic complications that are introduced by poorly fossiliferous dolomite successions in the upper Cambrian System which are widespread in South China, North China and Tarim platforms.

Diying HUANG[5](2019)在《Jurassic integrative stratigraphy and timescale of China》文中研究表明The Jurassic stratigraphy in China is dominated by continental sediments. Marine facies and marine-terrigenous facies sediment have developed locally in the Qinghai-Tibet area, southern South China, and northeast China. The division of terrestrial Jurassic strata has been argued, and the conclusions of biostratigraphy and isotope chronology have been inconsistent.During the Jurassic period, the North China Plate, South China Plate, and Tarim Plate were spliced and formed the prototype of ancient China. The Yanshan Movement has had a profound influence on the eastern and northern regions of China and has formed an important regional unconformity. The Triassic-Jurassic boundary(201.3 Ma) is located roughly between the Haojiagou Formation and the Badaowan Formation in the Junggar Basin, and between the Xujiahe Formation and the Ziliujing Formation in the Sichuan Basin. The early Early Jurassic sediments generally were lacking in the eastern and central regions north of the ancient Dabie Mountains, suggesting that a clear uplift occurred in the eastern part of China during the Late Triassic period when it formed vast mountains and plateaus. A series of molasse-volcanic rock-coal strata developed in the northern margin of North China Craton in the Early Jurassic and are found in the Xingshikou Formation, Nandailing Formation, and Yaopo Formation in the West Beijing Basin. The geological age and markers of the boundary between the Yongfeng Stage and Liuhuanggou Stage are unclear. About 170 Ma ago, the Yanshan Movement began to affect China. The structural system of China changed from the near east-west Tethys or the Ancient Asia Ocean tectonic domain to the north-north-east Pacific tectonic domain since 170–135 Ma. A set of syngenetic conglomerate at the bottom of the Haifanggou or Longmen Fms. represented another set of molasse-volcanic rock-coal strata formed in the Yanliao region during the Middle Jurassic Yanshan Movement(Curtain A1). The bottom of the conglomerate is approximately equivalent to the boundary of the Shihezi Stage and Liuhuanggou Stage. The bottom of the Manas Stage creates a regional unconformity in northern China(about 161 Ma, Volcanic Curtain of the Yanshan Movement, Curtain A2). The Jurassic Yanshan Movement is likely related to the southward subduction of the Siberian Plate to the closure of the Mongolia-Okhotsk Ocean. A large-scale volcanic activity occurred in the Tiaojishan period around 161–153 Ma. Note that 153 Ma is the age of the bottom Tuchengzi Formation, and the bottom boundary of the Fifth Stage of the Jurassic terrestrial stage in China should have occurred earlier than this. This activity was marked by a warming event at the top of the Toutunhe Formation, and the change in the biological assembly is estimated to be 155 Ma. The terrestrial Jurassic-Cretaceous boundary(ca. 145.0 Ma) in the Yanliao region should be located in the upper part of Member 1 of the Tuchengzi Formation, the Ordos Basin in the upper part of the Anding Formation, the Junggar Basin in the upper part of the Qigu Formation, and the Sichuan Basin in the upper part of the Suining Formation The general characteristics of terrestrial Jurassic of China changed from the warm and humid coal-forming environment of the Early-Middle Jurassic to the hot, dry, red layers in the Late Jurassic. With the origin and development of the Coniopteris-Phoenicopsis flora, the Yanliao biota was developed and spread widely in the area north of the ancient Kunlun Mountains, ancient Qinling Mountains, and ancient Dabie Mountain ranges in the Middle Jurassic, and reached its great prosperity in the Early Late Jurassic and gradually declined and disappeared and moved southward with the arrival of a dry and hot climate.

JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu[6](2021)在《New innovations in pavement materials and engineering:A review on pavement engineering research 2021》文中研究表明Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges. In the past 10 years, the pavement infrastructure strongly supports the rapid development of the global social economy. New theories, new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem. Because of actual coupled behaviors of traffic and environmental conditions, predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis. In order to summarize the current and determine the future research of pavement engineering, Journal of Traffic and Transportation Engineering(English Edition) has launched a review paper on the topic of "New innovations in pavement materials and engineering: A review on pavement engineering research 2021". Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering, this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world. The content includes asphalt binder performance and modeling, mixture performance and modeling of pavement materials,multi-scale mechanics, green and sustainable pavement, and intelligent pavement.Overall, this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.

汪相[7](2018)在《白云鄂博超大型稀土—铌—铁矿床的成矿时代及成因探析——兼论P—T之交生物群灭绝事件和“阿蒙兴造山运动”》文中认为白云鄂博矿床是世界上最大的稀土矿床,同时也是一个特大型铌矿和大型铁矿,其成矿时代及成因至今仍有多种不同认识。本研究从东部接触带(菠萝头山)3号铌矿体内的金云母岩中获得残留锆石和热液独居石,测得其U-Pb年龄分别为269.5±3.1 Ma和249±13 Ma;从巴音敖包伟晶岩中获得热液锆石,测得其U-Pb年龄为248.9±2.5 Ma。结合阿尔泰—天山—北山—内蒙古—大兴安岭—小兴安岭造山带中的成矿年龄资料,笔者推测,在248%251 Ma白云鄂博地区发生了一次强烈的热液活动,该热液活动的时间可以代表白云鄂博矿床的成矿年龄。基于绝大多数稀有金属热液矿床都是与花岗质岩浆活动关联的,本研究对白云鄂博地区出露的两类花岗岩进行了岩相学、矿物学、地球化学和锆石学分析,从而确定白云鄂博花岗岩基中的黑云母二长花岗岩(主体相)为同碰撞花岗岩,其定位年龄为269.8±2.0 Ma;而白云鄂博花岗岩基中的二云母碱长花岗岩(补体相)为碰撞后花岗岩,其定位年龄为250.5±6.0 Ma。根据二云母碱长花岗岩的成岩年龄等于白云鄂博矿床的成矿年龄,以及大量的野外地质现象和区域地质资料,笔者认为:(1)该二云母碱长花岗岩为白云鄂博矿床的成矿母岩,它的岩浆直接来自地壳深部岩浆房;(2)该岩浆房就是同碰撞花岗岩浆的岩浆房,这意味着留存在该岩浆房中的巨量花岗岩浆经历了近20 Ma的分离结晶作用,从而在岩浆房上部聚集了富含成矿物质的残余花岗岩浆;(3)当构造环境由挤压转为拉张时,该残余花岗岩浆沿着张性断裂被动侵位。由于快速上升引起压力和温度的骤降,富含稀有金属(稀土和铌)、卤素(氟)和碱金属的硅质热液从残余花岗岩浆中分离出来;(4)这种硅质热液沿断裂构造率先进入白云鄂博群H8白云岩岩层,与碳酸盐发生交代反应,其稀土和铌金属元素沉淀成矿;同时,H8白云岩岩层中的菱铁矿和铁白云石分解,释放出Fe2+和[CO3](2-),前者(Fe2+)经近距离迁移后沉淀成铁矿,后者([CO3]2-)与少量稀土—铌元素结合成金属—碳酸络合物,呈脉状穿插在H8白云岩中,或迁移至H8白云岩的外围。该认识首次将白云鄂博地区的构造、成岩和成矿有机地统一起来,从而阐释了一个致白云鄂博矿床形成的能量和物质的运移过程;同时,该认识可以整合多种流行的白云鄂博矿床成因认识("正常或热水沉积说"、"火成碳酸岩说"、"热液交代说"等等)中的合理因素;笔者认为,它是一个全面、系统而又新颖的白云鄂博矿床的成矿模式。

Dangpeng XI,Xiaoqiao WAN,Guobiao LI,Gang LI[8](2019)在《Cretaceous integrative stratigraphy and timescale of China》文中研究表明Cretaceous strata are widely distributed across China and record a variety of depositional settings. The sedimentary facies consist primarily of terrestrial, marine and interbedded marine-terrestrial deposits, of which marine and interbedded facies are relatively limited. Based a thorough review of the subdivisions and correlations of Cretaceous strata in China, we provide an up-to-date integrated chronostratigraphy and geochronologic framework of the Cretaceous system and its deposits in China.Cretaceous marine and interbedded marine-terrestrial sediments occur in southern Tibet, Karakorum, the western Tarim Basin,eastern Heilongjiang and Taiwan. Among these, the Himalayan area has the most complete marine deposits, the foraminiferal and ammonite biozonation of which can be correlated directly to the international standard biozones. Terrestrial deposits in central and western China consist predominantly of red, lacustrine-fluvial, clastic deposits, whereas eastern China, a volcanically active zone, contains clastic rocks in association with intermediate to acidic igneous rocks and features the most complete stratigraphic successions in northern Hebei, western Liaoning and the Songliao Basin. Here, we synthesise multiple stratigraphic concepts and charts from southern Tibet, northern Hebei to western Liaoning and the Songliao Basin to produce a comprehensive chronostratigraphic chart. Marine and terrestrial deposits are integrated, and this aids in the establishment of a comprehensive Cretaceous chronostratigraphy and temporal framework of China. Further research into the Cretaceous of China will likely focus on terrestrial deposits and mutual authentication techniques(e.g., biostratigraphy, chronostratigraphy, magnetostratigraphy and cyclostratigraphy). This study provides a more reliable temporal framework both for studying Cretaceous geological events and exploring mineral resources in China.

Yi-wen Ju,Cheng Huang,Yan Sun,Cai-neng Zou,Hong-ping He,Quan Wan,Xue-qiu Wang,Xian-cai Lu,Shuang-fang Lu,Jian-guang Wu,Hong-tai Chao,Hai-ling Liu,Jie-shan Qiu,Fei Huang,Hong-jian Zhu,Jian-chao Cai,Yue Sun[9](2018)在《Nanogeology in China: A review》文中提出Nanogeology is a subject that is a combination of geology and nanoscale science, and it has been a frontier field in recent years. It is also a new subject with the features of intersectionality and multidisciplinary.Digging deeper into geological problems and nanoscale phenomena helps better revealing the more essential mechanisms and processes in geological science, which is also an evitable path in the development of geology. In this paper, we elaborate the concept, feature and main subdisciplines, and summarize three stages of nanogeology development from preliminary research in the 1990 s to subject formation in China. After summarizing the researchers ’ achievements in this field, we illustrate some primary research progresses of nanogeology in China as eight subdisciplines. On the basis of the above content, we propose the development prospect of nanogeology in China. There are many geologic problems with scientific values and economic benefits, such as research of geologic fundamental problems, resource exploration and development, mechanism study and prediction of geological activities(disasters), mechanism research and management of environmental pollution and others. Nanogeology has a great potential in China to solve all of these problems. As a result, the theories and methods of nanogeology will become enriching and advanced. It offers important theoretical basis and technological methods to deal with major issues concerning the national economy and the people’s livelihoods, such as the prediction of geological activities, as well as resource distribution and its exploration and utilization.

YAO Jianxin,BO Jingfang,HOU Hongfei,WANG Zejiu,MA Xiulan,LIU Fengshan,HU Guangxiao,JI Zhansheng,WU Guichun,WU Zhenjie,LI Suping,GUO Caiqing,LI Ya[10](2016)在《Status of Stratigraphy Research in China》文中研究说明Scientific research and productive practice for earth history are inseparable from the accurate stratigraphic framework and time framework. Establishing the globally unified, precise and reliable chronostratigraphic series and geological time series is the major goal of the International Commission on Stratigraphy(ICS). Under the leadership of the ICS, the countries around the world have carried out research on the Global Standard Stratotype-section and Points(GSSPs) for the boundaries of chronostratigraphic systems. In the current International Chronostratigraphic Chart(ICC), 65 GSSPs have been erected in the Phanerozoic Eonothem, and one has yet been erected in the Precambrian Eonothem. Based on the progress of research on stratigraphy especially that from its subcommissions, the ICS is constantly revising the ICC, and will publish a new International Stratigraphic Guide in 2020. After continual efforts and broad international cooperation of Chinese stratigraphers, 10 GSSPs within the Phanerozoic Eonothem have been approved and ratified to erect in China by the ICS and IUGS. To establish the standards for stratigraphic division and correlation of China, with the support from the Ministry of Science and Technology, the National Natural Science Foundation of China and the China Geological Survey, Chinese stratigraphers have carried out research on the establishment of Stages in China. A total of 102 stages have been defined in the "Regional Chronostratigraphic Chart of China(geologic time)", in which 59 stages were studied in depth. In 2014, the "Stratigraphic Chart of China" was compiled, with the essential contents as follows: the correlation between international chronostratigraphy and regional chronostratigraphy of China(geologic time), the distributive status of lithostratigraphy, the characteristics of geological ages, the biostratigraphic sequence, the magnetostratigraphy, the geological events and eustatic sea-level change during every geological stage. The "Stratigraphical Guide of China and its Explanation(2014)" was also published. Chinese stratigraphers have paid much attention to stratigraphic research in south China, northeast China, north China and northwest China and they have made great achievements in special research on stratigraphy, based on the 1:1000000, 1:250000, 1:200000 and 1:50000 regional geological survey projects. Manifold new stratigraphic units were discovered and established by the regional geological surveys, which are helpful to improve the regional chronostratigraphic series of China. On the strength of the investigation in coastal and offshore areas, the status of marine strata in China has been expounded. According to the developing situation of international stratigraphy and the characteristics of Chinese stratigraphic work, the contrast relation between regional stratigraphic units of China and GSSPs will be established in the future, which will improve the application value of GSSPs and the standard of regional stratigraphic division and correlation. In addition, the study of stratigraphy of the Precambrian, terrestrial basins and orogenic belts will be strengthened, the Stratigraphic Chart of China will be improved, the typical stratigraphic sections in China will be protected and the applied study of stratigraphy in the fields of oil and gas, solid minerals, etc. will be promoted. On the ground of these actions, stratigraphic research will continue to play a great role in the social and economic development of China.

二、NANJING INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、NANJING INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文提纲范文)

(1)The Present Research and Prospect of Chinese Geosciences History(论文提纲范文)

1 The History and Present Situation of the Research on the History of International Geological Science
    1.1 The change of the content of the study
    1.2 Organizations and research institutes
    1.3 Publications and authors
2 The Present Situation and Progress of the Study of the Chinese Geological Science History
    2.1 A brief account of the development of the Chinese geological science history
    2.2 Research institutes and research groups
    2.3 The guiding ideology of the research on the history of geological science
    2.4 Major progress in recent years
        2.4.1 Promote interaction between Chinese geological science and social development in China
        2.4.2 A study on the history of geological disciplines of China
        2.4.3 A study of geological characters
        Kwong Yung Kong(1863-1965)
        Woo Yang Tsang(1861-1939)
        Gu Lang(1880-1939)
        Lu Xun(1881-1936)
        Wang Chongyou(1879-1985)
        Zhang Hongzhao(1877-1951)
        Ding Wenjiang(1887-1936)
        Weng Wenhao(1889-1971)
        Li Siguang(1889-1971)
        R.Pumpelly(1837-1923)
        Richthofen,Ferdinand von(1833-1905)
        Amadeus Willian Grabau(1870-1946)
        Johann Gunnay Andersson(1874-1960)
        Prerre Teilhaya de Chardin(1881-1955)
        2.4.4 The study of history of ancient geological thoughts
        2.4.5 The study of the geological cause
        2.4.6 Research of the history of the communication of Chinese and foreign geological science
3 Development Prospect
4 Conclusion

(2)南岭中—晚侏罗世含铜铅锌与含钨花岗岩及其矽卡岩成矿作用 ——以铜山岭和魏家矿床为例(论文提纲范文)

摘要
Abstract
Chapter 1. Introduction
    1.1 Research background and scientific problems
        1.1.1. Research background
        1.1.2. Scientific problems
    1.2. Topic selection and research contents
        1.2.1. Topic selection
        1.2.2. Research contents
    1.3. Resemch methodology and technical route
        1.3.1. Research methodology
        1.3.2. Technical route
    1.4. Workload and research achievements
        1.4.1. Workload
        1.4.2. Main findings and innovations
Chapter 2. Geological setting -
    2.1. South China
        2.1.1. Geodynamic evolution
        2.1.2. Multiple-aged granitoids and volcanic rocks
        2.1.3. Polymetallic mineralization
    2.2. Nanling Range
        2.2.1. Middle-Late Jurassic ore-bearing granitoids
        2.2.2. Middle-Late Jurassic skam deposits
Chapter 3. Geology of the Tongshanling-Weijia area
    3.1. Stratigraphy
    3.2. Structures
    3.3. Magmatism
    3.4. Mineralization
Chapter 4. Different origins of the Cu-Pb-Zn-bearing and W-bearing granitoids
    4.1. Introduction
    4.2. Petrography of granitoids
        4.2.1. Tongshanling granodiorite porphyry
        4.2.2. Dioritic dark enclaves
        4.2.3. Tongshanling granite porphyry
        4.2.4. Weijia granite porphyry
    4.3. Sampling and analytical methods
    4.4. Results
        4.4.1. Zircon U-Pb age
        4.4.2. Zircon Hf isotope
        4.4.3. Whole-rock major elements
        4.4.4. Whoie-rock trace and rare earth elements
        4.4.5. Whole-rock Sr-Nd isotopes
    4.5. Discussion
        4.5.1. Timing of granitoids
        4.5.2. Degree of fractionation
        4.5.3. Petrogenesis
        4.5.4. Sources of the Cu-Pb-Zn-bearing and W-bearing granitoids
        4.5.5. Genetic model of the Cu-Pb-Zn-bearing and W-bearing granitoids
    4.6. Summary
Chapter 5. Reworked restite enclave
    5.1. Introduction
    5.2. Tongshanling granodiorite and its microgramilar enclaves
    5.3. Petrography
        5.3.1. Tongshanling granodiorite
        5.3.2. Microgranular enclaves
    5.4. Analytical methods
    5.5. Analytical results
        5.5.1. Plagioclase
        5.5.2. Amphibole
        5.5.3. Biotite
        5.5.4. Zircon
    5.6. Discussion
        5.6.1. Textural evidence
        5.6.1.1. Residual materials
        5.6.1.2. Vestiges of magma reworking
        5.6.2. Compositional evidence
        5.6.2.1. Magmatic amphibole
        5.6.2.2. Metamorphic amphibole
        5.6.2.3. Magma reworked metamorphic amphibole
        5.6.2.4. Zircon and plagioclase
        5.6.2.5. Biotite
        5.6.2.6. Residual materials in the granodiorite
        5.6.2.7. Geochemical signatures
        5.6.3. Geothermobarometry
        5.6.3.1. Temperature
        5.6.3.2. Pressure
        5.6.4. The model for reworked restite enclave
    5.7. Petrogenetic implications
Chapter 6. Magma emplacement-induced structural control on skarn formation
    6.1. Introduction
    6.2. Regional structural analysis
        6.2.1. Normal fault
        6.2.2. Contact zone
    6.3. Deposit geology
        6.3.1. Endoskarn
        6.3.2. Exoskarn
        6.3.3. Sulfide-quartz vein
    6.4. Sampling and analytical methods
    6.5. Results
        6.5.1. RSCM thermometry
        6.5.2. EBSD mapping
        6.5.3. Garnet composition
    6.6. Discussion
    6.7. Summary
Chapter 7. Zonation and genesis of the Tongshanling Cu-Mo-Pb-Zn-Ag skarn system
    7.1. Introduction
    7.2. Deposit geology
        7.2.1. Tongshanling Cu-Pb-Zn deposit
        7.2.1.1. Proximal endoskam
        7.2.1.2. Proximal exoskam
        7.2.1.3. Distal skam
        7.2.1.4. Sulfide-quartz vein
        7.2.1.5. Carbonate replacement
        7.2.1.6. Ore types
        7.2.1.7. Paragenesis
        7.2.2.Jiangj ong Pb-Zn-Ag deposit
        7.2.3. Yulong Mo deposit
    7.3. Sampling and analytical methods
    7.4. Results
        7.4.1. Garnet U-Pb dating
        7.4.2. Molybdenite Re-Os dating
        7.4.3. Titanite U-Pb dating
        7.4.4. S isotope
        7.4.5. Pb isotope
        7.4.6. H-O isotopes
    7.5. Discussion
        7.5.1. Timing of mineralization
        7.5.2. Sources of ore-forming materials
        7.5.3. Nature of ore-forming fluids
        7.5.4. Genetic links between different mineralization types and ore deposits
        7.5.5. Ore-forming process
        7.5.6. Comparison with the Late Jurassic W deposits in the Nanling Range
    7.6. Summary
Chapter 8. Ore-forming process of the Weijia scheelite skarn deposit
    8.1 Introduction
    8.2. Deposit geology
        8.2.1. Stratigraphy
        8.2.2. Weijia granite
        8.2.3. Stockwork veins
        8.2.4. Magnesian skarn
        8.2.5. Calcic skarn
        8.2.6. Relationship between WO_3 and CaF_2 grades
    8.3. Sampling and analytical methods
    8.4. Results
        8.4.1. RSCM thermometry
        8.4.2. Altered granite
        8.4.3. Biotite
        8.4.4. White mica
        8.4.5. Serpentine
        8.4.6. Phlogopite
        8.4.7. Garnet
        8.4.8. Pyroxene
        8.4.9. Wollastonite
        8.4.10. Vesuvianite
        8.4.11. Scheelite
    8.5. Estimation of fluorine activity
    8.6. Discussion
        8.6.1. Fluorine promoting magmatic fractionation and tungsten enrichment
        8.6.2. Magmatic to hydrothermal evolution
        8.6.3. Magnesian and calcic skarn formation
        8.6.4. Calcium as the precipitant of fluorine and tungsten
        8.6.5. Ore-forming process
        8.6.6. Metallogenic model
    8.7. Summary
Chapter 9. Conclusions and perspectives
    9.1. Conclusions
    9.2. Perspectives
Acknowledgements
References
Appendices
Publications and participated academic activities

(3)俄罗斯城市可持续发展及其对中国城市的启示研究(论文提纲范文)

摘要
ABSTRACT
CHAPTER Ⅰ Introduction
    1.1 Research background
    1.2 Research goal and objectives
    1.3 Literature review
        1.3.1 Concept of sustainable development
        1.3.2 Social-Economic aspects of regional planning and urban development in Russia
    1.4 Materials and methods
        1.4.1 Research framework
        1.4.2 Materials and methods
CHAPTER Ⅱ Concept of Sustainable Development
    2.1 Sustainable development
        2.1.1 Phenomenon 'climate change'
        2.1.2 Urbanization
        2.1.3 Relationship between climate change and urbanization
        2.1.4 International level commitments
        2.1.5 Conclusion
    2.2 Sustainable urban planning in Russian Federation
        2.2.1 Introduction
        2.2.2 Sustainable development in Russia
        2.2.3 Russian town-planning legislative base
        2.2.4 Russian national green building technical legislative base
        2.2.5 GIS Technology into the Russian town-planning practice
        2.2.6 Conclusion
    2.3 Sustainable urban planning in People's Republic of China
        2.3.1 Introduction
        2.3.2 Sustainable development in China
        2.3.3 Chinese urban planning legislative base National Garden City
        2.3.4 Chinese national green building technical legislative base
        2.3.5 Conclusion
    References
CHAPTER Ⅲ Transformation of the Scientific Views on the Process of Urbanization
    3.1 Process of urbanization in Russian Federation
        3.1.1 Introduction
        3.1.2 Three waves of Russian urbanization
        3.1.3 First wave of urbanization1860s-
        3.1.4 Second wave of urbanization1926-
        3.1.5 Third wave of urbanization in1950s
        3.1.6 Conclusion
    3.2 Process of urbanization in People's Republic of China
        3.2.1 Introduction
        3.2.2 Three great historical transformations of China
        3.2.3 First historical transformation(1911)
        3.2.4 Second historical transformation(1949)
        3.2.5 Third historical transformation(1978)
        3.2.6 Conclusion
        References
    3.3 Results of the comparative analysis of sustainable urban development in Russian Federation and People's Republic of China
        3.3.1 Introduction
        3.3.2 Has comparative analysis value?
        3.3.3 What is the valuable experience of both countries in the modern urban development?
        3.3.4 Conclusion
CHAPTER Ⅳ Socio-economic aspects of regional planning and urban development in Russian Federation
    4.1 Introduction
    4.2 Literature review
    4.3 Historical background
    4.4 All-Russia forum‘Strategic Planning in the Regions and Cities of Russia’
    4.5 Inquire into the relationship between priorities of sustainable development,strategic planning and Russian socio-economic policy
        4.5.1 Strategic planning system of the Russian Federation
        4.5.2 Spatial Development Strategy of the Russian Federation to 2025
        4.5.3 Interrelation of the documents of strategic and territorial planning of Russian Federation
        4.5.4 Russian state policy of innovation development
    4.6 Conclusion
    References
CHAPTER Ⅴ Historical overview of the Soviet science cities development
    5.1 Introduction
    5.2 Historical overview of the science cities development1917-1980s
        5.2.1 Urban design trends in the science settlements creation,1930s
        5.2.2 Urban design trends in science cities establishment after the Great Patriotic War.The beginning period of the Cold War
        5.2.3 Urban design trends in the science cities establishment in1960-1970.The period of the formulation of a standard approach to design and construction
        5.2.4 Summing up the results of the Soviet period of the construction of the science cities of1930s-1980s
    5.3 Urban design trends in the science cities establishment in1990s
    5.4 Urban design trends in the science cities establishment after2010s
    5.5 Conclusion
    References
CHAPTER Ⅵ Russian innovation infrastructure
    6.1 Introduction
    6.2 National innovation system of the Russian Federation
    6.3 Innovation Infrastructure:territorial level
        6.3.1 Innovation special economic zones
        6.3.2 Innovation and industrial clusters'
    6.4 Innovation infrastructure physical level:technoparks and business incubators
        6.4.1 Technoparks
        6.4.2 Technopark-leaders of the II National Russian Technoparks Ranking-2016
    6.5 Conclusion
    References
CHAPTER Ⅶ CASE OF STUDY:Skolkovo Innovation Center
    7.1 Introduction
        7.1.1 Skolkovo Innovation Center
    7.2 Aim of creating Skolkovo Innovation Center
    7.3 Types of infrastructure of the Skolkovo Innovation Center
    7.4 Results of international competition for Skolkovo IC master plan concept
        7.4.1 Finalist of international competition for Skolkovo IC Masterplan OMA
        7.4.2 Winner of international competition for Skolkovo IC master plan- AREP
    7.5 Structure of Skolkovo IC Town Planning Board
    7.6 Development strategy and documents of Skolkovo IC master plan
    7.7 Skolkovo IC infrastructure construction financial program
    7.8 Transport accessibility to Skolkovo IC
    7.9 Key institutions facilities of the Skolkovo IC
        7.9.1 Skoltech- Skolkovo Institute of Science and Technology
        7.9.2 Research and development centres of the Skolkovo IC District D
        7.9.3 Skolkovo Technopark building
        7.9.4 Business Center Amaltea(BC Gallery)
        7.9.5 IT-Cluster Business Park of the Skolkovo IC
        7.9.6 Transmashholding Corporate Research Center
        7.9.7 Hypercube the First Building of Skolkovo IC
        7.9.8 Skolkovo Business Center(MatRex)
        7.9.9 Sberbank Technopark
    7.10 Social infrastructure facilities of Skolkovo IC
    7.11 Housing facilities of Skolkovo IC
        7.11.1 Central Zone Z
        7.11.2 South District D
        7.11.3 Technopark District D
    7.12 Skolkovo IC landscape design
    7.13 Conclusion
CHAPTER Ⅷ Russian town-planning science in the context of socio-economic transformations
    8.1 Introduction
    8.2 Definition of the term"gradostroitelstvo"
    8.3 Historical overview of the town-planning science in Russia
        8.3.1 Socialist town-planning1917-
        8.3.2 Socialist town-planning1933-
        8.3.3 Socialist town-planning1941-
        8.3.4 Socialist town-planning1941-
    8.4 Theoretical foundations and unique traditions of town-planning science in Russia
    8.5 Russian fundamental research in the field of town-planning
    8.6 Course of town-planning in the Russian education system
        8.6.1 The town-planning faculty of the Moscow Architectural Institute(State Academy)MARHI
        8.6.2 Vysokovsky Graduate School of Urbanism
        8.6.3 Strelka Institute for Media,Architecture and Design
        8.6.4 MARCH Architecture School
        8.6.5 Summarizing the analysis of four urban planning schools in Russia
    8.7 Applied town-planning science
        8.7.1 Methods of town-planning analysis
        8.7.2 Interdisciplinary methods of town-planning analysis
    8.8 Conclusion
    References
CONCLUSION
SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY AND PRACTICE
APPENDIX Ⅰ
APPENDIX Ⅱ
APPENDIX Ⅲ
APPENDIX Ⅳ
APPENDIX Ⅴ
APPENDIX Ⅵ
APPENDIX Ⅶ
APPENDIX Ⅷ
APPENDIX Ⅸ
APPENDIX Ⅹ
APPENDIX ⅩⅠ
APPENDIX ⅩⅡ
ACKNOWLEDGEMENTS
SCIENTIFIC ACHIVEMENTS
Appreciate

(4)Cambrian integrative stratigraphy and timescale of China(论文提纲范文)

1. Introduction
2. Global chronostratigraphy and timescale of the Cambrian
    2.1 History review
    2.2 Ratified Cambrian series and stages
    2.3 Newly ratified GSSP for Cambrian Stage 5 (Series3)
    2.4 Cambrian Stage 10:the defined stage without ra-tified GSSP
    2.5 The undefined Cambrian stages
        2.5.1 Cambrian Stage 2
        2.5.2 Cambrian Stage 3
        2.5.3 Cambrian Stage 4
    2.6 Deficiency of the GSSP for the Cambrian base and global correlation dilemma
    2.7 Cambrian chemostratigraphy
    2.8 Cambrian geochronology
3. Cambrian chronostratigraphy and timescale of China
    3.1 Historical review
    3.2 Revision of the Cambrian chronostratigraphy of China
4. Subdivision and correlation of Cambrian stratigraphy in major regions of China
    4.1 South China
        4.1.1 Biostratigraphy of South China
        4.1.2 Chemostratigraphy of South China
        4.1.3 Geochronology of South China
    4.2 North China
        4.2.1 Biostratigraphy of North China
        4.2.2 Chemostratigraphy of North China
    4.3 Tarim
        4.3.1 Biostratigraphy of Tarim
        4.3.2 Chemostratigraphy of Tarim
5. Identification of the base of the Cambrian in China
    5.1 The base of the Cambrian in South China
    5.2 The diachronous base of the Cambrian in North China
    5.3 The base of the Cambrian in Tarim
6. Subdivision and correlation of the dolostone sequence of the upper Cambrian in China
7. Summary

(5)Jurassic integrative stratigraphy and timescale of China(论文提纲范文)

1. Introduction
2. Brief history of Chinese Jurassic studies
3. Continental Jurassic stratigraphic frame-work of China
    3.1 The Yongfeng Stage
    3.2 The Liuhuanggou Stage
    3.3 The Shihezi Stage
    3.4 The Manas Stage
    3.5 The Fifth Jurassic Stage
    3.6 Marine Jurassic
4. Comparison of Jurassic strata of China
    4.1 Terrestrial Triassic-Jurassic Boundary in China
    4.2 Terrestrial Jurassic-Cretaceous boundary of China
    4.3 Comparison of Jurassic Strata in Yanliao Area
    4.4 Comparison of Jurassic strata in North China and South China
5. Jurassic biostratigraphy in China
    5.1 Conchostracans
    5.2 Ostracods
    5.3 Bivalves
    5.4 Plants
    5.5 Pollen and spores
    5.6 Ammonites
6. Jurassic Yanshan Movement
7. Chinese Mesozoic Eastern Plateau and High Mountains
8. Yanliao Biota
9. Problems and future directions

(6)New innovations in pavement materials and engineering:A review on pavement engineering research 2021(论文提纲范文)

1. Introduction
    (1) With the society development pavement engineering facing unprecedented opportunities and challenges
    (2) With the modern education development pavement engineering facing unprecedented accumulation of scientific manpower and literature
2. Asphalt binder performance and modeling
    2.1. Binder damage,healing and aging behaviors
        2.1.1. Binder healing characterization and performance
        2.1.1. 1. Characterizing approaches for binder healing behavior.
        2.1.1. 2. Various factors influencing binder healing performance.
        2.1.2. Asphalt aging:mechanism,evaluation and control strategy
        2.1.2. 1. Phenomena and mechanisms of asphalt aging.
        2.1.2. 2. Simulation methods of asphalt aging.
        2.1.2. 3. Characterizing approaches for asphalt aging behavior.
        2.1.2. 4. Anti-aging additives used for controlling asphalt aging.
        2.1.3. Damage in the characterization of binder cracking performance
        2.1.3. 1. Damage characterization based on rheological properties.
        2.1.3. 2. Damage characterization based on fracture properties.
        2.1.4. Summary and outlook
    2.2. Mechanism of asphalt modification
        2.2.1. Development of polymer modified asphalt
        2.2.1. 1. Strength formation of modified asphalt.
        2.2.1. 2. Modification mechanism by molecular dynamics simulation.
        2.2.1. 3. The relationship between microstructure and properties of asphalt.
        2.2.2. Application of the MD simulation
        2.2.2. 1. Molecular model of asphalt.
        2.2.2. 2. Molecular configuration of asphalt.
        2.2.2. 3. Self-healing behaviour.
        2.2.2. 4. Aging mechanism.
        2.2.2. 5. Adhesion mechanism.
        2.2.2. 6. Diffusion behaviour.
        2.2.3. Summary and outlook
    2.3. Modeling and application of crumb rubber modified asphalt
        2.3.1. Modeling and mechanism of rubberized asphalt
        2.3.1. 1. Rheology of bituminous binders.
        2.3.1. 2. Rheological property prediction of CRMA.
        2.3.2. Micromechanics-based modeling of rheological properties of CRMA
        2.3.2. 1. Composite system of CRMA based on homogenization theory.
        2.3.2. 2. Input parameters for micromechanical models of CRMA.
        2.3.2. 3. Analytical form of micromechanical models of CRMA.
        2.3.2. 4. Future recommendations for improving micro-mechanical prediction performance.
        2.3.3. Design and performance of rubberized asphalt
        2.3.3. 1. The interaction between rubber and asphalt fractions.
        2.3.3. 2. Engineering performance of rubberized asphalt.
        2.3.3. 3. Mixture design.
        2.3.3. 4. Warm mix rubberized asphalt.
        2.3.3. 5. Reclaiming potential of rubberized asphalt pavement.
        2.3.4. Economic and Environmental Effects
        2.3.5. Summary and outlook
3. Mixture performance and modeling of pavement materials
    3.1. The low temperature performance and freeze-thaw damage of asphalt mixture
        3.1.1. Low temperature performance of asphalt mixture
        3.1.1. 1. Low temperature cracking mechanisms.
        3.1.1. 2. Experimental methods to evaluate the low temperature performance of asphalt binders.
        3.1.1. 3. Experimental methods to evaluate the low temperature performance of asphalt mixtures.
        3.1.1. 4. Low temperature behavior of asphalt materials.
        3.1.1.5.Effect factors of low temperature performance of asphalt mixture.
        3.1.1. 6. Improvement of low temperature performance of asphalt mixture.
        3.1.2. Freeze-thaw damage of asphalt mixtures
        3.1.2. 1. F-T damage mechanisms.
        3.1.2. 2. Evaluation method of F-T damage.
        3.1.2. 3. F-T damage behavior of asphalt mixture.
        (1) Evolution of F-T damage of asphalt mixture
        (2) F-T damage evolution model of asphalt mixture
        (3) Distribution and development of asphalt mixture F-T damage
        3.1.2. 4. Effect factors of freeze thaw performance of asphalt mixture.
        3.1.2. 5. Improvement of freeze thaw resistance of asphalt mixture.
        3.1.3. Summary and outlook
    3.2. Long-life rigid pavement and concrete durability
        3.2.1. Long-life cement concrete pavement
        3.2.1. 1. Continuous reinforced concrete pavement.
        3.2.1. 2. Fiber reinforced concrete pavement.
        3.2.1. 3. Two-lift concrete pavement.
        3.2.2. Design,construction and performance of CRCP
        3.2.2. 1. CRCP distress and its mechanism.
        3.2.2. 2. The importance of crack pattern on CRCP performance.
        3.2.2. 3. Corrosion of longitudinal steel.
        3.2.2. 4. AC+CRCP composite pavement.
        3.2.2. 5. CRCP maintenance and rehabilitation.
        3.2.3. Durability of the cementitious materials in concrete pavement
        3.2.3. 1. Deterioration mechanism of sulfate attack and its in-fluence on concrete pavement.
        3.2.3. 2. Development of alkali-aggregate reaction in concrete pavement.
        3.2.3. 3. Influence of freeze-thaw cycles on concrete pavement.
        3.2.4. Summary and outlook
    3.3. Novel polymer pavement materials
        3.3.1. Designable PU material
        3.3.1. 1. PU binder.
        3.3.1.2.PU mixture.
        3.3.1. 3. Material genome design.
        3.3.2. Novel polymer bridge deck pavement material
        3.3.2. 1. Requirements for the bridge deck pavement material.
        3.3.2.2.Polyurethane bridge deck pavement material(PUBDPM).
        3.3.3. PU permeable pavement
        3.3.3. 1. Permeable pavement.
        3.3.3. 2. PU porous pavement materials.
        3.3.3. 3. Hydraulic properties of PU permeable pavement materials.
        3.3.3. 4. Mechanical properties of PU permeable pavement ma-terials.
        3.3.3. 5. Environmental advantages of PU permeable pavement materials.
        3.3.4. Polyurethane-based asphalt modifier
        3.3.4. 1. Chemical and genetic characteristics of bitumen and polyurethane-based modifier.
        3.3.4. 2. The performance and modification mechanism of polyurethane modified bitumen.
        3.3.4. 3. The performance of polyurethane modified asphalt mixture.
        3.3.4. 4. Environmental and economic assessment of poly-urethane modified asphalt.
        3.3.5. Summary and outlook
    3.4. Reinforcement materials for road base/subrgrade
        3.4.1. Flowable solidified fill
        3.4.1. 1. Material composition design.
        3.4.1. 2. Performance control.
        3.4.1. 3. Curing mechanism.
        3.4.1. 4. Construction applications.
        3.4.1.5.Environmental impact assessment.
        3.4.1. 6. Development prospects and challenges.
        3.4.2. Stabilization materials for problematic soil subgrades
        3.4.2.1.Stabilization materials for loess.
        3.4.2. 2. Stabilization materials for expansive soil.
        3.4.2. 3. Stabilization materials for saline soils.
        3.4.2. 4. Stabilization materials for soft soils.
        3.4.3. Geogrids in base course reinforcement
        3.4.3. 1. Assessment methods for evaluating geogrid reinforce-ment in flexible pavements.
        (1) Reinforced granular material
        (2) Reinforced granular base course
        3.4.3. 2. Summary.
        3.4.4. Summary and outlook
4. Multi-scale mechanics
    4.1. Interface
        4.1.1. Multi-scale evaluation method of interfacial interaction between asphalt binder and mineral aggregate
        4.1.1. 1. Molecular dynamics simulation of asphalt adsorption behavior on mineral aggregate surface.
        4.1.1. 2. Experimental study on absorption behavior of asphalt on aggregate surface.
        4.1.1. 3. Research on evaluation method of interaction between asphalt and mineral powder.
        (1) Rheological mechanical method
        (2) Microscopic test
        4.1.1. 4. Study on evaluation method of interaction between asphalt and aggregate.
        4.1.2. Multi-scale numerical simulation method considering interface effect
        4.1.2. 1. Multi-scale effect of interface.
        4.1.2. 2. Study on performance of asphalt mixture based on micro nano scale testing technology.
        4.1.2. 3. Study on the interface between asphalt and aggregate based on molecular dynamics.
        4.1.2. 4. Study on performance of asphalt mixture based on meso-mechanics.
        4.1.2. 5. Mesoscopic numerical simulation test of asphalt mixture.
        4.1.3. Multi-scale investigation on interface deterioration
        4.1.4. Summary and outlook
    4.2. Multi-scales and numerical methods in pavement engineering
        4.2.1. Asphalt pavement multi-scale system
        4.2.1. 1. Multi-scale definitions from literatures.
        4.2.1. 2. A newly-proposed Asphalt Pavement Multi-scale System.
        (1) Structure-scale
        (2) Mixture-scale
        (3) Material-scale
        4.2.1. 3. Research Ideas in the newly-proposed multi-scale sys-
        4.2.2. Multi-scale modeling methods
        4.2.2. 1. Density functional theory (DFT) calculations.
        4.2.2. 2. Molecular dynamics (MD) simulations.
        4.2.2. 3. Composite micromechanics methods.
        4.2.2. 4. Finite element method (FEM) simulations.
        4.2.2. 5. Discrete element method (DEM) simulations.
        4.2.3. Cross-scale modeling methods
        4.2.3. 1. Mechanism of cross-scale calculation.
        4.2.3. 2. Multi-scale FEM method.
        4.2.3. 3. FEM-DEM coupling method.
        4.2.3. 4. NMM family methods.
        4.2.4. Summary and outlook
    4.3. Pavement mechanics and analysis
        4.3.1. Constructive methods to pavement response analysis
        4.3.1. 1. Viscoelastic constructive models.
        4.3.1. 2. Anisotropy and its characterization.
        4.3.1. 3. Mathematical methods to asphalt pavement response.
        4.3.2. Finite element modeling for analyses of pavement mechanics
        4.3.2. 1. Geometrical dimension of the FE models.
        4.3.2. 2. Constitutive models of pavement materials.
        4.3.2. 3. Variability of material property along with different directions.
        4.3.2. 4. Loading patterns of FE models.
        4.3.2. 5. Interaction between adjacent pavement layers.
        4.3.3. Pavement mechanics test and parameter inversion
        4.3.3. 1. Nondestructive pavement modulus test.
        4.3.3. 2. Pavement structural parameters inversion method.
        4.3.4. Summary and outlook
5. Green and sustainable pavement
    5.1. Functional pavement
        5.1.1. Energy harvesting function
        5.1.1. 1. Piezoelectric pavement.
        5.1.1. 2. Thermoelectric pavement.
        5.1.1. 3. Solar pavement.
        5.1.2. Pavement sensing function
        5.1.2. 1. Contact sensing device.
        5.1.2.2.Lidar based sensing technology.
        5.1.2. 3. Perception technology based on image/video stream.
        5.1.2. 4. Temperature sensing.
        5.1.2. 5. Traffic detection based on ontology perception.
        5.1.2. 6. Structural health monitoring based on ontology perception.
        5.1.3. Road adaptation and adjustment function
        5.1.3. 1. Radiation reflective pavement.Urban heat island effect refers to an increased temperature in urban areas compared to its surrounding rural areas (Fig.68).
        5.1.3. 2. Catalytical degradation of vehicle exhaust gases on pavement surface.
        5.1.3. 3. Self-healing pavement.
        5.1.4. Summary and outlook
    5.2. Renewable and sustainable pavement materials
        5.2.1. Reclaimed asphalt pavement
        5.2.1. 1. Hot recycled mixture technology.
        5.2.1. 2. Warm recycled mix asphalt technology.
        5.2.1. 3. Cold recycled mixture technology.
        (1) Strength and performance of cold recycled mixture with asphalt emulsion
        (2) Variability analysis of asphalt emulsion
        (3) Future prospect of cold recycled mixture with asphalt emulsion
        5.2.2. Solid waste recycling in pavement
        5.2.2. 1. Construction and demolition waste.
        (1) Recycled concrete aggregate
        (2) Recycled mineral filler
        5.2.2. 2. Steel slag.
        5.2.2. 3. Waste tire rubber.
        5.2.3. Environment impact of pavement material
        5.2.3. 1. GHG emission and energy consumption of pavement material.
        (1) Estimation of GHG emission and energy consumption
        (2) Challenge and prospect of environment burden estimation
        5.2.3. 2. VOC emission of pavement material.
        (1) Characterization and sources of VOC emission
        (2) Health injury of VOC emission
        (3) Inhibition of VOC emission
        (4) Prospect of VOC emission study
        5.2.4. Summary and outlook
6. Intelligent pavement
    6.1. Automated pavement defect detection using deep learning
        6.1.1. Automated data collection method
        6.1.1. 1. Digital camera.
        6.1.1.2.3D laser camera.
        6.1.1. 3. Structure from motion.
        6.1.2. Automated road surface distress detection
        6.1.2. 1. Image processing-based method.
        6.1.2. 2. Machine learning and deep learning-based methods.
        6.1.3. Pavement internal defect detection
        6.1.4. Summary and outlook
    6.2. Intelligent pavement construction and maintenance
        6.2.1. Intelligent pavement construction management
        6.2.1. 1. Standardized integration of BIM information resources.
        6.2.1. 2. Construction field capturing technologies.
        6.2.1. 3. Multi-source spatial data fusion.
        6.2.1. 4. Research on schedule management based on BIM.
        6.2.1. 5. Application of BIM information management system.
        6.2.2. Intelligent compaction technology for asphalt pavement
        6.2.2. 1. Weakened IntelliSense of ICT.
        6.2.2. 2. Poor adaptability of asphalt pavement compaction index.
        (1) The construction process of asphalt pavement is affected by many complex factors
        (2) Difficulty in model calculation caused by jumping vibration of vibrating drum
        (3) There are challenges to the numerical stability and computational efficiency of the theoretical model
        6.2.2. 3. Insufficient research on asphalt mixture in vibratory rolling.
        6.2.3. Intelligent pavement maintenance decision-making
        6.2.3. 1. Basic functional framework.
        6.2.3. 2. Expert experience-based methods.
        6.2.3. 3. Priority-based methods.
        6.2.3. 4. Mathematical programming-based methods.
        6.2.3. 5. New-gen machine learning-based methods.
        6.2.4. Summary and outlook
        (1) Pavement construction management
        (2) Pavement compaction technology
        (3) Pavement maintenance decision-making
7. Conclusions
Conflict of interest

(7)白云鄂博超大型稀土—铌—铁矿床的成矿时代及成因探析——兼论P—T之交生物群灭绝事件和“阿蒙兴造山运动”(论文提纲范文)

1 样品采集
2 年代学分析
3 成矿模式
    3.1 动力源
    3.2 岩浆源
    3.3 成矿物质源
    3.4 碰撞后花岗岩的定位
    3.5 成矿作用
4 关于新成矿模式的几个关键要素
    4.1 成矿年龄
    4.2 成矿母岩
    4.3 成矿机制
        4.3.1 稀土—铌—钍矿
        4.3.2 铁矿
        4.3.3 脉状铌—稀土矿
5 两个相关的重大问题
    5.1 P—T之交生物群灭绝事件的原因
    5.2“阿蒙兴造山运动”术语的建议
6 结论

(8)Cretaceous integrative stratigraphy and timescale of China(论文提纲范文)

1.Introduction
2.History of Cretaceous stratigraphy in China
3.Integrated stratigraphy
    3.1 Marine stratigraphy
    3.2 Terrestrial stratigraphy
        3.2.1 Terrestrial Lower Cretaceous
        3.2.2 Terrestrial Upper Cretaceous
        3.2.3 Terrestrial Cretaceous stages and biostratigraphic correlation
    3.3 Major stratigraphic boundaries in the Cretaceous
        3.3.1 Jurassic-Cretaceous boundary
        3.3.2 Cretaceous-Paleogene boundary
        3.3.3 Beginning and end of the Cretaceous Normal superchron (CNS, Aptian and Campanian stages)
    3.4 Cretaceous biota and major geological events
        3.4.1 Jehol Biota
        3.4.2 Oceanic anoxic events (OAEs) and Cretaceous oceanic red beds (CORBs)
        3.4.3 Other events
4.Stratigraphic Framework for the Cretaceous of China
    4.1 Marine and interbedded marine-terrestrial strata
        4.1.1 Qinghai-Tibet Plateau
        4.1.2 Karakorum and the western Tarim Basin
        4.1.3 Eastern Heilongjiang, Taiwan and other regions
    4.2 Terrestrial strata
        4.2.1 Eastern volcanically active belt
        4.2.2 Western to central medium-large stable sedimentary basins
    4.3 Comprehensive comparison of Cretaceous strata in China
5.Conclusions, problems and perspectives

(9)Nanogeology in China: A review(论文提纲范文)

1. Introduction
2. Research development phase of nanogeology in China
    2.1. The conceptual proposal and exploratory research of nanogeology
    2.2. The development of multi-research directions of nanogeology
    2.3. Comprehensive research and preliminary subject formation of nanogeology
3. Research progress of nanogeology
    3.1. Nano-mineralogy
    3.2. Nano-petrology
    3.3. Nano-geochemistry
    3.4. Nano-structural geology
    3.5. Nano-energy geology
    3.6. Nano-ore deposit geology
    3.7. Nano-earthquake geology
    3.8. Nano-environmental geology
4. Research prospect of nanogeology in China
5. Conclusions

(10)Status of Stratigraphy Research in China(论文提纲范文)

1 Overview of International Stratigraphic Research
2 Research Status of Stratigraphy in China
    2.1 Ten GSSPs erected in China
    2.2 Standards for stratigraphic division and correlation established in China
    2.3 Great achievements in special research on stratigraphy
    2.4 Abundant data for stratigraphic research acquired in national land and resources survey projects
3 Future Development of Stratigraphy in China
    3.1 To improve the standard of regional stratigraphic division and correlation
    3.2 To establish the contrasting relationship between regional stratigraphic units and GSSPs
    3.3 To strengthen the study of the Precambrian time scale
    3.4 To strengthen the study of terrestrial basins
    3.5 To further supply and improve the Stratigraphic Chart of China
    3.6 To promote the study of stratigraphy in orogenic belts
    3.7 To protect the typical stratigraphic sections
    3.8 To reinforce the applied study of stratigraphy in the fields of oil and gas,solid minerals,etc.
4 Conclusions

四、NANJING INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文参考文献)

  • [1]The Present Research and Prospect of Chinese Geosciences History[J]. CHEN Baoguo,ZHANG Jiuchen,YANG Mengmeng. Acta Geologica Sinica(English Edition), 2016(04)
  • [2]南岭中—晚侏罗世含铜铅锌与含钨花岗岩及其矽卡岩成矿作用 ——以铜山岭和魏家矿床为例[D]. 黄旭栋. 南京大学, 2018
  • [3]俄罗斯城市可持续发展及其对中国城市的启示研究[D]. Lisaia Daria(达丽娅). 华南理工大学, 2019(01)
  • [4]Cambrian integrative stratigraphy and timescale of China[J]. Maoyan ZHU,Aihua YANG,Jinliang YUAN,Guoxiang LI,Junming ZHANG,Fangchen ZHAO,Soo-Yeun AHN,Lanyun MIAO. Science China(Earth Sciences), 2019(01)
  • [5]Jurassic integrative stratigraphy and timescale of China[J]. Diying HUANG. Science China(Earth Sciences), 2019(01)
  • [6]New innovations in pavement materials and engineering:A review on pavement engineering research 2021[J]. JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu. Journal of Traffic and Transportation Engineering(English Edition), 2021
  • [7]白云鄂博超大型稀土—铌—铁矿床的成矿时代及成因探析——兼论P—T之交生物群灭绝事件和“阿蒙兴造山运动”[J]. 汪相. 地质论评, 2018(02)
  • [8]Cretaceous integrative stratigraphy and timescale of China[J]. Dangpeng XI,Xiaoqiao WAN,Guobiao LI,Gang LI. Science China(Earth Sciences), 2019(01)
  • [9]Nanogeology in China: A review[J]. Yi-wen Ju,Cheng Huang,Yan Sun,Cai-neng Zou,Hong-ping He,Quan Wan,Xue-qiu Wang,Xian-cai Lu,Shuang-fang Lu,Jian-guang Wu,Hong-tai Chao,Hai-ling Liu,Jie-shan Qiu,Fei Huang,Hong-jian Zhu,Jian-chao Cai,Yue Sun. China Geology, 2018(02)
  • [10]Status of Stratigraphy Research in China[J]. YAO Jianxin,BO Jingfang,HOU Hongfei,WANG Zejiu,MA Xiulan,LIU Fengshan,HU Guangxiao,JI Zhansheng,WU Guichun,WU Zhenjie,LI Suping,GUO Caiqing,LI Ya. Acta Geologica Sinica(English Edition), 2016(04)

标签:;  ;  ;  

南京地质矿产研究所——科研工作总结
下载Doc文档

猜你喜欢