高等数学在解决初等问题中的应用

高等数学在解决初等问题中的应用

一、高等数学在解决初等问题中的应用(论文文献综述)

王海青,曹广福[1](2021)在《从《原本》谈中学平面几何课题式教学研究》文中研究说明平面几何内容是中学数学的重要组成部分,也是后续立体几何与解析几何的学习基础.研究探讨了中学数学课题式教学的组织实施方式及其基本思想,梳理了欧几里得《原本》的编写特色与风格及其重要数学思想,剖析了平面几何教学内容结构与教材编排情况,在此基础上对中学平面几何模块教学内容进行课题式教学设计探索.基于对平面几何模块内容的总揽,重点探讨其中两个子课题的教学设计思路,即以"三角形内角和定理"为探究起点的课题式教学设计、凸显"勾股定理"重要价值的课题式教学设计.

刘雷[2](2021)在《马克思政治经济学数理思想及其发展研究》文中提出运用数理分析方法分析经济现象、论证经济规律、推断结论或定理已经是经济学研究的主要工具。习近平十分重视数学发展,并对马克思的数学研究给予极高评价,多次强调现代数学工具对分析经济问题的重要性。习近平在哲学社会科学工作座谈会上指出,“对现代社会科学积累的有益知识体系,运用的模型推演、数量分析等有效手段,我们也可以用,而且应该好好用。”习近平在《纪念马克思诞辰200周年大会上的讲话》中又提到,马克思写下了数量庞大的数学等学科笔记,并引用恩格斯的话讲,马克思在数学领域都有独到的发现;而习近平在“不断开拓当代中国马克思主义政治经济学新境界”中肯定托马斯·皮凯蒂(Thomas Piketty)撰写的《21世纪资本论》并指出:“他用翔实的数据证明美国等西方国家的不平等程度,得出的结论值得我们深思”。现实来看,马克思主义政治经济学数理分析明显不足,而习近平为“不断开拓当代中国马克思主义政治经济学新境界”指明了马克思政治经济学数理分析发展的方向。首先,马克思对数学有丰富的研究,数理分析方法是马克思政治经济学方法论体系的重要组成部分,数理逻辑是马克思政治经济学的内在属性之一,马克思研究数学的目的在于撰写政治经济学,马克思借助数学方法科学抽象了政治经济学主要理论,并借助数理逻辑推动政治经济学理论建构,这一过程是政治经济学主要研究对象具有“量”和“质”统一性和数学的根本属性决定的。马克思是精通数学的,马克思数学研究的进阶路径符合人对事物认知的一般规律,马克思由唯心主义转向唯物主义是其钻研数学的根本前提,马克思开创了用历史唯物主义、辩证唯物主义方法研究数学先例,在研究高等数学中推动唯物辩证法与政治经济学实践统一。马克思为高等数学的发展作出了突出的时代贡献,马克思推动了高等数学的发展,提出“无穷小量”与“0”之间的辩证关系,独创了求导法,系统梳理了“神秘微积分”“理性微积分”“纯粹代数微积分”的特点和不足,敏锐发现了代数学向微分学转化的环节,创造性提出马克思微积分关键理论、辩证方法、通用公式,揭示了微积分的本质,突破了初等数学向高等数学跨越的关键理论。其次,马克思劳动价值论、剩余价值论、再生产理论、转形问题以及平均利润、生产价格、地租理论等蕴含着丰富的数理思想,体现了严谨性、简易性、可推理性特点,据此完成了经典数理分析表达,研究其数理分析的发展逻辑具有明显的时代假设前提、问题局限和意识形态差异,可进一步切合实际针对假设条件、计量单位、公式模型进行数理表达重构。第一,马克思对商品价值量和劳动生产率的定义和计算蕴含了“大数定律”思想,运用平均值规律的数理性质,阐释了价值规律的科学性,马克思发现剩余价值过程中,敏锐发现货币转化为资本体现的“无形增值”,存在特殊商品才能使流通成立的等价逻辑,从数理逻辑发现了资本家榨取剩余价值的根本载体,体现了数理“剪刀差”和传递的数理思想;马克思阐释简单再生产、扩大再生产、转形问题都是建立在不断赋予“质”和“量”的内在数理含义上的,都必须保持一定的比例关系,从数理的角度推进了理论逻辑的展开。第二,马克思政治经济学的经典数理分析是以初等数学公式、文字逻辑及举例实现的,马克思劳动价值论、经典剩余价值论、再生产理论和转形问题的数理表达体现了严谨性、简易性及可推理性特点。基于马克思政治经济学基本观点、马克思所属时代基本前提假设,尝试建立了经典劳动价值论包含的“价值和使用价值的生产总量数理模型”、“价值量与劳动生产率及其变化之间的数理模型”、“部门生产率与价值量变化之间的数理模型”、“企业劳动生产率变化与价值量变化的数理模型”、“个别企业劳动生产率变化和该企业单位劳动时间形成价值量变化之间关系的数理模型”等;尝试建立了经典剩余价值论所包含的“马克思绝对剩余价值生产模型”、“相对剩余价值的生产模型”、“超额剩余价值生产模型”等;尝试建立了“经典简单再生产”、“经典扩大再生产”、“经典价值转形问题”、“平均利润和平均价格”、“商业资本”、“地租”等理论的数理模型。第三,辩证探研国内外学者对马克思劳动价值论、剩余价值论、再生产理论和转形问题的发展逻辑和路径体系看,西方学者虽看似丰富了马克思主义政治经济学数理表达解析内容,但也暴露了对马克思政治经济学数理发展的意识形态偏见问题,西方学者过于强调数学工具的重要性,经常出现“数理逻辑大于理论逻辑”的错误,而国内学者的研究基本集中在对西方学者研究述评和经典理论的数理建构上,还缺乏比较系统、全面的创新。第四,马克思政治经济学数理分析的现代重构必须基于经济社会发展出现的新规律、新变化、新现象,以此对现代假定条件、计量单位与公式表达体系进一步重构,基于马克思政治经济学基本观念、方法前提,切合当代经济社会发展实际推进数理模型建构。最后,科学发展马克思主义政治经济学数理分析,要科学看待数学工具对马克思主义政治经济学理论研究和发展的能动作用,辩证分析国外马克思主义政治经济学数理分析的演进逻辑,立足马克思主义基本立场、观点、方法,从马克思主义政治经济学本质属性和时代需要的角度出发,创新生产力与生产关系数理分析研究,不断提升马克思主义政治经济学数理分析的科学性、解释力,形成科学推进马克思主义政治经济学的基本原则、有效路径、方法体系,不断发展当代中国马克思主义政治经济学。

陈超[3](2021)在《逆向思维在高等数学例题解析中的应用研究》文中提出逆向思维在学术研究中是被经常运用的重要思维,它为学术研究提供了多角度研究突破的可能性。而在高等数学的教学中许多的知识点都可以被逆向思维验证。整体结构是先分析逆向思维在高等数学教学中的应用意义,而后研究其应用方法,并结合具体的例题解析来求证逆向思维在高等数学中的实际意义。主要目的是帮助大学生在高等数学的学习中能够使用逆向思维来进行思考,为他们学习高等数学提供一些学习方法的参考及高等数学例解中逆向思维应用的理论依据。

沈中宇[4](2021)在《面向教师教育的数学知识研究 ——以S市高中数学教研员为例》文中进行了进一步梳理百年大计,教育为本。教育大计,教师为本。教师培养的关键是教师教育,要改善教师教育的效果,教师教育者的作用无疑是至关重要的,因此,数学教师教育者在数学教师教育中发挥着重要的作用。近年来,数学教育研究者开始关注数学教师教育者的研究,其中,“面向教师教育的数学知识”(Mathematical Knowledge for Teaching Teachers,简称MKTT)理论为研究一般数学教师教育者所需要的数学知识提供了借鉴。但已有的研究中对于“面向教师教育的数学知识”仍然缺乏清晰准确的刻画,同时,相关研究主要集中在理论构建,相关的实证研究较少。基于以上原因,本文以面向教师教育的数学知识为研究主题,选取高中数学教研员作为研究对象,主要探讨以下三个研究问题:(1)构成面向教师教育的数学知识的要素有哪些?(2)高中数学教研员具备哪些面向教师教育的数学知识?(3)在数学教研活动中,高中数学教研员反映出哪些面向教师教育的数学知识?针对本研究的三个研究问题,将研究设计分为三个阶段,分别为文献分析与框架确立、问卷调查与深度访谈以及现场观察与案例分析。文献分析与框架确立阶段采用了专家论证法。首先通过文献分析梳理已有的数学教师教育者专业知识框架,接着通过对相关的成分和子类别的反复比较,构建初始的面向教师教育的数学知识框架,最后通过三轮专家论证得到最终的面向教师教育的数学知识框架。问卷调查与深度访谈阶段采用了问卷调查法和深度访谈法。其中选取了高中数学中重要的数学主题编制了调查问卷和访谈提纲,通过编码分析高中数学教研员的问卷回答和访谈实录,从而了解高中数学教研员具备的面向教师教育的数学知识。现场观察与案例分析采用了案例研究法。其中观察了不同的高中数学教研员的多次教研活动,在观察过程中对教研活动进行录音并在观测后对高中数学教研员进行访谈,对录音和访谈材料进行编码和统计,从而剖析高中数学教研员在教研活动中反映的面向教师教育的数学知识。本研究的基本结论是:1.构成面向教师教育的数学知识的要素包括4个成分与12个子类别。构成成分为学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识。学科内容知识包含的子类别为一般内容知识、专门内容知识和关联内容知识,教学内容知识包含的子类别为内容与学生知识、内容与教学知识和内容与课程知识,高观点下的数学知识包含的子类别为学科高等知识、学科结构知识和学科应用知识,数学哲学知识包含的子类别为本体论知识、认识论知识和方法论知识。2.高中数学教研员具备的面向教师教育的数学知识情况如下。(1)高中数学教研员在学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识4个成分中并不存在明显的短板;(2)高中数学教研员对不同知识成分的掌握存在一定差异,其中,在学科内容知识和教学内容知识2个方面掌握较好,而在高观点下的数学知识和数学哲学知识2个方面还有所欠缺;(3)高中数学教研员在各个知识成分中有以下具体理解:在学科内容知识方面,对于基本的概念、定理和公式的合理性以及不同概念、定理和公式之间的联系较为熟悉;在教学内容知识方面,对于学生有关特定数学内容学习的困难,不同数学内容的教授方式和相关数学内容在教科书中的编排理解较深;在高观点下的数学知识方面,能够对中学数学知识作出一定程度的推广、涉猎不同学科中数学知识的应用;在数学哲学知识方面,能够大致解释数学定义的基本作用和标准、数学研究的动力、数学证明的作用和价值以及数学的基本思想方法。(4)高中数学教研员在各个知识成分中有以下欠缺之处:在学科内容知识方面,对于定义的多元性、解释的多样性和联系的普遍性方面还有进步的空间;在教学内容知识方面,对于学生数学学习困难的细致理解、不同数学内容的深入教授和教学内容编排意图的全面考虑还有提升的余地;在高观点下的数学知识方面,从高观点理解中学数学知识、分析不同知识的联系和在不同学科中应用数学知识方面还有较多需要完善的地方;在数学哲学知识方面,还不能形成系统的理解。3.在数学教研活动中,高中数学教研员反映出的面向教师教育的数学知识情况如下。(1)高中数学教研员反映的面向教师教育的数学知识大部分属于教学内容知识和学科内容知识,小部分属于数学哲学知识和高观点下的数学知识。(2)高中数学教研员在数学教研活动中的主要知识来源为一般内容知识、内容与教学知识、学科高等知识和方法论知识。(3)高中数学教研员在数学教研活动中反映的面向教师教育的数学知识主要有:在学科内容知识方面有数学中的基本概念、定理、公式和性质及其由来、表征、证明及解释;不同数学概念、定理、公式之间的联系。在教学内容知识方面有学生对特定数学内容理解存在的困难;不同数学内容的引入、辨析、应用和小结的教学方法;特定数学内容在课程标准中的要求和在教科书中的编排。在高观点下的数学知识方面有中学数学课程中的数学概念在高等数学中的推广;高观点下不同数学概念之间的联系;数学知识在现代科学和实际生活中的应用。在数学哲学知识方面有对数学定义的认识;对数学认识过程的理解;推理论证在数学中的作用;数学研究的思想方法。本研究对于教师教育者专业标准的制订、数学教师教育者专业培训的设计和数学教师专业发展项目的规划有一定启示,后续可以在数学教师教育者的专业知识、数学教师教育者的专业发展和数学教师教育者的工作实践等方面进一步开展研究。

王改珍[5](2021)在《职前数学教师专业知识结构及水平的实证研究》文中研究表明随着教师专业发展成为教师教育领域的研究热点,各国从对教师“量”的需求逐渐转变到对教师“质”的需求,其中一个核心的研究内容便是教师知识。教师知识是教师专业素质的重要组成部分,也是影响教师教学水平的重要因素。教师教育的质量决定着教育的质量,职前教师教育的质量又是确保教师教育质量的基础环节。职前教师需要具备怎样的专业知识结构和水平,才能满足高质量教育的人才需求,受到教育研究者和教育工作者的广泛关注。教师专业知识是教师专业发展的基础,对职前教师专业知识的研究可以反映教师专业知识的最初状态。本研究聚焦于职前数学教师的专业知识结构及水平,分为三个子问题:一、职前数学教师需要怎样的专业知识结构?通过访谈和调查,从一线教师的视角给出对合格数学教师需要具备的专业知识结构的看法,并将其作为职前数学教师专业知识结构的参考标准。该知识结构是教师主观层面的认识,也可称为教师期望的专业知识结构。二、职前数学教师专业知识的掌握水平如何?通过测试了解职前数学教师专业知识的现状,进而得出实际的专业知识结构,并利用水平划分描述职前数学教师专业知识的掌握程度。三、职前数学教师实际的专业知识结构与一线教师期望的专业知识结构是否一致?通过对比,探讨职前数学教师专业知识结构的合理性,进而明确职前数学教师未来的努力方向。本研究采用量化研究与质化研究相结合的方法,以量化研究为主,质化研究为辅。子问题一通过调查教师视角下各类专业知识的重要程度来了解合格数学教师需要的各类专业知识的权重情况。首先通过文献梳理和访谈构建出数学教师的专业知识框架,并以此编制调查问卷;然后对一线教师展开问卷调查,教师根据教学经验对各类专业知识进行赋权;最后根据调查数据的统计分析得出合格数学教师需要具备的专业知识结构,并通过访谈对量化结果进行补充和说明。子问题二通过测试了解职前数学教师专业知识的现状和掌握水平。首先通过整理历年教师资格考试《数学学科知识与教学能力》(高级中学)科目的真题,明确各类知识的考查比例、题型和分值;然后结合子问题一的调查结果,确定测试所考查的内容、题型及分值,对试题进行抽取、组合、制定评分标准;接着,选取1所部属师范大学、1所省属师范大学和2所省属师范学院的数学师范生作为调查对象,展开测试;最后根据测试数据的统计分析得出职前数学教师的实际专业知识结构及水平。子问题三是基于前两个子问题的数据分析结果,再结合教师访谈,探讨职前数学教师实际的专业知识结构、不同知识掌握水平下的职前数学教师专业知识结构与教师期望的专业知识结构的一致性和合理性。研究结论如下:(1)合格数学教师的专业知识结构中数学学科知识的权重最大。教师视角下的合格数学教师需要具备的三类专业知识按照权重大小依次是数学学科知识(45.20%)、数学教学知识(30.71%)、数学课程知识(24.09%)。该知识结构可划分为三种类型。不同群体教师对各类知识权重的看法基本一致。(2)职前数学教师对所考查的数学专业知识基本能够掌握。实际知识结构中数学学科知识的权重最大。参与本研究的职前数学教师专业知识的掌握程度由低到高可划分为四个水平:前水平、识记水平、关联水平和综合水平。不同类型学校的职前数学教师专业知识测试得分具有显着差异,得分由高到低分别为部属师范大学、省属师范大学、省属师范学院。(3)职前数学教师的实际知识结构中,各类知识的权重大小顺序与教师期望的专业知识结构一致,即职前数学教师的实际知识结构是合理的。知识掌握程度处在四个水平的职前数学教师的专业知识结构也是合理的。教师期望的学科知识权重低于职前数学教师的实际权重,教师期望的教学知识权重却高于职前数学教师的实际权重,导致这一现象的原因在于职前数学教师教学经验的缺乏。根据上述研究结论,对职前数学教师教育提出相关建议:(1)职前数学教师应以理论知识学习为主;(2)职前数学教师应提高教学知识储备。

张敏怡[6](2021)在《现代数学思想渗透的初中函数教学设计与应用研究 ——以二次函数为例》文中进行了进一步梳理函数已成为中学代数内容的核心,在当前强调学科整体育人功能的背景之下,既要使学生掌握基础知识,理解函数概念,还要培养学生的创新意识、思维能力和实践能力,以体现数学学科育人功能。函数和现代数学之间有着不可分割的关系。函数概念对现代数学的发展具有重要影响,现代数学涵盖了从19世纪至今的数学发展成果,具有前沿性和创新性,因此本研究尝试将函数与现代数学融合,初探在初中函数教学中渗透现代数学思想。由于初中函数内容多,范围大,因此将研究范围缩小到二次函数单元。本文主要研究以下问题:(1)如何将现代数学思想渗透到初中二次函数教学中?在设计教学过程中,需要考虑哪些方面?(2)现代数学思想渗透的二次函数教学设计对初中生的数学成绩是否有影响?对初中生函数概念理解是否有影响?如果有,差异体现在哪些方面?(3)现代数学思想渗透的二次函数教学设计对初中生数学学习兴趣是否有影响?本研究采用准实验研究法、问卷调查法和访谈法。选取上海市某初中初三年级两个班级共50名学生为实验对象,先根据学生情况,参照沪教版教材完成现代数学思想渗透的二次函数教学设计,然后开展实验,实验班采用本研究的教学设计,对照班采用常规教学。实验结束后,为探析现代数学思想渗透的二次函数教学设计对学生学习成绩、函数概念理解、数学学习兴趣的影响,对比学生实验前一次函数单元测验成绩、八年级下期末考试成绩与实验后二次函数单元测验成绩,以函数概念测试卷、数学学习兴趣问卷为工具,并结合访谈,得到以下结论:(1)将现代数学思想渗透到初中二次函数教学中要找准切入点,把握重点。(2)现代数学思想渗透的二次函数教学设计对初中生的数学成绩没有显着性影响。(3)现代数学思想渗透的二次函数教学设计对初中生的函数概念理解有积极的推动作用,且有助于学生运用函数概念分析、解决问题。(4)现代数学思想渗透的二次函数教学设计能够提高学生数学学习兴趣。

王杰[7](2021)在《高观点下初中方程教学的主要问题与解决策略》文中认为方程是代数思想的起源。面对一个未知的数,我们希望求解它,那么我们利用和未知量有关的限制条件,再结合等量关系组成等式,我们就得到了有关未知量方程或者方程组。有了方程就相当于正式承认变量或者未知数能够作为一个独立的对象。从方程在课程标准中的变化来看,学生不仅仅需要掌握方程的解法,同时还需要学生掌握方程与不等式和函数之间的联系,也就是用函数的观点去看方程。最后需要让学生体会方程思想在解决问题中的便利性,注重培养学生逆向思维。同时也要注重借用方程学习的这一过程,培养学生的核心素养。本文先说明了方程这一内容在课程标准中的变化,再结合方程发展的历史,重点介绍了几种方程的解法,例如公式法,配方法、因式分解法、换元法,同时也介绍了一些方程组的解法。例如克拉默法则、矩阵法等等。这一部分是高等数学中的方程知识,作为教师必须要掌握这部分内容才能将“高观点”更好的融入教学。教师借助在教学中融入“高观点”,提高学生的核心素养和关键能力,为学生后续的学习产生深远的影响。为了更加详细的掌握学习者在学习方程过程中所遇到的问题,采用测试卷和调查问卷结合的方式,分析出真实存在的问题,为教师的教学提供必要的帮助。测试卷将设置五种题型,考察学习者对方程知识的掌握程度。通过分析测试卷,所获得的结论是:(1)有部分学生对生活中或者其他学科中存在的等量关系不太熟悉。(2)学生对二次方程的根的判断和对含有参数的方程组成立条件的判断存在模糊不清的现象。(3)学生在解方程时,方程的解法过于单一,并且对于解方程的通性、通法掌握有点欠缺。(4)学生对方程概念的理解也存在疏忽。(5)学生在方程应用题部分,尤其是对函数与方程结合的应用题存在不少问题。调查问卷主要是为了分析出学生在学习方程时会遇到的问题,调查问卷所获得的结论是:(1)有部分学生在课堂方程学习过程中缺少思考,没有对方程进行一题多解的习惯。(2)学生在做方程内容的作业时,存在不认真完成,不检验方程解的情况。(3)学生在课后没有认真复习课上学习到的方程的解法以及相关概念。(4)部分学生对自己存在错误的方程习题不及时进行错题整理与归纳总结。将“高观点”融入课堂教学的实际执行者是教师,因此,本文采用调查问卷的方式,调查不同学校和年级的中学教师将“高观点”融入教学的实际情况。通过调查后所获得的结论为:(1)大部分的教师都认为“高观点”对中学数学是存在影响的,对于教材分析也会联系到“高观点”。(2)有部分教师会去阅读渗透“高观点”的数学参考书。(3)部分教师会利用已经下放到教材里的高等数学的知识去解决有关方程问题。(4)总的来看,新教师比老教师更乐于利用“高观点”。最后结合对学生和教师的调查结果提出一些将“高观点”融入教学的建议,包括等式概念的教学、方程解法的教学、方程应用的教学以及函数、方程、不等式关系的教学。同时为了更好的进行这些教学又对中学学校和一线中学教师提出一些必要的建议。

莫元健,龙承星[8](2021)在《“高观点”下柯西不等式的应用探究》文中指出本文总结了柯西不等式在中学数学和高等数学中的应用,并分析了如何利用高等数学中柯西不等式中的思想和方法来指导中学数学.

彭艳贵[9](2020)在《核心素养背景下的高中复数内容与学生理解的若干相关问题探究》文中提出数学核心素养是新一轮高中数学课程标准修订的核心内容,既与个体发展的培养目标紧密关联,又是高中数学课程发展的方向。按照核心素养理念,在高中数学课程中,应该以学生发展为根本,培育学生的科学精神和创新意识,培养学生的必备品格和关键能力。高中阶段的复数关联着代数、平面几何、三角函数等多个知识主题,表现出广泛的联系性,在核心素养理念下,高中复数的学习对于学生的知识理解和个体发展都是重要的。在历年的高中数学课程修订的过程中,复数虽然一直被认为是高中数学课程中的基本部分,但它的内容体系从建国以来就表现出一定的波动性,反映了人们对高中复数的价值取向和课程发展的思考过程。在近些年的高中数学课程发展中,随着复数部分的删减,复数成为“容易教的难点课”,教起来简单,但学生对于基本概念的理解却存在明显的问题。课程发展理论的基本观点认为,教育是一种改变人们行为模式的过程,对学习者本身的研究是教育目标的基本来源。课程内容是构成课程的基本要素,着眼于促进学生发展的教育目标,基于学生的复数理解水平和行为表现的研究,对高中复数课程内容进行分析和讨论,是对当前高中复数课程研究的深入发展。因此,本文开展如下四个方面的研究。第一,基于核心素养理念,从学生个体发展需求、数学的教育功能和高中数学课程的基本要求三个方面确立高中复数教育价值的判断依据,从理论上初步讨论高中复数的教育价值。高中复数学习对学生的核心素养发展、知识结构发展、数学观念变化、思维品质提升、渗透数学应用意识和完善人才培养过程六个方面表现出重要的价值。高中复数教育价值的理论分析为后续研究奠定了必要的理论基础。第二,本研究从课程文本方面对我国历年十一个版本普通高中数学教学大纲或课程标准中的复数部分从课时数量、课程内容和教学目标三个方面进行了纵向的比较,历年的复数课程虽然在这三个方面存在一定的变化和波动,但都对复数作为“数”的概念的发展进行明确,表现了对数系扩充的目标要求,对复数的表示、复数的运算也都提出了相对较高的教学要求。研究中还对国际上基础教育比较发达的中国、美国、新加坡、英国和澳大利亚五个国家的高中数学课程标准中复数部分进行横向比较,分析不同国家高中复数的课程目标,了解各个国家的高中复数的基本目标情况,为我国高中复数课程发展提供参考。第三,作为进一步的实践求证,研究中在理论上分析和构建了高中生复数理解水平的框架,明确高中复数理解的四个水平:感知水平、表征水平、联结水平和应用水平。以此为基础,在专家的指导下,结合当前的教学实践,编制了高中生复数理解水平测试卷,选择合适的研究样本进行调查测试,并对结果进行分析。测试结果表明,多数学生在高中生复数理解的感知水平和表征水平上表现较好,可以较自如地处理一些常规的复数问题,对于一些知识的记忆和方法的基本应用表现较好。但在高中复数的关联水平和应用水平上,学生的测试表现相对较弱。由于多方面因素的影响,不同类型学校的学生也表现出一定的差异。学生在复数问题解决的表现中,能够识记基本的结论,但在稍微复杂的问题中缺少必要的判断,在复数问题求解的思维表现上比较普通,在需要较高数学能力的问题上表现不足,对于复数几何意义这个重要内容的理解不够完善,对虚数单位i等复数基本概念和运算法则也缺少必要的理解,在处理联系其它知识主题内容的复数问题时也较普遍地存在困难。第四,本研究根据理论分析和实践研究的结果,整理了高中复数的基本内容,构建高中复数的基本框架,结合高中数学核心素养的理念,提出高中复数课程及其内容的发展的基本主张。在高中数学知识体系中,应该坚定复数课程的基本地位,为了充分体现高中复数的教育价值,应该关注高中复数知识体系的相对完整性,重视高中复数的核心概念,丰富复数几何意义和复数与方程等与复数发展密切相关的内容,同时也应该关注复数的广泛关联性和历史文化价值。本文的研究内容和结果具有以下几个方面的创新性体现:创新性之一,当前关于高中阶段复数内容的研究整体不多,且较集中于高中复数教学设计的研究。本文以已有研究为基础,从理论分析、课程文本比较、复数学习评价、复数课程内容分析等方面进行了较为系统的研究,对相关研究起到了必要的补充作用;创新性之二,教育的根本目的是改变学生的行为,因此,基于学生发展的需求考虑,尤其是基本的知识需求方面,研究中对学生的复数理解水平进行测试,对学生的典型表现进行分析,讨论影响学生高中复数理解水平的知识方面因素。在研究思路、研究方法和研究结果等方面均表现出较好地探索意义;创新性之三,本文经过较为系统的研究,采用特定的方法对高中复数相关的具体问题进行分析,相关结论为高中复数课程改革提供了较为直接的依据,而不仅仅是依赖于经验。

胡凤[10](2020)在《高中三角函数单元教学的理论与实践研究》文中进行了进一步梳理三角函数的学习过程在锻炼学生数学语言、数学眼光和数学思维能力方面具有较大价值,但常常因学生并未整体掌握三角函数单元内容,导致所学三角函数难以适应大学学习等现状。同时,单元教学可帮助教师和学生整体认识单元内容和方法,故基于单元教学理论开展三角函数单元教学是可尝试的路径。而目前已有研究中较为缺乏三角函数单元教学案例,还缺少数学单元教学设计的操作步骤,尤其在设计单元教学活动的方面少有研究涉及。因此本研究将从以下内容展开对高中三角函数单元教学的理论及实践方面进行研究。首先,对单元教学的理论基础进行研究。通过文献分析法,陈述了单元教学的起源及发展、已有概念,并辨析了单元教学设计、整体教学等概念,归纳提炼得到了单元教学的整体性特征及定义;进一步从认识、设计以及评价三个阶段分析得到整体性的具体表现(图2.1),并从学生角度发现单元教学有利于掌握数学知识和方法、促进主动学习以及改善学习方式等价值。其次,对三角函数单元的教学现状进行调查。根据单元教学整体性的具体表现,参考文献从教师教的角度和学生学的角度分别编制了教师和学生的访谈提纲(表3.2与表3.3),分别对4位教师和6名学生进行录音访谈并提炼访谈要点(附录1与附录2),对访谈结果分析发现:教师在“整体把握单元教学内容”和“整体设计单元教学活动”两方面的教学情况并不乐观,尤其难以“结合学生已有的活动经验”设计“完整”的单元教学活动。再次,对数学单元教学设计的操作步骤进行构建。分析已有数学单元教学现状的原因,发现目前数学单元教学需要突破两个方面:“设置完整单元教学活动”和“开展利于学生认识和掌握数学思想方法的教学活动”;而基于“一般研究路线”和“概念的二重性”两个数学特征,得到了两个教学启示:“引入教学主线”和“将数学思想方法过程对象化”;通过修改已有单元教学的操作步骤,依据单元教学的整体性,概括得到单元教学对应的教学措施(图4.2),进一步形成从大单元和小单元视角的数学单元教学设计操作步骤(图4.3),并对开展数学单元教学提供了三点说明。然后,对三角函数大单元教学方案进行设计。在数学单元教学设计操作步骤的指导下,对三角函数单元的教学要素进行分析,获得了三角函数单元的教学启示;依据教学启示,形成了三角函数大单元的单元知识结构图(图5.3)、单元教学思路(图5.4)和小单元教学规划(表5.3)。最后,对三角函数小单元教学方案进行设计与实施。依据三角函数的大单元教学方案,选择了“单元起始课”和“两角和与差公式”两个小单元,分析了其教学要素,从教学主线、教学流程及教学评价三方面设计了这两个小单元的教学方案;将“两角和与差公式”小单元第一课时在Z学校进行了教学实践,通过访谈听课教师和听课学生获得了教学反馈,发现该单元教学方案在帮助学生完善小单元知识结构体系和理解数学思想方法方面均有促进作用。综上所述,通过对高中三角函数单元教学研究,对单元教学的概念、特征以及价值等方面有了更清晰地认识,更利于我们教师在教学中发挥单元教学的优势;结合单元教学特征的表现得到了三角函数单元教学的现状,对教师了解三角函数教学现状以及改进三角函数单元教学有一定的参考作用;利用单元教学的特征、现状以及教学理论构建的数学单元教学操作步骤,利于数学教师在教学中实践单元教学;在数学单元教学操作步骤指导下生成的三角函数单元教学方案实践反馈来看,三角函数单元教学方案和数学单元教学操作步骤对我们新教师开展数学单元教学有一定的启示和帮助。

二、高等数学在解决初等问题中的应用(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、高等数学在解决初等问题中的应用(论文提纲范文)

(1)从《原本》谈中学平面几何课题式教学研究(论文提纲范文)

1 中学数学课题式教学的涵义
2 中学数学课题式教学的组织实施方式
3 中学数学课题式教学的基本思想
    3.1 基于教材统整专题或模块的教学内容
    3.2 基于数学学科结构和数学史梳理专题或模块整体架构
    3.3 基于“先行组织者”策略呈现专题或模块的大致轮廓
    3.4 基于学生现实强调问题驱动生成新知揭示本质
    3.5 基于高观点视角指导核心概念与原理的教学
    3.6 基于全体学生注重适度弹性教学设计
4 中学数学课题式教学案例研究
    4.1《原本》特色与思想对平面几何教学的启示
    4.2 新课程教材中平面几何的整体知识体系
    4.3 平面几何模块课题式教学的两条研究主线
    4.4 回顾与反思

(2)马克思政治经济学数理思想及其发展研究(论文提纲范文)

摘要
abstract
第1章 绪论
    1.1 研究背景
    1.2 研究意义
        1.2.1 理论意义
        1.2.2 现实意义
    1.3 国内外研究现状
        1.3.1 国内研究现状
        1.3.2 国外研究现状
    1.4 研究思路和方法
        1.4.1 研究思路
        1.4.2 研究方法
        1.4.3 技术路线
    1.5 创新与不足
        1.5.1 创新之处
        1.5.2 不足之处
第2章 马克思数学研究与政治经济学数理理论基础
    2.1 马克思政治经济学数理分析相关概述
        2.1.1 数理分析基本概述
        2.1.2 古典政治经济学家的数理分析
        2.1.3 政治经济学研究对象的数理特性
    2.2 马克思数学研究的进阶路径
        2.2.1 马克思研究数学的根本前提
        2.2.2 马克思研究数学的直接目的
        2.2.3 马克思研究数学的递阶逻辑
    2.3 马克思数学研究的时代贡献
        2.3.1 马克思独创0/0求导法
        2.3.2 马克思合理化微分过程
        2.3.3 马克思突破数学跨越关键理论
    2.4 马克思政治经济学运用数学内在依据
        2.4.1 数学与经济学结合的发展必然
        2.4.2 数理分析抽象理论的基本方法
        2.4.3 数理逻辑推动政治经济学理论建构
    小结
第3章 马克思劳动价值论数理分析及其发展
    3.1 马克思劳动价值论的数理思想
        3.1.1 商品二因素与劳动二重性数理思想
        3.1.2 商品价值量与劳动生产率数理思想
        3.1.3 货币的起源与价值形式数理思想
        3.1.4 价值规律与商品拜物教数理思想
    3.2 马克思劳动价值论的经典数理表达
        3.2.1 经典劳动价值论的假设前提
        3.2.2 经典劳动价值论的数理分析
        3.2.3 经典劳动价值论的数理模型
    3.3 马克思劳动价值论的数理解析
        3.3.1 劳动价值论数理模型的解析发展
        3.3.2 劳动价值论数理方法的问题辩难
        3.3.3 劳动价值论数理分析的现代重构
    小结
第4章 马克思剩余价值论数理分析及其发展
    4.1 马克思剩余价值论数理思想
        4.1.1 货币转化为资本数理思想
        4.1.2 剩余价值生产数理思想
        4.1.3 资本主义工资实质和形式数理思想
    4.2 马克思剩余价值论经典数理表达
        4.2.1 经典剩余价值论的假设前提
        4.2.2 经典剩余价值论的数理分析
        4.2.3 经典剩余价值论的数理模型
    4.3 马克思剩余价值论数理解析
        4.3.1 剩余价值论数理模型的解析发展
        4.3.2 剩余价值论数理方法的问题辩难
        4.3.3 剩余价值论数理分析的现代重构
    小结
第5章 再生产理论与转形问题数理分析及其发展
    5.1 马克思再生产理论与转形问题数理思想
        5.1.1 资本循环和周转数理思想
        5.1.2 社会资本的再生产与流通数理思想
        5.1.3 平均利润和生产价格数理思想
        5.1.4 商业资本和商业利润数理思想
        5.1.5 借贷资本和资本主义地租数理思想
    5.2 马克思再生产理论与转形问题经典数理表达
        5.2.1 经典再生产理论与转形问题的假设前提
        5.2.2 经典再生产理论与转形问题的数理分析
        5.2.3 经典再生产理论与转形问题的数理模型
    5.3 马克思再生产理论与转形问题数理解析
        5.3.1 再生产理论与转形问题数理模型的解析发展
        5.3.2 再生产理论与转形问题数理方法的问题辩难
        5.3.3 再生产理论与转形问题数理分析的现代重构
    小结
第6章 科学发展马克思主义政治经济学数理分析
    6.1 正确看待马克思主义政治经济学数理分析
        6.1.1 科学看待数学工具对学术研究的能动作用
        6.1.2 全面认识数理分析对理论发展的重要价值
        6.1.3 辩证分析国外政治经济学数理分析演进逻辑
    6.2 强化马克思主义政治经济学数理分析的科学性
        6.2.1 坚持马克思主义政治经济学数理分析的政治性
        6.2.2 深耕马克思主义政治经济学数理分析的学理性
        6.2.3 夯实马克思主义政治经济学数理分析的基础性
    6.3 提升马克思主义政治经济学数理分析的解释力
        6.3.1 坚持马克思主义政治经济学数理分析的问题导向
        6.3.2 丰富马克思主义政治经济学数理分析的应用领域
        6.3.3 创新马克思主义政治经济学数理分析的理论体系
    6.4 发展马克思主义政治经济学数理分析基本路径
        6.4.1 创新生产力与生产关系数理分析研究
        6.4.2 建立马克思主义政治经济学数理分析基本原则
        6.4.3 发展马克思主义政治经济学数理分析方法体系
    小结
结论
参考文献
作者简介及科研成果
致谢

(3)逆向思维在高等数学例题解析中的应用研究(论文提纲范文)

一、逆向思维在高等数学中的应用意义
二、逆向思维在高等数学中的应用方法及具体案例分析
    (一)待定系数法
    (二)反证法
    (三)逆推法
三、在高等数学教学过程中培养学生的逆向思维能力
    (一)课堂设疑,启发学生的逆向思维意识
    (二)充分利用大学课堂教学的特性,提高学生的逆向思维能力

(4)面向教师教育的数学知识研究 ——以S市高中数学教研员为例(论文提纲范文)

摘要
ABSTRACT
第1章 绪论
    1.1 研究背景
        1.1.1 教师教育者的专业发展需要关注
        1.1.2 数学教师教育者的研究值得重视
        1.1.3 数学教师教育者的专业知识有待探索
    1.2 研究问题
    1.3 研究意义
        1.3.1 理论意义
        1.3.2 实践意义
    1.4 论文结构
第2章 文献述评
    2.1 数学教师教育者的专业知识
        2.1.1 数学教师教育者的专业知识框架
        2.1.2 数学教师教育者的专业知识测评
        2.1.3 文献小结
    2.2 数学教师教育者的专业发展
        2.2.1 数学教师教育者的专业发展框架
        2.2.2 数学教师教育者的专业发展调查
        2.2.3 文献小结
    2.3 数学教师教育者的工作实践
        2.3.1 数学教师教育课堂的学习任务框架
        2.3.2 数学教师教育课堂的学习任务实践
        2.3.3 文献小结
    2.4 文献述评总结
第3章 研究方法
    3.1 研究设计
        3.1.1 文献分析与框架确立
        3.1.2 问卷调查与深度访谈
        3.1.3 现场观察与案例分析
    3.2 研究对象
        3.2.1 专家论证对象
        3.2.2 问卷调查对象
        3.2.3 深度访谈对象
        3.2.4 案例研究对象
    3.3 研究工具
        3.3.1 论证手册
        3.3.2 调查问卷
        3.3.3 访谈提纲
        3.3.4 观察方案
    3.4 数据收集
        3.4.1 专家论证
        3.4.2 问卷调查
        3.4.3 深度访谈
        3.4.4 现场观察
    3.5 数据分析
        3.5.1 专家论证
        3.5.2 问卷与访谈
        3.5.3 现场观察
第4章 研究结果(一):面向教师教育的数学知识框架
    4.1 文献分析
        4.1.1 已有框架选取
        4.1.2 相关成分析取
        4.1.3 相关类别编码
    4.2 框架构建
        4.2.1 相关类别合并
        4.2.2 相应成分生成
        4.2.3 初步框架构建
    4.3 框架论证
        4.3.1 第一轮论证
        4.3.2 第二轮论证
        4.3.3 第三轮论证
第5章 研究结果(二):高中数学教研员具备的面向教师教育的数学知识
    5.1 学科内容知识
        5.1.1 一般内容知识
        5.1.2 专门内容知识
        5.1.3 关联内容知识
    5.2 教学内容知识
        5.2.1 内容与学生知识
        5.2.2 内容与教学知识
        5.2.3 内容与课程知识
    5.3 高观点下的数学知识
        5.3.1 学科高等知识
        5.3.2 学科结构知识
        5.3.3 学科应用知识
    5.4 数学哲学知识
        5.4.1 本体论知识
        5.4.2 认识论知识
        5.4.3 方法论知识
    5.5 总体分析
        5.5.1 学科内容知识
        5.5.2 教学内容知识
        5.5.3 高观点下的数学知识
        5.5.4 数学哲学知识
第6章 研究结果(三):数学教研活动中反映的面向教师教育的数学知识
    6.1 案例1
        6.1.1 第一轮观察:平均值不等式
        6.1.2 第二轮观察:对数的概念
        6.1.3 案例1 总体分析
    6.2 案例2
        6.2.1 第一轮观察:幂函数的概念
        6.2.2 第二轮观察:函数的基本性质
        6.2.3 案例2 总体分析
    6.3 案例3
        6.3.1 第一轮观察:幂函数的概念
        6.3.2 第二轮观察:出租车运价问题
        6.3.3 案例3 总体分析
    6.4 案例4
        6.4.1 第一轮观察:反函数的概念
        6.4.2 第二轮观察:反函数的图像
        6.4.3 案例4 总体分析
    6.5 跨案例分析
        6.5.1 学科内容知识
        6.5.2 教学内容知识
        6.5.3 高观点下的数学知识
        6.5.4 数学哲学知识
        6.5.5 案例总体分析
第7章 研究结论及启示
    7.1 研究结论
        7.1.1 面向教师教育的数学知识框架
        7.1.2 高中数学教研员具备的面向教师教育的数学知识
        7.1.3 高中数学教研活动中反映的面向教师教育的数学知识
    7.2 研究启示
        7.2.1 教师教育者的专业标准制订需要关注学科性
        7.2.2 数学教师教育者的专业培训需要提升针对性
        7.2.3 数学教师专业发展项目规划需要增加多元性
    7.3 研究局限
    7.4 研究展望
        7.4.1 拓展数学教师教育者的专业知识研究
        7.4.2 深入数学教师教育者的专业发展研究
        7.4.3 延伸数学教师教育者的工作实践研究
参考文献
附录
    附录1 论证手册(第一轮)
    附录2 论证手册(第二轮)
    附录3 论证手册(第三轮)
    附录4 调查问卷(第一版)
    附录5 调查问卷(第二版)
    附录6 调查问卷(第三版)
    附录7 调查问卷(第四版)
    附录8 调查问卷(第五版)
    附录9 访谈提纲
    附录10 观察方案
作者简历及在学期间所取得的科研成果
致谢

(5)职前数学教师专业知识结构及水平的实证研究(论文提纲范文)

摘要
Abstract
第一章 绪论
    第一节 研究背景
    第二节 研究问题
    第三节 研究意义
    第四节 论文结构
第二章 文献综述
    第一节 教师知识
        一.知识的内涵及分类
        二.教师知识的分类
    第二节 数学教师知识
        一.数学教师学科知识
        二.数学教师学科教学知识
        三.数学教师知识相关文献的量化分析
    第三节 职前数学教师知识
        一.职前数学教师知识的现状及来源
        二.职前数学教师知识中某类具体知识
        三.职前数学教师综合性知识和技能
        四.中外职前数学教师知识的对比
    第四节 本章小结
第三章 研究设计与实施
    第一节 研究思路与方法
        一.研究思路
        二.研究方法
    第二节 相关概念界定
        一.教师知识
        二.数学教师专业知识
        三.职前教师
        四.知识结构
    第三节 理论基础与框架
        一.数学教师专业知识分类框架构建
        二.职前数学教师专业知识分析层次建构
    第四节 研究的具体过程
第四章 教师视角下的合格数学教师专业知识结构
    第一节 教师视角下合格数学教师专业知识结构描述分析
    第二节 教师视角下合格数学教师专业知识结构聚类分析
    第三节 不同群体教师对合格数学教师各类知识权重看法的量化分析
        一.不同教龄教师对合格数学教师各类知识权重看法的差异分析
        二.不同职称教师对合格数学教师各类知识权重看法的差异分析
        三.不同称号教师对合格数学教师各类知识权重看法的差异分析
        四.不同学历教师对合格数学教师各类知识权重看法的差异分析
    第四节 教师视角下合格数学教师各类知识权重看法的质化分析
    第五节 本章小结
第五章 职前数学教师专业知识现状分析
    第一节 职前数学教师专业知识掌握情况的水平划分
        一.职前数学教师专业知识测试成绩整体描述
        二.职前数学教师测试总成绩的水平分布
        三.职前数学教师主观题作答情况的水平分析
    第二节 职前数学教师专业知识的实际结构
    第三节 不同类型学校职前数学教师专业知识得分情况的差异分析
        一.不同类型学校职前数学教师总成绩的差异分析
        二.不同类型学校职前数学教师各类知识得分的差异分析
    第四节 不同性别职前数学教师得分情况的差异分析
        一.不同性别职前数学教师总成绩的差异分析
        二.不同性别职前数学教师各类知识得分的差异分析
    第五节 各类数学专业知识之间的关系分析
        一.各类数学专业知识得分之间的相关性分析
        二.数学学科知识对数学教学知识的影响分析
        三.数学学科知识对数学课程知识的影响分析
    第六节 本章小结
第六章 职前数学教师专业知识实际结构与期望结构的对比分析
    第一节 职前数学教师专业知识实际结构与期望结构的整体比较
    第二节 不同水平下职前数学教师专业知识实际结构与期望结构的比较
        一.前水平的职前数学教师专业知识结构的比较
        二.识记水平的职前数学教师专业知识结构的比较
        三.关联水平的职前数学教师专业知识结构的比较
        四.综合水平的职前数学教师专业知识结构的比较
    第三节 职前数学教师专业知识结构的讨论
    第四节 本章小结
第七章 结论与建议
    第一节 研究的结论
    第二节 研究的建议
    第三节 研究的局限性与展望
参考文献
附录
    附录1 中学数学教师知识结构状况调查与访谈提纲
    附录2 数学教师专业知识分类框架
    附录3 中学数学教师知识权重调查问卷
    附录4 教师资格考试2014-2018 试题汇总
    附录5 职前数学教师专业知识与基本能力测试
    附录6 职前数学教师专业知识与基本能力测试参考答案
    附录7 职前数学教师专业知识结构及其培养策略访谈提纲
后记
在学期间公开发表论文及着作情况

(6)现代数学思想渗透的初中函数教学设计与应用研究 ——以二次函数为例(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景
    1.2 研究意义
    1.3 研究问题
    1.4 研究方法与思路
        1.4.1 研究方法
        1.4.2 研究思路
第2章 文献综述
    2.1 函数概念的发展
    2.2 中学函数的学与教
        2.2.1 中学生对函数概念的理解情况
        2.2.2 中学函数教学
    2.3 现代数学思想与中学数学教学
        2.3.1 现代数学思想的概念界定
        2.3.2 现代数学思想与中学数学教学
    2.4 理论基础
        2.4.1 APOS理论
        2.4.2 抽象的层次性理论
第3章 研究设计
    3.1 研究对象
    3.2 研究框架
    3.3 研究假设
    3.4 研究过程
    3.5 研究工具
        3.5.1 测试卷的编制
        3.5.2 数学学习兴趣问卷的编制
第4章 现代数学思想渗透的初中二次函数教学设计
    4.1 相关概念界定
        4.1.1 现代数学思想
        4.1.2 现代数学思想渗透的初中函数教学设计
    4.2 初中函数内容分析
    4.3 教学设计的基本原则
    4.4 教学设计的基本思路
    4.5 教学设计案例
        4.5.1 二次函数的概念
        4.5.2 二次函数y=ax~2的图像
第5章 研究结果分析与讨论
    5.1 实验前测数据分析
    5.2 实验后测结果分析与讨论
        5.2.1 二次函数单元测试结果分析与讨论
        5.2.2 函数概念测试结果分析与讨论
    5.3 问卷调查结果分析与讨论
第6章 研究结论与反思
    6.1 研究结论
    6.2 研究启示
    6.3 研究反思
        6.3.1 研究不足
        6.3.2 研究展望
参考文献
附录A 函数概念测试卷
附录B 数学学习兴趣问卷
致谢

(7)高观点下初中方程教学的主要问题与解决策略(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 研究背景
    1.2 研究问题
    1.3 研究意义
    1.4 研究方法
第二章 文献综述与理论基础
    2.1 相关概念界定
    2.2 国内外研究现状
        2.2.1 国外研究现状
        2.2.2 国内研究现状
        2.2.3 文献述评
    2.3 理论基础
        2.3.1 数学与数学教育相关理论
        2.3.2 教师专业发展相关理论
第三章 方程的发展及教学要求
    3.1 方程的发展历史
    3.2 初中课程标准中有关方程的内容
    3.3 方程的教学意义
第四章 高观点下对初中方程的概念及主要解法的解读
    4.1 方程概念与分类
        4.1.1 等式的定义
        4.1.2 关于方程的定义
        4.1.3 方程的分类
    4.2 方程同解定理
        4.2.1 同解方程的原理
        4.2.2 导出方程原理
    4.3 方程解法综述
        4.3.1 方程和方程组解法的一般原理
        4.3.2 公式法
        4.3.3 因式分解法
        4.3.4 换元法
        4.3.5 方程组的解法
    4.4 方程应用及其应用题
    4.5 方程与函数、不等式关系分析
        4.5.1 不等式的定义及性质
        4.5.2 三者之间的关系
第五章 高观点下对初中生方程学习现状的调查及分析
    5.1 调查方案的设计与实施
        5.1.1 调查目的
        5.1.2 调查内容
        5.1.3 调查对象
        5.1.4 调查实施过程
    5.2 调查的结果分析
        5.2.1 测试卷的情况分析
        5.2.2 测试卷的调查结论
        5.2.3 调查问卷的结果分析
        5.2.4 问卷调查的结论
    5.3 教师访谈
第六章 中学教师利用“高观点”指导教学的调查及分析
    6.1 调查目的及意义
    6.2 调查对象
    6.3 信度、效度分析
        6.3.1 信度分析
        6.3.2 效度分析
    6.4 调查结果及分析
第七章 高观下提高初中方程教学质量的策略与建议
    7.1 关于方程概念的教学
    7.2 关于方程解法的教学
    7.3 关于方程应用的教学
    7.4 关于方程与函数、不等式关系的教学
第八章 结论和建议
    8.1 结论
    8.2 建议
        8.2.1 对一线中学数学教师的建议
        8.2.2 对中学学校的建议
参考文献
附录1:测试卷
附录2:初中生方程学习现状调查问卷
附录3:教师采用高观点进行教学现状调查问卷
致谢

(8)“高观点”下柯西不等式的应用探究(论文提纲范文)

1 柯西不等式
    1.1 柯西不等式的定义
    1.2 柯西不等式的应用范围
    1.3 几何图形视角中的柯西不等式
2 柯西不等式在中学数学教学中的应用
    2.1 柯西不等式在不等式证明中的应用
    2.2 柯西不等式在数列求解问题中的应用
    2.3 柯西不等式在三角问题中的应用
    2.4 柯西不等式在方程问题解决中的应用
3 柯西不等式在高等数学中的应用
    3.1 柯西不等式在线性代数中的应用
    3.2 柯西不等式在空间解析几何中的应用
    3.3 柯西不等式在定积分中的应用
4 高等数学中柯西不等式的思想和方法对中学数学解题的指导
5 结语

(9)核心素养背景下的高中复数内容与学生理解的若干相关问题探究(论文提纲范文)

摘要
Abstract
第一章 引言
    一、研究背景
    二、研究问题
    三、研究意义
    四、研究思路与框架
    五、研究方法
    六、核心概念界定
第二章 文献综述
    一、复数的历史发展过程概述
    二、高中复数课程内容组织的研究
    三、高中复数课程的比较研究
    四、高中复数教与学的研究
    五、数学理解的研究
    六、小结
第三章 核心素养与高中复数教育价值
    一、复数与学生数学核心素养发展
    二、高中复数教育价值判断的依据
    三、高中复数教育价值的阐释
第四章 高中复数课程文本的比较研究
    一、我国历年高中复数课程文本的纵向比较
    二、高中复数课程文本的国际横向比较
第五章 高中生复数理解水平研究
    一、测评的意义
    二、研究的理论基础
    三、研究方法设计
    四、测试的指标分析
    五、测试结果统计
    六、分析与结论
    七、高中生复数理解水平测试表现的讨论
第六章 核心素养背景下的高中复数课程内容分析
    一、源于课程与教学理论的思考
    二、基于研究实践的探索
    三、高中复数的基本内容及其层级关系
    四、核心素养背景下的高中复数课程内容发展建议
第七章 结论与展望
    一、研究结论
    二、研究展望
参考文献
附录
    附录一 高中生复数理解水平测试卷(预测试)
    附录二 高中生复数理解水平测试卷(正式测试)
    附录三 我国历年教学大纲或课程标准中的复数内容
    附录四 美国、新加坡、英国、澳大利亚高中数学课程标准复数内容
后记
在学期间公开发表论文及着作情况

(10)高中三角函数单元教学的理论与实践研究(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 研究背景
    1.2 文献综述
        1.2.1 三角函数教学研究的综述
        1.2.2 单元教学研究的综述
    1.3 核心概念界定
    1.4 研究内容、方法及思路
        1.4.1 研究内容
        1.4.2 研究方法
        1.4.3 研究思路
    1.5 研究意义
2 单元教学理论概述
    2.1 单元教学的起源及发展
    2.2 单元教学概念的界定
        2.2.1 单元教学概念的概述
        2.2.2 单元教学与单元教学设计的联系
        2.2.3 单元教学与整体教学的联系
        2.2.4 单元教学的概念
    2.3 已有单元教学设计的操作步骤
    2.4 单元教学的特征—整体性
    2.5 数学单元教学的价值
3 三角函数单元教学现状调查
    3.1 调查目的
    3.2 调查方法和对象
    3.3 调查提纲的设置
    3.4 调查结果及分析
        3.4.1 教师访谈结果及分析
        3.4.2 学生调查结果及分析
    3.5 小结
4 数学单元教学设计操作步骤研究
    4.1 数学单元教学现状的问题分析
    4.2 数学特征分析及启示
        4.2.1 中学数学研究的一般路线及启示
        4.2.2 数学概念的二重性及启示
    4.3 数学单元教学设计操作步骤的修改过程
    4.4 数学单元教学设计的操作步骤
    4.5 数学单元教学设计操作步骤的说明
    4.6 小结
5 三角函数“大单元”的教学要素分析及方案设计
    5.1 三角函数单元教学设计的前期要素分析
        5.1.1 三角函数单元教学设计的主要要素分析
        5.1.2 三角函数单元教学设计的辅助要素分析
        5.1.3 三角函数单元教学要素分析结果概述
    5.2 三角函数单元的知识结构及教学方案
        5.2.1 三角函数单元的知识结构图
        5.2.2 三角函数“大单元”的教学思路
        5.2.3 三角函数“小单元”的教学规划
6 三角函数“小单元”教学的案例
    6.1 “三角函数单元起始课”小单元的教学方案
        6.1.1 “三角函数单元起始课”小单元的教学要素分析
        6.1.2 “三角函数单元起始课”小单元的教学方案
        6.1.3 “三角函数单元起始课”小单元的教学过程
        6.1.4 “三角函数单元起始课”小单元教学方案反思
    6.2 “两角和与差公式”小单元的教学方案
        6.2.1 “两角和与差公式”小单元的教学要素分析
        6.2.2 “两角和与差公式”小单元的教学方案
        6.2.3 “两角和与差公式”小单元第一课时的教学过程
        6.2.4 “两角和与差公式”小单元教学方案反馈
7 研究总结与展望
    7.1 研究总结
    7.2 研究展望
参考文献
附录1:教师访谈要点记录
附录2:学生访谈要点记录
致谢

四、高等数学在解决初等问题中的应用(论文参考文献)

  • [1]从《原本》谈中学平面几何课题式教学研究[J]. 王海青,曹广福. 数学教育学报, 2021(05)
  • [2]马克思政治经济学数理思想及其发展研究[D]. 刘雷. 吉林大学, 2021(01)
  • [3]逆向思维在高等数学例题解析中的应用研究[J]. 陈超. 现代职业教育, 2021(19)
  • [4]面向教师教育的数学知识研究 ——以S市高中数学教研员为例[D]. 沈中宇. 华东师范大学, 2021(08)
  • [5]职前数学教师专业知识结构及水平的实证研究[D]. 王改珍. 东北师范大学, 2021(09)
  • [6]现代数学思想渗透的初中函数教学设计与应用研究 ——以二次函数为例[D]. 张敏怡. 上海师范大学, 2021(07)
  • [7]高观点下初中方程教学的主要问题与解决策略[D]. 王杰. 合肥师范学院, 2021(09)
  • [8]“高观点”下柯西不等式的应用探究[J]. 莫元健,龙承星. 中学数学研究(华南师范大学版), 2021(04)
  • [9]核心素养背景下的高中复数内容与学生理解的若干相关问题探究[D]. 彭艳贵. 东北师范大学, 2020(04)
  • [10]高中三角函数单元教学的理论与实践研究[D]. 胡凤. 四川师范大学, 2020(12)

标签:;  ;  ;  ;  ;  

高等数学在解决初等问题中的应用
下载Doc文档

猜你喜欢