一、SHENYANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文文献综述)
JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu[1](2021)在《New innovations in pavement materials and engineering:A review on pavement engineering research 2021》文中指出Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges. In the past 10 years, the pavement infrastructure strongly supports the rapid development of the global social economy. New theories, new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem. Because of actual coupled behaviors of traffic and environmental conditions, predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis. In order to summarize the current and determine the future research of pavement engineering, Journal of Traffic and Transportation Engineering(English Edition) has launched a review paper on the topic of "New innovations in pavement materials and engineering: A review on pavement engineering research 2021". Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering, this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world. The content includes asphalt binder performance and modeling, mixture performance and modeling of pavement materials,multi-scale mechanics, green and sustainable pavement, and intelligent pavement.Overall, this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.
Ning Li,Cheng-Wen Wang,Pu Zong,Yong-Qin Mao[2](2021)在《Coevolution of global brachiopod palaeobiogeography and tectonopalaeogeography during the Carboniferous》文中进行了进一步梳理The global brachiopod palaeobiogeography of the Mississippian is divided into three realms, six regions, and eight provinces, while that of the Pennsylvanian is divided into three realms, six regions, and nine provinces. On this basis,we examined coevolutionary relationships between brachiopod palaeobiogeography and tectonopalaeogeography using a comparative approach spanning the Carboniferous. The appearance of the Boreal Realm in the Mississippian was closely related to movements of the northern plates into middle–high latitudes. From the Mississippian to the Pennsylvanian, the palaeobiogeography of Australia transitioned from the Tethys Realm to the Gondwana Realm,which is related to the southward movement of eastern Gondwana from middle to high southern latitudes. The transition of the Yukon–Pechora area from the Tethys Realm to the Boreal Realm was associated with the northward movement of Laurussia, whose northern margin entered middle–high northern latitudes then. The formation of the six palaeobiogeographic regions of Mississippian and Pennsylvanian brachiopods was directly related to "continental barriers", which resulted in the geographical isolation of each region. The barriers resulted from the configurations of Siberia, Gondwana, and Laurussia, which supported the Boreal, Tethys, and Gondwana realms, respectively. During the late Late Devonian–Early Mississippian, the Rheic seaway closed and North America(from Laurussia) joined with South America and Africa(from Gondwana), such that the function of "continental barriers" was strengthened and the differentiation of eastern and western regions of the Tethys Realm became more distinct. In the Barents Ocean tectonic domain during the Pennsylvanian, the brachiopods on the northern margin of the Barents Ocean formed the Verkhoyansk–Taymyr Province, while those on the southern margin formed the Yukon–Pechora Province. The Mongolia–Okhotsk Province was formed by brachiopods of the Mongolia–Okhotsk Ocean tectonic domain. The Northern Margin of the Palaeo-Tethys Ocean Province and the Southern Margin of the Palaeo-Tethys Ocean Province were formed, respectively, by brachiopods on the northern and southern margins of the Palaeo-Tethys Ocean tectonic domain. South China and Southeast Asia were dissociated from the major continental blocks mentioned above, and formed the South China Province.
周琦君[3](2021)在《晚清至民国(1840-1949)无锡科技翻译史研究》文中认为
贺少伟[4](2021)在《西南科技大学校园网页新闻汉英翻译实践报告》文中研究表明在我们国家优秀文化对外传播越来越广的基础上,高校官方的英文网站也顺应趋势,成为外界了解国内高校的重要窗口,在对外交流中起到了举足轻重的作用。而笔者认为西南科技大学校园新闻翻译,与其他院校类似,均存在拘泥于原文的问题,虽然将原文作者的意思表达了出来,但是对于目标读者来说信息冗杂,无法一目了然的知道核心内容,更有由于文化视域差别导致的理解偏差存在。本报告以笔者在西南科技大学外国语学院MTI中心的新闻翻译实践为基础,运用翻译模因论指导翻译实践,试图解决上述问题,并以此创作翻译实践报告。通过分析新闻文本的特点,笔者选用国内发展较快的翻译模因论作为理论指导,结合翻译项目中的具体案例,对源文本进行了详细的分析,得出源文本作为新闻所具有的时效性、宣传性以及和英语之间的不同,如时态语态等问题。此外,笔者引用源文本中的案例,围绕笔认为在校园新闻翻译过程中需要解决的三个方面的问题进行分析:一是当时态在目的语表述过程中发生转变时,如何通过模因论指导选择翻译方法;二是分析通过模因论如何选择翻译方法来使得译出语符合英语语言语法特点;第三是分析在此翻译过程中如何运用模因论选择翻译方法来清晰的表述源语言的文本信息。最后笔者提出了相应的翻译策略,即运用省译法、解释性翻译法和顺句翻译法来解决时态转变带来的翻译问题;运用分、合译法和倒译法在翻译过程中适应目标语言的语法特点;运用编译法在译文中更清晰合适的表达源语言想传达出的信息。通过分析以及相应的翻译方法的选择,笔者能够较为有效解决翻译过程中的难题,诸如译文需要符合英语读者的需要和译文的表达方式等问题,从而提高了汉英翻译的可读性和准确性。最后是笔者对整个翻译过程中所学所得,如需要进行充分的准备工作和译后校对,更要熟悉翻译理论并指导实践,以及出现的问题和不足之处的总结,以及对校园新闻翻译提出的要注意译员身份的中立以及翻译过程中对文化冲突的理解等建议,希望能够有所帮助。
Sheng-qing Xiong[5](2021)在《Research achievements of the Qinghai-Tibet Plateau based on 60 years of aeromagnetic surveys》文中指出The Qinghai-Tibet Plateau(also referred to as the Plateau) has long received much attention from the community of geoscience due to its unique geographical location and rich mineral resources. This paper reviews the aeromagnetic surveys in the Plateau in the past 60 years and summarizes relevant research achievements, which mainly include the followings.(1) The boundaries between the Plateau and its surrounding regions have been clarified. In detail, its western boundary is restricted by West Kunlun-Altyn Tagh arc-shaped magnetic anomaly zone forming due to the arc-shaped connection of the Altyn Tagh and Kangxiwa faults and its eastern boundary consists of the boundaries among different magnetic fields along the Longnan(Wudu)-Kangding Fault. Meanwhile, the fault on the northern margin of the Northern Qilian Mountains serves as its northern boundary.(2) The Plateau is mainly composed of four orogens that were stitched together, namely East Kunlun-Qilian, Hoh-Xil-Songpan, Chamdo-Southwestern Sanjiang(Nujiang, Lancang, and Jinsha rivers in southeastern China), and Gangdese-Himalaya orogens.(3) The basement of the Plateau is dominated by weakly magnetic Proterozoic metamorphic rocks and lacks strongly magnetic Archean crystalline basement of stable continents such as the Tarim and Sichuan blocks. Therefore, it exhibits the characteristics of unstable orogenic basement.(4) The Yarlung-Zangbo suture zone forming due to continent-continent collisions since the Cenozoic shows double aeromagnetic anomaly zones. Therefore, it can be inferred that the Yarlung-Zangbo suture zone formed from the Indian Plate subducting towards and colliding with the Eurasian Plate twice.(5) A huge negative aeromagnetic anomaly in nearly SN trending has been discovered in the middle part of the Plateau, indicating a giant deep thermal-tectonic zone.(6) A dual-layer magnetic structure has been revealed in the Plateau. It consists of shallow magnetic anomaly zones in nearly EW and NW trending and deep magnetic anomaly zones in nearly SN trending. They overlap vertically and cross horizontally, showing the flyover-type geological structure of the Plateau.(7) A group of NW-trending faults occur in eastern Tibet, which is intersected rather than connected by the nearly EW trending that develop in middle-west Tibet.(8) As for the central uplift zone that occurs through the Qiangtang Basin, its metamorphic basement tends to gradually descend from west to east, showing the form of steps. The Qiangtang Basin is divided into the northern and southern part by the central uplift zone in it. The basement in the Qiangtang Basin is deep in the north and west and shallow in the south and west. The basement in the northern Qiangtang Basin is deep and relatively stable and thus is more favorable for the generation and preservation of oil and gas. Up to now, 19 favorable tectonic regions of oil and gas have been determined in the Qiangtang Basin.(9) A total of 21 prospecting areas of mineral resources have been delineated and thousands of ore-bearing(or mineralization) anomalies have been discovered. Additionally, the formation and uplift mechanism of the Plateau are briefly discussed in this paper.
MURWANASHYAKAEVARISTE[6](2020)在《深部金属矿山岩爆卸压爆破控制技术研究》文中提出本文研究的是深部金属矿山岩爆卸压爆破控制技术研究。正如前研究证明了,矿床是加强一个国家经济发展的重要有价值的材料。人类对矿藏的无限需求导致地下矿山的开采深度不断增加。随着深部矿产资源的开采和地应力的高度集中,岩爆的频繁发生,严重阻碍了深部矿产资源的安全经济开采。由于开采深度越大,可能伴随着岩爆问题的发生,因此,作为一种深部矿山安全工具,卸压爆破的应用越来越广泛。其他研究员发现,在预测了岩爆倾向性后,可以对高应力集中区的卸压做出正确的决策。在这方面,应力传递原理可以通过使用卸压爆破技术来实现。为了实现高峰矿山深部资源的安全高效开采,本研究对岩爆和卸压爆破进行了初步的回顾,然后采用岩爆倾向性评价判据对岩爆倾向性进行评价,作为选择合适的采矿方法和卸压方案提供决策依据。对于岩爆灾害,为了彻底理解岩爆问题回顾进行了,引起了作者对深部矿井岩爆灾害进行详细研究的兴趣。通过对卸压爆破技术的深回顾,为进一步提高其现场应用水平提供了一定的理解和想法。对于矿山案例研究,本硕士论文以高峰矿山105号深部矿体为研究对象。主要根据矿区已初步掌握的地质条件,地应力和岩石力学参数来评价岩爆倾向。随着矿区实测地应力和岩石力学参数,采用5个岩爆倾向性评估判据,如Barton判据(σt/σ1),Barton判据(σc/σ1),Brittleness判据(σc/σt),Maximum stored elastic strain energy指数(σvc2/2E),Elastic energy指数(Wet),Impact energy指数。根据高峰矿山105号锡矿体岩爆倾向性评价结果,决定该矿体满足岩爆倾向性条件。为了限制开采技术难题,实现该矿体的安全高效开采,本文对105号矿体进行了卸压开采技术(卸压爆破技术)研究,以防止开采过程中可能出现的岩爆问题。为了分析和选择有效的卸压爆破方案,本文采用ABAQUS,Pro/E,和Hypermesh14.0数值模拟软件对所提出的卸压爆破方案进行了模拟分析。根据采矿技术条件、地应力、矿体总体趋势和岩石力学参数,首先分析的不同卸压炮孔深度条件下卸压爆破效果。模拟炮孔深度分别为6米,8米和10米时,在回采作业面前方进行爆破卸压。这三种条件中,装药深度均为1m,填塞长度分别为5m,7m,9m。模拟结果发现:在这3个爆破孔深度中,当爆破孔深度为6米时,卸压效果明显。这主要是由于以下事实:卸压爆破后,工作面前墙围岩中的高应力被转移到远离工作面围岩的位置(工作面的前方)。得出最优卸压炮孔深度为6m的情况下,提出了4种卸压爆破方案,并与1种无卸压爆破工作面进行了对比分析。提出的4种卸压爆破方案为:工作面的两帮墙卸压爆破(DBSⅠ),工作面的前墙卸压爆破(DBSⅡ)、工作面的覆盖层卸压爆破(DBSⅢ)和工作面的三帮(两帮和前墙)卸压爆破(DBSⅣ)。根据数值模拟结果,得出以下结论:1.工作面的覆盖层卸压爆破(DBSⅢ):在这个方案,卸压应力主要在竖直方向转移,但是在沿矿体走向方向,高应力集中没有转移,卸压效果不明显。2.工作面的两帮墙卸压爆破(DBSⅠ):在这个方案,高应力集中转移到远离工作面侧壁围岩的位置,而作用在工作面的前墙围岩的应力不被转移。说明工作面全围岩的高应力集中没有得到有效的位移,因此,卸压效果不是很明显。3.工作面的前墙卸压爆破(DBSⅡ):在这个方案中,卸压爆破后,工作面前墙围岩中的高应力被转移到远离工作面围岩的位置(工作面的前方),而作用在工作面侧壁围岩上的应力可能诱发工作面岩爆。因此,这个方案对工作面具有一点卸压效果。4.和工作面的三帮(两帮和前墙)卸压爆破(DBS Ⅳ):这个方案是方案Ⅰ(DBS Ⅰ)和方案Ⅱ(DBS Ⅱ)的组合。对工作面具有明显的卸压效果。卸压爆破后,一方面,高应力被DBS Ⅱ转移到深处(工作面的前方),另一方面,高应力被DBS Ⅰ转移到远离工作面侧壁围岩的位置。DBS Ⅳ(DBS Ⅰ和DBS Ⅱ)将高应力转移到远离工作面所有围岩(侧壁和前墙围岩)的地方,降低了工作面发生岩爆的可能性,然后创造安全开采的条件。因此,方案Ⅳ(DBS Ⅳ)是推荐采用的最佳方案。
王静宜[7](2020)在《评价理论视角下国际关系文本汉译英中态度资源的再现 ——《中国与拉丁美洲和加勒比国家关系史》(第六章第3-5节)的翻译实践报告》文中进行了进一步梳理本翻译实践报告材料节选自贺双荣主编的《中国与拉丁美洲和加勒比国家关系史》一书中第六章(第3—5节)的内容,所选文本属于信息型文本,语言严谨准确,叙述性语言较多,尽管较少地带有个人感情色彩,但是该文中的态度资源还是较为充分的,这也是在翻译该文本时的重点和难点所在。那译者是否能够准确地将态度资源准确识别出来并对其进行准确的理解与翻译,则对该文本而言是至关重要的。因此,译者应对该书的原文有着充分并深刻地理解,并将作者的态度资源准确地传达出来。译者根据评价理论视角下态度资源的分类,将态度资源分成了情感资源、判断资源和鉴赏资源。通过用态度资源所包含的情感资源、判断资源和鉴赏资源进行分类,采用相关的翻译理论和技巧对译文进行剖析与加工,力求达到较好的翻译效果,提高译文的可读性。通过本次翻译实践,笔者加深了对信息型文本的了解,并熟练掌握了与之相关的翻译策略和技巧。在对此次翻译实践进行总结反思后,希望为今后此类文本的翻译工作提供借鉴。
申京浩(Sim Kyong Ho)[8](2019)在《钛合金航空材料高新技术产业化机制研究》文中指出随着科学技术的迅速发展,产品价值中的科技含量不断增加,科学技术对经济增长的作用越来越加强。高新技术成果一旦实现了产业化,就会转化为巨大的生产力,带来客观的经济效益。高新技术产业化是一项复杂的系统活动,其过程涉及到科研系统、生产系统、社会支撑系统、市场及其之间的协同作用,这个转化大系统中的每一个小系统及其构成要素之间的相互联系、相互作用可以影响高新技术成果的转化。基于科技的发展和改革创新的推动,目前中国钛合金航空材料高新技术成果大量产出,数量是成倍增长。钛合金航空材料以其优异的高温性能,在未来航空航天领域具有广阔的应用前景。中国在钛合金航空材料研究方面基本与欧美发达国家同步,已进行了合金化和组织结构设计方面的系统研究,在应用研究方面已经在卫星、导弹发动机等领域获得了突破。如果钛合金企业实现钛合金航空材料高新技术产业化,就能在国际航空市场上拥有强大的竞争力迅速发展。因此,钛合金航空材料高新技术产业化机制研究,在理论和实践上都有很重要的意义。本论文在高新技术产业化机制相关理论分析的基础上,从中国钛合金航空材料产业发展路径层面、钛合金航空材料高新技术产业化机制层面揭示了钛合金航空材料高新技术产业化的必要性,并提出了钛合金航空材料高新技术产业化动力和过程、运行机制以及其保障措施。首先,本论文通过世界钛合金产业化现状和发展趋势以及世界钛合金市场展望的分析,提出了中国钛合金航空材料产业发展路径,并且采用网络层次分析法对目前中国钛合金航空材料产业化水平进行了评价。其次,本论文从钛合金航空材料高新技术发展、市场需求、国际竞争和宏观经济政策环境角度,探讨了钛合金航空材料高新技术产业化的动力。然后,对钛合金航空材料高新技术产业化过程的重要阶段——技术开发阶段、产品开发及批量生产阶段、市场推广及规模化生产阶段,进行了深度的研究。再次,对钛合金航空材料高新技术产业化运行机制进行了系统分析。研究主要包括钛合金航空材料高新技术产业化的技术创新机制、技术人才培养及激励机制、融资机制以及政策法律保障机制。最后,本论文在钛合金航空材料高新技术产业化运行机制研究的基础上,提出了钛合金航空材料高新技术产业化的技术创新机制、技术人才机制、融资机制的保障措施以及政策法律保障机制的完善措施。
Lisaia Daria(达丽娅)[9](2019)在《俄罗斯城市可持续发展及其对中国城市的启示研究》文中研究说明城市可持续发展是我们地球繁荣未来的一个重要方面。根据2005年联合国世界峰会的成果,可持续发展的概念包含三个基本要素:社会、经济和环境。社会经济发展问题是国家政策的核心。从方法和途径到解决(具体)问题的方案取决于国家的繁荣和国民的经济生活水平。面对严峻的全球竞争,城市居住模式的管理以及寻求组织和管理人力、国土和生产资源的最佳解决方案是社会经济发展的途径之一。目前国家最高一级的国土开发规划和管理流程的演变正在进行,并与其他各级政府的规划系统进行协调。根据在2017年5月8日至12日举行的联合国人类住区规划署理事会第二十六届会议的报告,这是在城市(市政)层面提高国家政策执行效率和改善城市环境质量的关键要求之一。国家政策发展的另一个重要要求是将传统经济转变为知识经济,并带领该国走向世界技术领先,这是最可持续的经济发展方式。建立国家的创新基础设施是实现这些任务的必要条件之一。在此背景下,对世界上最大的两个国家(俄罗斯和中国)的城市发展经验的研究正在成为城市规划、设计和建筑广阔领域专家的宝贵知识来源。本文的研究目标是明确俄罗斯和中国社会经济政策的优先事项并对其在国土和城市规划层面的实施机制进行比较分析,这两者是国家可持续发展的重要条件。全文分为五个部分,共八章。其中第一部分(第1章)对课题相关的文献进行综述和分析,并制定研究目标、研究对象、研究假设和研究方法。第二部分(第2-3章)介绍第一项研究成果,即俄罗斯和中国城市可持续发展的比较分析,并对可持续城市规划和城市化进程两个主题进行详细描述与对第一项研究的结果进行讨论。第三部分(第4-7章)介绍第二项研究成果,即俄罗斯的案例研究,相关主题包括:俄罗斯城市可持续发展的社会经济问题;俄罗斯的创新基础设施;从科学定居点到斯科尔科沃创新中心的苏联科学城市发展历史回顾;斯科尔科沃创新中心的城市规划理念。第四部分(第8章)对第二项研究的结果进行讨论,探讨城市发展在国家可持续发展过程中的作用。第五部分介绍结论并对后续的科研工作提出建议。论文作者对俄罗斯和中国的历史,以及两国在20世纪和当下建设现代国家的过程中所经历的困难道路深表敬意和理解。尽管在经济、社会、文化和地缘上存在差异,两个国家都是在现在和未来为和平与稳定做出巨大努力的强大的现代国家。
Rui-min Li,Zhi-qiang Yin,Yi Wang,Xiao-lei Li,Qiong Liu,Meng-meng Gao[10](2018)在《Geological resources and environmental carrying capacity evaluation review, theory,and practice in China》文中进行了进一步梳理Evaluations of resources and environmental carrying capacities(GRECC) are the premise of land space planning and use control. Resource allocations and environmental capacity are the basic conditions that restrict development in a region. In this paper, based on a systematic review of China’s geological environment, groundwater resources, mineral resources, other geological resources and the environmental carrying capacity research status, the relationship between the natural resource environmental system and the socio-economic system is studied. Then a "coordination theory of resources and environmental carrying" is proposed. Next, on the basis of an evaluation experiment performed at different scales and for different types of regions, the technical methods for an evaluation of the geological resources and environmental carrying capacity at the regional(inter-provincial) and provincial scales in China are established for the first time. This paper presents a standardized method based on technical ideas,evaluation methods, and index systems for geological resource and environmental carrying capacity evaluation. Finally, an evaluation of the groundwater resource carrying capacity in China is used as an example for the demonstration of the groundwater resource background and use of state evaluation methods.
二、SHENYANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、SHENYANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文提纲范文)
(1)New innovations in pavement materials and engineering:A review on pavement engineering research 2021(论文提纲范文)
1. Introduction |
(1) With the society development pavement engineering facing unprecedented opportunities and challenges |
(2) With the modern education development pavement engineering facing unprecedented accumulation of scientific manpower and literature |
2. Asphalt binder performance and modeling |
2.1. Binder damage,healing and aging behaviors |
2.1.1. Binder healing characterization and performance |
2.1.1. 1. Characterizing approaches for binder healing behavior. |
2.1.1. 2. Various factors influencing binder healing performance. |
2.1.2. Asphalt aging:mechanism,evaluation and control strategy |
2.1.2. 1. Phenomena and mechanisms of asphalt aging. |
2.1.2. 2. Simulation methods of asphalt aging. |
2.1.2. 3. Characterizing approaches for asphalt aging behavior. |
2.1.2. 4. Anti-aging additives used for controlling asphalt aging. |
2.1.3. Damage in the characterization of binder cracking performance |
2.1.3. 1. Damage characterization based on rheological properties. |
2.1.3. 2. Damage characterization based on fracture properties. |
2.1.4. Summary and outlook |
2.2. Mechanism of asphalt modification |
2.2.1. Development of polymer modified asphalt |
2.2.1. 1. Strength formation of modified asphalt. |
2.2.1. 2. Modification mechanism by molecular dynamics simulation. |
2.2.1. 3. The relationship between microstructure and properties of asphalt. |
2.2.2. Application of the MD simulation |
2.2.2. 1. Molecular model of asphalt. |
2.2.2. 2. Molecular configuration of asphalt. |
2.2.2. 3. Self-healing behaviour. |
2.2.2. 4. Aging mechanism. |
2.2.2. 5. Adhesion mechanism. |
2.2.2. 6. Diffusion behaviour. |
2.2.3. Summary and outlook |
2.3. Modeling and application of crumb rubber modified asphalt |
2.3.1. Modeling and mechanism of rubberized asphalt |
2.3.1. 1. Rheology of bituminous binders. |
2.3.1. 2. Rheological property prediction of CRMA. |
2.3.2. Micromechanics-based modeling of rheological properties of CRMA |
2.3.2. 1. Composite system of CRMA based on homogenization theory. |
2.3.2. 2. Input parameters for micromechanical models of CRMA. |
2.3.2. 3. Analytical form of micromechanical models of CRMA. |
2.3.2. 4. Future recommendations for improving micro-mechanical prediction performance. |
2.3.3. Design and performance of rubberized asphalt |
2.3.3. 1. The interaction between rubber and asphalt fractions. |
2.3.3. 2. Engineering performance of rubberized asphalt. |
2.3.3. 3. Mixture design. |
2.3.3. 4. Warm mix rubberized asphalt. |
2.3.3. 5. Reclaiming potential of rubberized asphalt pavement. |
2.3.4. Economic and Environmental Effects |
2.3.5. Summary and outlook |
3. Mixture performance and modeling of pavement materials |
3.1. The low temperature performance and freeze-thaw damage of asphalt mixture |
3.1.1. Low temperature performance of asphalt mixture |
3.1.1. 1. Low temperature cracking mechanisms. |
3.1.1. 2. Experimental methods to evaluate the low temperature performance of asphalt binders. |
3.1.1. 3. Experimental methods to evaluate the low temperature performance of asphalt mixtures. |
3.1.1. 4. Low temperature behavior of asphalt materials. |
3.1.1.5.Effect factors of low temperature performance of asphalt mixture. |
3.1.1. 6. Improvement of low temperature performance of asphalt mixture. |
3.1.2. Freeze-thaw damage of asphalt mixtures |
3.1.2. 1. F-T damage mechanisms. |
3.1.2. 2. Evaluation method of F-T damage. |
3.1.2. 3. F-T damage behavior of asphalt mixture. |
(1) Evolution of F-T damage of asphalt mixture |
(2) F-T damage evolution model of asphalt mixture |
(3) Distribution and development of asphalt mixture F-T damage |
3.1.2. 4. Effect factors of freeze thaw performance of asphalt mixture. |
3.1.2. 5. Improvement of freeze thaw resistance of asphalt mixture. |
3.1.3. Summary and outlook |
3.2. Long-life rigid pavement and concrete durability |
3.2.1. Long-life cement concrete pavement |
3.2.1. 1. Continuous reinforced concrete pavement. |
3.2.1. 2. Fiber reinforced concrete pavement. |
3.2.1. 3. Two-lift concrete pavement. |
3.2.2. Design,construction and performance of CRCP |
3.2.2. 1. CRCP distress and its mechanism. |
3.2.2. 2. The importance of crack pattern on CRCP performance. |
3.2.2. 3. Corrosion of longitudinal steel. |
3.2.2. 4. AC+CRCP composite pavement. |
3.2.2. 5. CRCP maintenance and rehabilitation. |
3.2.3. Durability of the cementitious materials in concrete pavement |
3.2.3. 1. Deterioration mechanism of sulfate attack and its in-fluence on concrete pavement. |
3.2.3. 2. Development of alkali-aggregate reaction in concrete pavement. |
3.2.3. 3. Influence of freeze-thaw cycles on concrete pavement. |
3.2.4. Summary and outlook |
3.3. Novel polymer pavement materials |
3.3.1. Designable PU material |
3.3.1. 1. PU binder. |
3.3.1.2.PU mixture. |
3.3.1. 3. Material genome design. |
3.3.2. Novel polymer bridge deck pavement material |
3.3.2. 1. Requirements for the bridge deck pavement material. |
3.3.2.2.Polyurethane bridge deck pavement material(PUBDPM). |
3.3.3. PU permeable pavement |
3.3.3. 1. Permeable pavement. |
3.3.3. 2. PU porous pavement materials. |
3.3.3. 3. Hydraulic properties of PU permeable pavement materials. |
3.3.3. 4. Mechanical properties of PU permeable pavement ma-terials. |
3.3.3. 5. Environmental advantages of PU permeable pavement materials. |
3.3.4. Polyurethane-based asphalt modifier |
3.3.4. 1. Chemical and genetic characteristics of bitumen and polyurethane-based modifier. |
3.3.4. 2. The performance and modification mechanism of polyurethane modified bitumen. |
3.3.4. 3. The performance of polyurethane modified asphalt mixture. |
3.3.4. 4. Environmental and economic assessment of poly-urethane modified asphalt. |
3.3.5. Summary and outlook |
3.4. Reinforcement materials for road base/subrgrade |
3.4.1. Flowable solidified fill |
3.4.1. 1. Material composition design. |
3.4.1. 2. Performance control. |
3.4.1. 3. Curing mechanism. |
3.4.1. 4. Construction applications. |
3.4.1.5.Environmental impact assessment. |
3.4.1. 6. Development prospects and challenges. |
3.4.2. Stabilization materials for problematic soil subgrades |
3.4.2.1.Stabilization materials for loess. |
3.4.2. 2. Stabilization materials for expansive soil. |
3.4.2. 3. Stabilization materials for saline soils. |
3.4.2. 4. Stabilization materials for soft soils. |
3.4.3. Geogrids in base course reinforcement |
3.4.3. 1. Assessment methods for evaluating geogrid reinforce-ment in flexible pavements. |
(1) Reinforced granular material |
(2) Reinforced granular base course |
3.4.3. 2. Summary. |
3.4.4. Summary and outlook |
4. Multi-scale mechanics |
4.1. Interface |
4.1.1. Multi-scale evaluation method of interfacial interaction between asphalt binder and mineral aggregate |
4.1.1. 1. Molecular dynamics simulation of asphalt adsorption behavior on mineral aggregate surface. |
4.1.1. 2. Experimental study on absorption behavior of asphalt on aggregate surface. |
4.1.1. 3. Research on evaluation method of interaction between asphalt and mineral powder. |
(1) Rheological mechanical method |
(2) Microscopic test |
4.1.1. 4. Study on evaluation method of interaction between asphalt and aggregate. |
4.1.2. Multi-scale numerical simulation method considering interface effect |
4.1.2. 1. Multi-scale effect of interface. |
4.1.2. 2. Study on performance of asphalt mixture based on micro nano scale testing technology. |
4.1.2. 3. Study on the interface between asphalt and aggregate based on molecular dynamics. |
4.1.2. 4. Study on performance of asphalt mixture based on meso-mechanics. |
4.1.2. 5. Mesoscopic numerical simulation test of asphalt mixture. |
4.1.3. Multi-scale investigation on interface deterioration |
4.1.4. Summary and outlook |
4.2. Multi-scales and numerical methods in pavement engineering |
4.2.1. Asphalt pavement multi-scale system |
4.2.1. 1. Multi-scale definitions from literatures. |
4.2.1. 2. A newly-proposed Asphalt Pavement Multi-scale System. |
(1) Structure-scale |
(2) Mixture-scale |
(3) Material-scale |
4.2.1. 3. Research Ideas in the newly-proposed multi-scale sys- |
4.2.2. Multi-scale modeling methods |
4.2.2. 1. Density functional theory (DFT) calculations. |
4.2.2. 2. Molecular dynamics (MD) simulations. |
4.2.2. 3. Composite micromechanics methods. |
4.2.2. 4. Finite element method (FEM) simulations. |
4.2.2. 5. Discrete element method (DEM) simulations. |
4.2.3. Cross-scale modeling methods |
4.2.3. 1. Mechanism of cross-scale calculation. |
4.2.3. 2. Multi-scale FEM method. |
4.2.3. 3. FEM-DEM coupling method. |
4.2.3. 4. NMM family methods. |
4.2.4. Summary and outlook |
4.3. Pavement mechanics and analysis |
4.3.1. Constructive methods to pavement response analysis |
4.3.1. 1. Viscoelastic constructive models. |
4.3.1. 2. Anisotropy and its characterization. |
4.3.1. 3. Mathematical methods to asphalt pavement response. |
4.3.2. Finite element modeling for analyses of pavement mechanics |
4.3.2. 1. Geometrical dimension of the FE models. |
4.3.2. 2. Constitutive models of pavement materials. |
4.3.2. 3. Variability of material property along with different directions. |
4.3.2. 4. Loading patterns of FE models. |
4.3.2. 5. Interaction between adjacent pavement layers. |
4.3.3. Pavement mechanics test and parameter inversion |
4.3.3. 1. Nondestructive pavement modulus test. |
4.3.3. 2. Pavement structural parameters inversion method. |
4.3.4. Summary and outlook |
5. Green and sustainable pavement |
5.1. Functional pavement |
5.1.1. Energy harvesting function |
5.1.1. 1. Piezoelectric pavement. |
5.1.1. 2. Thermoelectric pavement. |
5.1.1. 3. Solar pavement. |
5.1.2. Pavement sensing function |
5.1.2. 1. Contact sensing device. |
5.1.2.2.Lidar based sensing technology. |
5.1.2. 3. Perception technology based on image/video stream. |
5.1.2. 4. Temperature sensing. |
5.1.2. 5. Traffic detection based on ontology perception. |
5.1.2. 6. Structural health monitoring based on ontology perception. |
5.1.3. Road adaptation and adjustment function |
5.1.3. 1. Radiation reflective pavement.Urban heat island effect refers to an increased temperature in urban areas compared to its surrounding rural areas (Fig.68). |
5.1.3. 2. Catalytical degradation of vehicle exhaust gases on pavement surface. |
5.1.3. 3. Self-healing pavement. |
5.1.4. Summary and outlook |
5.2. Renewable and sustainable pavement materials |
5.2.1. Reclaimed asphalt pavement |
5.2.1. 1. Hot recycled mixture technology. |
5.2.1. 2. Warm recycled mix asphalt technology. |
5.2.1. 3. Cold recycled mixture technology. |
(1) Strength and performance of cold recycled mixture with asphalt emulsion |
(2) Variability analysis of asphalt emulsion |
(3) Future prospect of cold recycled mixture with asphalt emulsion |
5.2.2. Solid waste recycling in pavement |
5.2.2. 1. Construction and demolition waste. |
(1) Recycled concrete aggregate |
(2) Recycled mineral filler |
5.2.2. 2. Steel slag. |
5.2.2. 3. Waste tire rubber. |
5.2.3. Environment impact of pavement material |
5.2.3. 1. GHG emission and energy consumption of pavement material. |
(1) Estimation of GHG emission and energy consumption |
(2) Challenge and prospect of environment burden estimation |
5.2.3. 2. VOC emission of pavement material. |
(1) Characterization and sources of VOC emission |
(2) Health injury of VOC emission |
(3) Inhibition of VOC emission |
(4) Prospect of VOC emission study |
5.2.4. Summary and outlook |
6. Intelligent pavement |
6.1. Automated pavement defect detection using deep learning |
6.1.1. Automated data collection method |
6.1.1. 1. Digital camera. |
6.1.1.2.3D laser camera. |
6.1.1. 3. Structure from motion. |
6.1.2. Automated road surface distress detection |
6.1.2. 1. Image processing-based method. |
6.1.2. 2. Machine learning and deep learning-based methods. |
6.1.3. Pavement internal defect detection |
6.1.4. Summary and outlook |
6.2. Intelligent pavement construction and maintenance |
6.2.1. Intelligent pavement construction management |
6.2.1. 1. Standardized integration of BIM information resources. |
6.2.1. 2. Construction field capturing technologies. |
6.2.1. 3. Multi-source spatial data fusion. |
6.2.1. 4. Research on schedule management based on BIM. |
6.2.1. 5. Application of BIM information management system. |
6.2.2. Intelligent compaction technology for asphalt pavement |
6.2.2. 1. Weakened IntelliSense of ICT. |
6.2.2. 2. Poor adaptability of asphalt pavement compaction index. |
(1) The construction process of asphalt pavement is affected by many complex factors |
(2) Difficulty in model calculation caused by jumping vibration of vibrating drum |
(3) There are challenges to the numerical stability and computational efficiency of the theoretical model |
6.2.2. 3. Insufficient research on asphalt mixture in vibratory rolling. |
6.2.3. Intelligent pavement maintenance decision-making |
6.2.3. 1. Basic functional framework. |
6.2.3. 2. Expert experience-based methods. |
6.2.3. 3. Priority-based methods. |
6.2.3. 4. Mathematical programming-based methods. |
6.2.3. 5. New-gen machine learning-based methods. |
6.2.4. Summary and outlook |
(1) Pavement construction management |
(2) Pavement compaction technology |
(3) Pavement maintenance decision-making |
7. Conclusions |
Conflict of interest |
(2)Coevolution of global brachiopod palaeobiogeography and tectonopalaeogeography during the Carboniferous(论文提纲范文)
1 Introduction |
2 Palaeobiogeographic provincialism of brachiopods during the Carboniferous |
2.1 Palaeobiogeographic provincialism of brachiopods during the Mississippian |
2.1.1 Boreal Realm |
2.1.2 Tethys Realm |
2.1.3 Gondwana Realm |
2.2 Palaeobiogeographic provincialism of brachiopods during the Pennsylvanian |
2.2.1 Boreal Realm |
2.2.2 Tethys Realm |
2.2.3 Gondwana Realm |
3 Coevolution of palaeobiogeography and Pangaea |
3.1 Coevolution of the Boreal Realm and Pangaea |
3.2 Coevolution of the Tethys Realm and Pangaea |
3.3 Coevolution of the Gondwana Realm and Pangaea |
4 Discussion |
5 Conclusions |
6 Supplementary Information |
Authors’contributions |
Availability of data and materials |
Declarations |
Competing interests |
(4)西南科技大学校园网页新闻汉英翻译实践报告(论文提纲范文)
Abstract |
摘要 |
Chapter One Introduction |
1.1 Background of the Translation Project |
1.2 Analysis of the Source Text |
1.3 Structure of the Report |
Chapter Two Translation Processes |
2.1 Pre-translation Preparation |
2.2 Translation Procedures |
2.3 Proofreading after Translation |
Chapter Three Introduction to the Guiding Theory |
3.1 The Memetics Theory |
3.1.1 The Origin of the Memetics Theory |
3.1.2 The Development of the Memetics Theory |
3.2 The Guiding Role of Memetics Theory on Campus Web Page News Translation |
3.2.1 The Guiding Theory |
3.2.2 The Specific Process |
Chapter Four Case Study |
4.1 Translation choices under tense changes in translation |
4.1.1 The Omission |
4.1.2 The Explanatory |
4.1.3 The Syntactic Linearity |
4.2 Translation choices under grammatical features in translation |
4.2.1 The Division |
4.2.2 The Integration |
4.2.3 The Syntactic Reverse |
4.3 Translation choices under cultural communication in translation |
Chapter Five Quality Evaluation of Translations |
5.1 Self-evaluation |
5.2 Client-evaluation |
5.3 Commissioner-evaluation |
Chapter Six Conclusion |
6.1 Conclusion to the translation process |
6.1.1 Experiences accumulated in task |
6.1.2 Deficiencies in the translation process |
6.2 Suggestions for translating campus news |
Acknowledgement |
Bibliography |
Appendix A The Source Text and the Target Text |
Appendix B Certificate of Translation Practice |
Appendix C Glossary of terms |
Appendix D Translation Aids Website |
(6)深部金属矿山岩爆卸压爆破控制技术研究(论文提纲范文)
ABSTRACT |
摘要 |
LIST OF ABBREVIATIONS AND NOTATIONS |
CHAPTER 1 GENERAL INTRODUCTION |
1.1 Research Background |
1.1.1 The main source of research problem |
1.2 Research Significances |
1.3 Research Status in China and Abroad |
1.3.1 Research status on rock burst in Chinese mines |
1.3.2 Research status on rock burst in abroad |
1.3.2.1 Rock burst in Australian mines |
1.3.2.2 Rock burst in South African mines |
1.3.2.3 Rock burst in American mines |
1.3.2.4 Rock burst in European mines |
1.3.2.5 Rock burst in Indian mines |
1.4 Research Status on Rock burst Mechanism and Evaluation Approaches |
1.4.1 Rock burst mechanism |
1.4.2 Classification of rock burst mechanism |
1.4.3 Evaluation approaches for rock burst tendency |
1.5 Main Characteristics of Rock burst |
1.6 Rock burst Control Methods |
1.7.Research Methods,Objectives,Main Contents,and Framework |
1.7.1 Research methods |
1.7.2 Research objectives |
1.7.3 Main research contents |
1.7.4 Research framework |
CHAPTER 2 DESTRESS BLASTING AS ESSENTIAL TECHNIQUE TO CONTROL ROCKBURST IN DEEP MINES |
2.1 Introduction |
2.2 Literatures on Destress Blasting Technique |
2.2.1 Meaning of destress blasting |
2.2.2 Brief historical development of destress blasting |
2.2.3 Specific application of destress blasting |
2.3 Classification of Destress Blasting Based on the Application Manners |
2.4 Mechanism of Destress Blasting(MDB) |
2.4.1 Destress blasting in mining face and mine roadway |
2.4.2 Rock fracture mechanism under the action of destress blasting |
2.4.3 Influencing factors of destress blasting |
2.5 Suitable Areas for the Application of Destress Blasting |
2.5.1 Tunneling |
2.5.2 Underground mine roadways |
2.5.3 Underground mine pillars |
2.5.4 Underground mining method |
2.6 Some Challenges in Field Application of Destress Blasting Technique |
2.7 Summary |
CHAPTER 3 MAIN CASE STUDY:GAOFENG MINE |
3.1 Location and Transportation Network of Mining Area |
3.2 Physical Geography and Economic Survey of Mining Area |
3.3 Geological Profile of Mining Area |
3.3.1 Regional geology |
3.3.2 Mining area’s strata |
3.3.3 Structure |
3.3.4 Igneous rock |
3.4 Ore Setting |
3.5 Mining Technical Conditions in Mining Area |
3.5.1 Hydrogeological conditions |
3.5.2 Engineering geological conditions |
3.5.3 Environmental geological conditions |
3.6 Mining Method |
3.7 Application of Rock Mechanics Methods to Evaluate Rock burst Tendency |
3.7.1 Determination of in-situ stresses |
3.7.1.1 Methods of in situ stress determination |
3.7.1.2 Determination of in-situ stresses in mining area |
3.7.2 Measurements of Rock Mechanical Parameters |
3.7.2.1 Rock mechanical parameters of deep orebody in the mining area |
3.8 Selected Evaluation Methods for Rock burst Tendency |
3.8.1 Indices used to evaluate rock burst tendency |
3.8.1.1 Barton criterion |
3.8.1.2 Maximum stored elastic strain energy index |
3.8.1.3 Elastic energy index |
3.8.1.4 Brittleness criterion |
3.8.1.5 Impact energy index |
3.8.2 Evaluation results of rock burst tendency in mining area |
3.8.3 Analysis and discussion of the evaluation results |
3.9 Summary |
CHAPTER4 DESTRESS BLASTING SCHEMES FOR MINING OREBODY No.105 IN GAOFENG MINE |
4.1 Introduction |
4.2 Stress Around the Stope |
4.3 Stress Transfer Principle by Destress Blasting(brief review) |
4.4 Analysis of the Influences of Different Blasthole Depths for Destress Blasting Effect on Front wall Rocks |
4.4.1 Three-dimensional numerical simulation |
4.4.2 Finite element model assumptions |
4.4.3 Finite element software and the construction of finite element models |
4.4.4 Model material parameters |
4.4.5 Models for different blasthole depths |
4.4.5.1 Equivalent stress contours of face’s front wall under the different depths of destress blastholes |
4.4.5.2 Shear stress contours of face’s front wall under the different depths of destress blastholes |
4.4.5.3 Stress contours in different directions under the different depths of destress blastholes |
4.4.5.4 Blasthole depth and the thickness of destressed zone |
4.5 Suggested Processes Followed to Propose the Destress Blasting Schemes |
4.6 Proposed Destress Blasting Schemes |
4.6.1 Non destress blasting face(NDBF) |
4.6.2 Face destress blasting |
4.6.2.1 Face destress blasting in two sidewalls rocks(DBS Ⅰ) |
4.6.2.2 Face destress blasting in front wall rocks(DBS Ⅱ) |
4.6.2.3 Face destress blasting in overburden strata(DBS Ⅲ) |
4.6.2.4 Face destress blasting in3 walls(2 sidewalls and front wall rocks) (DBS Ⅳ) |
4.7 Analysis of the Effects of Proposed Destressing Schemes by Numerical Simulation |
4.7.1 Analysis of the numerical simulation results for non-destress blasting face |
4.7.2 Analysis of the numerical simulation results for face destress blasting |
4.7.2 1.Equivalent stress(Mises) contours of ore body under4 destressing schemes |
4.7.2.2 Shear stress contours(Tresca) of ore body under4 destressing schemes |
4.7.2.3 Influence of4 destressing schemes on rock isotropic stresses |
4. 8 Summary |
CHAPTER5 GENERAL CONCLUSION AND FUTURE RESEARCH FOCUS |
5.1 General Conclusion |
5.2 Limitations and Future Focus |
REFERRENCES |
ACKNOWLEDGEMENTS |
RESEARCH ACHIEVEMENTS DURING THE PERIOD OF MASTER STUDIES |
(7)评价理论视角下国际关系文本汉译英中态度资源的再现 ——《中国与拉丁美洲和加勒比国家关系史》(第六章第3-5节)的翻译实践报告(论文提纲范文)
摘要 |
ABSTRACT |
第1章 任务描述 |
1.1 任务简介 |
1.2 文本分析 |
1.2.1 文本外因素分析 |
1.2.2 文本内因素分析 |
第2章 翻译过程描述 |
2.1 译前准备 |
2.1.1 翻译文本的选择 |
2.1.2 翻译辅助工具的选择 |
2.2 翻译计划 |
2.3 翻译过程 |
2.4 译后事项 |
2.4.1 自我审校 |
2.4.2 他人审校 |
第3章 案例分析 |
3.1 情感资源 |
3.1.1 积极类情感资源 |
3.1.2 消极类情感资源 |
3.2 问题类型二:判断资源 |
3.2.1 赞扬类判定资源 |
3.2.2 批评类判断资源 |
3.3 问题类型三:鉴赏资源 |
3.3.1 肯定类鉴赏资源 |
3.3.2 否定类鉴赏资源 |
第4章 翻译实践总结 |
4.1 翻译中的难点和翻译策略 |
4.2 翻译中的不足与反思 |
参考文献 |
附录1:原文与译文 |
致谢 |
(8)钛合金航空材料高新技术产业化机制研究(论文提纲范文)
摘要 |
Abstract |
Chapter 1 Introduction |
1.1 Research background and research questions |
1.1.1 Research background |
1.1.2 Research questions |
1.2 Research purpose and significance |
1.2.1 Research purpose |
1.2.2 Research significance |
1.3 Relevant literature review |
1.3.1 Literature review on aeronautical titanium alloy technology |
1.3.2 Literature review on high-tech industrialization mechanism |
1.4 Research content and thesis structure |
1.4.1 Main research contents |
1.4.2 Research methods |
1.4.3 Thesis structure |
Chapter 2 Basic theories and definition in relative conceptions |
2.1 Connotation and characteristics of high-tech industrialization |
2.1.1 Connotation of high-tech industrialization |
2.1.2 Characteristics of high-tech industrialization |
2.2 Relevant theory of high-tech industrialization mechanism |
2.2.1 Process and constituent elements of high-tech industrialization |
2.2.2 Modes of high-tech industrialization |
2.2.3 Operating mechanism of high-tech industrialization |
2.3 Policies of high-tech industrialization |
2.3.1 Policies of high-tech industrialization in the developed countries(regions) |
2.3.2 Current situation of high-tech industrialization policies in China |
2.4 Summary |
Chapter 3 Development way and industrialization level of aeronautical titaniumalloy industry |
3.1 Current situation and development trend of titanium alloy industry in developedcountries |
3.1.1 Prospect of aeronautical titanium alloy market |
3.1.2 Current situation and development trend of titanium alloy industrialization |
3.1.3 R&D status and development trend of aeronautical titanium alloys |
3.2 Development way of aeronautical titanium alloy industry in China |
3.2.1 Current situation and development trend of titanium alloy industry |
3.2.2 R&D status and development trend of aeronautical titanium alloys |
3.2.3 Problems and development way of aeronautical titanium alloy industry |
3.3 Analysis of industrialization level of aeronautical titanium alloy in China |
3.3.1 The analytic network process |
3.3.2 Index system for evaluating industrialization level of aeronautical titaniumalloy |
3.3.3 Evaluation of industrialization level of aeronautical titanium alloy |
3.4 Summary |
Chapter 4 Motivation and process of high-tech industrialization of aeronauticaltitanium alloy |
4.1 Motivation of high-tech industrialization of aeronautical titanium alloy |
4.1.1 Development of aeronautical titanium alloy technology |
4.1.2 Market demand for aeronautical titanium alloys |
4.1.3 International competition in aviation market |
4.1.4 National macroeconomic policy environment |
4.2 Process of high-tech industrialization of aeronautical titanium alloy |
4.2.1 Technology development stage |
4.2.2 Stage of product development and batch production |
4.2.3 Stage of market promotion and large-scale production |
4.3 Summary |
Chapter 5 Operating mechanism of high-tech industrialization of aeronauticaltitanium alloy |
5.1 Technology innovation mechanism |
5.1.1 Current situation of technology innovation mechanism of titanium alloyenterprises |
5.1.2 Decision-making mechanism of technology innovation strategy |
5.1.3 R&D mechanism of technology innovation |
5.2 Talent mechanism |
5.2.1 Strategic planning mechanism for technical talent |
5.2.2 Training mechanism of technical talent |
5.2.3 Incentive mechanism for technical talent |
5.3 Financing mechanism |
5.3.1 Financing characteristics of high-tech industrialization of aeronauticaltitanium alloy |
5.3.2 Financing channels for high-tech industrialization of aeronautical titaniumalloy |
5.3.3 Financing mechanism of high-tech industrialization of aeronautical titaniumalloy |
5.4 Policy and regulation guarantee mechanism |
5.4.1 Policy and regulation guarantee for the development of high-techindustrialization |
5.4.2 Policy and regulation guarantee for technical talent training |
5.4.3 Financing policy and regulation guarantee for the development of high-techindustry |
5.5 Summary |
Chapter 6 Guarantee measures for high-tech industrialization of aeronauticaltitanium alloy |
6.1 Guarantee measures for the technology innovation mechanism |
6.1.1 Main position of the enterprise in technology innovation |
6.1.2 Technology innovation system of enterprise-led, E-U-R cooperation |
6.1.3 Technology introduction management of enterprise |
6.2 Guarantee measures for the talent mechanism |
6.2.1 Guarantee measures for the training mechanism of technical talents |
6.2.2 Guarantee measures for the incentive mechanism of technical talents |
6.2.3 Guarantee measures for the introduction mechanism of technical talent |
6.3 Guarantee measures for the financing mechanism |
6.3.1 Self-construction and financing channels of enterprise |
6.3.2 Service of financial institutions |
6.3.3 Government's role in optimizing the financing environment |
6.3.4 Coordinated development of financing service system for aeronauticaltitanium alloy industrialization |
6.4 Improving measures of the policy and regulation guarantee mechanism |
6.4.1 Policy and regulation guarantee system for technology innovation of theE-U-R cooperation |
6.4.2 Effective policies for high-tech industrialization of aeronautical titanium alloy |
6.4.3 Regulation guarantee system for promoting high-tech industrialization ofaeronautical titanium alloy |
6.5 Summary |
Conclusions |
References |
Papers published in the period of Ph.D. Education |
Acknowledgement |
Resume |
(9)俄罗斯城市可持续发展及其对中国城市的启示研究(论文提纲范文)
摘要 |
ABSTRACT |
CHAPTER Ⅰ Introduction |
1.1 Research background |
1.2 Research goal and objectives |
1.3 Literature review |
1.3.1 Concept of sustainable development |
1.3.2 Social-Economic aspects of regional planning and urban development in Russia |
1.4 Materials and methods |
1.4.1 Research framework |
1.4.2 Materials and methods |
CHAPTER Ⅱ Concept of Sustainable Development |
2.1 Sustainable development |
2.1.1 Phenomenon 'climate change' |
2.1.2 Urbanization |
2.1.3 Relationship between climate change and urbanization |
2.1.4 International level commitments |
2.1.5 Conclusion |
2.2 Sustainable urban planning in Russian Federation |
2.2.1 Introduction |
2.2.2 Sustainable development in Russia |
2.2.3 Russian town-planning legislative base |
2.2.4 Russian national green building technical legislative base |
2.2.5 GIS Technology into the Russian town-planning practice |
2.2.6 Conclusion |
2.3 Sustainable urban planning in People's Republic of China |
2.3.1 Introduction |
2.3.2 Sustainable development in China |
2.3.3 Chinese urban planning legislative base National Garden City |
2.3.4 Chinese national green building technical legislative base |
2.3.5 Conclusion |
References |
CHAPTER Ⅲ Transformation of the Scientific Views on the Process of Urbanization |
3.1 Process of urbanization in Russian Federation |
3.1.1 Introduction |
3.1.2 Three waves of Russian urbanization |
3.1.3 First wave of urbanization1860s- |
3.1.4 Second wave of urbanization1926- |
3.1.5 Third wave of urbanization in1950s |
3.1.6 Conclusion |
3.2 Process of urbanization in People's Republic of China |
3.2.1 Introduction |
3.2.2 Three great historical transformations of China |
3.2.3 First historical transformation(1911) |
3.2.4 Second historical transformation(1949) |
3.2.5 Third historical transformation(1978) |
3.2.6 Conclusion |
References |
3.3 Results of the comparative analysis of sustainable urban development in Russian Federation and People's Republic of China |
3.3.1 Introduction |
3.3.2 Has comparative analysis value? |
3.3.3 What is the valuable experience of both countries in the modern urban development? |
3.3.4 Conclusion |
CHAPTER Ⅳ Socio-economic aspects of regional planning and urban development in Russian Federation |
4.1 Introduction |
4.2 Literature review |
4.3 Historical background |
4.4 All-Russia forum‘Strategic Planning in the Regions and Cities of Russia’ |
4.5 Inquire into the relationship between priorities of sustainable development,strategic planning and Russian socio-economic policy |
4.5.1 Strategic planning system of the Russian Federation |
4.5.2 Spatial Development Strategy of the Russian Federation to 2025 |
4.5.3 Interrelation of the documents of strategic and territorial planning of Russian Federation |
4.5.4 Russian state policy of innovation development |
4.6 Conclusion |
References |
CHAPTER Ⅴ Historical overview of the Soviet science cities development |
5.1 Introduction |
5.2 Historical overview of the science cities development1917-1980s |
5.2.1 Urban design trends in the science settlements creation,1930s |
5.2.2 Urban design trends in science cities establishment after the Great Patriotic War.The beginning period of the Cold War |
5.2.3 Urban design trends in the science cities establishment in1960-1970.The period of the formulation of a standard approach to design and construction |
5.2.4 Summing up the results of the Soviet period of the construction of the science cities of1930s-1980s |
5.3 Urban design trends in the science cities establishment in1990s |
5.4 Urban design trends in the science cities establishment after2010s |
5.5 Conclusion |
References |
CHAPTER Ⅵ Russian innovation infrastructure |
6.1 Introduction |
6.2 National innovation system of the Russian Federation |
6.3 Innovation Infrastructure:territorial level |
6.3.1 Innovation special economic zones |
6.3.2 Innovation and industrial clusters' |
6.4 Innovation infrastructure physical level:technoparks and business incubators |
6.4.1 Technoparks |
6.4.2 Technopark-leaders of the II National Russian Technoparks Ranking-2016 |
6.5 Conclusion |
References |
CHAPTER Ⅶ CASE OF STUDY:Skolkovo Innovation Center |
7.1 Introduction |
7.1.1 Skolkovo Innovation Center |
7.2 Aim of creating Skolkovo Innovation Center |
7.3 Types of infrastructure of the Skolkovo Innovation Center |
7.4 Results of international competition for Skolkovo IC master plan concept |
7.4.1 Finalist of international competition for Skolkovo IC Masterplan OMA |
7.4.2 Winner of international competition for Skolkovo IC master plan- AREP |
7.5 Structure of Skolkovo IC Town Planning Board |
7.6 Development strategy and documents of Skolkovo IC master plan |
7.7 Skolkovo IC infrastructure construction financial program |
7.8 Transport accessibility to Skolkovo IC |
7.9 Key institutions facilities of the Skolkovo IC |
7.9.1 Skoltech- Skolkovo Institute of Science and Technology |
7.9.2 Research and development centres of the Skolkovo IC District D |
7.9.3 Skolkovo Technopark building |
7.9.4 Business Center Amaltea(BC Gallery) |
7.9.5 IT-Cluster Business Park of the Skolkovo IC |
7.9.6 Transmashholding Corporate Research Center |
7.9.7 Hypercube the First Building of Skolkovo IC |
7.9.8 Skolkovo Business Center(MatRex) |
7.9.9 Sberbank Technopark |
7.10 Social infrastructure facilities of Skolkovo IC |
7.11 Housing facilities of Skolkovo IC |
7.11.1 Central Zone Z |
7.11.2 South District D |
7.11.3 Technopark District D |
7.12 Skolkovo IC landscape design |
7.13 Conclusion |
CHAPTER Ⅷ Russian town-planning science in the context of socio-economic transformations |
8.1 Introduction |
8.2 Definition of the term"gradostroitelstvo" |
8.3 Historical overview of the town-planning science in Russia |
8.3.1 Socialist town-planning1917- |
8.3.2 Socialist town-planning1933- |
8.3.3 Socialist town-planning1941- |
8.3.4 Socialist town-planning1941- |
8.4 Theoretical foundations and unique traditions of town-planning science in Russia |
8.5 Russian fundamental research in the field of town-planning |
8.6 Course of town-planning in the Russian education system |
8.6.1 The town-planning faculty of the Moscow Architectural Institute(State Academy)MARHI |
8.6.2 Vysokovsky Graduate School of Urbanism |
8.6.3 Strelka Institute for Media,Architecture and Design |
8.6.4 MARCH Architecture School |
8.6.5 Summarizing the analysis of four urban planning schools in Russia |
8.7 Applied town-planning science |
8.7.1 Methods of town-planning analysis |
8.7.2 Interdisciplinary methods of town-planning analysis |
8.8 Conclusion |
References |
CONCLUSION |
SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY AND PRACTICE |
APPENDIX Ⅰ |
APPENDIX Ⅱ |
APPENDIX Ⅲ |
APPENDIX Ⅳ |
APPENDIX Ⅴ |
APPENDIX Ⅵ |
APPENDIX Ⅶ |
APPENDIX Ⅷ |
APPENDIX Ⅸ |
APPENDIX Ⅹ |
APPENDIX ⅩⅠ |
APPENDIX ⅩⅡ |
ACKNOWLEDGEMENTS |
SCIENTIFIC ACHIVEMENTS |
Appreciate |
(10)Geological resources and environmental carrying capacity evaluation review, theory,and practice in China(论文提纲范文)
1. Introduction |
2. Overview of the GRECC evaluation |
2.1. Summary of foreign GRECC |
2.2. Summary of the GRECC in China |
2.3. Research progress on the carrying capacity of typical geological resources and environment |
2.3.1. Research progress on the geological environmental carrying capacity |
2.3.2. Research progress on groundwater resource carrying capacities |
2.3.3. Research progress on the mineral resource carrying capacity |
3. Theory of resource and environmental carrying coordination |
4. GRECC evaluation method and practice |
4.1. Regional GRECC evaluation method and index system |
4.2. GRECC evaluation process and grading |
4.3. GRECC evaluation methods and practices--taking groundwater resources as an example |
4.3.1. Background evaluation of groundwater resource carrying capacity |
4.3.2. Present status of the evaluation of the groundwater resource carrying capacity |
4.3.3. Evaluation of groundwater resource carrying capacity |
5. Conclusions |
四、SHENYANG INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——THE SUMMARY OF SCIENTIFIC RESEARCH WORK(论文参考文献)
- [1]New innovations in pavement materials and engineering:A review on pavement engineering research 2021[J]. JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu. Journal of Traffic and Transportation Engineering(English Edition), 2021
- [2]Coevolution of global brachiopod palaeobiogeography and tectonopalaeogeography during the Carboniferous[J]. Ning Li,Cheng-Wen Wang,Pu Zong,Yong-Qin Mao. Journal of Palaeogeography, 2021(03)
- [3]晚清至民国(1840-1949)无锡科技翻译史研究[D]. 周琦君. 江南大学, 2021
- [4]西南科技大学校园网页新闻汉英翻译实践报告[D]. 贺少伟. 西南科技大学, 2021(09)
- [5]Research achievements of the Qinghai-Tibet Plateau based on 60 years of aeromagnetic surveys[J]. Sheng-qing Xiong. China Geology, 2021(01)
- [6]深部金属矿山岩爆卸压爆破控制技术研究[D]. MURWANASHYAKAEVARISTE. 广西大学, 2020(07)
- [7]评价理论视角下国际关系文本汉译英中态度资源的再现 ——《中国与拉丁美洲和加勒比国家关系史》(第六章第3-5节)的翻译实践报告[D]. 王静宜. 大连外国语大学, 2020(06)
- [8]钛合金航空材料高新技术产业化机制研究[D]. 申京浩(Sim Kyong Ho). 哈尔滨工业大学, 2019(01)
- [9]俄罗斯城市可持续发展及其对中国城市的启示研究[D]. Lisaia Daria(达丽娅). 华南理工大学, 2019(01)
- [10]Geological resources and environmental carrying capacity evaluation review, theory,and practice in China[J]. Rui-min Li,Zhi-qiang Yin,Yi Wang,Xiao-lei Li,Qiong Liu,Meng-meng Gao. China Geology, 2018(04)