一、TIANJIN INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——PUBLICATIONS(论文文献综述)
赵泽霖,李俊建,张彤,倪振平,彭翼,宋立军[1](2022)在《华北地区稀土矿床特征及找矿方向》文中研究表明在系统收集华北地区稀土矿床资料基础上,分析了华北地区稀土资源现状及稀土矿床的时间、空间分布规律。分析认为,华北地区稀土矿床成矿类型主要包括沉积变质型、火成碳酸岩浆型、岩浆热液型、伟晶岩型和离子吸附型。根据华北地区稀土矿床构造位置及控矿特征,认为华北地区古老变质基底、太古宙—古元古代陆块边缘裂谷带、中元古代陆缘裂谷带、燕山期滨西太平洋活动陆缘均是稀土矿床成矿的有利地球动力学背景。区域深大断裂、地槽发育初期的火山—沉积事件及碱性正长岩和碱性花岗岩类岩浆活动,是寻找各类稀土矿床的有利构造—沉积—岩浆条件,降雨量高、冲积平原、棕壤—褐土分布区则提供良好的稀土元素地球化学背景。
Ming-chun Song,Zheng-jiang Ding,Jun-jin Zhang,Ying-xin Song,Jun-wei Bo,Yu-qun Wang,Hong-bo Liu,Shi-yong Li,Jie Li,Rui-xiang Li,Bin Wang,Xiang-dong Liu,Liang-liang Zhang,Lei-lei Dong,Jian Li,Chun-yan He[2](2021)在《Geology and mineralization of the Sanshandao supergiant gold deposit(1200 t) in the Jiaodong Peninsula, China: A review》文中研究表明The Jiaodong Peninsula in Shandong Province, China is the world’s third-largest gold metallogenic area,with cumulative proven gold resources exceeding 5000 t. Over the past few years, breakthroughs have been made in deep prospecting at a depth of 500-2000 m, particularly in the Sanshandao area where a huge deep gold orebody was identified. Based on previous studies and the latest prospecting progress achieved by the project team of this study, the following results are summarized.(1) 3D geological modeling results based on deep drilling core data reveal that the Sanshandao gold orefield, which was previously considered to consist of several independent deposits, is a supergiant deposit with gold resources of more than 1200 t(including 470 t under the sea area). The length of the major orebody is nearly 8 km, with a greatest depth of 2312 m below sea level and a maximum length of more than 3 km along their dip direction.(2) Thick gold orebodies in the Sanshandao gold deposit mainly occur in the specific sections of the ore-controlling fault where the fault plane changes from steeply to gently inclined,forming a stepped metallogenic model from shallow to deep level. The reason for this strong structural control on mineralization forms is that when ore-forming fluids migrated along faults, the pressure of fluids greatly fluctuated in fault sections where the fault dip angle changed. Since the solubility of gold in the ore-forming fluid is sensitive to fluid pressure, these sections along the fault plane serve as the target areas for deep prospecting.(3) Thermal uplifting-extensional structures provide thermodynamic conditions, migration pathways, and deposition spaces for gold mineralization. Meanwhile, the changes in mantle properties induced the transformation of the geochemical properties of the lower crust and magmatic rocks. This further led to the reactivation of ore-forming elements, which provided rich materials for gold mineralization.(4) It can be concluded from previous research results that the gold mineralization in the Jiaodong gold deposits occurred at about 120 Ma, which was superimposed by nonferrous metals mineralization at 118-111 Ma. The fluids were dominated by primary mantle water or magmatic water. Metamorphic water occurred in the early stage of the gold mineralization, while the fluid composition was dominated by meteoric water in the late stage. The S, Pb, and Sr isotopic compositions of the ores are similar to those of ore-hosting rocks, indicating that the ore-forming materials mainly derive from crustal materials, with the minor addition of mantle-derived materials. The gold deposits in the Jiaodong Peninsula were formed in an extensional tectonic environment during the transformation of the physical and chemical properties of the lithospheric mantle, which is different from typical orogenic gold deposits. Thus, it is proposed that they are named "Jiaodong-type" gold deposits.
Hong-wei Sun,Jun-ping Ren,Jie Wang,A-lei Gu,Xing-yuan Wu,Fu-qing He,Li-bo Zuo,Chipilauka Mukofu,Alphet Phaskani Dokowe,Ezekiah Chikambwe,Zi-jiang Liu,Shi Xing[3](2021)在《Age and geochemistry of the granitoid from the Lunte area, Northeastern Zambia:Implications for magmatism of the Columbia supercontinent》文中研究表明The Paleoproterozoic tectonic evolution of the Bangweulu Block has long been controversial.Paleoproterozoic granites consisting of the basement complex of the Bangweulu Block are widely exposed in northeastern Zambia, and they are the critical media for studying the tectonic evolution of the Bangweulu Block. This study systematically investigated the petrography, zircon U-Pb chronology, and petrogeochemistry of the granitoid extensively exposed in the Lunte area, northeastern Zambia. The results show that the granitoid in the area formed during 2051±13–2009±20 Ma as a result of Paleoproterozoic magmatic events. Geochemical data show that the granites in the area mainly include syenogranites and monzogranites of high-K calc-alkaline series and are characterized by high SiO2 content(72.68%-73.78%) and K2O/Na2O ratio(1.82-2.29). The presence of garnets, the high aluminum saturation index(A/CNK is 1.13-1.21), and the 1.27%-1.95% of corundum molecules jointly indicate that granites in the Lunte area are S-type granites. Rare earth elements in all samples show a rightward inclination and noticeably negative Eu-anomalies(δEu = 0.16-0.40) and are relatively rich in light rare earth elements.Furthermore, the granites are rich in large ion lithophile elements such as Rb, Th, U, and K and are depleted in Ba, Sr, and high field strength elements such as Ta and Nb. In addition, they bear low contents of Cr(6.31×10-6-10.8×10-6), Ni(2.87×10-6-4.76×10-6), and Co(2.62×10-6-3.96×10-6). These data lead to the conclusion that the source rocks are meta-sedimentary rocks. Combining the above results and the study of regional tectonic evolution, the authors suggest that granitoid in the Lunte area were formed in a tectonic environment corresponding to the collision between the Tanzania Craton and the Bangweulu Block. The magmatic activities in this period may be related to the assembly of the Columbia supercontinent.
徐增连,李建国,朱强,里宏亮,曾辉,魏佳林,张博,曹民强,洪波[4](2021)在《开鲁盆地钱家店凹陷早白垩世义县组孢粉组合及其古气候演变》文中指出研究白垩纪植物演替与气候变化对认识现今生态环境形成过程与演变具有重要意义。开鲁盆地义县组孢粉学的研究不仅丰富了该地区早白垩世孢粉学资料,也为该地区早白垩世地层划分与对比提供了依据。通过对开鲁盆地东北部钱家店凹陷钻孔QIV-65-136底部泥岩样品分析,获得了丰富的孢粉化石,并建立了CyathiditesPinuspollenites-Protoconiferus组合。根据典型分子时代分布、重要种属含量上的变化及横向组合对比,确定其地质时代为早白垩世早期,层位相当于义县组。孢粉植物群反映的植被景观为在湖盆的周围山地生长着松科高大乔木,伴有罗汉松科、杉科及少量苏铁科、南美杉科、掌鳞杉科等植物,林下、湖岸地区生长着桫椤科、紫萁科及莎草蕨科等蕨类植物。整体面貌以针叶植物为主,所处的气候环境为湿润的暖温带—亚热带。
JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu[5](2021)在《New innovations in pavement materials and engineering:A review on pavement engineering research 2021》文中研究指明Sustainable and resilient pavement infrastructure is critical for current economic and environmental challenges. In the past 10 years, the pavement infrastructure strongly supports the rapid development of the global social economy. New theories, new methods,new technologies and new materials related to pavement engineering are emerging.Deterioration of pavement infrastructure is a typical multi-physics problem. Because of actual coupled behaviors of traffic and environmental conditions, predictions of pavement service life become more and more complicated and require a deep knowledge of pavement material analysis. In order to summarize the current and determine the future research of pavement engineering, Journal of Traffic and Transportation Engineering(English Edition) has launched a review paper on the topic of "New innovations in pavement materials and engineering: A review on pavement engineering research 2021". Based on the joint-effort of 43 scholars from 24 well-known universities in highway engineering, this review paper systematically analyzes the research status and future development direction of 5 major fields of pavement engineering in the world. The content includes asphalt binder performance and modeling, mixture performance and modeling of pavement materials,multi-scale mechanics, green and sustainable pavement, and intelligent pavement.Overall, this review paper is able to provide references and insights for researchers and engineers in the field of pavement engineering.
Kathryn M.Goodenough,Eimear A.Deady,Charles D.Beard,Sam Broom-Fendley,Holly A.L.Elliott,Frederick van den Berg[6](2021)在《Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements》文中研究表明The rare earth elements(REE) are critical raw materials for much of modern technology,particularly renewable energy infrastructure and electric vehicles that are vital for the energy transition.Many of the world’s largest REE deposits occur in alkaline rocks and carbonatites, which are found in intracontinental, rift-related settings, and also in syn-to post-collisional settings. Post-collisional settings host significant REE deposits, such as those of the Mianning-Dechang belt in China. This paper reviews REE mineralization in syn-to post-collisional alkaline-carbonatite complexes worldwide, in order to demonstrate some of the key physical and chemical features of these deposits. We use three examples, in Scotland, Namibia, and Turkey, to illustrate the structure of these systems. We review published geochemical data and use these to build up a broad model for the REE mineral system in post-collisional alkaline-carbonatite complexes. It is evident that immiscibility of carbonate-rich magmas and fluids plays an important part in generating mineralization in these settings, with REE, Ba and F partitioning into the carbonate-rich phase. The most significant REE mineralization in post-collisional alkaline-carbonatite complexes occurs in shallow-level, carbothermal or carbonatite intrusions, but deeper carbonatite bodies and associated alteration zones may also have REE enrichment.
李建康,李鹏,严清高,刘强,熊欣[7](2021)在《中国花岗伟晶岩的研究历程及发展态势》文中提出我国是稀有金属资源大国,产出了众多独具特色的稀有金属花岗伟晶岩矿床。国内外学者对这些花岗伟晶岩的研究较大地促进了世界伟晶岩理论的发展。在世界伟晶岩研究历程中,虽然有学者认为伟晶岩形成于热液交代作用,但从较早的Jahns-Burnham模型,到后来的London提出的岩浆非平衡结晶模型和Thomas提出的岩浆液态分离模型,都强调了岩浆分异作用对于伟晶岩形成的重要性。我国花岗伟晶岩研究继承于苏联科学家的伟晶岩理论,并逐渐与国际接轨,在对阿尔泰、川西等地区典型花岗伟晶岩的研究过程中,提出了基于云母和长石的花岗伟晶岩分类方案;发展出变质分异型、超变质分异型和重熔岩浆分异型等伟晶岩成因模型;建立了指示高分异伟晶岩熔体-流体演化的矿物标型特征;通过对伟晶岩中富晶体包裹体的深入研究,揭示出我国典型花岗伟晶岩形成于较高温压条件的特点;同位素定年和示踪技术的发展,提升了对我国伟晶岩时空分布和物质来源的认识程度。在今后,我国应该重视矿物学、成矿流体、高温高压实验研究,重视稀有金属伟晶岩的综合绿色开发利用,揭示典型伟晶岩的形成机制,创新伟晶岩成岩成矿理论,实现我国稀有金属资源找矿行动和资源开发利用的进步。
ZHANG Cong,SHEN Tingting,ZHANG Lifei,LIN Congcong,ZHANG Zhongwei,Qin Xueqing,HU Han,QIU Tian,XIANG Zhenqun,ZHANG Jianxin[8](2021)在《The Formation and Evolution of Uvarovite in UHP Serpentinite and Rodingite and its Constraints on Chromium Mobility in the Oceanic Subduction Zone》文中提出The uvarovite-andradite and uvarovite-andradite-grossular solid-solution series are rare in nature.The discovery of uvarovite-andradite in serpentinite and rodingite from the ultra-high pressure (UHP) metamorphic belt in southwestern Tianshan provided an opportunity to investigate its behavior in the subduction zone.Uvarovite (defined as chromiumgarnet) from serpentinite is homogeneous in a single grain,covering compositions in the uvarovite-andradite solid solution series of Adr58–66Uv33–41,with few grossular components.Uvarovite from rodingites contain various Cr2O3 contents (1.7–17.9 wt%) and mineral compositions being in the range of Adr21–31Uv41–50Grs22–37,Adr52–90Uv5–25Grs0–21 and Adr19–67Uv3–63Grs13–42.Discontinuous chemical variation of uvarovite from core to rim indicates that uvarovite formed by consuming andradite and chromite,which could provide Ca,Cr,Al and Fe.Raman signals of water were identified for uvarovite from both serpentinite and rodingite,with high water content in uvarovite from serpentinite.The high pressure mineral assemblage,as well as the association with perovskite,indicated that the studied uvarovite from serpentinite and rodingite was formed through high pressure metamorphism,during the subduction zone serpentinization and rodingitization.High alkaline and highly reduced fluids released from serpentinization or rodingitization in the oceanic subduction zone promote the mobility of chromium and enable its long-distance migration.
黄威,廖晶,龚建明,路晶芳,崔汝勇[9](2021)在《印度洋多金属结核地质特征与资源潜力》文中研究表明通过在中印度洋海盆结核区外的印度洋其他海域内收集到的298处多金属结核站位的分布、成分和赋存环境等地质特征,圈定了5处资源潜力区。文章对这些区域内海洋长周期沉积速率、底层水含氧量、底质类型、夏季海面平均生物生产力、底栖宏生物量密度、海底地形地貌特征和海底表层沉积物有机碳含量等数据信息进行加权评估,揭示各区域结核分布密度的高低状况,辅以结核主要有用组分含量的分类,确定了印度洋内各结核区资源潜力的划分标准。笔者认为加斯科因平原结核区为印度洋多金属结核高资源潜力区,马达加斯加海盆结核区和南澳大利亚海盆西部结核区为中等资源潜力区,克洛泽海盆结核区和南澳大利亚海盆东部结核区为低资源潜力区。未来在这些区域内,尤其是加斯科因平原结核区中有希望通过进一步调查研究,精确锁定具有更高资源潜力的次级面积结核勘探区,检验和完善资源潜力评估方法,精细量化揭示这些区域的资源潜力。
苏永强[10](2021)在《开采状态下河北平原孔隙热储地热水资源的构成——以辛集集中开采区为例》文中进行了进一步梳理地热水属于承压水,其储存量包括容积储存量和弹性储存量两部分,当水位处于含水层顶板以上时,已开采出的地热水只能是弹性储存量。在河北平原区进行区域地热资源评价时,地热水可开采量按照开采系数法、解析法等不同方法计算,与弹性储存量存在巨大差距。为研究地热水开采资源的构成并更加准确评价集中开采区地热水的可开采量,采用地下水均衡法对辛集集中开采区地热水开采资源量进行了计算,结果显示:侧向补给量为126×104 m3,占开采资源量的60.9%;越流补给量为19.7×104 m3,占开采资源量的9.55%;弹性释水量为33.1×104 m3,占开采资源量的16.1%;弱透水层压密释水量为27.4×104 m3,占开采资源量的13.3%。研究结果说明,集中开采区地热水的开采资源量不仅仅来自于热储层的弹性释水量,还包括侧向补给量、越流补给量和弱透水层的压密释水量。研究成果对于科学合理地开发地热资源、更好地遏制和缓解地热水开采引发的地质环境问题具有一定意义。
二、TIANJIN INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——PUBLICATIONS(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、TIANJIN INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——PUBLICATIONS(论文提纲范文)
(1)华北地区稀土矿床特征及找矿方向(论文提纲范文)
0 引言 |
1 华北稀土资源现状 |
2 华北稀土矿成因类型 |
2.1 沉积变质型稀土矿 |
2.2 火成碳酸岩型稀土矿 |
2.3 碱性岩浆岩型稀土矿 |
2.4 伟晶岩型稀土矿 |
2.5 离子吸附型稀土矿 |
3 成矿规律 |
3.1 时间分布特征 |
3.2 空间分布特征 |
4 控矿因素与找矿方向 |
4.1 地球动力学背景与稀土金属成矿 |
4.2 区域性深大断裂与稀土金属成矿 |
4.3 火山—沉积作用与稀土金属成矿 |
4.4 岩浆及期后热液与稀土金属成矿 |
4.5 元素地球化学背景与稀土金属成矿 |
5 结语 |
(4)开鲁盆地钱家店凹陷早白垩世义县组孢粉组合及其古气候演变(论文提纲范文)
1 引言 |
2 区域地质与地层概况 |
3 研究材料与方法 |
4 孢粉组合面貌 |
4.1 孢粉化石组合 |
4.2 地质时代 |
4.3 孢粉组合对比 |
5 古气候探讨 |
6 结论 |
(5)New innovations in pavement materials and engineering:A review on pavement engineering research 2021(论文提纲范文)
1. Introduction |
(1) With the society development pavement engineering facing unprecedented opportunities and challenges |
(2) With the modern education development pavement engineering facing unprecedented accumulation of scientific manpower and literature |
2. Asphalt binder performance and modeling |
2.1. Binder damage,healing and aging behaviors |
2.1.1. Binder healing characterization and performance |
2.1.1. 1. Characterizing approaches for binder healing behavior. |
2.1.1. 2. Various factors influencing binder healing performance. |
2.1.2. Asphalt aging:mechanism,evaluation and control strategy |
2.1.2. 1. Phenomena and mechanisms of asphalt aging. |
2.1.2. 2. Simulation methods of asphalt aging. |
2.1.2. 3. Characterizing approaches for asphalt aging behavior. |
2.1.2. 4. Anti-aging additives used for controlling asphalt aging. |
2.1.3. Damage in the characterization of binder cracking performance |
2.1.3. 1. Damage characterization based on rheological properties. |
2.1.3. 2. Damage characterization based on fracture properties. |
2.1.4. Summary and outlook |
2.2. Mechanism of asphalt modification |
2.2.1. Development of polymer modified asphalt |
2.2.1. 1. Strength formation of modified asphalt. |
2.2.1. 2. Modification mechanism by molecular dynamics simulation. |
2.2.1. 3. The relationship between microstructure and properties of asphalt. |
2.2.2. Application of the MD simulation |
2.2.2. 1. Molecular model of asphalt. |
2.2.2. 2. Molecular configuration of asphalt. |
2.2.2. 3. Self-healing behaviour. |
2.2.2. 4. Aging mechanism. |
2.2.2. 5. Adhesion mechanism. |
2.2.2. 6. Diffusion behaviour. |
2.2.3. Summary and outlook |
2.3. Modeling and application of crumb rubber modified asphalt |
2.3.1. Modeling and mechanism of rubberized asphalt |
2.3.1. 1. Rheology of bituminous binders. |
2.3.1. 2. Rheological property prediction of CRMA. |
2.3.2. Micromechanics-based modeling of rheological properties of CRMA |
2.3.2. 1. Composite system of CRMA based on homogenization theory. |
2.3.2. 2. Input parameters for micromechanical models of CRMA. |
2.3.2. 3. Analytical form of micromechanical models of CRMA. |
2.3.2. 4. Future recommendations for improving micro-mechanical prediction performance. |
2.3.3. Design and performance of rubberized asphalt |
2.3.3. 1. The interaction between rubber and asphalt fractions. |
2.3.3. 2. Engineering performance of rubberized asphalt. |
2.3.3. 3. Mixture design. |
2.3.3. 4. Warm mix rubberized asphalt. |
2.3.3. 5. Reclaiming potential of rubberized asphalt pavement. |
2.3.4. Economic and Environmental Effects |
2.3.5. Summary and outlook |
3. Mixture performance and modeling of pavement materials |
3.1. The low temperature performance and freeze-thaw damage of asphalt mixture |
3.1.1. Low temperature performance of asphalt mixture |
3.1.1. 1. Low temperature cracking mechanisms. |
3.1.1. 2. Experimental methods to evaluate the low temperature performance of asphalt binders. |
3.1.1. 3. Experimental methods to evaluate the low temperature performance of asphalt mixtures. |
3.1.1. 4. Low temperature behavior of asphalt materials. |
3.1.1.5.Effect factors of low temperature performance of asphalt mixture. |
3.1.1. 6. Improvement of low temperature performance of asphalt mixture. |
3.1.2. Freeze-thaw damage of asphalt mixtures |
3.1.2. 1. F-T damage mechanisms. |
3.1.2. 2. Evaluation method of F-T damage. |
3.1.2. 3. F-T damage behavior of asphalt mixture. |
(1) Evolution of F-T damage of asphalt mixture |
(2) F-T damage evolution model of asphalt mixture |
(3) Distribution and development of asphalt mixture F-T damage |
3.1.2. 4. Effect factors of freeze thaw performance of asphalt mixture. |
3.1.2. 5. Improvement of freeze thaw resistance of asphalt mixture. |
3.1.3. Summary and outlook |
3.2. Long-life rigid pavement and concrete durability |
3.2.1. Long-life cement concrete pavement |
3.2.1. 1. Continuous reinforced concrete pavement. |
3.2.1. 2. Fiber reinforced concrete pavement. |
3.2.1. 3. Two-lift concrete pavement. |
3.2.2. Design,construction and performance of CRCP |
3.2.2. 1. CRCP distress and its mechanism. |
3.2.2. 2. The importance of crack pattern on CRCP performance. |
3.2.2. 3. Corrosion of longitudinal steel. |
3.2.2. 4. AC+CRCP composite pavement. |
3.2.2. 5. CRCP maintenance and rehabilitation. |
3.2.3. Durability of the cementitious materials in concrete pavement |
3.2.3. 1. Deterioration mechanism of sulfate attack and its in-fluence on concrete pavement. |
3.2.3. 2. Development of alkali-aggregate reaction in concrete pavement. |
3.2.3. 3. Influence of freeze-thaw cycles on concrete pavement. |
3.2.4. Summary and outlook |
3.3. Novel polymer pavement materials |
3.3.1. Designable PU material |
3.3.1. 1. PU binder. |
3.3.1.2.PU mixture. |
3.3.1. 3. Material genome design. |
3.3.2. Novel polymer bridge deck pavement material |
3.3.2. 1. Requirements for the bridge deck pavement material. |
3.3.2.2.Polyurethane bridge deck pavement material(PUBDPM). |
3.3.3. PU permeable pavement |
3.3.3. 1. Permeable pavement. |
3.3.3. 2. PU porous pavement materials. |
3.3.3. 3. Hydraulic properties of PU permeable pavement materials. |
3.3.3. 4. Mechanical properties of PU permeable pavement ma-terials. |
3.3.3. 5. Environmental advantages of PU permeable pavement materials. |
3.3.4. Polyurethane-based asphalt modifier |
3.3.4. 1. Chemical and genetic characteristics of bitumen and polyurethane-based modifier. |
3.3.4. 2. The performance and modification mechanism of polyurethane modified bitumen. |
3.3.4. 3. The performance of polyurethane modified asphalt mixture. |
3.3.4. 4. Environmental and economic assessment of poly-urethane modified asphalt. |
3.3.5. Summary and outlook |
3.4. Reinforcement materials for road base/subrgrade |
3.4.1. Flowable solidified fill |
3.4.1. 1. Material composition design. |
3.4.1. 2. Performance control. |
3.4.1. 3. Curing mechanism. |
3.4.1. 4. Construction applications. |
3.4.1.5.Environmental impact assessment. |
3.4.1. 6. Development prospects and challenges. |
3.4.2. Stabilization materials for problematic soil subgrades |
3.4.2.1.Stabilization materials for loess. |
3.4.2. 2. Stabilization materials for expansive soil. |
3.4.2. 3. Stabilization materials for saline soils. |
3.4.2. 4. Stabilization materials for soft soils. |
3.4.3. Geogrids in base course reinforcement |
3.4.3. 1. Assessment methods for evaluating geogrid reinforce-ment in flexible pavements. |
(1) Reinforced granular material |
(2) Reinforced granular base course |
3.4.3. 2. Summary. |
3.4.4. Summary and outlook |
4. Multi-scale mechanics |
4.1. Interface |
4.1.1. Multi-scale evaluation method of interfacial interaction between asphalt binder and mineral aggregate |
4.1.1. 1. Molecular dynamics simulation of asphalt adsorption behavior on mineral aggregate surface. |
4.1.1. 2. Experimental study on absorption behavior of asphalt on aggregate surface. |
4.1.1. 3. Research on evaluation method of interaction between asphalt and mineral powder. |
(1) Rheological mechanical method |
(2) Microscopic test |
4.1.1. 4. Study on evaluation method of interaction between asphalt and aggregate. |
4.1.2. Multi-scale numerical simulation method considering interface effect |
4.1.2. 1. Multi-scale effect of interface. |
4.1.2. 2. Study on performance of asphalt mixture based on micro nano scale testing technology. |
4.1.2. 3. Study on the interface between asphalt and aggregate based on molecular dynamics. |
4.1.2. 4. Study on performance of asphalt mixture based on meso-mechanics. |
4.1.2. 5. Mesoscopic numerical simulation test of asphalt mixture. |
4.1.3. Multi-scale investigation on interface deterioration |
4.1.4. Summary and outlook |
4.2. Multi-scales and numerical methods in pavement engineering |
4.2.1. Asphalt pavement multi-scale system |
4.2.1. 1. Multi-scale definitions from literatures. |
4.2.1. 2. A newly-proposed Asphalt Pavement Multi-scale System. |
(1) Structure-scale |
(2) Mixture-scale |
(3) Material-scale |
4.2.1. 3. Research Ideas in the newly-proposed multi-scale sys- |
4.2.2. Multi-scale modeling methods |
4.2.2. 1. Density functional theory (DFT) calculations. |
4.2.2. 2. Molecular dynamics (MD) simulations. |
4.2.2. 3. Composite micromechanics methods. |
4.2.2. 4. Finite element method (FEM) simulations. |
4.2.2. 5. Discrete element method (DEM) simulations. |
4.2.3. Cross-scale modeling methods |
4.2.3. 1. Mechanism of cross-scale calculation. |
4.2.3. 2. Multi-scale FEM method. |
4.2.3. 3. FEM-DEM coupling method. |
4.2.3. 4. NMM family methods. |
4.2.4. Summary and outlook |
4.3. Pavement mechanics and analysis |
4.3.1. Constructive methods to pavement response analysis |
4.3.1. 1. Viscoelastic constructive models. |
4.3.1. 2. Anisotropy and its characterization. |
4.3.1. 3. Mathematical methods to asphalt pavement response. |
4.3.2. Finite element modeling for analyses of pavement mechanics |
4.3.2. 1. Geometrical dimension of the FE models. |
4.3.2. 2. Constitutive models of pavement materials. |
4.3.2. 3. Variability of material property along with different directions. |
4.3.2. 4. Loading patterns of FE models. |
4.3.2. 5. Interaction between adjacent pavement layers. |
4.3.3. Pavement mechanics test and parameter inversion |
4.3.3. 1. Nondestructive pavement modulus test. |
4.3.3. 2. Pavement structural parameters inversion method. |
4.3.4. Summary and outlook |
5. Green and sustainable pavement |
5.1. Functional pavement |
5.1.1. Energy harvesting function |
5.1.1. 1. Piezoelectric pavement. |
5.1.1. 2. Thermoelectric pavement. |
5.1.1. 3. Solar pavement. |
5.1.2. Pavement sensing function |
5.1.2. 1. Contact sensing device. |
5.1.2.2.Lidar based sensing technology. |
5.1.2. 3. Perception technology based on image/video stream. |
5.1.2. 4. Temperature sensing. |
5.1.2. 5. Traffic detection based on ontology perception. |
5.1.2. 6. Structural health monitoring based on ontology perception. |
5.1.3. Road adaptation and adjustment function |
5.1.3. 1. Radiation reflective pavement.Urban heat island effect refers to an increased temperature in urban areas compared to its surrounding rural areas (Fig.68). |
5.1.3. 2. Catalytical degradation of vehicle exhaust gases on pavement surface. |
5.1.3. 3. Self-healing pavement. |
5.1.4. Summary and outlook |
5.2. Renewable and sustainable pavement materials |
5.2.1. Reclaimed asphalt pavement |
5.2.1. 1. Hot recycled mixture technology. |
5.2.1. 2. Warm recycled mix asphalt technology. |
5.2.1. 3. Cold recycled mixture technology. |
(1) Strength and performance of cold recycled mixture with asphalt emulsion |
(2) Variability analysis of asphalt emulsion |
(3) Future prospect of cold recycled mixture with asphalt emulsion |
5.2.2. Solid waste recycling in pavement |
5.2.2. 1. Construction and demolition waste. |
(1) Recycled concrete aggregate |
(2) Recycled mineral filler |
5.2.2. 2. Steel slag. |
5.2.2. 3. Waste tire rubber. |
5.2.3. Environment impact of pavement material |
5.2.3. 1. GHG emission and energy consumption of pavement material. |
(1) Estimation of GHG emission and energy consumption |
(2) Challenge and prospect of environment burden estimation |
5.2.3. 2. VOC emission of pavement material. |
(1) Characterization and sources of VOC emission |
(2) Health injury of VOC emission |
(3) Inhibition of VOC emission |
(4) Prospect of VOC emission study |
5.2.4. Summary and outlook |
6. Intelligent pavement |
6.1. Automated pavement defect detection using deep learning |
6.1.1. Automated data collection method |
6.1.1. 1. Digital camera. |
6.1.1.2.3D laser camera. |
6.1.1. 3. Structure from motion. |
6.1.2. Automated road surface distress detection |
6.1.2. 1. Image processing-based method. |
6.1.2. 2. Machine learning and deep learning-based methods. |
6.1.3. Pavement internal defect detection |
6.1.4. Summary and outlook |
6.2. Intelligent pavement construction and maintenance |
6.2.1. Intelligent pavement construction management |
6.2.1. 1. Standardized integration of BIM information resources. |
6.2.1. 2. Construction field capturing technologies. |
6.2.1. 3. Multi-source spatial data fusion. |
6.2.1. 4. Research on schedule management based on BIM. |
6.2.1. 5. Application of BIM information management system. |
6.2.2. Intelligent compaction technology for asphalt pavement |
6.2.2. 1. Weakened IntelliSense of ICT. |
6.2.2. 2. Poor adaptability of asphalt pavement compaction index. |
(1) The construction process of asphalt pavement is affected by many complex factors |
(2) Difficulty in model calculation caused by jumping vibration of vibrating drum |
(3) There are challenges to the numerical stability and computational efficiency of the theoretical model |
6.2.2. 3. Insufficient research on asphalt mixture in vibratory rolling. |
6.2.3. Intelligent pavement maintenance decision-making |
6.2.3. 1. Basic functional framework. |
6.2.3. 2. Expert experience-based methods. |
6.2.3. 3. Priority-based methods. |
6.2.3. 4. Mathematical programming-based methods. |
6.2.3. 5. New-gen machine learning-based methods. |
6.2.4. Summary and outlook |
(1) Pavement construction management |
(2) Pavement compaction technology |
(3) Pavement maintenance decision-making |
7. Conclusions |
Conflict of interest |
(6)Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements(论文提纲范文)
1 OVERVIEW OF REE MINERALIZATION ASSOCIA-TED WITH ALKALINE&CARBONATITE MAGMATISMIN POST-COLLISIONAL SETTINGS |
1.1 Archean |
1.2 Paleoproterozoic |
1.3 Neoproterozoic to Paleozoic |
1.4 Mesozoic |
1.5 Cenozoic |
2 BUILDING A REE DEPOSIT MODEL FOR POST-COLLISIONAL SETTINGS:CASE STUDIES |
2.1 Kizilca?ren |
2.2 Eureka |
2.3 NW Scotland |
3 METHODS |
4 RESULTS |
5 DISCUSSION |
5.1 Geochemical and Isotopic Features |
5.2 Post-Collisional Alkaline-Carbonatite Mineral Systems |
5.2.1 Province-scale |
5.2.2 District-scale (a single alkaline-carbonatite complex) |
5.3 Comparison with Alkaline-Carbonatite Complexes in Rift-Related Settings |
6 CONCLUSIONS |
(7)中国花岗伟晶岩的研究历程及发展态势(论文提纲范文)
1 国外花岗伟晶岩成因理论的研究历程 |
(1)19世纪初始阶段。 |
(2)20世纪二战前的发展期。 |
(3)二战后伟晶岩研究的高峰期。 |
(4)Jahns-Burnham模型期。 |
(5)London不平衡结晶模型与Thomas岩浆不混溶模型期。 |
2 中国花岗伟晶岩研究历程 |
(1)第一阶段(1935~1960年):中苏合作研究期。 |
(2)第二阶段(1960~2000年):国内伟晶岩理论发展期。 |
(3)第三阶段(2000~2010年):伟晶岩研究低谷期。 |
(4)第四阶段(2010年—至今):关键金属研究高潮期。 |
3 中国花岗伟晶岩的主要成果 |
3.1 花岗伟晶岩分类 |
3.2 花岗伟晶岩成因模型 |
3.3 伟晶岩矿物学研究 |
3.4 伟晶岩成岩成矿的物理化学条件 |
3.5 稀有金属伟晶岩成矿时代和物质来源 |
4 今后我国花岗伟晶岩领域的主要研究方向 |
4.1 稀有金属伟晶岩的矿物学和成矿流体研究 |
4.2 伟晶岩成岩成矿的高温高压实验研究 |
4.3 成矿模型和成矿规律研究 |
(8)The Formation and Evolution of Uvarovite in UHP Serpentinite and Rodingite and its Constraints on Chromium Mobility in the Oceanic Subduction Zone(论文提纲范文)
1 Introduction |
2 Geological Background |
3 Petrography and Analytical Methods |
3.1 Petrography of host rocks |
3.2 Uvarovite-bearing sample description |
3.3 Analytical methods |
4 Results |
4.1 Mineral composition |
4.1.1 Uvarovite |
4.1.2 Clinopyroxene |
4.1.3 Spinel |
4.1.4 Other minerals |
4.2 Raman spectroscopy |
5 Discussion |
5.1 The formation of uvarovite in serpentinite and rodingite |
5.2 The stability field of uvarovite in mafic and ultramafic rocks |
5.3 Chromium mobility and fluid character in the southwestern Tianshan oceanic subduction zone |
6 Conclusions |
(9)印度洋多金属结核地质特征与资源潜力(论文提纲范文)
1 数据说明 |
2 多金属结核地质特征 |
2.1 中北印度洋 |
2.2 东北印度洋 |
2.3 西北印度洋 |
2.4 东南印度洋 |
2.5 西南印度洋 |
3 多金属结核资源潜力评估 |
3.1 各结核区的分布密度 |
3.2 各结核区的主要有用组分含量 |
3.3 各结核区资源潜力分类 |
4 结论与展望 |
(10)开采状态下河北平原孔隙热储地热水资源的构成——以辛集集中开采区为例(论文提纲范文)
0 引言 |
1 河北平原新近系馆陶组热储概况 |
1.1 热储分布特征 |
1.2 水位特征 |
1.3 地热水资源量 |
1.4 开发利用现状 |
2 地热水来源及构成分析 |
2.1 容积储存量 |
2.2 弹性储存量 |
2.3 侧向补给量 |
2.4 越流补给量 |
2.5 弱透水层的释水量 |
3 辛集集中开采区开采资源评价 |
3.1 地热水均衡模型 |
3.2 地热水均衡计算 |
3.2.1 地热水补给量 |
(1)侧向径流补给量。 |
(2)越流补给量。越流补给量的计算公式为 |
3.2.2 地热水排泄量 |
(1)开采量。 |
(2)侧向径流排泄量。 |
3.2.3 地热水蓄变量 |
(1)弹性蓄变量。 |
(2)弱透水层释水量。 |
3.3 地热水均衡计算结果分析 |
4 结论 |
四、TIANJIN INSTITUTE OF GEOLOGY AND MINERAL RESOURCES——PUBLICATIONS(论文参考文献)
- [1]华北地区稀土矿床特征及找矿方向[J]. 赵泽霖,李俊建,张彤,倪振平,彭翼,宋立军. 物探与化探, 2022
- [2]Geology and mineralization of the Sanshandao supergiant gold deposit(1200 t) in the Jiaodong Peninsula, China: A review[J]. Ming-chun Song,Zheng-jiang Ding,Jun-jin Zhang,Ying-xin Song,Jun-wei Bo,Yu-qun Wang,Hong-bo Liu,Shi-yong Li,Jie Li,Rui-xiang Li,Bin Wang,Xiang-dong Liu,Liang-liang Zhang,Lei-lei Dong,Jian Li,Chun-yan He. China Geology, 2021(04)
- [3]Age and geochemistry of the granitoid from the Lunte area, Northeastern Zambia:Implications for magmatism of the Columbia supercontinent[J]. Hong-wei Sun,Jun-ping Ren,Jie Wang,A-lei Gu,Xing-yuan Wu,Fu-qing He,Li-bo Zuo,Chipilauka Mukofu,Alphet Phaskani Dokowe,Ezekiah Chikambwe,Zi-jiang Liu,Shi Xing. China Geology, 2021(04)
- [4]开鲁盆地钱家店凹陷早白垩世义县组孢粉组合及其古气候演变[J]. 徐增连,李建国,朱强,里宏亮,曾辉,魏佳林,张博,曹民强,洪波. 中国地质, 2021
- [5]New innovations in pavement materials and engineering:A review on pavement engineering research 2021[J]. JTTE Editorial Office,Jiaqi Chen,Hancheng Dan,Yongjie Ding,Yangming Gao,Meng Guo,Shuaicheng Guo,Bingye Han,Bin Hong,Yue Hou,Chichun Hu,Jing Hu,Ju Huyan,Jiwang Jiang,Wei Jiang,Cheng Li,Pengfei Liu,Yu Liu,Zhuangzhuang Liu,Guoyang Lu,Jian Ouyang,Xin Qu,Dongya Ren,Chao Wang,Chaohui Wang,Dawei Wang,Di Wang,Hainian Wang,Haopeng Wang,Yue Xiao,Chao Xing,Huining Xu,Yu Yan,Xu Yang,Lingyun You,Zhanping You,Bin Yu,Huayang Yu,Huanan Yu,Henglong Zhang,Jizhe Zhang,Changhong Zhou,Changjun Zhou,Xingyi Zhu. Journal of Traffic and Transportation Engineering(English Edition), 2021
- [6]Carbonatites and Alkaline Igneous Rocks in Post-Collisional Settings: Storehouses of Rare Earth Elements[J]. Kathryn M.Goodenough,Eimear A.Deady,Charles D.Beard,Sam Broom-Fendley,Holly A.L.Elliott,Frederick van den Berg. Journal of Earth Science, 2021(06)
- [7]中国花岗伟晶岩的研究历程及发展态势[J]. 李建康,李鹏,严清高,刘强,熊欣. 地质学报, 2021(10)
- [8]The Formation and Evolution of Uvarovite in UHP Serpentinite and Rodingite and its Constraints on Chromium Mobility in the Oceanic Subduction Zone[J]. ZHANG Cong,SHEN Tingting,ZHANG Lifei,LIN Congcong,ZHANG Zhongwei,Qin Xueqing,HU Han,QIU Tian,XIANG Zhenqun,ZHANG Jianxin. Acta Geologica Sinica(English Edition), 2021(05)
- [9]印度洋多金属结核地质特征与资源潜力[J]. 黄威,廖晶,龚建明,路晶芳,崔汝勇. 矿床地质, 2021(05)
- [10]开采状态下河北平原孔隙热储地热水资源的构成——以辛集集中开采区为例[J]. 苏永强. 中国地质调查, 2021(05)
标签:gold;