一、一类三角形不等式的代数证明(论文文献综述)
张先波[1](2019)在《中学数学思想的培养研究 ——基于深度教学的视角》文中研究表明从原始的结绳记事,到对于数与形的重视;从楔形文字、象形文字的表达,到初等数学符号的出现;从面向生活实践的零散数学规律,到系统性的数学学科体系。数学这门古老的学科,在迈过其漫长的发展历史之后,在学校教学的过程中继续生根发芽。作为学校教育中的一门基础性学科,数学不仅致力于传递古今中外的数学知识和定律,更重要的是在与学校生活中其他学科的交融过程中,使学生通过知识的学习,领会数学思想,感悟数学之美。曾有学者指出,数学是关于美的学科,数学是关于艺术的学科,数学是不断反思发展的学科。数学之美,体现在其数字的变幻之美,体现在数学公式的平衡之美,体现在数学发现的探索之美,同时也蕴含在学生学习数学过程中所体会到的获得之美。数学同时还是关于思想的学科,历代数学家根据自己对相关数学领域的研究,不断充实数学思想库,在传承与创新的过程中实现数学学科的不断发展。关于数学是一门艺术还是一门科学性学科的争论至今仍然存在,数学是一门艺术体现在数学通过艺术化的语言、简练的公式表达,使得数学思想得以发展,数学学科也称为学科发展史上的一朵奇葩。数学是一门科学,数学的语言及表达要求精确而凝练地指出相应的意图,要求数学学习者和研究者对于相应数学思想的深刻化理解,并在此基础上做到运用时的精准化。数学同时是一门生活化的学科,原始的数学便发端于人们对于生活问题的解决过程。如古埃及数学文明的发展,便是由于尼罗河三角洲的河道淤积以及洪水泛滥等问题,迫使数学家开始研究淤积的面积,并提供相应的预测。数学的发展往往受到社会经济发展的影响,数学发展的每一个重要阶段必然伴随着社会发展的需要,并且也在顺应社会的需求。这一点在近现代数学发展史中得到了印证,尤其是在现代社会中数学与信息技术的融合,以及基础数学研究的日益专门化和数学教育的大众化等趋势,均是数学与社会经济发展相适应的表现。无论是古典时期阿基米德的几何《原本》,还是现代数学家所取得的重要成就和关键突破,均为数学的发展画上了浓墨重彩的一笔。当前数学的发展,除了需要数学家和相关研究者持续不断的努力,同时需要学校教育培养出对数学感兴趣、能够领悟数学之美的人才。学校教育的产生,在人类历史上无疑是具有划时代意义的事件,它使得人类文明的传承有了相对规范化和制度化的途径。学校教育的产生以及与之相伴随的学科教育的发展,使得人类发展史上的重要成果能够分门别类的进行传递和发展。正如学者所言,我们的数学教育并非是使每个孩子的都成为数学家,而是要在他们心中埋下数学的种子,使他们感悟和理解数学之美。学科教学的过程,不应当只是知识的传递过程,更重要的是学科教学应该成为思想领悟的过程,成为数学知识向数学思想跨越的过程。数学知识的学习是数学思想领悟与获得的基础,是数学深度学习达成的必要前提。基于深度教学的视角探讨中学数学思想的培养过程意味着,从知识观、学习观和教学观等方面进行中学主要数学思想进行培养。从深度教学的视角而言,知识的结构分为符号表征、逻辑结构和意义系统三个层次。数学知识教学过程中,应当是超越知识的符号性教学和表层化教学,进而深入到知识的内部结构之中,使学生在领悟数学学科知识的结构的基础之上,获得数学思想的熏陶。从数学知识到数学思想,不仅是数学教学的飞跃式发展,同时也是教学走向深度的必然要求。当前对于学生关键能力和核心素养培养的重视,最终需要回归到各个学科教学的过程中来,通过学科教学逐步渗透相应的学科思想,培养学生优秀的学科思维,进而促使学科能力和学科素养的提升。尤其是对于中学数学教学而言,中学处于义务教育阶段是学生相应学科思想学习的黄金时期,这一阶段的数学思想学习尤其需要引起教师和学生的重视,课堂教学应当以学科思想,即重要的数学思想为线索,将数学知识串点成线成面。学生的数学学习过程,经由学科思想的浸润,通常能够加深对于数学学科的认识,加深对数学知识的理解以及促进其对于学科结构的把握。因而,数学思想的教学之于数学教学过程而言至关重要,从数学知识到数学思想的跨越是当前课堂教学应当关注的重点。同时,如何在中学教学过程中培养学生的数学思想以及数学思维品质,也是一线教师及研究者应关注的的问题之一。
胡晋宾[2](2015)在《基于数学课程知识观的高中数学教科书编写策略研究》文中指出对于学校教育来说,知识毫无疑问是课程和教学的核心。而从历史上来看,知识观决定着课程观和教学观,有什么样的知识观,就会有什么样的课程设计和教学实施。每一次课程改革都是在特定的知识观影响下展开的,知识观是历次课程改革的分歧焦点。对于课程物化载体的教科书来说,它的编写也是知识观指导下的创作活动。基于当下的高中数学课改现实,研究教科书编写策略既有理论意义也有实践意义。从数学哲学、心理学和教育学这样3个视角来透视知识观发现:数学哲学视角的知识观强调对宏观的数学知识发生、确证、发展、结构、属性、应用等方面的反思和追问,心理学视角的知识观强调对微观的认知过程与机制、知识分类与传递等方面的解析和实证,教育学视角的知识观强调对学校中的数学知识的价值、筛选、组织、传递、教授、习得等方面的关切和侧重。数学知识观是隐藏在数学课程观和数学教学观背后的前提性根源,有什么样的数学知识观,就有什么样的数学课程观、数学教学观和数学学习观。在数学教育领域,数学观和数学知识观不是一个概念,但是经常被混淆着使用。本文认为,前者是有关数学发展的“世界观”,使用场合主要是数学研究,隶属于“数学哲学”;后者是关照数学教育的“知识观”,使用场合主要是数学教育,隶属于“数学教育哲学”。如果把数学教育当作基于数学知识的教育,并从知识的角度来考察和反思数学教育的话,那么形成的关于数学知识的看法就是数学知识观。而数学课程知识观是数学知识观的一个子集,就是指关于数学课程知识的观念,它是立足数学课程、关照数学课程、服务数学课程的一种数学知识观。数学教科书中体现的数学课程知识不同于数学科学知识,不同于生活数学知识,而是学校教育中的数学知识。同时,它是以客观的、共同的数学科学知识为基础,整合了同龄人中的生活情境、个人知识中的共性成分以及其他学科知识(如物理、化学等)等知识形态,揉进了教学法加工和编辑技术等元素,预设教学方式并以纸质文本呈现出来的整合知识。数学教科书知识的特点是,它假借以静态陈述的数学知识为躯壳,负载了教育理念的课程价值,预设有知识获得的教学方式。借鉴有关知识观的理论框架研究,我们赋予数学学科含义,认为数学课程知识观有3个维度,即数学知识本质观、数学知识价值观和数学知识获得观。理想的数学课程知识观理论图景是:数学知识本质是一种模式化的思维创造,数学知识价值是一种辩证性的复杂谱系,数学知识获得是一种参与式的社会建构。特别地,我们指出,应该强调借助数学教科书的编写去引导师生形成全面的、辩证的、现代的数学知识观。基于上述三维框架,对历史上数学教科书中隐匿的数学知识观进行了考察,对现实中教科书作者和数学教师的数学课程知识观以及数学教科书编写策略认同进行了问卷调查和相关分析。无论是从历史上6个版本教科书的文本考察来看,还是从现实中26名中学数学教科书作者和515名数学教师的问卷调查来看,知识观都影响了教科书编写策略;反过来,教科书编写策略中预设了不同的知识本质、知识价值和知识获得观念,从而又导致教学中不同数学知识观的形成。它们之间的关系,是统一的、辩证的。对于教科书作者来说,不同知识观导致了编写策略的不同认同,这种认同直接影响了编写策略,从而导致不同的教科书编写方式,间接影响了使用教科书的广大师生的数学知识观。正因为编写策略导致不同的教科书编写方案,因此优质的教科书编写应该寻求或者采用先进的数学课程知识观来做为指导。数学教科书编写是教科书作者在数学课程知识观显性或者隐性影响下的创造性活动,有什么样的数学课程知识观,就有什么样的高中数学教科书编写策略认同——持有传统的、机械的、静态的数学课程知识观,认同传统的、机械的、静态的高中数学教科书编写策略(大致强调知识、结果、显性、学科、传授、内部等);持有现代的、辩证的、动态的数学课程知识观,认同现代的、辩证的、动态的高中数学教科书编写策略(大致强调文化、过程、隐性、活动、建构、外部等)。基于数学课程知识观理论图景,对高中数学教科书编写策略进行了理论建构,并以3个课时的内容进行了微型实证和验证反思。首先,本文认为基于数学课程知识观视角的高中数学教科书编写策略的指导思想有3个,即:数学教科书应该具有学科性,数学教科书应该具有教学性,数学教科书应该具有人文性。其次,在此基础上我们提出如下6条具体的编写设想。第一条,经历数学化:衔接知识的过程与结果样态。第二条,揭示潜隐性.:兼顾知识的外显和内敛价值。第三条,渗透心理化:整合知识的逻辑和心理顺序。第四条,创设关联性:搭建知识的内部和外部链接。第五条,彰显主体性.:协调知识的科学和人文特质。第六条,体现交互性:铺设知识的传授和建构渠道。对于我国实际来说,数学教科书编写以前主要是国家行为,受到传统的教育理念的深刻影响;现在教科书多元化以后,编写策略是教科书建设的一个重要研究课题。因此,我们主张高中数学教科书在编写的时候,立足于数学知识的结果、显性、逻辑、内部、传授维度的基础上,尤其要注意数学知识的过程、隐性、心理、外部和建构维度,把它们辩证地平衡起来,防止矫枉过正的简单化和一分为二的片面性,从而实现数学知识的最大教育价值和最佳育人效果。
崔英梅[3](2014)在《课程组织的量化分析研究 ——以中韩高中数学教科书为例》文中提出众所周知,课程组织是泰勒的课程设计—经典目标模式(应然)的重要环节。林智中等从课程设计的结果(实然)角度审视课程组织,提出课程的垂直组织与水平组织,但对课程组织的研究依然停留在理念层面。史宁中等提出的“课程难度模型”,为刻画课程广度与深度提供了量化工具,开启了课程组织定量研究的先河,但依然不系统。5次PISA测试结果显示,东亚国家和地区的数学成绩优异。然而,针对东亚数学课程的特色与优势的相关研究,十分鲜见。本研究以中韩高中数学教科书为切入点,采用定量研究的手法,从课程组织的深层组织、表层组织两个维度,分别探讨课程组织的量化分析方法,并试图归纳出以中韩为代表的东亚数学课程的共同特点。研究分为3个阶段:(1)课程标准的研究。从课程目标、课程内容、课程选择方式等方面对中韩高中数学课程标准进行对比分析;(2)课程深层组织的量化方法研究。通过文献梳理、专家咨询等,确立课程深层组织的基本单位,构建课程前进过程的量化工具与课程整合程度的量化方法,并以中韩现行高中数学教科书(中国A版与韩国N版)为例,进行量化分析;(3)课程表层组织的量化方法研究。从单元课时与单元页数的维度,对中韩高中数学教科书单元进行量化分析,从“导入—展开—结束”环节,对中韩高中数学教科书的单元组织结构特点进行比较分析。研究发现:1.在原有的课程深度、广度、难度概念基础上,引入知识团、频度、节奏、坡度等新概念,尝试建构了课程组织的量化分析方法(1)课程的深层组织是垂直组织与水平组织的统称,将“知识团”概念引入深层组织,确立为量化分析的基本单位,是深层组织按课程内容纵向截面的结果,加大了课程内容的可比性与课程组织的可量化性。(2)课程在垂直组织向度的前进过程涉及5个要素,即频度、起点、终点、节奏、坡度。根据不同的前进方式产生不同坡度,即学年变化量与课程前进量的比,按坡度可以将课程前进过程分为单点式编排、直线式上升编排、螺旋式上升编排3种类型,其中,螺旋式上升编排进一步可以分为标准型、压缩型和伸展型3种类型。(3)以知识团为中心,课程整合分为学科内部课程整合与学科外部课程整合,学科内部课程整合与学科外部课程整合之间具有交集关系。课程整合的介质是知识点,因此,可以从比重与范围两个维度,量化课程整合率与课程整合广度。2.中韩高中数学课程标准、教科书所体现的课程组织的突出特色:从螺旋式走向局部的直线式、关注内部整合(1)中韩课程标准均为全国统一标准,中国分为义务教育课程标准与普通高中数学课程标准,韩国是12年一贯制的课程标准。(2)中韩高中数学都是以自上而下方式构建课程目标。略微不同的是,中国高中数学课程目标是三维目标,韩国高中数学课程目标是二维目标,中国从目标层面更关注过程性目标与体验性目标;中韩高中数学课程在承认个体数学学习差异的基础上,划分必修课程与选修课程,体现了课程的选择性,课程内容的深度基本在“理解”水平;中韩高中数学课程都是基于学分制,组织课程内容,体现了课程选择方式的多样性,但中国以“模块”方式组织,而韩国以“科目”方式组织,且中韩高中数学课程的文、理差异程度不同。(3)中韩高中数学课程中,起点在小学或初中的知识团主要以螺旋式上升编排方式前进,而起点在高中的知识团,中韩具有一定差异。例如,中国以单点式编排为主,韩国对直线式上升编排与单点式编排并重。(4)中韩高中数学课程整合程度不高,学科内部课程整合程度略大于学科外部课程整合程度,从课程整合率而言,韩国略大于中国,从课程整合广度而言,学科内部课程整合广度中国略大于韩国,但学科外部课程整合广度韩国略大于中国。(5)中韩高中数学教科书的单元课时与单元页数之间都呈现出显着正相关;中韩高中数学教科书单元组织结构都是“章→节→小节”三级结构,功能模块相似,从单位课时内的教科书课程容量而言,A版是N版的近2倍,从教科书“阅读材料”容量而言,N版是A版的1.6倍。3.有关东亚数学课程特色的推论:关注双基、以传统数学分支为主体构建数学课程内容组织框架、采用整体螺旋式(而局部直线式)的结构特征基于对中韩高中数学课程的分析,我们大致可以推断东亚数学课程的主要特点:全国通用一个课程标准;重视基础知识与基本技能,相对关注数学情感与态度;以“数”、“图形”、“概率”、“统计”搭建中小学课程的基本框架,随着学段升级,不断添加课程内容;主要以螺旋式上升方式编排;关注课程内容与数学文化的整合,但信息技术尚未成为数学问题解决的重要工具。基于上述研究结论,对教育行政部门的相关建议有:研制12年一贯的课程标准,稳妥推进高中新课程;实施“教科书—练习册”配套制度,精选课程内容,精编教科书。对教科书编写的启示有:教科书编写要重视课程前进过程,关注由坡度产生的学业任务负担,即在编写教科书之初,需要先考察一类知识的坡度是否合理,如果坡度过大,可通过课程整合提供“过渡的踏板”,如果坡度过小,有必要考虑能否精编或增加学年变化;教科书编写不仅要关注课程整合广度,也要关注课程整合率,即选择编写教科书素材时,关注所选素材是否集中用于部分知识点,素材的属性是否多样化等,由此,提高课程整合程度。
许晶[4](2020)在《初中数学课堂教学、学业考试与课程标准的一致性研究》文中研究指明随着二十一世纪课程变革的不断推进,世界各国普遍推行基于标准的课程改革。课程研究者们对课堂教学和学业考试的质量问题尤为关注,特别是在义务教育阶段的课堂教学和学业考试领域更为明显。在全球教育改革的浪潮推动下,探究初中数学课堂教学、学业考试与课程标准之间的一致性程度,已成为了课程研究领域的核心话题。本文以J省初中数学教师以及该省近五年的初中毕业生数学学业考试试卷为研究对象,采用“SEC”课程实施调查模型,探讨了J省初中数学课堂教学、学业考试与课程标准的一致性水平状况。具体问题如下:初中数学课堂教学与课程标准之间的一致性水平如何?初中数学学业考试与课程标准之间的一致性水平如何?初中数学课堂教学与学业考试之间的一致性水平如何?三者之间的一致性水平如何等?在哪些维度是一致的,在哪些维度是不一致的?进而提出相应的提升一致性水平的相关建议。从目前的研究资料来看,对于这些问题当前还未进行深度探究,研究此类问题,能够掌握初中数学课堂教学、学业考试与课程标准一致性水平状态,关键是可以建构本土化的课堂教学、学业考试与课程标准的一致性分析框架,进而调查与分析基础教育领域不同学段、不同年级和不同学科的课堂教学、学业考试与课程标准一致性水平情况,详细检测基础教育领域不同学段、不同年级和不同学科教师的课程实施程度,从而不断提高基础教育的质量。本文首先阐述了初中数学课堂教学、学业考试与课程标准一致性问题的研究背景、目的、研究问题以及研究创新等。对课程目标、课程标准、课堂教学和学业考试以及课程领域的一致性问题进行了文献梳理和分析总结,界定了相关核心概念。通过建构的课堂教学、学业考试与课程标准一致性的分析框架,对义务教育数学课程标准(2011年版)编码、对J省T市初中数学教师课堂教学内容的调查与编码、以及对本省近五年的学业考试试卷的编码结果,采用“SEC”课程实施调查模型作为检测工具,对课堂教学、学业考试与课程标准的一致性水平进行分析。具体研究内容包括:初中数学课堂教学与课程标准的一致性状况分析,分析了内容主题维度的一致性水平的差异状况以及认知水平维度的一致性水平的差异状况,发现课堂教学与课程标准不具备统计学意义上的一致性;初中数学学业考试与课程标准的一致性状况分析,分析了内容主题维度的一致性水平的差异状况以及认知水平维度的一致性水平的差异状况,发现学业考试与课程标准不具备统计学意义上一致性;初中数学课堂教学与学业考试的一致性状况分析,分析了内容主题维度的一致性水平的差异状况以及认知水平维度的一致性水平的差异状况,发现课堂教学与课程标准不具备统计学意义上一致性;初中数学课堂教学、学业考试与课程标准的一致性水平的总体状况分析,具体分析了内容主题维度的一致性水平的差异状况以及认知水平维度的一致性水平的差异状况,发现了包括初中数学课堂教学、学业考试与课程标准一致性水平的特征,三者之间课堂教学与学业考试之间的一致性水平相对较高,初中数学教师课堂教学与课程标准之间的一致性水平相对居中,学业考试与课程标准之间的一致性程度相对较低。研究发现:课堂教学、学业考试与课程标准之间均不具备统计学意义上的一致性;课堂教学与学业考试的一致性程度高于两者与课程标准的一致性;课堂教学与学业考试对课程内容要求的把握高于课程标准;课堂教学与学业考试对“综合与实践”领域内容的关注的不多;不同教师对课程标准的理解程度存在一定的差异。提出了如下提升建议:加强对命题人员和一线教师的培训,提高他们对课程标准的理解水平;消除学业考试的负面影响,回归以数学素养为核心的数学课堂;重视“综合与实践”领域内容的教学与评价;进一步完善课程标准的评价体系;立足本土化,研制课堂教学、学业考试与课程标准一致性的分析工具。通过对初中数学课堂教学、学业考试与课程标准一致性问题进行深入研究,能促进基础教育阶段中小学教师基于课程标准实施教学,促进命题人员编制基于课程标准的学业考试试卷,提高教师教学质量,优化学业考试设计。
章建跃[5](2020)在《“预备知识”预备什么、如何预备》文中认为0 开篇的话教育部于2013年启动了普通高中课程修订工作,这是深化课程改革落实立德树人根本任务的标志性工作.人教A版高中数学教材编委会几乎与课程标准修订工作同步,开展了全方位的教材修订研究工作,并于2016年4月正式启动新一轮教材的修订与编写工作.本次教材修订深入总结2004年开始使用的《普通高中课程标准实验教科书·数学(A版)》的经验与教训,充分借鉴国内外高中数学教材改革的优秀成果,竭尽全力将教材修订成符合新时代中国特色社会主义需要的,
徐珊威[6](2020)在《高中数学最值问题的解题研究》文中研究表明最值问题在高中数学中占据重要地位,它既是高考数学的重点考查内容之一,又是实际生活中最优化问题的重要基础。由于相关知识综合、复杂、灵活、抽象,很多学生在解题时常找不到切入点,解题方法掌握不全面,考试时,遇题有畏难情绪。本论文旨在系统地对最值问题的主要类型进行分类,并研究各类型解题通法,从而给学生提供帮助,达到更好的学习效果。从概念课、习题课与复习课的角度提出教学设计的策略,给一线教师提供参考。本论文主要做了以下五个方面的研究:第一,通过对教师访谈、学生测试调查分析了学生在一定程度上对最值问题的掌握情况,并找出学生求解时存在的主要问题。第二,通过分析教材中最值问题的分布情况并建立起最值问题的分类依据,然后整理出与最值相关的知识(包括高等数学中运用拉格朗日乘数法求条件极值的方法)。第三,通过对近五年高考全国卷最值试题的分析,归纳总结出主要考点,试题类型与题中主要蕴含的数学思想方法。第四,由上述三方面的研究确定了最值问题的主要类型和相应解法。主要类型分为:(1)函数中的最值问题(二次函数、三角函数、高次函数、不含根号的分式型函数、含根号的函数、指数函数与对数函数、不等式恒成立问题、求参数取值范围的问题、双重最值问题、函数最值的实际应用);(2)数列中的最值问题(求数列的最大(小)项、求等差数列前n项和nS的最值以及数列中的恒成立问题);(3)解析几何中的最值问题(利用几何法求最值与利用代数法求最值);(4)不等式中的最值问题(线性规划、基本不等式、绝对值不等式、柯西不等式)。第五,提出教学设计策略,并给出了概念课、习题课与复习课的三个教学设计。
毋晓迪[7](2019)在《核心素养视角下的高考数学试题分析研究》文中研究表明数学核心素养已成为当今数学教育界的热词,数学核心素养是适应个人终身发展和社会发展需要的具有数学特征的思维品质与关键能力。就高中数学而言,无论是新课教学还是复习备考,评价的风向标早已成为是否具备六大核心素养的潜质,即数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析。从核心素养考查的视角出发分析研究高考数学试题,对于今后的数学教育教学无疑具有重要的现实意义。全国各地数学高考试题既注重基础又兼顾选拔梯度,充分考查了学生的思维品质与学习潜能,彰显了对学生数学核心素养的考查要求。以2017年、2018年文理科数学高考数学共12套试卷为研究对象,从试题对六大核心素养中每种素养所对应三种水平的考查统计以及试题涉及到知识点考查的SOLO层次划分这两个视角进行分析研究。结合最新版课程标准,按照函数、几何与代数、概率与统计三大主题内容分析试题,得出一些如下结论:(1)试题内容分析与研究:发现近两年文理科试题呈现出了“Y”字形排列,即文理科中低档难度试题相同,在试卷中后部分理科数学试题难度高于文科,进而提高文科数学试卷的得分率,同时增强理科数学试卷的区分效果。(2)数学核心素养的分析与研究:这12套试卷对数学六大核心素养的考查特点明显,每套试卷中数学运算素养考查比例最大,逻辑推理素养占比次之,其余核心素养占比例都较低,尤其是数学建模素养所占比最低。另外一个明显特点是,每种素养中水平二考查比例最高,水平一次之,水平三最低。(3)知识点考查的SOLO层次划分分析与研究:每个知识模块对多元结构(M)和关联结构(R)考查比例最大,单一结构(U)次之,拓展关联结构(E)最低,也由此可以推断出每个知识主线在高考试卷中主要是以中低档难度试题呈现。基于以上所做的分析与研究,提出高考命题预测与教学建议。
王亚婷[8](2020)在《新课标背景下高考数学试卷的比较研究》文中研究说明自1977年恢复高考至今已四十年有余,在时代的变迁下,教育改革对人才的需求也有了颠覆性的变化。如今,适逢2017年新课改,陆续迎来了新高考以及新教材。以高考为指挥棒的选拔制度也出现了新的诉求,以高考试卷为载体的考试更是立德树人、能力立意的考察渠道。在2019年数学高考结束后,数学高考试卷一度引起热议。教育部考试中心命题专家认为此次考试意在“突出数学学科特色,着重考查考生的理性思维能力,综合运用数学思维方法分析问题、解决问题的能力。”因此,剖析新课改之后的高考考卷,了解高考改革发展趋势及要求,以期对优化我国高考数学试卷提供参考,也为一线教育者提供及时的反馈。本文选取2019年8套高考理科数学试卷,采用文献分析、内容分析、案例分析、比较研究、教育统计五种研究方法,以新课标为基准,分别从试卷结构设置、试卷内容分布、试题思维层次及其与新课标的一致性4个方面展开研究,主要得到以下结论:(1)题型结构:8套试卷在题型结构上大致相似,不同的是部分试卷在各模块所占分值不一。选择题所占分值大小依次为:全国卷Ⅰ=全国卷Ⅱ=全国卷Ⅲ>北京卷=天津卷=浙江卷>上海卷>江苏卷;非选择题则反之。此外,在非选择题中除全国卷外,其余试卷在解答题上的分值均高于12分,且题量也是大于等于全国卷。(2)内容分布:8套试卷在各知识内容上所占分值均为:几何与代数>函数>概率与统计>预备知识,这与新课标中对各主线内容的课时安排一致。此外,浙江卷和上海卷作为新高考试卷,在“预备知识+三条主线”中呈现比较一致的考察趋势,只是在“几何与代数”主线中,分歧较大,主要表现在上海卷比浙江卷考察力度更大一些,在8套卷中排位第一,而浙江卷仅为第五;北京卷和天津卷,在“预备知识+三条主线”上相对不太一致;3套全国卷与江苏卷,在“预备知识+三条主线”上的考察,整体也是比较一致的,只是江苏卷还是相对注重几何与代数、概率与统计内容的考察。而3套全国卷在“预备知识+三条主线”上的考察也是基本一致。(3)试题思维层次:8套试卷在试题思维层次的考察分为两类,一类主要注重对多点结构的考察,一类主要注重对关联结构的考察,但整体趋势都是呈先增后减,说明8套试卷最注重的还是多点和关联结构水平,而在单点和抽象拓展结构考察不多。值得注意的是,8套试卷在“预备知识+三条主线”中思维层次的考察各有侧重:在“预备知识”中,8套试卷主要考察多点结构,其中,上海卷和天津卷还分别侧重于单点和关联结构,而北京卷则只侧重单点和关联结构;在“函数”主线中,仅有北京卷对4个思维层次都有考察,且8套试卷除了全国Ⅰ、Ⅲ卷和北京卷在单点、多点结构考察较多外,其余试卷均注重对关联和抽象拓展结构层次试题考察;在“几何与代数”主线,仅有全国Ⅱ卷对4个思维层次都有考察,其他试卷除了江苏卷和上海卷没有抽象拓展结构层次试题外,其余均只考察了多点和关联结构,且除了北京卷和江苏卷在低阶思维层次考察较多外,其余试卷在几何与代数主线均注重对关联层次试题考察;在“概率与统计”主线,没有1套试卷对4个思维层次都有考察,且全国Ⅱ卷仅考察关联结构层次试题,北京卷仅考察多点结构层次试题,其余试卷除了江苏卷和浙江卷在关联结构占比40%外,均注重对低阶思维层次的考察。(4)一致性:8套试卷根据SEC一致性系数公式求得的一致性系数都在0.40.5之间,远低于相应的临界值0.8608,故认为2019年8套高考数学试卷与新课程标准不具备统计学上显着的一致性,且一致性系数大小关系如下:浙江卷>天津卷>全国Ⅰ卷>全国Ⅲ卷>北京卷>全国Ⅱ卷>上海卷>江苏卷。基于所做研究,提出如下建议:(1)适当增加选择性必修内容,提升对学生思维水平的考察;(2)高考试卷命题加大对试卷创新意识的考察,体现思维的发散性;(3)高考试卷命题尝试以新课标中的知识内容与认知水平为导向;(4)高中教学应以新课标为导向整改课堂落实。
毕亭亭[9](2020)在《高中数形结合思想的应用现状和教学策略》文中认为恩格斯说:“数学是研究现实生活中数量关系和空间形式的科学”,数学源于对现实世界的抽象,与人类生活和社会发展紧密联系,承载着人类文明重要的思想和文化。数学素养作为现代社会每个人都应具备的基本素养,推动终身学习的进程。数学教育承载着落实立德树人的根本任务、发展素质教育的功能,帮助学生掌握数学知识、技能、思想和方法,在提升学生的数学素养,形成正确的人生观、价值观和世界观方面发挥着重要的作用。数形结合思想作为重要的数学思想之一,贯穿于高中各个模块的知识中,可以有效启发学生思考,帮助学生把握数学内容的本质,提高解决问题的效率,有助于数学素养的形成和发展。《普通高中数学课程标准(2017年版)》在阐述直观想象素养中指出:“通过高中数学课程的学习,学生提升数形结合的能力”,数形结合思想是发展学生直观想象核心素养的重要途径。因此研究高中数形结合思想的应用现状是很有必要的,本人在阅读相关文献资料的基础上,总结出关于数形结合思想的内涵与发展、与解题、教学、信息技术和调查研究方面的文献,提出了理论基础以及数形结合思想的解题原则和解决途径,并利用问卷和访谈法对学生进行调查,从五个维度了解学生对数形结合思想的认识,根据调查研究发现教学中存在的问题,并且针对问题从信息技术、教材、数学文化、解题类型四个方面提出相应的教学策略。
徐百灵[10](2017)在《师生对初中数学教学重点及难点的认知研究》文中研究说明《义务教育数学课程标准(2011年版)》基本理念强调实现人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的发展。人人获得必须的数学则离不开数学重点内容的学习,而不同的人在数学上得到不同发展,则要求教师因材施教,不是所有学生都要突破难点内容的学习。而这些理念的实现最重要的是落实到课堂教学中,现实数学教学中如果师生对教学重点及难点认知不对等,则很大程度上影响了教学质量的提高。其次对教学重点及难点的研究也可以提高教师教学设计的专业能力。再次已有研究较少从师生两者角度对初中数学教学重点及难点展开研究,所以本文提出如下三个研究问题:(1)学生认知中的初中数学学习重点、学习难点有哪些;(2)教师认知中的初中数学教学重点、教学难点有哪些;(3)学生认知中的初中数学学习重点、学习难点与教师认知中的初中数学教学重点、教学难点是否存在差异。为了找到哪些内容对于初中师生来说是数学教学重点及教学难点,研究者根据《义务教育数学课程标准(2011年版)》中的第三个部分,即内容标准改编的自制师生问卷,师生问卷都在试测修改以后进行发放,期间对师生进行访谈,且进入课堂听课做记录,调查师生认知中的初中数学教学重点及教学难点有哪些?师生对于初中数学教学重点及教学难点的认识是否存在差异?研究发现:(1)总体来看,师生对初中数学教学重点内容的认知不存在差异,重点内容主要集中在数与代数、空间与图形两大领域,概率与统计这个领域没有被列为初中数学教学重点内容。(2)总体来看,师生对初中数学教学难点内容的认知存在差异,学生列出的学习难点主要集中在数与代数这个领域,教师列出的教学难点主要集中在空间与图形这个领域。(3)家庭背景、学校性质、学校级别、学生对数学的喜好程度、学生对数学难易程度的认知影响学生对初一数学教学重点及难点内容的认知。(4)学校性质、学校级别、教师教龄、每天备课时间、教师对《义务教育数学课程标准(2011年版)》的熟悉程度影响教师对初中数学教学重点及难点的认知。(5)无论从初中数学教学重难点(即这个项目既是教学重点又是教学难点)主要分布的知识领域及具体课程内容,还是从初中数学教学重难点分布的认知水平来看,师生对初中数学教学重难点的认知随年级的上升一致性程度有所提高,教师对初中数学教学重难点认知的一致程度大于学生对初中数学教学重难点认知的一致程度。对上述存在的问题进行讨论并提出建议,最后再针对本研究提出研究不足与展望。
二、一类三角形不等式的代数证明(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、一类三角形不等式的代数证明(论文提纲范文)
(1)中学数学思想的培养研究 ——基于深度教学的视角(论文提纲范文)
摘要 |
Abstract |
导论 |
第一节 问题的提出 |
一、数学育人价值实现与当前课堂教学实施的矛盾 |
二、数学学科思想教学与当前教学变革的错位 |
三、学生深度学习达成与课堂教学效果的偏离 |
第二节 研究意义 |
第三节 国内外研究综述 |
一、国内研究综述 |
(一) 关于数学课程的研究 |
(二) 关于数学知识及其教学的研究 |
(三) 关于学科思想方法的研究 |
(四) 关于数学思想的研究 |
二、国外文献综述 |
第四节 研究方法 |
第五节 研究内容 |
第一章 数学思想:内涵与意义 |
第一节 数学思想的发展回溯 |
一、数学思想的发展历史及阶段 |
二、我国数学思想在教学中的发展 |
第二节 数学思想的含义 |
第三节 数学思想的特征分析 |
一、内隐性 |
二、连续性 |
三、可迁移性 |
第四节 数学思想的价值分析 |
一、数学思想的教学价值 |
二、数学思想的发展价值 |
三、数学思想的应用价值 |
第二章 中学主要数学思想及相关概念辨析 |
第一节 数学发展史上的主要数学思想 |
第二节 中学数学教学中的数学思想 |
一、数形结合思想 |
二、分类讨论思想 |
三、转化或化归思想 |
四、类比或递推思想 |
五、构造或建模思想 |
第三节 相关概念辨析 |
一、数学知识与数学思想 |
二、数学能力与数学思想 |
三、数学方法与数学思想 |
四、数学素养与数学思想 |
第三章 当前中学数学思想教学现状分析 |
第一节 中学数学思想教学现状调查的描述分析 |
一、中学数学教师思想教学的基本情况 |
二、中学教师数学思想教学现状 |
第二节 中学教师数学思想教学的影响因素分析 |
一、教师自身对于数学思想的认知 |
二、学生数学学习的阶段性与连续性 |
三、教材与学生发展之间的关联性 |
四、教学活动组织的适切性 |
第三节 问题与讨论 |
第四章 基于深度教学的中学生数学思想建立过程 |
第一节 中学生数学思想的形成过程 |
一、以观察能力为基础 |
二、以猜想能力为辅助 |
三、论证思维的建立 |
第二节 深度学习以培养学生的数学思想 |
一、深度学习之内涵 |
二、深度学习与数学思想的建立 |
三、深度学习以培养学生的数学思想 |
第三节 深度教学以促进数学思想的培养 |
一、深度教学之意涵 |
二、深度教学与数学思想的建立 |
三、深度教学以促进数学思想的培养 |
第五章 中学数学思想及其培养策略 |
第一节 学科思想的特性与数学思想的价值 |
一、学科思想的普遍性与特殊性 |
二、数学思想的学科意蕴 |
第二节 中学主要数学思想的形成过程 |
一、中学数学思想培养所必备的学习经历 |
二、中学数学思想培养的教学过程 |
三、中学主要数学思想的培养 |
第三节 中学主要数学思想的培养策略 |
一、分类讨论思想的培养策略 |
二、数形结合思想的培养策略 |
三、转化或化归思想的培养策略 |
四、递推或类比思想的培养策略 |
五、构造或建模思想的培养策略 |
结语 |
参考文献 |
附录 |
致谢 |
(2)基于数学课程知识观的高中数学教科书编写策略研究(论文提纲范文)
摘要 |
Abstract |
第1章 缘起和目标:绪论 |
1.1 研究缘起及问题 |
1.1.1 研究缘起 |
1.1.2 问题提出 |
1.2 研究价值 |
1.2.1 理论价值 |
1.2.2 实践价值 |
1.3 概念界定 |
1.3.1 数学课程知识观 |
1.3.2 高中数学教科书 |
1.3.3 编写策略 |
1.4 研究路径及方法 |
1.4.1 研究路径 |
1.4.2 研究方法 |
第2章 综述和评论:相关研究及其进展 |
2.1 关于知识观及数学(知识)观的研究 |
2.1.1 关于知识观的研究 |
2.1.2 关于数学(知识)观的研究 |
2.2 关于高中数学教科书编写策略的相关研究 |
2.2.1 关于功能目标和编写原则的研究 |
2.2.2 关于内容素材和组织呈现的研究 |
2.2.3 关于语言图表和教材评价的研究 |
2.2.4 关于编辑技术和其他学科的研究 |
2.3 关于知识观、数学(知识)观和课程教材关系的研究 |
2.3.1 课程和教材对数学(知识)观形成的影响 |
2.3.2 课程和教材中的数学(知识)观前提及其体现 |
2.3.3 利用课程和教材去培养数学(知识)观的建议 |
2.4 本章小结 |
第3章 梳理和考察:多维视角的知识观审视及其对数学课程和教科书的影响 |
3.1 知识与知识观 |
3.1.1 知识 |
3.1.2 知识观与认识论、知识论 |
3.2 多维视角下的知识观审视 |
3.2.1 数学哲学视角下的知识观 |
3.2.2 心理学视角下的知识观 |
3.2.3 教育学视角下的知识观 |
3.3 知识观对数学课程和教科书编写的影响 |
3.3.1 从数学哲学视角来看 |
3.3.2 从心理学视角来看 |
3.3.3 从教育学视角来看 |
3.4 本章小结 |
第4章 厘清和界定:数学课程知识观涵义、图景及其观照下的高中数学教科书 |
4.1 数学观与数学知识观辨析 |
4.1.1 数学观是有关数学发展的“世界观” |
4.1.2 数学知识观是面向数学教育的知识观 |
4.2 数学课程知识观的提出及其图景 |
4.2.1 数学课程知识观的概念及其特点 |
4.2.2 数学课程知识观是知识教育立场的价值综合 |
4.2.3 数学课程知识观的理论图景概述 |
4.3 数学课程知识观下的高中数学教科书编写透视 |
4.3.1 基于数学课程知识观精选的学科知识 |
4.3.2 作为编写策略加工过的课程知识 |
4.3.3 借助教科书编写引导数学(知识)观发展 |
4.4 本章小结 |
第5章 检视和辩驳:数学课程知识观及教科书编写策略的历史存在和现实认同 |
5.1 中外教科书里隐匿的数学课程知识观 |
5.1.1 以《几何原本》和《九章算术》为例:1949年以前的典型 |
5.1.2 以SMP版和人教大纲版为例:1970年前后的典型 |
5.1.3 以CPMP版和苏教课标版为例:2000年以来的典型 |
5.2 数学课程知识观及高中数学教科书编写策略问卷设计 |
5.2.1 理论维度设计 |
5.2.2 项目鉴别度、信度和效度 |
5.3 对中学数学教科书作者的调查 |
5.3.1 教科书作者的数学课程知识观 |
5.3.2 教科书作者的编写策略认同 |
5.3.3 教科书作者的数学课程知识观和编写策略认同的相关研究 |
5.4 对高中数学教师的调查 |
5.4.1 高中数学教师的数学课程知识观 |
5.4.2 高中数学教师的编写策略认同 |
5.4.3 高中数学教师的数学课程知识观和编写策略认同的相关研究 |
5.5 本章小结 |
第6章 反思和建构:数学课程知识观下的高中数学教科书编写策略设想 |
6.1 数学课程知识观下高中数学教科书编写策略的指导思想 |
6.1.1 数学教科书应该具有学科性 |
6.1.2 数学教科书应该具有教学性 |
6.1.3 数学教科书应该具有人文性 |
6.2 数学课程知识观下高中数学教科书编写策略的具体设想 |
6.2.1 经历数学化:衔接知识的结果与过程样态 |
6.2.2 揭示潜隐性:兼顾知识的外显与内敛价值 |
6.2.3 渗透心理化:整合知识的逻辑和心理顺序 |
6.2.4 创设关联性:搭建知识的内部和外部链接 |
6.2.5 彰显主体性:协调知识的科学和人文特质 |
6.2.6 体现交互性:铺设知识的传授和建构渠道 |
6.3 本章小结 |
第7章 尝试和探索:基于策略设想编写的3个微型实证研究案例 |
7.1 微型实验1:棱柱、棱锥和棱台(课时) |
7.1.1 实验设计 |
7.1.2 信息处理 |
7.1.3 研究启示 |
7.2 微型实验2:两个基本计数原理(课时) |
7.2.1 实验设计 |
7.2.2 信息处理 |
7.2.3 研究启示 |
7.3 微型实验3:基本不等式(课时) |
7.3.1 调查设计 |
7.3.2 信息处理 |
7.3.3 研究启示 |
7.4 本章小结 |
第8章 总结和展望:结论、不足及前景 |
8.1 研究结论 |
8.2 研究不足 |
8.3 研究展望 |
附录 |
附录1 数学课程知识观调查问卷 |
附录2 高中数学教科书编写策略认同调查问卷 |
附录3 棱柱、棱锥和棱台(静态陈述式) |
附录4 棱柱、棱锥和棱台(动态发生式) |
附录5 棱柱、棱锥和棱台(测试问卷) |
附录6 两个基本计数原理(旁观式) |
附录7 两个基本计数原理(参与式) |
附录8 两个基本计数原理(测试问卷) |
附录9 基本不等式(孤立式) |
附录10 基本不等式(关联式) |
附录11 基本不等式(访谈问卷) |
参考文献 |
在读期间发表的学术论文及研究成果 |
致谢 |
(3)课程组织的量化分析研究 ——以中韩高中数学教科书为例(论文提纲范文)
摘要 |
Abstract |
目录 |
第一章 绪论 |
一、 研究缘起 |
(一) 来自“泰勒原理”的学习过程中产生的疑问 |
(二) PISA 测试中东亚国家和地区的数学成绩引发的思考 |
(三) “数学课程标准与教材国际比较”课题研究的延伸 |
二、 研究背景 |
(一) 数学课程的“四基”目标对教科书编制提出了新要求 |
(二) 高中数学课程标准的修订对国际比较提出了借鉴需求 |
(三) 我国数学教育国际比较迫切需要提高研究水平 |
三、 研究问题阐释 |
(一) 核心概念界定 |
(二) 基本概念界定 |
(三) 研究的主要问题 |
四、 研究意义 |
(一) 丰富和发展已有的课程组织相关理论 |
(二) 尝试建构了课程组织量化分析方法 |
(三) 试图为归纳东亚数学课程的共同特征提供依据 |
(四) 试图为教科书编写提供一定的参考和借鉴 |
五、 研究设计 |
(一) 研究对象与教科书选择 |
(二) 研究方法 |
(三) 研究工具 |
(四) 研究思路 |
(五) 研究框架结构 |
第二章 文献综述 |
一、 课程组织的研究综述 |
(一) 课程组织理论的研究综述 |
(二) 课程组织研究方法的现状分析 |
二、 中韩数学课程比较研究现状分析 |
(一) 中国数学课程比较研究现状分析 |
(二) 韩国数学课程比较研究现状分析 |
三、 东亚数学课程的比较研究综述 |
(一) 中国对东亚数学课程的比较研究综述 |
(二) 韩国对东亚数学课程的比较研究综述 |
四、 数学教科书分析方法研究综述 |
(一) 中国数学教科书分析方法综述 |
(二) 韩国数学教科书分析方法综述 |
第三章 中韩高中数学课程标准的对比分析研究 |
一、 中韩高中数学课程目标的对比分析 |
(一) 中韩高中数学课程目标 |
(二) 中韩高中数学课程目标的对比分析 |
二、 中韩高中数学课程内容的对比分析 |
(一) 中韩高中数学课程内容 |
(二) 中韩高中数学课程内容的对比分析 |
三、 中韩高中数学课程选译方式的对比分析 |
(一) 中韩高中数学课程选择方式 |
(二) 中韩高中数学课程文、理差异 |
(三) 中韩高中数学课程选择方式的对比分析 |
第四章 课程的深层组织的量化分析研究 |
一、 课程的深层组织的基本单位 |
(一) 深层组织的基本单位:知识团 |
(二) 中韩高中数学知识团的划分与比较 |
(三) 中韩高中数学知识团的教科书分布与比较 |
(四) 数学知识团的层级结构 |
(五) 中韩高中数学知识团层级结构的比较分析 |
二、 课程前进过程的“坡度”量化模型的构建 |
(一) 课程前进过程的基本要素 |
(二) 课程前进过程的“坡度”量化模型的构建 |
三、 中韩高中数学课程前进过程的比较分析 |
(一) 中韩高中数学课程前进过程的量化与比较 |
(二) 中韩高中数学课程前进过程的学年分布比较 |
(三) 中韩高中数学课程前进过程的学段分布比较 |
四、 课程整合程度的量化分析方法的构建 |
(一) 课程整合维度的划分 |
(二) 课程整合程度的量化方法 |
五、 中韩高中数学课程整合程度的比较分析 |
(一) 中韩高中数学课程整合率的比较分析 |
(二) 中韩高中数学学科内部课程整合广度的比较分析 |
(三) 中韩高中数学学科外部课程整合广度的比较分析 |
第五章 课程的表层组织的量化分析研究 |
一、 中韩高中数学教科书单元组织的量化分析 |
(一) 中韩高中数学课程内容的单元分布及量化分析 |
(二) 中韩高中数学课程内容单元课时与单元页数的频数分布分析 |
(三) 中韩高中数学课程内容单元课时与单元页数的比重分析 |
二、 中韩高中数学教科书的单元组织结构的比较分析 |
(一) 中韩高中数学教科书单元导入的比较与量化分析 |
(二) 中韩高中数学教科书单元展开的比较与量化分析 |
(三) 中韩高中数学教科书单元结束的比较与量化分析 |
第六章 研究的结论与讨论 |
一、 研究的基本结论 |
二、 对研究结论的讨论 |
(一) 关于东亚数学课程特点的讨论 |
(二) 关于研究工具适用范围的讨论 |
三、 相关建议与启示 |
(一) 对教育行政部门的相关建议 |
(二) 对教科书课程组织的启示 |
四、 对研究的展望 |
(一) 研究的创新点 |
(二) 有待进一步研究的问题 |
(三) 未来的研究方向 |
参考文献 |
附录 中韩中学数学知识团的知识点统计 |
后记 |
在学期间公开发表论文及着作情况 |
(4)初中数学课堂教学、学业考试与课程标准的一致性研究(论文提纲范文)
中文摘要 |
Abstract |
第一章 引言 |
一、研究背景 |
(一)国际教育改革潮流的推动 |
(二)我国课程改革理念的引领 |
(三)基于标准实施课堂教学的需要 |
(四)基于标准的学业考试诉求 |
二、研究的目的、问题和创新之处 |
(一)研究的目的 |
(二)研究的问题 |
(三)本研究的创新之处 |
三、研究意义 |
(一)理论意义 |
(二)现实价值 |
第二章 文献综述 |
一、关于课程目标相关问题的研究 |
(一)国外关于课程目标问题的研究 |
(二)国内关于课程目标问题的研究 |
二、关于课程标准的相关问题的研究 |
(一)国外关于课程标准相关问题的研究 |
(二)国内关于课程标准相关问题的研究 |
三、关于课堂教学相关问题的研究 |
(一)基于标准的课堂教学实施问题的研究 |
(二)基于标准的初中数学课堂教学状况的研究 |
四、关于学业考试相关问题研究 |
(一)初中毕业生数学学业考试命题要求 |
(二)基于标准的初中毕业生数学学业考试现状的研究 |
五、关于课程领域一致性问题的研究 |
(一)国外关于课程领域一致性问题的研究 |
(二)国内关于课程领域一致性问题的研究 |
六、核心概念的界定 |
(一)课堂教学 |
(二)学业考试 |
(三)一致性 |
第三章 研究设计与方法 |
一、研究的基本思路和框架分析 |
二、研究对象的确定 |
(一)量化研究对象的确定 |
(二)质性研究对象的确定 |
三、研究方法的确定 |
(一)“SEC”课程实施调查模型概述 |
(二)课程标准的编码流程 |
(三)课堂教学调查问卷的编码设计 |
(四)学业考试试卷的编码设计 |
(五)初中数学课堂教学、学业考试与课程标准一致性分析框架的确定 |
四、研究资料的整理过程与方法 |
(一)量化研究数据的统计过程与方法 |
(二)质性研究资料的整理 |
第四章 课堂教学与课程标准的一致性研究 |
一、课程标准的编码结果 |
(一)课程标准中内容主题维度的编码分析 |
(二)课程标准中认知水平维度的编码分析 |
二、课堂教学的编码结果 |
三、课堂教学与课程标准的一致性分析 |
(一)教师总体课堂教学与课程标准的一致性分析 |
(二)不同职称教师课堂教学与课程标准的一致性分析 |
四、初中数学教师对课程标准的认识与实施 |
(一)初中数学教师对课程标准中各内容主题的认识 |
(二)初中数学教师对课程内容目标的认识与实施 |
(三)初中数学教师对“综合与实践”领域的认识与实施 |
五、本章小结 |
(一)课堂教学与课程标准不具备统计学意义上的一致性 |
(二)课堂教学与课程标准在内容主题维度的一致性分析 |
(三)课堂教学与课程标准在认知水平维度的一致性分析 |
(四)初中数学教师对课程标准的认识与实施情况分析 |
第五章 学业考试与课程标准的一致性研究 |
一、课程标准中不含选学内容的编码结果 |
(一)课程标准中内容主题维度的编码分析 |
(二)课程标准中认知水平维度的编码分析 |
二、学业考试的编码结果 |
三、学业考试与课程标准的一致性分析 |
(一)学业考试与课程标准一致性系数 |
(二)学业考试与课程标准在内容主题维度的一致性分析 |
(三)学业考试与课程标准在认知水平维度的一致性分析 |
四、不同年度学业考试与课程标准的一致性分析 |
(一)不同年度学业考试与课程标准的一致性系数 |
(二)不同年度学业考试与课程标准在内容主题维度的一致性分析 |
(三)不同年度学业考试与课程标准在认知水平维度的一致性分析 |
五、命题人员对课程标准的认识 |
六、本章小结 |
(一)近五年学业考试与课程标准的一致性分析 |
(二)不同年度的学业考试与课程标准的一致性分析 |
(三)命题人员对课程标准的认识情况 |
第六章 课堂教学与学业考试的一致性研究 |
一、课堂教学的编码结果 |
二、学业考试试卷的编码 |
三、课堂教学与学业考试的一致性分析 |
(一)课堂教学与学业考试总体的一致性系数 |
(二)课堂教学与学业考试总体在内容主题维度的一致性分析 |
(三)课堂教学与学业考试总体在认知水平维度的一致性分析 |
四、初中数学教师对学业考试的认识 |
五、本章小结 |
(一)课堂教学与学业考试总体的一致性系数 |
(二)课堂教学与学业考试总体在内容主题维度的一致性分析 |
(三)课堂教学与学业考试总体在认知水平维度的一致性分析 |
(四)初中数学教师对学业考试的认识情况 |
第七章 课堂教学、学业考试与课程标准的一致性研究 |
一、课堂教学、学业考试与课程标准的一致性分析 |
(一)课堂教学、学业考试与课程标准的一致性 |
(二)课堂教学、学业考试与课程标准在内容主题维度的一致性分析 |
(三)课堂教学、学业考试与课程标准在认知水平维度的一致性分析 |
二、不同职称教师课堂教学同学业考试与课程标准的一致性分析 |
(一)不同职称教师课堂教学、学业考试与课程标准的一致性 |
(二)不同职称教师课堂教学、学业考试与课程标准在内容主题维度的一致性分析 |
(三)不同职称教师课堂教学、学业考试与课程标准在认知水平维度的一致性分析 |
三、本章小结 |
(一)课堂教学、学业考试与课程标准的一致性 |
(二)不同职称教师课堂教学、学业考试与课程标准的一致性 |
第八章 研究结论及建议 |
一、研究结论 |
(一)课堂教学、学业考试与课程标准之间均不具备统计学意义上的一致性 |
(二)课堂教学与学业考试的一致性程度高于两者与课程标准的一致性 |
(三)课堂教学与学业考试对课程内容要求的把握高于课程标准 |
(四)课堂教学与学业考试对“综合与实践”课程内容的关注度不够 |
(五)不同教师对课程标准的理解存在一定差异 |
二、建议 |
(一)加强对命题人员和一线教师的培训,提高他们对课程标准的理解水平 |
(二)消除学业考试的负面影响,回归以数学素养为核心的数学课堂 |
(三)重视“综合与实践”领域内容的教学与评价 |
(四)进一步完善课程标准的评价体系 |
(五)立足本土化,研制课堂教学、学业考试与课程标准一致性的分析工具 |
参考文献 |
一、中文文献 |
二、英文文献 |
附录 |
附录一 :关于初中数学教师课堂教学情况的调查问卷 |
附录二 :教师课堂教学内容课时及主题分布 |
附录三 :初中数学教师、教研员、命题人员的访谈提纲 |
附录四 :51名初中数学教师课堂教学内容编码的标准化表格 |
附录五 :2015年——2019年J省学业考试试卷按主题分类 |
附录六 :关于初中毕业生数学学业考试试卷的编码调查表 |
后记 |
在学期间公开发表论文及着作情况 |
(5)“预备知识”预备什么、如何预备(论文提纲范文)
0 开篇的话 |
1 设置“预备知识”的必要性 |
2 初高中数学衔接的基本任务 |
2.1 非认知因素方面 |
2.2 认知因素方面 |
3 集合 |
3.1 课程定位 |
3.2 核心内容的理解与教学思考 |
3.2.1 集合的概念与表示 |
3.2.2 集合的基本关系与基本运算 |
4 常用逻辑用语 |
4.1 课程定位 |
4.2 核心内容的理解与教学思考 |
4.2.1 必要条件、充分条件、充要条件 |
4.2.2 全称量词与存在量词 |
4.2.3 全称量词命题与存在量词命题的否定 |
5 小结 |
6 相等关系与不等关系 |
6.1 课程定位 |
6.2 核心内容的理解与教学思考 |
6.2.1 等式与不等式的性质 |
(1)如何构建本单元的结构体系? |
(2)等式与不等式的性质所研究的问题是什么? |
(3)研究等式与不等式性质的出发点在哪里? |
(4)两个实数大小关系的基本事实说了什么? |
(5)“梳理等式的性质”要梳理什么? |
(6)不等式的性质有怎样的结构? |
(7)如何在不等式性质的教学中发展学生的核心素养? |
6.2.2 基本不等式 |
(1)如何理解基本不等式的“基本”? |
(2)如何引导学生探索基本不等式? |
(3)教材中4个例子有怎样的教学功能? |
7 二次函数与一元二次方程、不等式 |
7.1 课程定位 |
7.2 核心内容的理解与教学思考 |
1.如何理解“从函数观点看”? |
2.学生的认知困难在哪里? |
3.如何引导学生“从函数的观点看”? |
8 小结 |
(6)高中数学最值问题的解题研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究的背景 |
1.1.1 最值问题在高中数学中的重要性 |
1.1.2 新课程标准与考试大纲对数学最值的具体要求 |
1.1.3 最值问题分类研究解法的必要性 |
1.2 核心名词界定 |
1.3 研究的内容和意义 |
1.3.1 研究的内容 |
1.3.2 研究的意义 |
1.4 研究的思路 |
1.4.1 研究计划 |
1.4.2 研究的技术路线 |
1.5 本论文的结构 |
第2章 文献综述 |
2.1 文献搜集的途径 |
2.2 国内外研究现状 |
2.2.1 高中数学最值问题的研究现状 |
2.2.2 其它最值问题的研究现状 |
2.3 文献评述 |
2.3.1 高中最值问题解题的研究成果 |
2.3.2 高中最值问题解题研究的不足之处 |
2.3.3 本论文解题研究的思路 |
2.4 理论基础 |
2.4.1 波利亚解题理论 |
2.4.2 模式识别理论 |
2.4.3 最近发展区理论 |
2.4.4 奥苏贝尔的有意义学习理论 |
2.4.5 现代认知迁移理论 |
2.4.6 建构主义理论 |
2.4.7 数学思想方法 |
2.5 小结 |
第3章 研究设计 |
3.1 研究目的 |
3.2 研究方法的选取 |
3.3 研究工具的说明 |
3.3.1 学生测试卷设计 |
3.3.2 教师访谈提纲设计 |
3.4 研究的伦理 |
第4章 高中生最值问题的学习情况调查 |
4.1 调查的目的 |
4.2 调查对象 |
4.3 学生测试的分析 |
4.3.1 学生测试的情况 |
4.3.2 学生解题的出错分析 |
4.4 学生测试的结果 |
4.5 教师访谈 |
4.5.1 访谈教师的选取 |
4.5.2 个案的资料 |
4.5.3 访谈结果与分析 |
4.5.4 关于教师访谈的总结 |
4.6 小结 |
第5章 高中最值问题的分析 |
5.1 教学中的最值问题 |
5.1.1 高中数学的主要内容 |
5.1.2 教材中的最值问题 |
5.2 高考中的最值问题 |
5.2.1 题型的分值分析与题量统计 |
5.2.2 最值试题的考点与数学思想方法分析 |
5.3 高中最值问题的主要类型与解法 |
5.3.1 函数中的最值问题 |
5.3.2 数列中的最值问题 |
5.3.3 解析几何中的最值问题 |
5.3.4 不等式中的最值问题 |
5.4 小结 |
第6章 最值相关的教学设计 |
6.1 教学设计策略 |
6.1.1 概念课的教学设计策略 |
6.1.2 习题课的教学设计策略 |
6.1.3 复习课的教学设计策略 |
6.2 “函数的最大(小)值与导数”概念课的教学设计 |
6.3 “函数的最大(小)值与导数”习题课的教学设计 |
6.4 “最值的求解”高三复习课的教学设计 |
6.5 小结 |
第7章 结论与思考 |
7.1 研究的主要结论 |
7.2 研究反思 |
7.2.1 研究的创新之处 |
7.2.2 研究的不足与展望 |
参考文献 |
附录A 最值问题测试卷 |
附录B 教师访谈提纲 |
攻读学位期间发表的论文和研究成果 |
致谢 |
(7)核心素养视角下的高考数学试题分析研究(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
第一节 研究背景 |
一、核心素养背景下的高中课程改革 |
二、核心素养视角下高考数学学科考查方向改革 |
第二节 选题缘由 |
一、数学核心素养的价值性 |
二、高考数学试题中渗透核心素养的必要性 |
第三节 研究意义 |
第二章 研究方法 |
第一节 文献研究法 |
第二节 知识点考查的SOLO层次分析法 |
第三节 对比分析法 |
第四节 研究技术路线 |
第三章 文献综述及理论基础 |
第一节 数学核心素养的研究现状 |
第二节 高考数学试题的研究现状 |
第三节 数学核心素养与高考数学试题相结合的研究现状 |
第四节 对以上研究的简评及本研究的问题 |
第五节 理论基础 |
一、APOS理论 |
二、SOLO分类理论 |
三、加涅的信息加工学习理论 |
四、数学核心素养三水平与SOLO分类理论之间的关联 |
第四章 核心素养视角下的高考试题分析 |
第一节 核心素养视角下高中数学学科课程改革 |
第二节 研究思路 |
第三节 核心素养划分的水平 |
第四节 知识点所考查的SOLO层次划分 |
第五节 示例剖析 |
第六节 高考试题的分析 |
一、2017 年全国理科数学Ⅰ、Ⅱ、Ⅲ卷的分析 |
二、2017 年全国文科数学Ⅰ、Ⅱ、Ⅲ卷的分析 |
三、2018 年全国理科数学Ⅰ、Ⅱ、Ⅲ卷的分析 |
四、2018 年全国文科数学Ⅰ、Ⅱ、Ⅲ卷的分析 |
第七节 全国卷高考数学试题的追溯与演变 |
一、旧题新现题根不变 |
二、演变思路新题出炉 |
三、创新传承推陈出新 |
第八节 有效的试卷分析方法 |
一、做好试卷统计工作 |
二、对试卷所考知识点细化分析 |
三、试卷中对学科素养考核分析 |
第五章 研究结论 |
第一节 试题内容的分析与研究结论 |
第二节 数学核心素养的分析与研究结论 |
第三节 知识点考查的SOLO层次划分分析与研究结论 |
第六章 全国卷试题的命题趋势 |
第七章 教学启示 |
第一节 教学启示 |
一、重视解题教学,提升数学核心素养 |
二、重视核心概念教学,落实数学核心素养 |
三、重视教材的研究和学习,完善数学核心素养 |
四、重视教学模式的合理选择,升华数学核心素养 |
第二节 本研究的不足与展望 |
一、课题研究的不足之处 |
二、课题研究的展望 |
参考文献 |
致谢 |
攻读学位期间荣获奖励与学术成果 |
(8)新课标背景下高考数学试卷的比较研究(论文提纲范文)
中文摘要 |
Abstract |
1 绪论 |
1.1 研究背景 |
1.2 研究对象、意义、问题及目的 |
1.2.1 研究对象 |
1.2.2 研究意义 |
1.2.3 研究问题 |
1.2.4 研究目的 |
1.3 研究内容、方法及思路 |
1.3.1 研究内容 |
1.3.2 研究方法 |
1.3.3 研究构架 |
2 相关概念的界定与研究综述 |
2.1 相关概念的界定 |
2.1.1 高考数学试卷 |
2.1.2 普通高中数学课程标准(2017版) |
2.1.3 试题思维层次 |
2.1.4 一致性 |
2.2 相关研究的综述 |
2.2.1 高考数学试题思维层次的研究 |
2.2.2 高考数学试题一致性研究 |
3 试题表层比较分析 |
3.1 题型结构的比较分析 |
3.2 内容分布的比较分析 |
4 基于SOLO分类理论的试题思维层次比较分析 |
4.1 SOLO分类理论介绍 |
4.2 高考数学试卷试题思维层次划分标准 |
4.2.1 高考数学试卷中的内容划分 |
4.2.2 高考数学试卷试题思维层次划分 |
4.2.3 高考数学试卷试题思维层次划分示例 |
4.3 高考数学试卷试题思维层次的分析 |
4.3.1 高考数学全国Ⅰ卷试题思维层次统计分析 |
4.3.2 高考数学全国Ⅱ卷试题思维层次统计分析 |
4.3.3 高考数学全国Ⅲ卷试题思维层次统计分析 |
4.3.4 高考数学北京卷试题思维层次统计分析 |
4.3.5 高考数学天津卷试题思维层次统计分析 |
4.3.6 高考数学浙江卷试题思维层次统计分析 |
4.3.7 高考数学上海卷试题思维层次统计分析 |
4.3.8 高考数学江苏卷试题思维层次统计分析 |
4.4 高考数学试卷试题思维层次的比较 |
4.4.1 试题思维层次分值占比的比较 |
4.4.2 试题思维层次在知识内容分布的比较 |
5 基于SEC模式的高考数学试卷与新课标的一致性研究 |
5.1 一致性分析理论介绍 |
5.1.1 韦伯分析模式 |
5.1.2 “SEC”分析模式 |
5.1.3 成功分析模式 |
5.2 构建高考数学试卷与新课标一致性二维矩阵表 |
5.2.1 内容主题的划分 |
5.2.2 认知水平的划分 |
5.2.3 一致性框架的确定 |
5.3 确定编码原则及数据处理 |
5.3.1 编码原则 |
5.3.2 新课程标准编码 |
5.3.3 高考数学试卷编码 |
5.4 编码数据统计 |
5.4.1 新课程标准编码数据统计 |
5.4.2 高考数学试卷编码数据统计 |
5.4.3 新课程标准数据的归一化处理 |
5.4.4 高考数学试卷编码数据的归一化处理 |
5.5 新课程标准与高考试卷一致性分析 |
5.5.1 内容主题分布比较 |
5.5.2 认知水平分布比较 |
5.5.3 总体一致性分析比较 |
6 结论与建议 |
6.1 结论 |
6.1.1 题型结构的比较分析结论 |
6.1.2 内容分布的比较分析结论 |
6.1.3 试题思维层次的比较分析结论 |
6.1.4 试卷与新课标一致性的比较分析结论 |
6.2 建议 |
6.2.1 适当增加选择性必修内容,提升对学生思维水平的考查 |
6.2.2 高考试卷命题加大对试卷创新意识的考察,体现思维的发散性 |
6.2.3 高考试卷命题尝试以新课标中的知识内容与认知水平为导向 |
6.2.4 高中数学教学应以新课标为导向整改课堂落实 |
6.3 回顾和反思 |
参考文献 |
附录 |
攻读硕士学位期间所发表的学术论文 |
致谢 |
(9)高中数形结合思想的应用现状和教学策略(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
(一)推行素质教育的需要 |
(二)新课改中发展数学学科核心素养的要求 |
(三)高考试题中数形结合思想的应用 |
二、研究意义 |
(一)有利于学生掌握知识 |
(二)有利于教师重视数形结合思想 |
(三)有利于教学方式的转变 |
三、研究方法 |
(一)文献法 |
(二)问卷调查法 |
(三)访谈法 |
四、研究思路 |
第二章 文献综述及理论基础 |
一、文献综述 |
(一)数形结合思想的内涵及发展 |
(二)数形结合思想与解题应用 |
(三)数形结合思想与教学研究 |
(四)数形结合思想与调查研究 |
(五)数形结合思想与信息技术 |
二、理论基础 |
(一)建构主义理论 |
(二)认知表征理论 |
(三)多元智能理论 |
第三章 数形结合思想解题原则及实现途径 |
一、解题原则 |
(一)等价性原则 |
(二)双向性原则 |
(三)简单性原则 |
二、实现途径 |
(一)坐标联系 |
(二)审视联系 |
(三)构造联系 |
第四章 数形结合思想的应用现状调查 |
一、研究问题 |
二、研究对象 |
三、研究方法 |
四、研究过程 |
(一)调查问卷设计 |
(二)问卷发放 |
(三)数据统计 |
(四)学生访谈 |
五、结果与分析 |
(一)数形结合思想的了解程度 |
(二)数形结合思想的教学途径 |
(三)数形结合思想的应用情况 |
(四)应用信息技术的影响 |
(五)融入数学文化的影响 |
(六)数形结合解题情况的调查分析 |
第五章 数形结合思想的教学策略 |
一、加强信息技术的应用 |
(一)有助于体会函数性质 |
(二)有助于探索数学定理 |
(三)有助于形成数学概念 |
二、挖掘蕴含于教材中数形结合思想的素材 |
(一)蕴含于“探究提问”中数形结合思想 |
(二)蕴含于“思考问题”中数形结合思想 |
(三)蕴含于“例题分析”中数形结合思想 |
(四)蕴含于“习题解答”中数形结合思想 |
三、将数学文化融入数形结合思想教学 |
(一)数学家启迪数形结合思维 |
(二)数学史开拓数形结合思路 |
(三)数学美散发数形结合魅力 |
四、注重解题中数形结合思想的应用 |
(一)以形助数 |
(二)以数解形 |
(三)数形并重 |
参考文献 |
附录 |
攻读硕士学位期间发表的学术论文 |
致谢 |
(10)师生对初中数学教学重点及难点的认知研究(论文提纲范文)
中文摘要 |
ABSTRACT |
1 引言 |
1.1 研究背景 |
1.2 问题提出 |
1.3 研究方法 |
1.4 研究意义 |
2 文献综述 |
2.1 核心概念 |
2.2 教学重点的相关研究 |
2.3 教学难点的相关研究 |
2.4 文献小结 |
3 研究设计 |
3.1 研究目标 |
3.2 总体思路 |
3.3 研究工具开发 |
3.4 调查方案 |
3.5 数据分析方法 |
4 研究结果 |
4.1 师生对教学重点认知的整体状况分析 |
4.2 师生对教学难点认知的整体状况分析 |
4.3 教学重点与教学难点的一致性与差异性分析 |
4.4 本章小结 |
5 讨论与建议 |
5.1 师生教学重点整体现状的讨论 |
5.2 师生教学重点及难点群体差异的讨论 |
5.3 师生教学难点整体现状讨论 |
5.4 师生教学重难点认知差异性的讨论 |
6 研究不足与展望 |
6.1 研究结论 |
6.2 研究不足 |
6.3 研究展望 |
参考文献 |
附录A |
附录B |
附录C |
附录D |
附录E |
附录F |
附录G |
附录H |
附录I |
在学期间的研究成果 |
致谢 |
四、一类三角形不等式的代数证明(论文参考文献)
- [1]中学数学思想的培养研究 ——基于深度教学的视角[D]. 张先波. 华中师范大学, 2019(01)
- [2]基于数学课程知识观的高中数学教科书编写策略研究[D]. 胡晋宾. 南京师范大学, 2015(05)
- [3]课程组织的量化分析研究 ——以中韩高中数学教科书为例[D]. 崔英梅. 东北师范大学, 2014(12)
- [4]初中数学课堂教学、学业考试与课程标准的一致性研究[D]. 许晶. 东北师范大学, 2020(01)
- [5]“预备知识”预备什么、如何预备[J]. 章建跃. 数学通报, 2020(08)
- [6]高中数学最值问题的解题研究[D]. 徐珊威. 云南师范大学, 2020(01)
- [7]核心素养视角下的高考数学试题分析研究[D]. 毋晓迪. 广西民族大学, 2019(07)
- [8]新课标背景下高考数学试卷的比较研究[D]. 王亚婷. 广西师范大学, 2020(01)
- [9]高中数形结合思想的应用现状和教学策略[D]. 毕亭亭. 哈尔滨师范大学, 2020(01)
- [10]师生对初中数学教学重点及难点的认知研究[D]. 徐百灵. 山西师范大学, 2017(03)