一、有限灌溉对半干旱区春小麦根系发育的影响(论文文献综述)
胡智临[1](2021)在《施肥量对半干旱区麦田土壤呼吸及冬小麦生长发育的影响》文中提出在我国肥料的投入一直作为提升作物产量的关键措施之一,黄土高原地区作为粮食的主产区,肥料不合理的投入,使得该地区粮食产量低下且不稳定。为进一步了解不同施肥量对农田生态环境和作物产量的影响,本试验在半干旱区(宁夏回族自治区固原市彭阳县)进行,通过平作种植模式下设施四种施肥量:无肥(N:0 kg N ha-1;0kg P2O5 ha-1)、低肥(L:90 kg N ha-1;60 kg P2O5 ha-1)、中肥(M:180 kg N ha-1;120kg P2O5 ha-1)和高肥(M:270 kg N ha-1;180kg P2O5 ha-1),分析不同施肥量对于冬小麦田土壤温度、水分、呼吸的变化特征以及冬小麦生长和产量的影响,以期为半干旱区实现冬小麦增产稳产的同时兼顾生态环境发展提供理论依据。主要研究结果如下:(1)不同施肥量对冬小麦田土壤呼吸速率具有显着影响。2018-2019年与2019-2020年表现规律一致,呈现出降低(苗期-返青期)-升高(返青期-拔节期)-降低(拔节期-灌浆期)-升高(灌浆期-成熟期)的季节变化趋势。2018-2019年四个施肥处理下平均土壤呼吸速率大小表现为L(2.66μmol m-2s-1)显着高于M(2.44μmol m-2s-1)和H(2.23μmol m-2s-1),均显着高于N(1.96μmol m-2s-1)。L、M和H分别较N的土壤呼吸速率显着提高35.7%、24.5%和13.8%。2019-2020年表现出相同的规律,即L>M>H>N,各处理生育期的平均土壤呼吸速率L为2.61μmol m-2s-1、M为2.29μmol m-2s-1、H为2.08μmol m-2s-1、N为1.80μmol m-2s-1,L、M、H分别较N提高45.0%、27.2%和15.6%。(2)土壤呼吸与土壤0-25 cm土壤温度和0-60 cm土壤含水量关系分析表明,在各土层中,土壤呼吸随着土壤温度的增加呈现逐渐上升趋势,10 cm土层的土壤温度与土壤呼吸的拟合系数显着高于其它土层;在土壤温度上升时,10 cm土层对土壤呼吸的影响程度高于其它土层。在10 cm土层中,土壤呼吸随着土壤水分含量的增加呈现逐渐上升趋势,10 cm土层的土壤温度与土壤呼吸的拟合系数显着高于其它土层。通过对影响土壤呼吸因素的路径分析表明,施肥主要通过调控土壤温度而引起土壤呼吸的变化。(3)施肥促进了冬小麦生育期CO2累计排放量,随着施肥量的增加,冬小麦全生育期CO2累计排放量呈现出低肥>中肥>高肥的变化趋势,与各生育期土壤呼吸速率变化规律一致。2018-2019年,L、M和H冬小麦全生育期CO2累计排放量较N分别增加了25.9%、18.9%和9.5%。2019-2020年表现出相同规律,L、M、H与N相比分别增加了32.3%、20.9%和12.0%。(4)施肥促进了冬小麦株高的增长,随着施肥量的增加,冬小麦株高最终呈现出低肥>中肥>高肥的变化趋势。2018-2019年,施肥处理与不施肥相比显着提升了冬小麦株高,分别提升了11.4%(L)、7.5%(M)和1.2%(H)。2019-2020年,表现出相同的规律,分别提升了14.2%(L)、7.4%(M)和5.0%(H);施肥促进了冬小麦有效叶面积的增加,随着施肥量的增加,冬小麦有效叶面积逐渐呈现出中肥>高肥>低肥的变化规律。在开花期叶面积达到最大值,2018-2019年与不施肥相比,施肥处理分别提升了5.4%、3.6%和2.7%。2019-2020年,施肥处理分别较N增加了12.8%、7.2%和4.4%;施肥促进了冬小麦地上部生物量的积累,随着施肥量的增加呈现出中肥>高肥>低肥的变化趋势。四种施肥处理下,地上部生物量在灌浆后期达到峰值。2018-2019年,中肥、高肥和低肥与不施肥相比,分别增加了41.0%、25.5%和2.0%。2019-2020年,中肥、高肥和低肥与不施肥相比,分别增加了31.0%、22.6%和19.3%。(5)施肥显着增加了冬小麦产量,随着施肥量的增加冬小麦产量呈现出中肥>高肥>低肥的变化规律。2018-2019年籽粒产量M、H、L与N相比,增幅分别为53.5%、49.2%和30.0%。2019-2020年M、H、L与N相比,分别增加了75.4%、54.4%和30.7%。通过施肥量对冬小麦产量构成要素分析得出,中肥、高肥和低肥相比穗数和穗粒数的增加最为显着。2018-2019年,L、M和H与N相比差异显着,穗数增幅分别为18.2%、13.4%和10.0%。2019-2020年,L、M、H穗数分别增加了14.3%、13.3%和11.3%,四种施肥处理差异显着;2018-2019年和2019-2020年四种施肥处理下冬小麦穗粒数呈现出相同的变化规律,表现为M>H>L>N。2018-2019年,M、H和L分别较N增加了22.8%、15.9%和2.8%,处理之间差异显着。2019-2020年,M、H和L与N相比增幅分别为35.4%、21.0%和8.4%;2018-2019年和2019-2020年,四种施肥处理下冬小麦千粒重表现出相同的规律,呈现出H>M>L>N的变化趋势。2018-2019年,H、M和L分别较N增加了16.9%、10.1%和6.9%,差异显着。2019-2020年,与N相比,H、M和L分别增加了14.6%、12.9%和5.4%。(6)施肥显着提升了冬小麦水分利用效率,随着施肥量的增加,冬小麦水分利用效率呈现出中肥>高肥>低肥的变化规律。2018-2019年,M、H和L与N相比差异显着,增幅分别为51.2%、50.0%和34.3%,M与H之间无显着差异。2019-2020年,四个施肥处理之间差异显着,M、H、L分别较N增加了28.5%、22.2%和9.5%。施肥处理下,肥料产量贡献率和肥料农学效率呈现出中肥>高肥>低肥的大小规律。综上所述,在半干旱区冬小麦生产过程中,施肥促进了冬小麦产量的提升(中肥>高肥>低肥),提升了冬小麦水分和肥料利用效率,但增加了生育期CO2累计排放量(低肥>中肥>高肥)。因此,在半干旱区提高冬小麦产量的同时,兼顾最大限度减少农田CO2排放,在生产中推荐中肥用量(N 180 kg hm-2:P2O5 120 kg hm-2)。
任冬雪[2](2020)在《冀西北寒旱区马铃薯田水分特征与节水生产效果研究》文中指出冀西北寒旱区为华北马铃薯的主产区,该地区气候冷凉,无霜期短,适宜马铃薯的生长。但区域农业生产条件差,降水较少,春季干旱多风高额蒸发、夏秋降水极不稳定,导致作物出苗保苗难,产量水平低,水分是该区域限制马铃薯生产的主要因素。华北是全国缺水最严重的地区之一,为保护地下水资源,必需减少农业灌溉用水,而只在马铃薯生长的关键期限量补水。探究区域马铃薯田土壤水分时空运动特征以及不同供水情景下的马铃薯耗水效果,是采取和创新农艺措施保蓄农田土壤水分,提高马铃薯水分利用效率的关键。本研究于2018~2019年在河北农业大学张北实验站进行,选用露地滴灌和膜下滴灌两种灌溉方式,以露地旱作栽培方式为对照,设置覆膜旱作、膜下滴灌补22.5mm、膜下滴灌补45mm、露地滴灌补45mm、露地滴灌补67.5(57.5mm)五个处理,通过比较不同处理间农田土壤水热动态变化,以及马铃薯生长动态、产量、水分利用效果等,明确不同处理间土壤水分时空变化特征和利用效果,为半干旱区马铃薯田水分高效利用技术的改进提供理论依据。本研究主要结果如下:1.马铃薯田主要供水层为0~80cm,块茎形成至膨大期为补水关键期覆膜旱作和补水处理与露地旱作对照的耗水量差异不显着,其土壤贮水变幅较露地旱作小。草甸栗钙土马铃薯田的主要供水层受降水年型影响,2018年0~40cm 土层是主要供水层,2019年0~80cm是主要供水层。2018年覆膜处理的耗水高峰在块茎形成期,露地处理的耗水高峰在块茎膨大期,2019年各处理的耗水高峰均在块茎形成期。块茎形成期为补水关键期。2.覆膜可提高农田土壤温度,补水降低农田土壤温度覆膜能明显提高生育前期、后期马铃薯田的土壤温度,对马铃薯生育中期影响较小;与露地旱作相比,覆膜可使农田土壤温度提高-0.12℃~3.14℃;露地补水后土壤温度较旱作降低0.01~4.20℃;膜下滴灌处理补水后与覆膜的土壤日均温无差异。3.覆膜和补水对马铃薯生长有明显的促进作用覆膜旱作能明显地增加马铃薯整个生育期的叶面积指数,促进苗期的株高增长。覆膜旱作的叶面积指数较露地旱作提高1.13%~75.16%;株高在出苗期较露地旱作提高6.17%~35.43%,在块茎形成期以后,覆膜的株高始终低于露地旱作处理。补水明显增加马铃薯的株高、主茎粗、叶面积指数。2018年各处理补水后株高、主茎粗、叶面积指数较旱作分别增加0.18%~24.34%、-8.33%~19.28%、5.69%~128.05%。2019年前期降水较多,补水对植株生长无明显作用,株高、主茎粗和叶面积指数较旱作分别提高-3.60%~27.58%、-6.82%~21.23%和-14.64%~173.45%。4.覆膜和补水可提高马铃薯产量和大薯率覆膜旱作较露地旱作增产13.71%~76.44%;露地补水和膜下补水较露地旱作增产38.07%~90.39%和28.34%~123.47%。覆膜和补水能增加马铃薯的大薯率,对商品薯的影响不明显,2018年覆膜旱作大薯率较露地旱作提高106.25%,露地补水和膜下补水大薯率较露地旱作增加138.02%~194.86%和186.60%~191.23%。2019年露地补水大薯率较露地旱作极显着增加7.45%~9.63%。若马铃薯块茎形成阶段遭遇干旱,覆膜和补水措施增产效果显着,若块茎形成期降水充沛,覆膜和补水措施增产幅度较小。5.覆膜和补水显着提高马铃薯水分利用效率覆膜旱作马铃薯的水分利用效率、降水生产效率较露地旱作极显着提高,分别达22.17%~83.33%、13.71%~76.46%。露地补水和膜下补水的水分利用效率较露地旱作提高27.73%~80.61%和27.97%~122.51%。补水处理之间的灌水利用率相比较,随着补水量的增加,灌水利用效率逐渐降低。4个处理的灌溉效益相比,膜下滴灌补22.5mm处理最高,膜下滴灌补45mm处理最低。综上所述,冀西北寒旱区草甸栗钙土马铃薯田的供水层受降水年型影响,主要为0~80cm 土层;覆膜马铃薯补水关键期为块茎形成期,露地马铃薯补水关键期为块茎膨大期。覆膜和补水均能提高马铃薯的产量和水分利用效率,覆膜能提高马铃薯的降水生产效率;马铃薯的灌水利用效率随补水量的增加呈下降趋势。4个补水处理相比,膜下滴灌补22.5mm产量和水分利用效率最高,灌溉效益最高。在马铃薯块茎形成期,膜下补水22.5mm可成为冀西北寒旱区马铃薯田限量补水的最优补灌方案。
张舵[3](2020)在《微灌方式和灌水量对河西春小麦生长和水氮利用的影响》文中进行了进一步梳理为探索河西春小麦节水高效的灌溉方式与最优灌水量,本研究通过田间试验,以“永良4号”春小麦为试验材料,设置微喷带灌溉(M1)和滴灌(M2)两种微灌方式,和生育中后期(孕穗期—成熟期)灌水150mm(W1)、200mm(W2)、250mm(W3)和300mm(W4)4个灌水量水平,研究了河西春小麦在微喷带灌和滴灌方式下生育中后期不同灌水量对其生长、产量、耗水特性与水氮利用的影响。试验主要研究成果如下:(1)生育中后期微喷灌水不足对株高负面效应显着,滴灌在生育前期更有利于小麦分蘖,且低灌水量对株高的影响不明显。各处理的产量均随着生育中后期灌水量的增加呈现先递增后减小的趋势,滴灌的增产效果较微喷灌明显,低灌水量下对产量的负面效应较微喷灌小。生育中后期灌水250mm对穗粒数的形成最有利,滴灌比微喷灌更有利于干物质的累积,微喷灌水250mm与滴灌水200mm分别获得了最大的干物质量与产量,产量分别为8106kg/hm2和8233kg/hm2。生育中后期微喷灌水250mm和滴灌水200mm对河西春小麦孕穗—成熟阶段的生长发育及产量的提高有利。(2)在两种微灌方式下,全生育期麦田耗水量均随着生育中后期灌水量的增加而增加,在前期生长中,微喷灌耗水强度高于滴灌,低灌水量会造成水分亏缺抑制农田水分的蒸发,生育中后期灌水300mm以上不利于小麦对水分的持续利用,两者都对麦田产量产生了显着的负面效应滴灌下高灌水量降低了作物水分利用效率。生育中后期微喷灌水250mm和滴灌水200mm分别了获得最大的水分利用效率,分别为1.83kg/m3和2.05kg/m3,有助于为中后期小麦生长提供良好的水分状况,减少无效耗水,提高作物的水分利用效率,从而节水高产。(3)两种微灌方式下,随着生育中后期灌水量的增加,成熟期小麦氮素积累量均呈先增后减的变化趋势,且各处理均在孕穗—开花期吸收的氮素量最大,灌水量的增加有利于植株对氮素的吸收。在低灌水量时微喷灌对小麦吸收氮素的负面影响明显,滴灌水量过多对小麦麦穗发育与植株吸收利用氮素不利。不同处理中小麦各器官氮素积累量均表现为:籽粒>茎秆+叶鞘>穗轴+颖壳>叶片,随着灌水量的增多,中后期灌水量的增加能够提高花后营养器官向小麦籽粒的氮素转移率与对小麦籽粒的氮素贡献率,生育中后期灌水250mm具有最优的效果。(4)在不同微灌方式下,0~100cm土层内硝态氮累积总量表现为微喷灌多于滴灌,滴灌对土壤中硝态氮的淋溶效果强于微喷灌,随着灌水量的增加,浅层土壤内的硝态氮逐渐被运移向更深层土壤,在成熟期,60~100cm土层硝态氮含量显着增加,生育中后期微喷灌水250mm或滴灌水200mm能够向作物根系提供良好的水肥状况。
黄方园[4](2020)在《覆盖模式对不同旱作区农田土壤主要性状和玉米生长的影响》文中认为旱作农业生产在保障全球粮食安全中扮演着不可或缺的角色。然而,降水的稀缺和较大的时空变异性严重威胁旱作农业生产的可持续性。农田覆盖技术,特别是塑料薄膜覆盖已被广泛用于旱地作物生产,但不同旱作区的光温水热资源差异较大,农田覆盖技术的增产效果也将受到地域间气候因素的影响。因此,依据区域特点进行适当的农田覆盖管理措施有利于提高资源利用率和农田生产力,促进旱作地区农业的可持续发展。本研究连续多年在中国黄土高原半干旱区(宁夏彭阳)和半湿润区(陕西杨凌)设置不同覆盖处理:(1)垄膜沟播种植(R)、(2)平作塑料薄膜全覆盖(P)、(3)平作降解膜全覆盖(B)、(4)平作秸秆全覆盖(S)和(5)传统平作种植(CK),研究了不同农田覆盖模式对土壤水分(SM)、土壤温度(ST)、土壤碳氮养分、土壤微生物群落结构和作物生产力的影响,取得的主要研究结果如下:(1)不同农田覆盖模式对土壤水温状况的影响不同覆盖模式显着影响了玉米农田土壤温度,随着生育进程的推进各覆盖处理间的差异逐渐减小。在半干旱区,三个覆膜处理均表现出明显的增温效果,大小表现为P>B>R。在半湿润区,P和R处理整个生育期0-25 cm平均土壤温度较CK平均提高3.1?C和0.6?C。两个试验区的S处理在整个生育期均具有明显的降温效应,并在半干旱区对土壤的降温效果更为明显。不同覆盖模式在休闲期均具有一定的保墒效果,但受不同区域和降水年型的影响,两个试验区均以P覆盖的休闲期储水效果最好。此外,两个试验区的覆膜处理均能有效提高生育前期的土壤含水量,随着生育期的推进,由于生物量和作物蒸腾作用的增加,覆膜处理促进了生育中期作物对深层土壤水分的利用,而在生育后期表层土壤含水量又有所回升,生育期农田耗水量呈现“前低—中高—后低”的规律。S处理在整个生育期较CK一直保持较高的土壤含水量。此外,在半干旱区以P处理下的农田耗水量(ET)最高,其平均ET分别比R、B、S和CK高44.5 mm、44.1 mm、65.5 mm和59.9 mm,在半湿润区各处理的ET大小顺序为P>S>R>CK。(2)连续覆盖对土壤碳氮养分的影响连续覆盖对不同覆盖模式下的土壤全氮和土壤有机碳含量的影响不同。与试验前相比,两个试验区表层(0-20 cm)土壤全氮均呈逐渐下降趋势,且均以塑料薄膜覆盖(R和P)和降解膜覆盖(B)处理表层土壤全氮含量下降速率最大,其次S处理和CK。然而,半干旱区R、P和S覆盖下的表层土壤有机碳含量较试验前略有上升,B和CK处理的土壤有机碳则分别降低了0.03和0.04 g kg-1,但均与试验前差异不显着。在半湿润区,除S处理外,其他处理两个土层(0-20 cm和20-40 cm)土壤有机碳均有所下降。土壤可溶性碳氮(DOC和DON)在表层(0-20 cm)土壤中的含量最高,随着土层加深而逐渐降低。两个试验区表层土壤的DOC含量均以S处理最高,覆膜处理则较CK降低了表层土壤的可溶性碳氮含量。各处理间的可溶性碳氮含量在20-40 cm和40-60 cm土层基本无明显差异。硝态氮在0-100 cm土壤剖面中的垂直分布情况受不同降雨年份的影响,玉米生育后期降雨少,各处理硝态氮剖面峰值及差异集中在上层土壤(0-40 cm);玉米生育后期降雨较多会导致收获期硝态氮的淋溶,使深层(60-100 cm)土壤硝态氮的含量较高。两个试验区的覆膜(R、P和B)处理促进了作物对氮素的吸收,降低了土壤硝态氮在深层土壤的积累,S处理的硝态氮分布与CK间无明显差异。各处理土壤铵态氮的含量较硝态氮低,分布规律与硝态氮类似。(3)连续覆盖对土壤微生物群落结构的影响连续覆盖导致两个试验区的土壤理化性质发生了改变,并进一步导致土壤微生物群落结构的变化,与其他覆盖处理相比,半干旱区的P处理和半湿润区的R处理均同时提高了土壤真菌和细菌的多样性和丰富度。土壤理化性质的改变与土壤微生物群落结构的变化密切相关,其可以解释半干旱区(彭阳)80%以上的土壤微生物群落结构的改变和半湿润区(杨凌)超过90%的土壤微生物群落的变异;其中在半干旱区细菌群落变化主要受SM的影响,真菌群落变化主要取决于土壤养分(硝态氮NO3-N、土壤全氮TN)和ST;而SM和ST是影响半湿润区不同覆盖模式下的土壤微生物群落结构变化最主要的因素。(4)不同覆盖模式对玉米生长发育的影响覆膜(R、P和B)处理明显缩短了玉米的生育期,显着提高了玉米的株高、茎粗和叶面积指数,进而显着提高了生物量及穗干重占总干物质量的比重,在半干旱区表现为P>R>B,而在半湿润区的R和P处理收获期生物量较CK平均提高了19.2%和20.7%。S处理在两个区域均延缓了玉米的生育进程,但其对玉米生长发育的影响在不同降雨年份表现不同,在平水年,其株高、茎粗、叶面积指数和干物质积累量较CK均有所降低,而在干旱年则有不同程度的提高。不同覆盖模式对干物质转运与分配的影响在不同试验区域表现不同。在半旱区,与对照相比,各覆膜(R、P和B)处理显着提高了吐丝后干物质积累量对籽粒的贡献率(2017年除外),S处理下干物质转运与分配的变化受降雨年份的影响。在半湿润区,不同试验年份R和P处理吐丝后同化物输入籽粒量分别较CK平均提高了20.9%和21.1%,S处理仅在2016年显着提高了吐丝后同化物输入籽粒量,但各覆盖处理对吐丝后同化物转运量对籽粒的贡献率没有显着影响。(5)不同覆盖模式对玉米产量、水分利用效率(WUE)和经济效益的影响三个覆膜处理通过增加穗粒数和百粒重,显着提高了玉米的籽粒产量,在半干旱区,R、P和B处理较CK平均增产2971 kg ha-1、6831 kg ha-1和1600 kg ha-1,其中R和P处理的净收益也有不同程度的提高,而B处理由于覆盖材料成本过高,净收益有所降低;此外,半干旱区以P处理下的WUE最高,其次是R、B、S和CK处理。在半湿润区,R和P处理的增产幅度为5.7%~24.8%和8.5%~20.4%,经济效益较CK平均增加1156元ha-1和857元ha-1;而R处理的WUE分别较P、S和CK处理平均提高7.4%、18.0%和15.2%。S处理的产量和WUE受降雨年型的显着影响,平水年由于百粒重的降低而使玉米籽粒产量下降,并降低了WUE,干旱年的产量和WUE则有不同程度的提高,而其在半干旱区和半湿润区的经济效益较CK分别降低了524元ha-1和977元ha-1。总体而言,P覆盖下的玉米籽粒产量和经济效益在半干旱区的表现明显优于半湿润区,而半湿润区以R覆盖获得WUE和经济效益最大,S处理对半干旱区玉米产量和WUE的影响较大。不同区域农田覆盖条件下玉米生产力的变化与土壤理化性质和土壤微生物的变化密切相关。在半干旱区,播前土壤储水量(SWSS)、ST、蒸散量(ET)、TN和土壤有机碳(SOC)与籽粒产量、WUE和经济效益均显着相关;半湿润区的产量、WUE和经济效益主要受ET和TN的影响,表明协调土壤水温与土壤养分有助于改善半干旱区的作物产量,但在半湿润区SWSS和ST却不是限制作物产量提高的主要因素。此外,土壤细菌多样性与两个区域的作物籽粒产量显着正相关,而真菌群落主要影响WUE。综上所述,农田覆盖模式对土壤主要性状和玉米生产力的影响受不同旱作区气候条件的显着影响,在不同区域依据主要限制因子筛选适宜的覆盖模式,是维持旱地农田生产力的有效途径之一。塑料薄膜全覆盖(P)在半干旱区可以持续提高玉米产量,而其在半湿润区对作物产量的提高程度较小,因此更适合冷凉的半干旱区。降解膜全覆盖(B)在半干旱区的增产效果不可持续,且弱于塑料薄膜全覆盖。垄膜沟播种植(R)在半湿润区能够持续提高玉米生产力和经济效益,而其在半干旱区增加了玉米产量的年际变化。虽然秸秆覆盖(S)的增产效果不如塑料薄膜覆盖处理,但其在干旱年的表现优于不覆盖处理。考虑到秸秆的土壤培肥效应和塑料薄膜全覆盖对土壤养分的消耗,薄膜覆盖与秸秆的结合可以在提高作物生产力的同时平衡地力。
马登科[5](2020)在《农艺措施对中国北方地区小麦和玉米产量及水分利用效率影响的meta分析》文中研究表明北方地区作为我国重要的粮食生产基地,在保障我国粮食安全和经济发展中占有举足轻重的地位。受气候等环境因素的影响,北方降水整体偏少,水资源短缺一直是制约该地区粮食生产的关键因子,如何实现有限水资源的高效利用是该地区农业可持续发展面临的挑战之一。农艺措施是农业生产中保证作物产量的重要举措,合理的农艺措施在维持作物高产的同时能提高水资源的利用效率。针对北方地区农业生产中水资源短缺的问题,前人从农艺措施角度进行了大量试验研究,这些研究结果为该地区农业水资源高效利用和作物高产提供了理论依据,但前人研究普遍存在试验区域小、试验年限短等不足,且不同研究结果间往往存在较大差异,因而无法在区域尺度上提供生产指导。为此,本研究整合了北方地区(包括新疆、青海、甘肃、宁夏、陕西、内蒙古、山西、山东、河南、北京、天津、河北、黑龙江、吉林和辽宁15个省市)近20年的相关研究数据,建立了一个共包含737个独立研究,6496组试验观测的数据集,对不同农艺措施在北方主要粮食作物小麦和玉米生产中的应用效应进行了分析探究,以期为该地区农业生产中水资源高效利用和粮食高产提供理论借鉴。本研究主要结果如下:(1)氮肥显着提高了作物产量和水分利用效率。其中冬小麦整体增幅略高于春小麦,春玉米显着高于夏玉米。氮肥效应在不同区域间存在差异,其中西北地区小麦和玉米对氮肥的响应程度最高。施氮下玉米产量和水分利用效率增幅在年均温≤10℃时最高,显着高于年均温?10℃地区。在小麦中,氮肥效应随年均降水量增加而逐渐增强,而玉米中则在年降水量400–600 mm时达到最高。作物产量和水分利用效率均随施氮量的增加先增加后降低,且实现最高水分利用效率的施氮量低于最高产量对应下的施氮量。(2)地表覆盖显着提高了两种作物的产量和水分利用效率,且在相同条件下地膜覆盖效果优于秸秆覆盖。与裸地对照相比,地表覆盖下春小麦产量和水分利用效率增幅高于冬小麦,春玉米产量和水分利用效率增幅显着高于夏玉米,其中增幅最大的为春玉米,产量和水分利用效率分别提高了44.1%和40.8%。地表覆盖下西北地区作物产量和水分利用效率增幅最大,其中小麦产量和水分利用效率分别提高了21.7%和25.4%,玉米分别为51.0%和46.1%。在年均温≤10℃地区,地表覆盖对作物产量和水分利用效率的影响高于年均温?10℃地区。整体上,地表覆盖效应随年降水量的增多而逐渐降低。(3)在北方地区,深松耕对作物产量和水分利用效率的促进效应整体上优于免耕处理。深松耕处理下春小麦和冬小麦产量及水分利用效率的增幅基本一致,在玉米中,春玉米产量和水分利用效率增幅更大。深松耕在西北地区的效应优于华北地区,其对产量和水分利用效率的正效应随年降水量的增加有减弱的趋势。在年均温≤10℃地区,深松耕处理下作物产量和水分利用效率的增幅较年均温?10℃地区高。免耕对夏玉米产量和水分利用效率的促进效应最佳,在春小麦和春玉米上也表现为显着正效应,而冬小麦产量和水分利用效率均未出现显着变化。免耕措施在西北地区的应用效果优于华北,在东北玉米生产中也表现出显着正效应。免耕效应随年均降水的增多而降低,在年均温低的地区其应用效应更好。(4)在北方地区,与无灌溉对照相比,灌溉处理下作物整体产量和水分利用效率均显着提高,其中春玉米产量和水分利用效率增幅最大,分别为49.4%和40.8%,而夏玉米和冬小麦水分利用效率未发生显着变化。在年均温≤10℃地区,灌溉效应显着高于年均温?10℃地区。灌溉对作物产量和水分利用效率的影响随降水量增加而降低,当年降水量?600 mm时,灌溉处理下作物水分利用效率显着降低。随着灌溉水用量的增加,两种作物产量和水分利用效率均呈先增后减的变化模式,其中小麦在灌溉额达170 mm时水分利用效率达最高,而玉米则在225mm时实现水分利用效率的最大值。
董昭芸[6](2020)在《沟垄集雨种植模式下施肥与补灌对冬小麦生长及水肥利用效率的影响》文中提出旱作农业在我国粮食生产中发挥着至关重要的作用。黄土高原大部是我国典型的旱作农业区,水分和养分是限制该地区作物生产力的两大最重要因素。如何高效利用有限的降水并提高其与冬小麦生长需水的匹配度以及优化养分管理,是实现该地区农业高产高效的关键。沟垄集雨种植模式作为一种高效节水栽培技术在半干旱地区被广泛应用,然而该种植模式下施肥和补灌对冬小麦生产的影响研究较少,且该种植模式基于不同底墒和生育期降雨对冬小麦生产的调控效应尚不明确。针对以上问题本研究于2012-2017在黄土高原宁南山区连续开展了5年大田试验,在两种种植模式下(沟垄集雨种植R,传统平作B)均分别设置了施肥试验和补灌试验,其中施肥试验设置高肥(H)、中肥(M)、低肥(L)和不施肥(N)4个水平,补灌试验设置生育前期补灌一次(I1)、生育前期和后期各补灌一次(I2)和免灌(I0)3个模式,研究了沟垄集雨种植模式下施肥与补灌对冬小麦生长及水肥利用效率的影响。主要研究结果如下:1、沟垄集雨种植模式下施肥对冬小麦产量和水肥利用的影响(1)在冬小麦生育前期,R模式能够显着降低土壤水分的消耗而提高土壤含水量(SWC),从而促进植株生长,增加干物质积累。R模式较高的干物质积累必然消耗较多的土壤水分,在抽穗期R模式的SWC与B模式趋于平衡,之后逐渐低于B模式。在高底墒和低底墒下,R模式下冬小麦全生育期耗水量较传统平作处理分别显着提高3.6-7.5%和4.9-7.9%。此外,提高施肥量也增加了耗水量,在返青期之后趋势逐渐明显。高底墒下施肥对土壤水分的挖掘能力明显高于较低底墒。(2)R模式、底墒、生育期降雨和施肥量对冬小麦抽穗期和灌浆期旗叶的净光合速率、气孔导度和蒸腾速率有显着的促进作用。在R模式下取得同等水平的光合特性指标所需要的底墒和降雨条件均低于B模式。研究还发现在低底墒下R模式对光合特性的提升幅度高于高底墒,以及生育期降雨较多的年份施肥对光合特性的影响更显着。(3)R模式籽粒产量较传统平作在高底墒下的提高幅度为4.4-61.6%,在低底墒下的提高幅度为30.4-78.2%。R模式下产量的变异系数为30.1%,明显低于B模式,表明具有一定的产量稳定性。高底墒下,R模式的公顷穗数低于B模式,但穗粒数和千粒重较B模式显着提高;低底墒下,R模式的三个产量构成因素均高于B模式。在高底墒和低底墒下,R模式的水分利用效率(WUE)较B模式分别显着提高2.1-11.1%和22.2-65.2%。通径分析结果表明各因子对冬小麦籽粒产量及其构成要素决定程度表现为底墒>生育前期降雨>施肥量>生育后期降雨,四个因素决策系数分别为82.9%、14.4%、9.5%和7.3%。高底墒下,随着施肥量的增加冬小麦公顷穗数、籽粒产量持续显着增加。低底墒下,施肥量到达中肥后公顷穗数、产量不再显着增加。两种底墒下,穗粒数和千粒重均随着施肥量的增加呈增加趋势,但超过中肥后不再显着增加。高底墒下,R模式中高肥较中肥、中肥较低肥、低肥较不施肥处理的WUE分别显着提高2.5-6.9%、3.2-7.2%和8.3-9.5%。低底墒下,当施肥量到达中肥后WUE不再显着提高。(4)高底墒下,R模式扬花期植株氮、磷吸收量较B模式分别显着提高7.2-60.3%和16.7-70.1%,成熟期较B模式分别显着提高6.7-51.3%和31.0-55.9%;低底墒下,R模式扬花期植株氮、磷吸收量较B模式分别显着提高27.9-56.8%和38.8-60.6%,成熟期较B模式分别显着提高35.6-61.8%和27.0-58.7%。结果表明,R模式下花前氮素转运率低于B模式,磷素转运率高于B模式。在各底墒下R模式的氮素吸收效率(Nup E)和磷素吸收效率(Pup E)均高于B模式,但氮素利用效率(NUE)和磷素利用效率(PUE)低于B模式。随着施肥量的增加冬小麦在扬花前和成熟期植株氮磷吸收量均呈增加趋势,且在高底墒下呈现更大的增加幅度。随着施肥量的增加,高底墒下花前氮素转运率呈降低趋势,磷素转运率则呈升高趋势;低底墒下两者均呈升高趋势。在两种种植模式下随着施肥量的提高Nup E和NUE均呈降低趋势。2、沟垄集雨种植模式结合补灌(RI)对冬小麦产量和水肥利用的影响(1)RI使用了畦灌(BI)1/2的补灌量,耗水量和土壤含水量均低于BI处理。在高底墒下,RI1和RI2耗水量较对应畦灌处理分别显着降低5.0-10.1%和9.3-13.2%,在低底墒下则分别降低9.4-10.1%和14.5-24.1%。(2)RI处理抽穗和灌浆期旗叶的净光合速率、气孔导度和蒸腾速率均高于对应的BI。通过对底墒、生育期降雨和光合特性的分析,发现在RI模式下取得同等高净光合速率、气孔导度和蒸腾速率时所需的降雨量均低于对应的BI模式,验证了其节水潜力,但底墒对光合特性的影响较小,表明底墒的调控作用存在时空限制性。(3)RI处理降低了公顷穗数,但提高了穗粒数和千粒重。两种底墒下,RI1的籽粒产量均高于BI1,在高底墒和低底墒下提高幅度分别为1.4-4.5%和1.9-4.6%(差异均不显着),RI2的籽粒产量均低于BI2。此外,RI的灌溉水利用效率显着高于BI,其中RI1和RI2的IWUE较对应畦灌分别显着提高102.8-109.2%和86.5-94.9%。虽然补灌条件下RI对降雨利用效率的影响较小,但RI0的RUE显着高于BI0,且在低底墒下的增幅更大。在高底墒和低底墒下,RI1的WUE较BI1分别显着提高6.5-10.2%和12.2-14.4%,RI2的WUE较BI2分别显着提高4.7-10.3%和6.8-16.9%,RI0的WUE较BI0分别显着提高5.2-6.2%和27.2-35.2%,表明低底墒下集雨补灌对水分利用的调控效果较高底墒更强。通径分析表明RI下对冬小麦籽粒产量决策程度最大的为底墒,其次是生育前期降雨,决策系数分别为65.6%和36.0%;BI下对冬小麦籽粒产量决策程度最大的为底墒,其次是灌水量,决策系数分别为57.1%和26.7%。RI下对冬小麦公顷穗数决策力最大的因素是生育前期降雨,而BI下则是底墒。两种补灌方式下对穗粒数和千粒重决策力最大的因素分别是底墒和生育后期降雨。(4)RI1和RI0在开花期和成熟期氮磷吸收量和转运量均显着高于对应畦灌处理,RI2则低于BI2,表明过量灌水可能会限制沟垄集雨种植模式下冬小麦改善养分吸收及转运的能力。RI花前氮素转运率在高底墒下低于畦灌处理,在低底墒下则高于畦灌处理;RI磷素转运率在两种底墒下均高于畦灌处理。RI1和RI0的氮磷吸收效率高于对应畦灌,RI2则低于BI2。综上所述,沟垄集雨种植模式在底墒较低时对冬小麦生长、籽粒产量和水分利用效率产生的提升作用比高底墒更显着。在底墒较高(>460 mm)的年份可以施用较多肥料(N 270+P2O5 180 kg ha-1),在底墒较低(<310 mm)的年份可以减少施肥量(N 90+P2O5 60 kg ha-1)或不施肥,可以达到高产高效的目标。因此,在半干旱地区沟垄集雨种植模式结合以墒定肥是提高作物产量和水肥利用效率的一个有效措施。此外,沟垄集雨种植模式结合补灌处理在提高降雨利用效率的基础上,能够只使用一半的灌水量而保持甚至提高冬小麦籽粒产量,是半干旱地区提高降水利用效率和灌水利用效率并尽量降低灌溉用水量的灌水模式,是解决农业用水短缺的一个新技术途径。还可为沟垄集雨种植模式向灌区的延伸提供理论依据。
胡昌录[7](2020)在《水氮及群体调控对秸秆覆盖冬小麦产量及水分利用效率的影响与机制》文中指出黄土高原是我国旱地农业的重要区域,冬小麦作为该区的主要粮食作物,水分与养分是影响其产量和品质的两个因素。秸秆覆盖是一种经济、有效的旱地蓄水保墒措施,但是秸秆覆盖下作物产量及水分利用效应及机制并不十分清楚。本研究以黄土高原旱地秸秆覆盖冬小麦为研究对象,通过3个田间定位试验研究:1)氮素调控对冬小麦群体、水分利用以及产量的影响及其生理机制;2)群体管理对冬小麦产量、水分利用及其作用机制;3)群体管理、氮素运筹和播前底墒耦合作用下冬小麦产量、水分利用效应及机制。三个田间试验分别为:1)氮素调控田间试验(2012.9-2016.6),设置两个施氮水平(150和200 kg ha-1),每个施氮水平下设置三个施氮次数(1、2和3次),试验共计6个处理;2)群体调控田间试验(2012.9-2016.6),设置了两个土壤管理措施,分别为常规不覆盖与秸秆覆盖,每种土壤管理措施下设置高、中、低三个播种密度,同时在秸秆覆盖下的中、高播种密度下设置越冬期根修剪和越冬期冠割,返青期根修剪和返青期冠割,试验共计14个处理;3)底墒、氮素和群体调控耦合田间试验(2013.9-2016.6),该试验通过播前灌溉模拟三个底墒水平(自然雨养,雨养+播前灌66.7 mm,雨养+播前灌133 mm),每个底墒水平下设置2个施氮水平(150和200 kg ha-1),每个施氮水平下设置3个群体调控措施(对照不处理、返青期根修剪和返青期冠割),共计18个处理。研究得到以下主要结果及结论:1. 氮素调控对小麦群体、水分利用以及产量的影响及其生理机制四年田间定位试验结果表明,冬小麦籽粒产量表现为:2015-2016(7023 kg ha-1)>2013-2014(5430 kg ha-1)>2014-2015(3843 kg ha-1)>2012-2013(3464 kg ha-1)。氮水平以及分次施用均没有显着影响秸秆覆盖冬小麦生育期群体动态、籽粒产量、成熟期地上部生物量、收获指数、生育期耗水量及水分利用效率。这与氮水平以及分次施用没有显着影响冬小麦花后旗叶衰老特性(丙二醛和可溶性蛋白)有关。但高氮处理相比低氮处理显着降低了冬小麦粒重。施氮量与施氮次数的交互作用对冬小麦产量、产量构成因素、耗水量及水分利用效率也均没有显着影响。综合以上结果,黄土高原旱地秸秆覆盖条件下,施氮150 kg ha-1已经满足小麦生长的需求,而且氮肥播前一次施用是可行的。2. 秸秆覆盖和播种密度对冬小麦产量及水分利用效率的影响四年田间定位试验结果表明,冬小麦籽粒产量变化范围为2851-6981 kg ha-1,水分利用效率变化范围为5.3-16.2 kg ha-1 mm-1。气候年型与秸秆覆盖的交互作用显着影响冬小麦籽粒产量。在丰水年,常规不覆盖条件下冬小麦籽粒产量、收获指数及水分利用效率均显着高于秸秆覆盖;但在干旱年,秸秆覆盖条件下冬小麦籽粒产量显着高于常规不覆盖。秸秆覆盖与常规不覆盖相比显着提高了土壤储水量,但同时也降低了春季(返青期到拔节期)耕层土壤温度,特别是丰水年。秸秆覆盖条件下冬小麦生育期耗水量显着高于常规不覆盖,导致秸秆覆盖冬小麦水分利用效率显着低于常规不覆盖。另外,播种密度没有显着影响冬小麦籽粒产量,但与高播种密度相比,低播种密度显着提高了冬小麦收获指数。因此,秸秆覆盖下低播种密度(75%常规推荐量)更合适。3. 根修剪及其与密度、底墒、施氮量交互作用下秸秆覆盖冬小麦产量及水分利用效率在旱地秸秆覆盖条件下,根修剪处理(试验2和3)较对照冬小麦籽粒产量提高了7%,收获指数提高了6%,水分利用效率提高了11%,这种效应在低产条件优于高产条件。另外,返青期根修剪冬小麦籽粒产量显着高于越冬期根修剪。返青期根修剪在常规和高播种密度下均提高了冬小麦籽粒产量,但在高播种密度下的增产效果明显优于常规播种密度。在高、低施氮量下返青期根修剪均提高了冬小麦籽粒产量,但两个施氮量下根修剪处理冬小麦籽粒产量相似。气候年型、播前底墒水平与返青期根修剪的交互作用也显着影响冬小麦籽粒产量。在低产且低、中播前底墒水平下返青期根修剪显着提高了冬小麦籽粒产量,但在高播前底墒水平下没有提高。另外,返青期根修剪提高了冬小麦茎秆可溶性糖表观转运量(16%)和表观转运率(9%),这是根修剪小麦籽粒产量提高的重要原因之一。因此,在旱地秸秆覆盖条件下,冬小麦返青期根修剪是提高冬小麦籽粒产量及水分利用效率的重要措施。4. 冠割及其与密度、底墒、施氮量交互作用下秸秆覆盖冬小麦产量及水分利用效率在旱地秸秆覆盖条件下,冠割处理(试验2和3)较对照没有显着影响冬小麦籽粒产量及水分利用效率,但冠割处理冬小麦收获指数提高了7%,茎秆可溶性糖表观转运率提高了8%,经济效益提高了15%。在低产条件下,越冬期冠割与返青期冠割冬小麦籽粒产量相似,但在高产条件下,越冬期冠割与对照相比显着降低了冬小麦籽粒产量,而返青期冠割处理的经济效益始终高于越冬期冠割处理。播种密度对冠割处理冬小麦籽粒产量影响不显着,但在常规播种密度下返青期冠割能获得更高的经济效益。另外,在常规推荐施氮量以及高播前底墒水平下返青期冠割冬小麦能获得更高的籽粒产量和经济效益。气候年型与冠割处理的交互作用也显着影响冬小麦籽粒产量和水分利用效率。综合来看,在旱地秸秆覆盖条件下,冬小麦返青期冠割是提高农民收益的有效途径。综上所述,在黄土高原旱地秸秆覆盖条件下,冬小麦高产或高收益以及水分高效利用有以下三种措施:(1)在推荐施氮量下,氮肥播前一次施用,同时降低25%播种量;(2)推荐施氮量以及常规播种密度下结合返青期根修剪;(3)推荐施氮量以及常规播种密度下结合返青期冠割。上述三种措施提高冬小麦产量或经济效益及水分利用效率主要与构建了良好的群体结构、优化水分利用以及增加花前可溶性糖的转运有关。
张旭东[8](2019)在《覆膜种植和施肥对半干旱地区资源高效利用及玉米生产持续性的影响机制》文中认为黄土高原是典型的半干旱地区,也是我国重要的粮食产区。一直以来,有限和高变异的降水威胁着该地区作物生产的持续性,常常导致粮食产量下降,甚至生产失败。同时,该地区春秋季的低温和养分管理不科学也限制着作物的生长和发育,进一步加剧了干旱对农田生产的胁迫。人口压力、社会发展及生态环境安全对我国粮食生产高效可持续的需要日趋迫切,如何促进半干旱地区水、热、光、养生产资源协同高效利用,实现农田的持续生产是黄土高原地区旱作农业面临的重要研究问题。针对黄土高原地区有效水分、热量和养分因素对农田生产的共同限制性及其驱动的作物生产力不确定性,本研究于2014-2017年在宁夏南部山区开展了连续4年大田试验。研究设置:1)三种不同覆膜种植方式(沟垄全覆膜RFF、沟垄半覆膜RFH和平作半覆膜FH,以平作不覆膜FN为对照),和2)沟垄全覆膜种植RFF和沟垄半覆膜种植RFH下5个施肥水平(N 0+P2O5 0 kg ha-1,CK;N 117+P2O5 59 kg ha-1,L;N 173+P2O587 kg ha-1,M;N 229+P2O5 115 kg ha-1,H;N 285+P2O5 143 kg ha-1,SH)两项大田试验,分析了覆膜种植方式和施肥量对土壤温度和水分、玉米生长发育和光合特性、植株养分含量和吸收量、籽粒产量和水肥利用效率以及经济效益的影响,探讨了覆膜种植提高水、热、光、养资源协同利用的土壤水温驱动机制和施肥量对覆膜种植水、养资源利用和生产力可持续的影响机制。研究可为了解作物水热生理响应、作物建模、完善覆膜种植技术、农业区划和水肥优化匹配管理提供科学依据。主要研究结果和结论如下:(1)覆膜种植驱动的土壤热响应特征和玉米的生长发育覆膜种植提高了10 cm处土壤温度,RFF、RFH和FH玉米生育期日平均温度较对照FN分别提高了2.9℃、1.9℃和FH 1.5℃。随玉米生长覆膜种植增温幅度呈降低趋势,在苗期、营养生长期和生殖生长期分别提高2.4℃、2.3℃和1.8℃。覆膜种植在夜间(20:00-08:00)的保温效果强于白天(08:00-20:00)的升温效果,引起昼夜温差降低0.7-1.3℃,缓和了土壤温度的骤变,以RFF最强,FH次之,RFH最弱。统计土壤温度和气温数据,分析发现覆膜种植在低气温区间5-10℃表现最强的增温能力,增温幅度达2.5℃,同时提高了土壤温度在20-25℃区间的分布频次,降低了在5-20℃区间的分布频次,改善了玉米生长土壤热环境。覆膜种植通过提高土壤温度加速了玉米的生长发育,缩短了其生育期2-17天,并使出苗(VE)、拔节(V6)和吐丝(R1)分别提前2.5-6天、4-10天和4-13天,提前和缩短能力依次为RFF>FH>RFH。覆膜种植缩短了玉米营养生长期(8-13天),但相改善了生殖生长期,其中RFF缩短3.5天,FH缩短2天,RFH延长2天。(2)覆膜种植驱动玉米高效光合的土壤水分时空动态变化策略覆膜种植显着改善了土壤水分状况,驱动了高效的水分利用策略—土壤时空湿干交替行为。时间角度,覆膜种植土壤在播后0-50天、50-130天和130-160天较不覆膜种植分别呈相对湿润、干燥和湿润的交替变化趋势;空间角度,覆膜种植于播后50-130天在0-20 cm、20-120 cm和120-200 cm土层较不覆膜种植分别呈现土壤相对湿润、干燥和湿润的交替变化趋势。相对于半覆膜RFH(中湿-微干-微湿)和FH(微湿-强干-微干),全覆膜RFF随玉米生长土壤呈强湿(土壤含水量SWC提高0-2.0%)-中干(SWC降低0.4-1.5%)-微湿(SWC提高0-0.9%)变化趋势,表现更强的水分平衡能力。虽然覆膜种植降低了水分敏感期土壤平均湿度,但驱动了水分定向运动与作物生长生理相匹配,维持了作物水分敏感期关键的浅层土壤水分,显着提高了玉米净光合速率12.4-52.9%、蒸腾速率12.6-59.2%、气孔导度17.9-120.5%,以及叶面积生长和干物质累积。(3)覆膜种植对水、热、光、养资源的协同利用机制和玉米生产力的影响覆膜种植改善了水分耗散结构,提高了作物捕获热、光、养资源的总量,光合有效辐射截获量提高6.3-11.8%、土壤有效积温增加129-389℃d,氮吸收量提高8.8-21.7%,资源捕获能力以RFF最强,RFH和FH次之。覆膜种植通过驱动积极的土壤热响应为玉米营造优良的生长热环境,在提高水分有效性的基础上进一步驱动了高效的水分利用策略,提高了土壤水分与作物需水匹配度。受热效应影响覆膜种植缩短了玉米的营养生长期但维持(甚至延长)了相当的生殖生长期,改善了玉米物候,促进了水、热、光、养资源向玉米生殖生长中心富集,驱动半干旱研究地区资源的获取和优化配置,以及资源转化为生物材料(尤其是籽粒)的过程。与RFH、FH和FN相比,RFF籽粒产量分别提高24.6%、20.4%和42.7%;水分利用效率(WUEGY)分别提高24.0%、21.7%和42.5%;热量利用效率(TUEGY)分别提高15.0%、12.0和20.2%;光能利用效率(RUEGY)分别提高19.7%、15.6%和34.8%;养分利用效率(NUE)分别提高17.4%、12.7%和26.5%;经济收益分别提高69.0%、50.0%和1.5倍。(4)RFF和RFH覆膜种植下施肥量对玉米生长发育和水肥吸收的影响RFF较RFH加速了玉米生长,玉米生育期平均缩短17天。两种种植方式下,施肥延长了玉米生育期(主要是生殖生长期),在L、M、H和SH下分别延长了9天、11天、14天和15天,同时显着改善了玉米光合作用,促进了玉米株高、叶面积生长和干物质,但超过H水平后再提高施肥量则不再显着改善。施肥主导了年际间的光合特性差异,可能使限制玉米光合作用的因素逐渐由气孔导度因素向气孔密度和质量因素转移。四年平均,RFF玉米生育期蒸散量(ET)较RFH平均提高8 mm,低于在休闲期蓄墒量增加值15.7 mm,表现相对高的水分平衡能力。施肥显着增强了玉米对水分的吸收,随施肥水平提高ET平均由CK水平的433.3 mm逐渐提高到最高H水平的479.0mm,较生育期平均降水404.8 mm高出28.5-74.2mm。然而,休闲期土壤蓄水量仅32.9-51.2 mm,难以平衡ET和降水之间的差异,导致水分失衡,土壤含水量逐渐下降,并随着施肥的增加而加剧。与RFH相比,RFF植株氮磷吸收总量显着提高而养分含量呈降低趋势,平均降幅为氮9.8%和磷6.9%,但均降幅随施肥水平提高逐渐减小。施肥显着改善了RFF和RFH下植株氮磷养分的含量并提高了氮收总量1.0-2.4倍,磷吸收量0.6-1.3倍,在SH施肥水平达最高,但与H水平无显着差异。提高施肥量会逐渐降低氮磷收获指数。(5)RFF和RFH覆膜种植下不同施肥量玉米产量、水肥利用效率、水肥优化匹配、水分亏缺预警和经济效益RFF较RFH显着提高了玉米籽粒产量21.8-43.9%和WUEGY 21.6-42.4%,且随施肥水平提高增幅呈先升高后降低趋势。随施肥水平提高,玉米籽粒产量呈增加趋势,拟合发现RFF模式下于N 226.8+P2O5 113.4 kg ha-1达到最高值8741.3 kg ha-1,RFH模式下于N 295.7+P2O5 147.9 kg ha-1达到最高值6931.9 kg ha-1。因此,RFF较RFH呈现“减肥(幅度:N 68.9+P2O5 34.5 kg ha-1)、增产(幅度1782.4 kg ha-1,25.7%)”效应,表明了种植方式的高效性。WUEGY与产量表现类似的趋势,并表现明显“减肥、高效”效应。RFF较RFH氮的利用效率(NUE)、吸收效率(NUPE)、生产效率(NPE)和肥料利用率(FUR)分别提高24.8%、13.4%、33.4%和8.0%,磷的分别提高5.2%、27.8%、33.7%和32.2%。随施肥水平提高RFF和RFH对养分的利用效率呈下降趋势,至H和SH水平大幅降至低水平;肥料利用率和肥料产量贡献率呈先升高后降低水平,在M和H水平达最高,表明了M至H施肥水平养分策略的可推荐性。ET与施肥量、籽粒产量、WUEGY和播前底墒(SWSS)均显着正相关,但是施肥量与SWSS显着负相关,表明协调施肥量与SWSS获得合理的ET有利于水分的可持续利用和作物的可持续生产力。虽然在较高的施肥水平(H或SH)能够获得最高的产量和水肥利用效率,由区域降水决定的土壤水分平衡能力要求施肥必须与之匹配。随施肥量提高年土壤水分平衡由盈余逐渐转为亏缺,RFF和RFH分别在N 180.9+P2O590.5 kg ha-1和N 121.0+P2O5 60.5 kg ha-1获得水分平衡临界点,并可分别实现各自模式产量潜力值的97.7%和78.3%。此外,为保证水分可持续利用和玉米可持续生产,还需要在关键时期保证有效水分供应,RFF播前底墒、播前底墒+播后30天降水、播前底墒+播后60天降水、播前底墒+播后90天降水的亏缺阈值分别为441.1 mm、488.3mm、558.8.3 mm、624.3 mm;RFH以上四个时期的水分亏缺阈值分别为367.3mm、426.1 mm、505.3 mm、564.1 mm,有效水分低于预警阈值需要进行一定程度的补灌措施,以避免玉米生长受限、甚至生产失败。虽然RFF(较RFH)和施肥(较不施肥)增加了生产投入,但会更大幅度提高产出价值,因此表现更高的净收入。但是,在覆膜种植下,农田水肥应得到谨慎管理,水肥不匹配会降低经济效益,甚至导致严重经济亏损。在RFF种植条件下,与区域降水相匹配的水分平衡施肥量N 180.9+P2O5 90.5 kg ha-1与经济效益达最高的施肥量N 206.3+P2O5 103.2 kg ha-1较接近,也从经济效益的角度证明了平衡施肥具有可观的经济效益特征,可作为推荐施肥。综合考虑,RFF较RFH可以在更高施肥量下维持基于当地降雨的土壤水分平衡,并表现可持续的水肥耦合增产、增效、增收效果,因此推荐RFF+N 180.9+P2O5 90.5 kg ha-1作为黄土高原半干旱区高效种植管理方案,并关注播种0-90天内有效水分量。更长期(>4年)的高效管理方案或覆膜种植与其它农艺措施结合的水、热、养管理需建立在土壤质量研究证据和农田生产设施改善的基础上。
邓浩亮[9](2019)在《黄土高原不同生态区垄沟覆盖对春玉米生产力和土壤质量的影响及其机理》文中研究表明黄土高原雨养农业区降水低而不稳、蒸发量大,还遭受严重的土壤侵蚀和耕地退化,如何应对生产能力与天然降雨利用能力的严重不足是备受西北农业圈关注的现实问题。在半干旱农作区,玉米垄沟覆盖栽培系统已取得显着增产增收效果,然而黄土高原地域跨度大,生态区包括干旱区、半干旱区和半湿润区,因此不同生态区对垄沟覆盖栽培系统的响应也呈现多样化。目前,大多研究主要针对半干旱农作区,忽略了半湿润易旱农作区农业独特的生产潜力。垄沟覆盖栽培系统能否在半湿润农作区适用并取得增产增效?不同垄沟耕作模式对其影响多大?其生理生态机理如何?这些不仅是基础科学问题,也是垄沟覆盖栽培系统的地域延伸、系统升级,更是黄土高原雨养农业下小农经济精准脱贫战略实施的重大需求。本研究在课题组以往多年国内研究基础上,以垄沟覆盖系统为核心,多种传统种植模式为参照,包括隔沟覆膜垄播(MRM)、全膜双垄沟播(WRF)、垄沟秸秆覆盖(SM)、平地全膜覆盖(WM)、平地半膜覆盖(HM)、平地无覆盖种植(CK)等开展了大田试验及技术验证。本研究于20152016年在黄土高原半干旱农作区甘肃省榆中县石头沟省级旱作农业示范点开展了大田试验,通过对土壤剖面水分动态、土壤温度、作物水分利用、土壤有机碳、全氮、全磷、速效养分、酶活性、微生物数量、作物物候特征、生长参数及生物量分配模式、产量及形成因子、水分利用效率等参数的系统收集和分析,首先揭示了两种不同风格垄沟地膜覆盖技术在改善黄土高原半干旱农作区春玉米生产力和土壤环境生态机理。其次,为进一步证实垄沟地膜覆盖技术在其他生态区的高效性,于20172018年在半湿润易旱农作区甘肃省华亭市朱家坡农业技术推广中心开展了验证试验,全面分析了土壤水热、养分平衡、酶活性活跃度、微生物数量繁殖、作物物候格局、产量和水分利用效率等指标,以期明晰垄沟覆盖耕作模式对旱地玉米的增产、增收和增效机制,进一步剖析该技术体系是否具有可持续发展潜力,同时探明半干旱和半湿润农作区最佳垄沟覆盖耕作模式,为将来该技术体系的进一步拓展研究和延伸技术开发提供理论依据和技术支撑。主要研究结论如下:1.垄沟覆盖在时间上对水资源进行重新分配,使作物需水与土壤供水达到平衡。空间上,优化了作物需水和土壤供水关系,使作物更容易利用深层土壤水分满足生长需求,从而增加了土壤水分有效性。半干旱农作区隔沟覆膜垄播、全膜双垄沟播和秸秆覆盖较露地平种显着增加生长季中层土壤含水量17.77%、11.61%和4.39%,中层水分的积累为玉米后期生长水分的获取提供支撑,但在半湿润农作区并未表现出贮水优势。半干旱区春玉米耗水量主要依赖于生育期降水和土壤底墒,其中隔沟覆膜垄播、全膜双垄沟播和秸秆覆盖春玉米生育期内降水消耗分别占总耗水量的79.07%、80.01%、90.90%。而半湿润区春玉米耗水量主要依赖于生育期降水,意味着在半湿润地区生育期降水不仅能够满足作物生长需水,而且还可以补给土壤贮水,其中隔沟覆膜垄播、全膜双垄沟播和秸秆覆盖通过垄沟集雨方式可补给土壤水量3.33、4.34和5.70 mm。2.垄沟覆盖材料类型的选择性应用能够实现对土壤热量平衡的季节性主动调控,同时存在增温和降温的双重效应,地膜覆盖的增温效应大于降温效应,秸秆覆盖则相反,主要表现在作物生育前期,地表覆盖可增加土壤温度,而在生育中期受高温胁迫,地表覆盖能有效降低土壤温度,缓解高温干热的危害。半干旱和半湿润农作区均表现为隔沟覆膜垄播平均温度最高,全膜双垄沟播次之,秸秆覆盖最低。3.垄沟地膜覆盖体现了对土壤养分的时间和空间平衡调节。半湿润农作区养分含量降低幅度显着大于半干旱农作区。连作2个生长季后,半干旱农作区隔沟覆膜垄播和全膜双垄沟播种植方式增加了生长季内对有机碳、全氮、速效钾的消耗,高于露地平种0.28和0.31 g·kg-1、0.04和0.14 g·kg-1、23.48和2.96 mg·kg-1,反而降低了对全磷、速效磷、碱解氮的消耗,低于露地平种0.08和0.10 g·kg-1、0.37和0.97 mg·kg-1、1.15和2.95 mg·kg-1;半湿润农作区隔沟覆膜垄播和全膜双垄沟播种植方式增加了生长季内对有机碳、全磷、速效钾、碱解氮的消耗,高于露地平种1.00和0.65 g·kg-1、0.16和0.06 g·kg-1、63.74和30.61 mg·kg-1、8.51和5.13mg·kg-1。4.垄沟覆盖对不同种类土壤酶活性影响不同。秸秆覆盖和隔沟覆膜垄播种植方式均有利于土壤过氧化氢酶、蔗糖酶和磷酸酶活性的提高,而全膜双垄沟播仅表现为磷酸酶活性的提高。连作2个生长季后,半干旱农作区隔沟覆膜垄播、全膜双垄沟播和秸秆覆盖种植方式下土壤过氧化氢酶和磷酸酶活性均表现为递增趋势,增幅分别为0.116、0.013和0.052 ml·g-1,0.158、0.115和0.212 mg·g-1,脲酶活性呈降低趋势,降幅依次为0.200、0.208和0.159 mg·g-1,隔沟覆膜垄播和秸秆覆盖种植方式可提高蔗糖酶活性0.254和3.537 mg·g-1,而全膜双垄沟播降低蔗糖酶活性1.753 mg·g-1;半湿润农作区隔沟覆膜垄播、全膜双垄沟播和秸秆覆盖种植方式下土壤蔗糖酶和磷酸酶活性均表现为递增趋势,增幅分别为0.591、0.676和1.927 mg·g-1,0.302、0.169和0.293 mg·g-1,脲酶活性呈降低趋势,降幅依次为0.211、0.284和0.235 mg·g-1,隔沟覆膜垄播和秸秆覆盖种植方式可提高过氧化氢酶活性0.099和0.139 ml·g-1,而全膜双垄沟播降低过氧化氢酶活性0.105 mg·g-1。5.垄沟覆盖对土壤中不同微生物的数量同样影响不同。隔沟覆膜垄播有利于土壤细菌和放线菌的繁殖,而全膜双垄沟播和秸秆覆盖仅表现为细菌数量的增多,且半湿润农作区土壤微生物数量增加幅度显着大于半干旱农作区。连作2个生长季后,半干旱农作区隔沟覆膜垄播、全膜双垄沟播和秸秆覆盖土壤细菌数量均表现为递增趋势,增幅分别为11.24、35.17、30.63 104·g-1。全膜双垄沟播和秸秆覆盖可提高真菌数量5.06和4.38 102·g-1,降低放线菌数量7.50和15.67104·g-1。隔沟覆膜垄播可提高放线菌数量12.83 104·g-1,降低真菌数量10.14102·g-1;半湿润农作区隔沟覆膜垄播、全膜双垄沟播和秸秆覆盖土壤细菌和放线菌数量均表现为递增趋势,细菌增幅分别为34.78、35.73、6.57 105·g-1,放线菌增幅分别为47.52、33.57、40.91 104·g-1。隔沟覆膜垄播可提高真菌数量12.87103·g-1,全膜双垄沟播和秸秆覆盖降低真菌数量0.62和8.42 103·g-1。6.垄沟覆膜耕作模式能明显缩短春玉米营养阶段长度,延长灌浆期,更有利于春玉米生物量的积累,相反,秸秆覆盖耕作模式下玉米营养生长阶段被显着延长,繁殖期缩短。与露地平种相比,半干旱农作区隔沟覆膜垄播和全膜双垄沟播显着提前了玉米出苗,并提高出苗率13.4%和19.1%,秸秆覆盖种植方式推迟了玉米出苗且仅提高出苗率0.34%。隔沟覆膜垄播和全膜双垄沟播分别缩短了播种到抽雄期的时间长度,分别为26.5和25 d,两者显着延长了繁殖持续分别达17、16 d。然而,秸秆覆盖延长了播种到抽雄期的时长17.5 d,缩短了繁殖持续时长11.5 d。半湿润农作区隔沟覆膜垄播和全膜双垄沟播同样显着提前了玉米出苗,并提高出苗率1.0%和2.4%,秸秆覆盖推迟了玉米出苗且降低出苗率4.4%。隔沟覆膜垄播和全膜双垄沟播分别缩短了播种到抽雄期的时间长度,分别为12和9.5 d,并未显着延长繁殖持续时长。然而,秸秆覆盖延长了播种到抽雄期的时长10 d,缩短了繁殖持续时长3.5 d。7.垄沟覆膜耕作模式促进幼苗建立并增加活力,增加了生物量积累,并优化了繁殖分配。与露地平种相比,隔沟覆膜垄播和全膜双垄沟播显着增加了玉米茎秆纵向和横向生长,提高了叶面积扩展能力,叶面积指数显着增加,且半干旱农作区增长效应显着大于半湿润农作区。半干旱农作区隔沟覆膜垄播和全膜双垄沟播地上、地下生物量较露地平种分别增加66.96%和62.79%、19.10%和45.28%,同时,隔沟覆膜垄播和全膜双垄沟播提高了果穗生物量在地上总生物量中的分配比重,高于露地平种13.26%和17.58%,而秸秆覆盖地上生物量较露地平种仅增加8.73%,地下生物量却较露地平种减少21.46%,果穗生物量在地上总生物量中的分配比重高于露地平种9.65%;半湿润农作区隔沟覆膜垄播和全膜双垄沟播地上、地下生物量较露地平种分别增加16.41%和12.66%、12.81%和27.47%,同时,隔沟覆膜垄播和全膜双垄沟播提高了果穗生物量在地上总生物量中的分配比重,高于露地平种1.05%和1.22%,而秸秆覆盖地上、地下生物量较露地平种减少4.58%和7.10%,果穗生物量在地上总生物量中的分配比重低于露地平种0.22%。8.垄沟地膜覆盖优化了穗部结构,增加了收获指数。半干旱农作区隔沟覆膜垄播和全膜双垄沟播显着改善了产量构成因子,穗长、穗粗、穗粒数、单株穗粒重、百粒重、生物产量、秸秆产量和单株生物量分别较露地平种提高30.54%和35.30%、18.88%和20.96%、59.28%和65.56%、155.06%和171.41%、59.93%和63.72%、66.96%和62.97%、37.82%和27.11%、66.96%和62.97%,而秸秆覆盖增加幅度显着低于隔沟覆膜垄播和全膜双垄沟播,依次为5.96%、4.34%、10.12%、16.88%、5.88%、8.73%、6.04%、8.73%。最终,隔沟覆膜垄播和全膜双垄沟播的收获指数较露地平种显着高出0.131和0.165,秸秆覆盖仅高出0.018;半湿润农作区隔沟覆膜垄播和全膜双垄沟播上述产量构成因子分别较露地平种提高4.04%和2.32%、2.03%和0.25%、3.61%和-2.14%、32.96%和17.12%、15.51%和11.44%、16.41%和12.66%、7.35%和10.21%、16.41%和12.66%,而秸秆覆盖表现出不增反降趋势,较露地平种依次降低2.27%、0.82%、3.91%、11.83%、8.83%、4.58%、0.60%、4.58%。最终,隔沟覆膜垄播和全膜双垄沟播的收获指数较露地平种显着高出0.051和0.014,而秸秆覆盖显着降低0.027。9.垄沟地膜覆盖维持了包括水、肥、气、热在内的资源利用效率的高位运行,显着提升了籽粒产量和水分利用效率。半干旱农作区隔沟覆膜垄播和全膜双垄沟播籽粒产量和水分利用效率较露地平种分别增加155.05%和171.40%、125.44%和142.80%,而秸秆覆盖较露地平种仅增加16.88%和18.69%;半湿润农作区隔沟覆膜垄播和全膜双垄沟播籽粒产量和水分利用效率较露地平种分别增加32.96%和17.12%、33.53%和18.67%,而秸秆覆盖表现出降低趋势,较露地平种降低11.84%和9.90%。总体来看,垄沟地膜覆盖耕作改善了土壤水热环境,尤其是休耕期的土壤水分贮存和生育前期的土壤温度,同时提高了整个生育期内土壤质量,明显增大了叶片叶片扩展速率,延长植株后期营养生长与生殖生长时期,为玉米最终籽粒的产出创造了良好的条件。尽管秸秆覆盖能够显着贮存土壤水分,并且能够改善土壤质量,但由于覆盖导致低温效应延缓了玉米的生长周期,不利于果穗籽粒干物质的积累。在半干旱农作区全膜双垄沟播表现出高产量和高水分利用效率,而在半湿润农作区隔沟覆膜垄播效果更佳。因此,全膜双垄沟播是一种较为适宜黄土高原半干旱区的玉米种植技术,而隔沟覆膜垄播在半湿润农作区更能表现出其耕作优势。
陈玉章[10](2019)在《覆盖模式对旱地马铃薯田水热环境及产量形成的影响》文中进行了进一步梳理马铃薯是我国西北雨养寒旱区的主要作物,地膜覆盖是该区广泛使用的抗旱保墒栽培技术,但地膜覆盖存在土壤累积性污染和增加成本问题,急需研发地膜替代或减量使用技术。秸秆覆盖是一种生态环保、种养结合、可实现秸秆资源化循环利用的可持续绿色生产技术。西北寒旱区玉米秸秆资源丰富,若采取传统全地面秸秆碎段覆盖方式,存在粉碎玉米秸秆耗能费力、机收玉米残膜难以清除、影响马铃薯机播机收等诸多问题。为此,本研究在西北雨养寒旱条件下,于2016(干旱年)和2017(平水年)在甘肃省定西市通渭县旱作马铃薯主产区,以传统裸地平作种植(CK)为主对照、生产上主推的黑色地膜全地面覆盖(简称全膜覆盖:FM)为副对照,设置了4种玉米整秆带状覆盖模式,分别为:沟覆垄播双行(RT)、沟覆垄播单行(RS)、平覆双行(PT)和平覆单行(PS)。研究了不同覆盖模式对马铃薯的生长发育状况、土壤水分、土壤温度、植株水分及叶片光合生理、块茎产量及水分利用效率的影响,以期为秸秆整秆覆盖马铃薯高产高效绿色栽培提供理论依据和技术支撑。主要结果如下:1.覆盖较裸地种植(CK)能显着提高旱地马铃薯产量和水分利用效率,以全膜覆盖(FM)和沟覆垄播双行(RT)增产最显着,FM和RT两年分别平均较CK增产(干薯)53.8%、52.0%,但两年度RT和FM间产量均无显着差异(P<0.05),表明适宜的秸秆覆盖模式可达到全膜覆盖的产量水平。不同秸秆带状覆盖模式间产量比较,总体来讲,覆秆双行>覆秆单行、秸秆沟覆>秸秆平覆。分析覆盖增产机制原因,无论干旱年还是平水年,在密度相同情况下,从产量结构因素角度主要是显着提高了单薯重(r=0.883**0.980**),覆盖两年平均较CK单薯重提高42%,以RT和FM提高幅度最大(56%62%),而单株结薯数覆盖反而较CK略有降低,后期形成的单薯重对前期结薯数不足有较强的补偿效应(r=-0.618**-0.725**);从营养生长和生殖生长角度分析,覆盖增产原因主要是显着促进了营养生长,覆盖处理的单株生长量较CK两年平均提高38%,仍以RT和FM提高幅度最大(58%59%),产量与单株生长量高度正相关(r=0.946**0.989**),而收获指数处理间相对较稳定;同时覆盖也显着提高了大薯率和商品薯率,其中RT大薯率和商品薯率均最高,RT大薯率分别高出CK和FM 15.7和7.4个百分点,商品薯率分别高出CK和FM 21.2和5.8个百分点。2.覆盖显着影响马铃薯田土壤温度。与CK相比,覆膜具有普遍的增温效应,而秸秆覆盖具有普遍的降温效应。比较全生育期525 cm平均温度,FM高出CK 1.03(干旱年)和1.51℃(平水年),而4个秸秆覆盖处理平均较CK降温1.68℃(干旱年)和1.46℃(平水年),秸秆覆盖模式间土壤温度差异不大。进一步分析发现,随着生育时期和土层的不同,秸秆覆盖和覆膜均不同程度的较CK出现增温和降温的“双重效应”,但覆膜增温效应大于降温效应,秸秆覆盖则相反,在干旱年和平水年,覆膜增温点(次)比例分别为82.9%、85.7%,而4种秸秆覆盖模式的降温点(次)比例为95.0%、90.0%。覆膜的降温效应主要在块茎形成期,而秸秆覆盖的增温效应主要在出苗期。地膜覆盖也明显增加了生育期土壤积温,在干旱年和平水年,覆膜较CK分别增加全生育期有效积温122.0、179.9℃,致使生育期缩短约6 d,而秸秆覆盖较CK分别降低积温208.9℃和156.1℃,生育期延长712 d。相关分析表明,降低土壤温度可显着改善植株水分状况,块茎形成期土壤温度对结薯数影响不大,但块茎膨大期土壤温度显着影响单薯重,降温效应是秸秆覆盖大薯率和单薯重提高的主要原因。3.覆盖能显着提高土壤供水能力,以秸秆沟覆垄播双行(RT)的02 m土壤水分状况最好。比较覆盖较CK在全生育期2 m土体的增墒效果,总体来讲,秸秆覆盖>全膜覆盖,平水年>干旱年,秸秆带状覆盖双行与单行相近,秸秆沟覆与平覆在年际间差异不尽一致。秸秆局部带状覆盖较全膜覆盖显着提高了降水入渗率,秸秆覆盖的降水入渗率平均高出覆膜43.3个百分点,秸秆无论沟覆还是平覆,其降水入渗率与CK无显着差异,均高达90.0%以上。秸秆带状覆盖属于局部覆盖,保墒效果肯定不如覆膜,但由于秸秆覆盖具有提高降水入渗率和降温抑蒸的明显优势,这是其土壤水分状况好于地膜覆盖的主要原因。但同时也发现,随着生育时期和土层不同,秸秆覆盖和地膜覆盖也都程度不等的出现较CK增墒和降墒的双重效应。改善土壤水分状况是覆盖增产的主要原因。土壤水分与植株及各器官水分状况、植株营养生长量、单薯重一般呈明显正相关,土壤水分以块茎形成膨大期对单薯重和产量影响最显着。同时发现深层供水在旱地马铃薯生产中具有重要作用,马铃薯生长和产量形成对40 cm以下深层供水的依赖度显着大于40 cm以上土层。覆盖也明显改变了耗水结构。与CK相比,覆盖显着降低前期(出苗块茎形成)耗水比例,增加中后期(块茎形成成熟)耗水比例,这是覆盖显着提高单薯重、进而提高产量的主要原因;土壤贮水消耗主要集中在01.2 m范围,但覆盖和降水会明显降低1.2m以下土壤耗水。4.土壤水温存在明显互作调控效应。025 cm耕层温度与040、40120、120200、0200 cm土层含水量呈负相关,但负相关程度随土层深度增加逐渐加强,这一方面表明,耕层温度会明显影响深层水分的迁移和调用,另一方面与上层土壤受降水、气温影响较大有关。5.覆盖可显着提高马铃薯叶片净光合速率(Pn)。在块茎形成期,覆盖处理的叶片净光合速率(Pn)、叶片瞬时水分利用效率(WUEL)、实际光化学效率(ΦPSⅡ)、表观电子传递效率(ETR)和光化学猝灭系数(qP)显着高于CK,而秸秆覆盖和地膜覆盖差异不明显;但进入块茎膨大期,秸秆覆盖的Pn、WUEL、ΦPSⅡ、ETR和qP显着高于地膜覆盖和CK。叶片SPAD值、叶片N含量(LN)、胞间CO2浓度(Ci)和蒸腾速率(Tr)随生育时期不同差异不尽一致。在块茎膨大与增重的产量形成关键阶段,维持较高的ΦPSⅡ、ETR、qP、SPAD、Ci、LN、WUEL、Tr和气孔导度(Gs)、尤其是提高叶绿素荧光反应参数值(ΦPSⅡ、ETR、qP),是叶片保持较高光合速率(Pn)的直接生理原因,而秸秆覆盖降温引起的叶片延迟衰老,是薯重形成期秸秆覆盖保持较高Pn的间接外因。
二、有限灌溉对半干旱区春小麦根系发育的影响(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、有限灌溉对半干旱区春小麦根系发育的影响(论文提纲范文)
(1)施肥量对半干旱区麦田土壤呼吸及冬小麦生长发育的影响(论文提纲范文)
摘要 |
Abstract |
第一章 文献综述 |
1.1 研究背景与意义 |
1.2 国内外研究进展 |
1.2.1 土壤呼吸的产生过程 |
1.2.2 影响农田土壤呼吸的因素 |
1.2.2.1 土壤温度 |
1.2.2.2 土壤水分 |
1.2.2.3 施肥 |
1.2.2.4 其他管理措施 |
1.2.3 施肥对土壤水分的影响 |
1.2.4 施肥对土壤温度的影响 |
1.2.5 施肥对作物生长发育和产量的影响 |
1.3 研究内容 |
1.3.1 施肥量对冬小麦田0-25cm土壤温度的影响 |
1.3.2 施肥量对冬小麦田0-100cm土壤水分的影响 |
1.3.3 施肥量对冬小麦田土壤呼吸的影响 |
1.3.4 施肥量对冬小麦生长发育和产量的影响 |
1.4 技术路线 |
第二章 试验材料与方法 |
2.1 试验区概况 |
2.2 试验区气象资料 |
2.3 试验设计 |
2.4 测定项目及方法 |
2.4.1 土壤基础地力 |
2.4.2 土壤水分的测定 |
2.4.3 土壤贮水量和作物水分利用效率 |
2.4.4 土壤温度 |
2.4.5 土壤呼吸 |
2.4.6 冬小麦植株性状 |
2.4.6.1 冬小麦株高 |
2.4.6.2 冬小麦叶面积 |
2.4.7 地上部干物质积累量 |
2.4.8 冬小麦产量及其构成因素 |
2.4.9 肥料利用效率 |
2.5 数据处理与统计分析 |
第三章 施肥量对土壤温度、水分、呼吸及生育期CO_2累计排放量的影响 |
3.1 施肥量对土壤温度的影响 |
3.2 施肥量对土壤水分的影响 |
3.3 施肥量对土壤呼吸速率季节变化规律的影响 |
3.4 施肥量对全生育期CO_2累计排放的影响 |
3.5 土壤温度和水分与土壤呼吸的关系 |
3.5.1 土壤呼吸与土壤温度和土壤水分的相关性分析 |
3.5.2 土壤呼吸与土壤温度的关系 |
3.5.3 土壤呼吸与土壤水分的关系 |
3.5.4 施肥对土壤呼吸影响因素的路径分析 |
3.6 小结 |
第四章 施肥对冬小麦生长发育的影响 |
4.1 施肥对冬小麦株高的影响 |
4.2 施肥对冬小麦有效叶面积的影响 |
4.3 施肥对冬小麦地上部生物量的影响 |
4.4 小结 |
第五章 施肥量对冬小麦产量、碳排放速率、水分和肥料利用效率的影响 |
5.1 产量及其构成因素 |
5.1.1 籽粒产量 |
5.1.2 穗数 |
5.1.3 穗粒数 |
5.1.4 千粒重 |
5.2 碳排放速率 |
5.3 水分利用效率和肥料利用效率 |
5.3.1 水分利用效率 |
5.3.2 肥料利用效率 |
5.4 小结 |
第六章 讨论与结论 |
6.1 施肥量对土壤温度和土壤水分的影响 |
6.2 土壤水分、温度对土壤呼吸的影响 |
6.3 施肥量对土壤呼吸的影响 |
6.4 施肥量对作物生长和产量的影响 |
6.5 主要结论 |
参考文献 |
致谢 |
个人简历 |
(2)冀西北寒旱区马铃薯田水分特征与节水生产效果研究(论文提纲范文)
摘要 |
Abstract |
1 引言 |
1.1 研究背景 |
1.1.1 区域背景 |
1.1.2 生态背景 |
1.1.3 生产背景 |
1.2 研究目的及意义 |
1.3 国内外研究进展 |
1.3.1 马铃薯生产的现状 |
1.3.2 马铃薯产业发展的趋势 |
1.3.3 覆膜对作物生产的影响 |
1.3.4 滴灌技术的发展 |
1.3.5 补水对作物生产的影响 |
1.3.6 补水效果评价 |
1.4 研究内容、需要突破的关键技术与技术路线 |
1.4.1 研究内容 |
1.4.2 需要突破的关键技术 |
1.4.3 技术路线 |
2 试验材料与方法 |
2.1 试验区概况 |
2.2 试验设计 |
2.2.1 试验处理 |
2.2.2 田间设计 |
2.3 测定内容与方法 |
2.3.1 生长指标的测定 |
2.3.2 土壤水分含量测定及相关参数计算公式 |
2.3.3 土壤温度的测定 |
2.3.4 产量的测定 |
2.3.5 大薯率及商品薯率的测定 |
2.4 数据处理 |
3 结果与分析 |
3.1 覆膜和补水对马铃薯生长的影响 |
3.1.1 覆膜对马铃薯出苗的影响 |
3.1.2 覆膜和补水对马铃薯株高的影响 |
3.1.3 覆膜和补水对马铃薯主茎粗的影响 |
3.1.4 覆膜和补水对马铃薯叶面积动态的影响 |
3.2 覆膜与补水的马铃薯田土壤水分时空变化特征 |
3.2.1 覆膜与补水的马铃薯田贮水量时序变化特征 |
3.2.2 覆膜与补水的马铃薯田土层含水量垂直变化特征 |
3.2.3 覆膜与补水的马铃薯田阶段耗水量动态变化 |
3.3 覆膜和补水对土壤温度的影响 |
3.3.1 覆膜和补水对土壤日均温的影响 |
3.3.2 覆膜和补水对马铃薯田各土层温度的影响 |
3.3.3 覆膜和补水对不同时刻土层温度的影响 |
3.4 覆膜和补水对马铃薯叶绿素相对含量的影响 |
3.5 覆膜与补水对马铃薯干物质积累的影响 |
3.5.1 覆膜和补水对叶干物质积累的影响 |
3.5.2 覆膜和补水对茎干物质积累的影响 |
3.5.3 覆膜和补水对块茎干物质积累的影响 |
3.5.4 覆膜和补水对全株干物质积累的影响 |
3.6 覆膜和补水对马铃薯商品率、单株薯重及产量的影响 |
3.7 覆膜和补水对马铃薯田水分利用效率的影响 |
4 讨论 |
4.1 马铃薯田主要供水层 |
4.2 马铃薯产量与耗水量关系 |
4.3 补水时期对作物生产的影响 |
4.4 马铃薯垄作覆膜与滴灌补水的效果与应用 |
5 结论 |
5.1 马铃薯田主要供水层为0~80cm,块茎形成至膨大期为补水关键期 |
5.2 覆膜提高薯田地温,露地补水明显降低地温 |
5.3 覆膜和补水对马铃薯生长有明显的促进作用 |
5.4 覆膜和补水可提高马铃薯产量及大薯率 |
5.5 覆膜和补水显着提高马铃薯水分利用效率 |
参考文献 |
在读期间发表的学术论文 |
作者简历 |
致谢 |
附件 |
(3)微灌方式和灌水量对河西春小麦生长和水氮利用的影响(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究进展 |
1.2.1 滴灌和微喷灌对作物的应用研究进展 |
1.2.2 灌水量对作物生长及产量的影响 |
1.2.3 灌水量对作物耗水规律的影响 |
1.2.4 灌水量对作物养分吸收利用的影响 |
1.2.5 灌水量对土壤氮素运移及累积的影响 |
1.2.6 西北春小麦灌溉制度研究 |
1.3 需进一步研究的问题 |
1.4 研究内容与技术路线 |
1.4.1 研究内容 |
1.4.2 技术路线 |
第二章 试验材料与方法 |
2.1 研究方法 |
2.1.1 试验区概况 |
2.1.2 试验设计 |
2.2 测定项目与方法 |
2.2.1 春小麦生长指标的测定 |
2.2.2 土壤相关指标的测定 |
2.2.3 作物耗水特性的计算 |
2.3 数据处理与分析 |
2.3.1 数据计算 |
2.3.2 数据分析 |
第三章 微灌方式和灌水量对春小麦生长和产量的影响 |
3.1 微灌方式和灌水量对春小麦株高的影响 |
3.2 微灌方式和灌水量对春小麦干物质积累量的影响 |
3.3 微灌方式和灌水量对春小麦产量及其构成要素的影响 |
3.4 不同微灌方式下春小麦产量与干物质量的关系 |
3.5 讨论与小结 |
3.5.1 讨论 |
3.5.2 小结 |
第四章 微灌方式和灌水量对春小麦耗水特性的影响 |
4.1 微灌方式和灌水量对土壤含水率的影响 |
4.2 微灌方式和灌水量对春小麦耗水量的影响 |
4.3 微灌方式和灌水量对春小麦日耗水强度和耗水模系数的影响 |
4.4 微灌方式和灌水量对春小麦水分利用效率的影响 |
4.5 微灌方式和灌水量对小麦耗水量与产量及水分利用效率的相关关系 |
4.6 讨论与小结 |
4.6.1 讨论 |
4.6.2 小结 |
第五章 微灌方式和灌水量对春小麦氮素吸收利用和土壤硝态氮分布的影响 |
5.1 微灌方式和灌水量对春小麦植株氮素吸收的影响 |
5.1.1 微灌方式和灌水量对春小麦地上部分氮素累积量的影响 |
5.1.2 微灌方式和灌水量对春小麦成熟期各器官氮素分配的影响 |
5.1.3 春小麦花后营养器官中氮素向籽粒的转移 |
5.2 微灌方式和灌水量对春小麦氮素利用的影响 |
5.3 微灌方式和灌水量对土壤硝态氮分布与累积的影响 |
5.3.1 微灌方式和灌水量对土壤硝态氮分布的影响 |
5.3.2 微灌方式和灌水量对土壤硝态氮累积量的影响 |
5.4 不同微灌方式下小麦产量与植株氮素吸收总量的关系 |
5.5 讨论与小结 |
5.5.1 讨论 |
5.5.2 小结 |
第六章 结论与展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
致谢 |
个人简介 |
(4)覆盖模式对不同旱作区农田土壤主要性状和玉米生长的影响(论文提纲范文)
摘要 |
ABSTRACT |
第一章 前言 |
1.1 研究背景 |
1.2 国内外研究进展 |
1.2.1 地表覆盖技术的应用与发展 |
1.2.2 地表覆盖对土壤水温的影响 |
1.2.3 地表覆盖对土壤碳氮养分的影响 |
1.2.4 地表覆盖对土壤微生物群落的影响 |
1.2.5 地表覆盖对作物生长发育和产量的影响 |
1.3 研究中需进一步解决的问题 |
1.4 研究的目的和意义 |
1.5 研究内容和技术路线 |
1.5.1 研究内容 |
1.5.2 技术路线 |
第二章 材料与方法 |
2.1 试验区概况 |
2.1.1 试验地自然概况 |
2.1.2 试验区2015-2017年的降水和气温分布 |
2.2 试验设计 |
2.2.1 半干旱区不同覆盖种植模式试验 |
2.2.2 半湿润区不同覆盖种植模式试验 |
2.3 测定项目及方法 |
2.3.1 土壤水分 |
2.3.2 休闲期降水储存率 |
2.3.3 土壤温度 |
2.3.4 土壤碳氮及其组分 |
2.3.5 土壤微生物多样性 |
2.3.6 玉米产量与生物量 |
2.3.7 水分利用效率 |
2.4 数据分析 |
2.4.1 土壤理化性质和玉米生长指标的数据分析 |
2.4.2 土壤微生物的数据分析 |
第三章 不同覆盖模式对农田土壤水温的影响 |
3.1 土壤温度 |
3.1.1 生育期0-25cm平均土壤温度的动态变化 |
3.1.2 生育前期0-25cm不同土层土壤温度的日变化 |
3.1.3 生育期0-25cm土壤积温 |
3.2 休闲期保墒效应 |
3.2.1 休闲期前后0-2m土壤含水量剖面图 |
3.2.2 休闲期0-2m土壤储水量和降水储存率 |
3.3 生育期土壤水分变化 |
3.3.1 生育期土壤含水量时空变化 |
3.3.2 生育期0-2m土壤储水量动态变化 |
3.3.3 生育期玉米农田总耗水量 |
3.4 讨论 |
3.4.1 土壤温度 |
3.4.2 土壤水分 |
3.5 小结 |
第四章 连续覆盖条件下的土壤碳氮变化 |
4.1 土壤有机碳、全氮和C/N的变化 |
4.1.1 土壤有机碳和全氮的动态变化 |
4.1.2 土壤有机碳和全氮的空间变化 |
4.1.3 土壤碳氮比的变化 |
4.2 土壤可溶性碳氮组分的变化 |
4.2.1 可溶性有机碳 |
4.2.2 可溶性有机氮 |
4.3 土壤硝态氮和铵态氮的变化 |
4.3.1 硝态氮 |
4.3.2 铵态氮 |
4.4 讨论 |
4.5 小结 |
第五章 连续覆盖对土壤微生物群落结构的影响 |
5.1 土壤微生物多样性 |
5.1.1 细菌多样性 |
5.1.2 真菌多样性 |
5.2 土壤微生物群落结构 |
5.2.1 细菌群落组成及结构 |
5.2.2 真菌群落组成及结构 |
5.3 土壤微生物群落变化与土壤理化性质的关系 |
5.3.1 细菌群落变化与土壤理化性质的关系 |
5.3.2 真菌群落变化与土壤理化性质的关系 |
5.4 讨论 |
5.4.1 农田覆盖对土壤微生物多样性有显着影响 |
5.4.2 农田覆盖改变了土壤微生物群落结构 |
5.5 小结 |
第六章 不同覆盖模式对玉米生长发育的影响 |
6.1 生育进程 |
6.2 株高与茎粗 |
6.3 叶面积指数 |
6.4 干物质积累 |
6.4.1 玉米各生育时期干物质积累的动态变化 |
6.4.2 农田覆盖对干物质转运与分配的影响 |
6.5 讨论 |
6.6 小结 |
第七章 不同覆盖模式对玉米产量和水分利用效率的影响 |
7.1 产量及相关性状 |
7.1.1 秃尖长、穗长和穗粗 |
7.1.2 百粒重、穗粒数和空秆率 |
7.1.3 籽粒产量和收获指数 |
7.2 水分利用效率 |
7.3 经济效益 |
7.4 产量、水分利用效率和经济效益与土壤特性的相关分析 |
7.4.1 产量等指标与土壤理化性质的相关性 |
7.4.2 产量等指标与土壤微生物性状的相关性 |
7.5 讨论 |
7.6 小结 |
第八章 结论与展望 |
8.1 主要结论 |
8.2 创新点 |
8.3 研究展望 |
参考文献 |
致谢 |
个人简历 |
(5)农艺措施对中国北方地区小麦和玉米产量及水分利用效率影响的meta分析(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 引言 |
1.2 国内外研究进展 |
1.2.1 施氮对作物产量和水分利用效率影响的研究进展 |
1.2.2 地表覆盖对作物产量和水分利用效率影响的研究进展 |
1.2.3 耕作措施对作物产量和水分利用效率影响的研究进展 |
1.2.4 灌溉对作物产量和水分利用效率影响的研究进展 |
1.2.5 整合分析研究进展 |
1.3 研究问题的提出 |
1.4 研究内容及目的 |
第二章 施氮对北方小麦和玉米产量及水分利用效率的影响 |
2.1 前言 |
2.2 材料方法 |
2.2.1 研究区域 |
2.2.2 数据来源 |
2.2.3 分析方法 |
2.3 结果与分析 |
2.3.1 施氮对不同作物产量和水分利用效率的影响 |
2.3.2 不同区域施氮对作物产量和水分利用效率的影响 |
2.3.3 不同年均降水量条件下施氮对作物产量和水分利用效率的影响 |
2.3.4 不同年均温条件下施氮对作物产量和水分利用效率的影响 |
2.3.5 施氮量对作物产量和水分利用效率的影响 |
2.4 讨论 |
2.5 本章小结 |
第三章 地表覆盖对北方小麦玉米产量及水分利用效率的影响 |
3.1 前言 |
3.2 材料方法 |
3.2.1 研究区域 |
3.2.2 数据来源 |
3.2.3 分析方法 |
3.3 结果与分析 |
3.3.1 覆盖对不同作物产量和水分利用效率的影响 |
3.3.2 覆盖对不同区域作物产量和水分利用效率的影响 |
3.3.3 覆盖对不同年均降水条件下作物产量和水分利用效率的影响 |
3.3.4 覆盖对不同年均温条件下作物产量和水分利用效率的影响 |
3.4 讨论 |
3.5 本章小结 |
第四章 耕作措施对北方小麦玉米产量和水分利用效率的影响 |
4.1 前言 |
4.2 材料方法 |
4.2.1 研究区域 |
4.2.2 数据来源 |
4.2.3 分析方法 |
4.3 结果与分析 |
4.3.1 耕作措施对不同作物产量和水分利用效率的影响 |
4.3.2 耕作措施对不同区域作物产量和水分利用效率的影响 |
4.3.3 耕作措施对不同年均降水条件下作物产量和水分利用效率的影响 |
4.3.4 耕作措施对不同年均温条件下作物产量和水分利用效率的影响 |
4.4 讨论 |
4.5 本章小结 |
第五章 灌溉对北方小麦玉米产量及水分利用效率的影响 |
5.1 前言 |
5.2 材料方法 |
5.2.1 研究区域 |
5.2.2 数据来源 |
5.2.3 分析方法 |
5.3 结果与分析 |
5.3.1 灌溉对不同作物产量和水分利用效率的影响 |
5.3.2 不同年均降水条件下灌溉对作物产量和水分利用效率的影响 |
5.3.3 不同年均温条件下灌溉对作物产量和水分利用效率的影响 |
5.3.4 灌溉条件下不同区域作物产量和水分利用效率比较 |
5.3.5 灌溉额度对作物产量和水分利用效率的影响 |
5.4 讨论 |
5.5 本章小结 |
第六章 主要结论与展望 |
6.1 主要研究结论 |
6.2 主要创新点 |
6.3 不足与展望 |
参考文献 |
致谢 |
作者简介及攻读硕士期间发表的学术论文与研究成果 |
(6)沟垄集雨种植模式下施肥与补灌对冬小麦生长及水肥利用效率的影响(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究目的与意义 |
1.2 国内外研究进展 |
1.2.1 降雨对作物生长的影响 |
1.2.2 沟垄集雨种植模式的研究与应用 |
1.2.3 施肥对作物生长、耗水和养分利用的影响 |
1.2.4 补灌对作物生长、耗水和养分利用的影响 |
1.3 研究内容与技术路线 |
1.3.1 研究内容 |
1.3.2 技术路线 |
第二章 研究材料与方法 |
2.1 试验地概况 |
2.2 试验设计与田间管理 |
2.2.1 沟垄集雨种植下施肥试验 |
2.2.2 沟垄集雨种植下补灌试验 |
2.2.3 田间管理 |
2.3 测定项目与方法 |
2.3.1 土壤水分 |
2.3.2 干物质积累 |
2.3.3 光合参数测定 |
2.3.4 产量及构成 |
2.3.5 农田水分蒸散量(ET) |
2.3.6 水分利用效率 |
2.3.7 氮(磷)吸收、转运及肥料利用效率 |
2.4 底墒和生育期降雨 |
2.4.1 底墒 |
2.4.2 生育期降雨 |
2.5 数据处理与分析 |
第三章 施肥和补灌对农田土壤水分时空利用的影响 |
3.1 施肥对冬小麦关键生育期土壤水分的影响 |
3.1.1 返青期 |
3.1.2 拔节期 |
3.1.3 抽穗期 |
3.1.4 成熟期 |
3.2 施肥对冬小麦农田贮水量动态的影响 |
3.3 施肥对冬小麦各生育时期耗水的影响 |
3.4 补灌对冬小麦关键生育期土壤水分的影响 |
3.4.1 拔节期 |
3.4.2 抽穗期 |
3.4.3 灌浆期 |
3.4.4 成熟期 |
3.5 补灌对冬小麦生育时期贮水量动态的影响 |
3.6 补灌对冬小麦各生育时期耗水的影响 |
3.7 讨论 |
3.7.1 种植模式对水分时空利用的影响 |
3.7.2 施肥对土壤水分时空利用的影响 |
3.7.3 补灌对土壤水分时空利用的影响 |
3.8 小结 |
第四章 施肥和补灌对冬小麦光合特性的影响 |
4.1 施肥对冬小麦主要生育阶段光合特性的影响 |
4.1.1 净光合速率 |
4.1.2 气孔导度 |
4.1.3 蒸腾速率 |
4.2 补灌对冬小麦主要生育阶段光合特性的影响 |
4.2.1 净光合速率 |
4.2.2 气孔导度 |
4.2.3 蒸腾速率 |
4.3 讨论 |
4.3.1 种植方式对冬小麦光合特性的影响 |
4.3.2 施肥对冬小麦光合特性的影响 |
4.3.3 补灌对冬小麦光合特性的影响 |
4.4 小结 |
第五章 施肥和补灌对冬小麦干物质积累、产量和水分利用效率的影响 |
5.1 施肥对冬小麦干物质的影响 |
5.2 施肥对冬小麦产量的影响 |
5.2.1 籽粒产量 |
5.2.2 产量构成因素 |
5.2.3 冬小麦产量及构成要素的通径分析 |
5.3 施肥对水分利用效率的影响 |
5.4 补灌对冬小麦干物质的影响 |
5.5 补灌对冬小麦产量的影响 |
5.5.1 籽粒产量 |
5.5.2 产量构成因素 |
5.5.3 冬小麦产量及构成要素的通径分析 |
5.6 补灌对冬小麦水分利用效率的影响 |
5.6.1 灌溉水利用效率 |
5.6.2 降雨利用效率 |
5.6.3 水分利用效率 |
5.7 讨论 |
5.7.1 种植模式和施肥对干物质积累影响 |
5.7.2 种植模式和施肥对产量及水分利用效率的影响 |
5.7.3 补灌对干物质积累的影响 |
5.7.4 补灌对产量及水分利用效率的影响 |
5.8 小结 |
第六章 施肥和补灌对小麦养分吸收、转运和利用效率的影响 |
6.1 施肥对冬小麦养分吸收和转运的影响 |
6.1.1 氮、磷养分吸收量 |
6.1.2 花前氮、磷素转运特征 |
6.1.3 氮磷养分利用效率 |
6.2 补灌对冬小麦养分吸收和转运的影响 |
6.2.1 氮、磷养分吸收量 |
6.2.2 花前氮、磷转运量 |
6.2.3 氮磷养分利用效率 |
6.3 讨论 |
6.3.1 种植模式对养分吸收利用的影响 |
6.3.2 施肥对养分吸收利用的影响 |
6.3.3 补灌对养分吸收利用的影响 |
6.4 小结 |
第七章 结论与展望 |
7.1 主要结论 |
7.1.1 施肥对冬小麦产量和水肥利用效率的影响 |
7.1.2 补灌对冬小麦产量和水肥利用效率的影响 |
7.2 创新点 |
7.3 展望 |
参考文献 |
致谢 |
个人简历 |
(7)水氮及群体调控对秸秆覆盖冬小麦产量及水分利用效率的影响与机制(论文提纲范文)
摘要 |
ABSTRACT |
第一章 文献综述 |
1.1 研究背景和选题依据 |
1.1.1 选题目的和意义 |
1.1.2 选题依据 |
1.2 国内外研究概况 |
1.2.1 秸秆覆盖小麦产量效应 |
1.2.2 秸秆覆盖土壤水分效应 |
1.2.3 秸秆覆盖土壤温度效应 |
1.2.4 群体调控小麦产量效应 |
1.2.5 氮素调控对小麦生长发育的影响 |
1.2.6 底墒水对小麦的影响 |
1.2.7 水氮及冠层调控交互效应对小麦生长的影响 |
1.3 本研究的切入点 |
1.4 研究内容、研究目标及技术路线 |
1.4.1 研究内容 |
1.4.2 研究目标 |
1.4.3 技术路线 |
第二章 材料与方法 |
2.1 试验地概况 |
2.2 试验期间气候条件 |
2.3 试验设计 |
2.3.1 试验1(氮素调控田间原位试验) |
2.3.2 试验2(群体调控田间原位试验) |
2.3.3 试验3(底墒、氮素运筹和群体调控耦合试验) |
2.4 测定项目和方法 |
2.5 数据计算与分析 |
第三章 氮肥调控对旱地秸秆覆盖冬小麦籽粒形成、旗叶生理特性及产量的影响 |
3.1 结果 |
3.1.1 秸秆覆盖下氮肥分次施用冬小麦的群体动态 |
3.1.2 秸秆覆盖下氮肥分次施用冬小麦花后旗叶衰老特性 |
3.1.3 秸秆覆盖下氮肥分次施用冬小麦花后粒重动态 |
3.1.4 秸秆覆盖下氮肥分次施用冬小麦产量及水分利用效率 |
3.2 讨论与小结 |
3.2.1 施氮量对旱地秸秆覆盖冬小麦旗叶衰老特性及产量的影响 |
3.2.2 施氮次数对旱地秸秆覆盖冬小麦旗叶衰老特性及产量的影响 |
第四章 秸秆覆盖和播种密度对冬小麦收获指数、产量及水分利用效率的影响 |
4.1 结果 |
4.1.1 土壤水热特征 |
4.1.2 冬小麦生育期群体动态变化 |
4.1.3 冬小麦产量及产量构成因素 |
4.1.4 水分利用及水分利用效率 |
4.2 讨论与小结 |
第五章 根修剪可提高旱地秸秆覆盖冬小麦籽粒产量、收获指数和水分利用效率 |
5.1 结果 |
5.1.1 冬小麦产量、产量构成因素及收获指数 |
5.1.2 冬小麦生育期土壤储水量变化 |
5.1.3 冬小麦生育期耗水量及水分利用效率 |
5.1.4 根修剪对冬小麦茎秆可溶性糖累积及转运的影响 |
5.2 讨论与小结 |
5.2.1 根修剪及其与播种密度、施氮量的交互作用对旱地秸秆覆盖下冬小麦籽粒产量、收获指数及水分利用效率的影响 |
5.2.2 根修剪对冬小麦籽粒产量及花前茎秆可溶性糖转运及其对产量贡献的影响 |
第六章 冠割与密度、底墒及氮素交互影响秸秆覆盖冬小麦产量及水分利用 |
6.1 结果 |
6.1.1 冬小麦产量、产量构成因素及收获指数 |
6.1.2 冬小麦生育期耗水量及水分利用效率 |
6.1.3 冬小麦茎秆可溶性糖含量及其表观转运 |
6.1.4 经济效益 |
6.2 讨论与小结 |
6.2.1 冠割处理对秸秆覆盖冬小麦籽粒产量及收获指数的影响 |
6.2.2 冠割与播种密度、施氮量、播前底墒及气候年型的交互作用 |
6.2.3 冠割处理对冬小麦生育期耗水量及水分利用效率的影响 |
第七章 结论与展望 |
7.1 研究的主要结论 |
7.2 研究的创新点 |
7.3 研究的不足之处 |
7.4 今后的研究设想 |
附录 |
参考文献 |
致谢 |
个人简历 |
(8)覆膜种植和施肥对半干旱地区资源高效利用及玉米生产持续性的影响机制(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 研究目的及意义 |
1.3 国内外研究概况 |
1.3.1 水分、土壤温度(及积温)和养分对作物生长的影响 |
1.3.2 沟垄覆膜种植对土壤环境和作物生长的影响 |
1.3.3 旱地水肥耦合对土壤特性和作物生产的影响 |
1.3.4 沟垄覆膜种植与施肥互作下水分利用和作物产量 |
1.4 研究内容与技术路线 |
1.4.1 研究内容 |
1.4.2 技术路线 |
第二章 研究材料与方法 |
2.1 试验地区自然概况 |
2.2 试验设计和田间管理 |
2.2.1 不同覆膜种植方式试验(单因素) |
2.2.2 种植方式与不同施肥量交互试验(二因素) |
2.2.3 田间管理 |
2.3 测定项目与方法 |
2.3.1 土壤温度测定 |
2.3.2 土壤水分测定 |
2.3.3 玉米生长发育进程 |
2.3.4 玉米个体(地上与地下)形态指标测定 |
2.3.5 玉米叶片光合速率和叶绿素含量测定 |
2.3.6 玉米产量及其构成因素测定 |
2.3.7 光合有效辐射(IPAR)截获、分配和利用效率计算 |
2.3.8 土壤有效积温(TTsoil)、分配和利用效率计算 |
2.3.9 农田水分蒸散量(ET)、分配和利用效率计算 |
2.3.10 植物养分含量测定和吸收量、利用效率(利用率)计算 |
2.3.11 生产经济效益计算 |
2.4 数据处理与分析 |
第三章 覆膜种植下土壤温度变化影响的玉米生长发育 |
3.1 不同覆膜种植方式对土壤温度的影响 |
3.1.1 土壤日(00:00-23:00)逐时温度 |
3.1.2 土壤逐日昼夜温度和昼夜温差 |
3.1.3 土壤温度对气温的响应特征 |
3.2 不同覆膜种植方式对玉米物候的影响 |
3.3 不同覆膜种植方式对玉米株高的影响 |
3.4 不同覆膜种植方式对玉米叶片生长的影响 |
3.5 不同覆膜种植方式对玉米干物质累积的影响 |
3.6 不同覆膜种植方式对玉米收获期0-60 cm土层根重密度的影响 |
3.7 讨论 |
3.7.1 覆膜种植与土壤温度 |
3.7.2 覆膜种植与作物生长发育 |
3.8 小结 |
第四章 覆膜种植下土壤水分变化影响的玉米光合特性 |
4.1 不同覆膜种植方式对土壤水分的影响 |
4.1.1 0-200 cm土壤水分含量(SWC) |
4.1.2 覆膜驱动的土壤时空“湿干交替” |
4.1.3 土壤水分平衡 |
4.2 不同覆膜种植方式对玉米叶片叶绿素相对含量(SPAD)的影响 |
4.3 不同覆膜种植方式对玉米叶片光合特性的影响 |
4.4 讨论 |
4.4.1 覆膜种植与土壤水分 |
4.4.2 覆膜种植与作物光合特性 |
4.5 小结 |
第五章 覆膜种植水、热、光、养资源协同利用机制及其玉米生产力特征 |
5.1 不同覆膜种植方式对生产资源(水、热、光、养)的“再分配” |
5.1.1 辐射截获及其分配 |
5.1.2 热量捕获及其分配 |
5.1.3 土壤水分消耗和分配 |
5.1.4 植株养分吸收和分配 |
5.2 不同覆膜种植方式对玉米产量及其构成因素的影响 |
5.2.1 籽粒产量、生物产量和收获指数的影响 |
5.2.2 穗粒数和百粒重 |
5.3 不同覆膜种植方式对玉米生产资源利用效率的影响 |
5.4 不同覆膜种植方式对玉米生产经济效益的影响 |
5.5 讨论 |
5.5.1 覆膜种植的资源捕获与分配 |
5.5.2 覆膜种植的籽粒产量和资源利用效率 |
5.6 小结 |
第六章 沟垄覆膜种植下施肥量对玉米生长发育和光合特性的影响 |
6.1 沟垄覆膜种植下施肥量对玉米生育进程的影响 |
6.2 沟垄覆膜种植下施肥量对玉米形态生长的影响 |
6.2.1 株高 |
6.2.2 叶面积 |
6.2.3 干物质累积 |
6.3 沟垄覆膜种植下施肥量对玉米叶绿素和光合特性的影响 |
6.3.1 叶绿素相对含量(SPAD) |
6.3.2 玉米光合特性 |
6.4 沟垄覆膜种植下施肥量影响的光合特征参数相互关系 |
6.5 讨论 |
6.5.1 覆膜种植施肥影响的玉米生长发育 |
6.5.2 覆膜种植施肥影响的玉米光合特性 |
6.6 小结 |
第七章 沟垄覆膜种植下施肥量对土壤水分和玉米养分吸收的影响 |
7.1 沟垄覆膜种植下施肥量对土壤 0-200 cm 土壤含水量的影响 |
7.1.1 苗期0-200 cm土壤水分 |
7.1.2 拔节期0-200 cm土壤水分 |
7.1.3 抽雄吐丝期0-200 cm土壤水分 |
7.1.4 灌浆期0-200 cm土壤水分 |
7.1.5 成熟期0-200 cm土壤水分 |
7.2 沟垄覆膜种植下施肥量对土壤水分平衡的影响 |
7.2.1 玉米生育期土壤水分平衡 |
7.2.2 休闲期土壤水分平衡 |
7.2.3 土壤水分收支平衡(年水分平衡) |
7.3 沟垄覆膜种植下施肥量对玉米植株养分含量的影响 |
7.3.1 全氮含量 |
7.3.2 全磷含量 |
7.4 沟垄覆膜种植下施肥量对玉米养分吸收与分配的影响 |
7.4.1 全氮吸收与分配 |
7.4.2 全磷吸收与分配 |
7.5 讨论 |
7.5.1 覆膜种植下施肥量影响的土壤水分 |
7.5.2 覆膜种植下施肥量影响的作物养分 |
7.6 小结 |
第八章 沟垄覆膜种植下施肥量对玉米水肥利用效率和生产可持续的影响 |
8.1 沟垄覆膜种植下施肥量对玉米产量及其构成因素的影响 |
8.1.1 籽粒产量、生物产量和收获指数 |
8.1.2 穗粒数和百粒重 |
8.2 沟垄覆膜种植下施肥量对玉米水分利用效率的影响 |
8.3 沟垄覆膜种植下施肥量对玉米养分利用的影响 |
8.3.1 养分利用效率 |
8.3.2 肥料利用率 |
8.3.3 肥料产量贡献率 |
8.4 沟垄覆膜种植下施肥与区域降水匹配 |
8.4.1 沟垄覆膜种植下不同施肥处理土壤水分动态 |
8.4.2 籽粒产量、WUE、ET、SWSS、生育期降水量、施肥量相关性 |
8.4.3 沟垄覆膜种植下施肥量与区域降水匹配 |
8.5 沟垄覆膜种植下玉米生产的水分亏缺预警 |
8.6 沟垄覆膜种植下施肥量对玉米生产经济效益的影响 |
8.6.1 生产投入 |
8.6.2 生产产出和净收入 |
8.7 讨论 |
8.7.1 覆膜种植下施肥量影响的玉米产量 |
8.7.2 覆膜种植下施肥量影响的玉米水分利用效率 |
8.7.3 覆膜种植下施肥量影响的玉米养分利用 |
8.7.4 覆膜种植施肥量与区域降水匹配 |
8.7.5 覆膜种植的水分亏缺预警 |
8.7.6 经济效益 |
8.8 小结 |
第九章 结论与展望 |
9.1 主要结论 |
9.2 创新点 |
9.3 展望 |
参考文献 |
致谢 |
个人简历 |
(9)黄土高原不同生态区垄沟覆盖对春玉米生产力和土壤质量的影响及其机理(论文提纲范文)
缩略词表 |
摘要 |
Summary |
第一章 文献综述 |
1.1 研究背景 |
1.2 垄沟覆盖系统研究进展 |
1.2.1 垄沟比例设计 |
1.2.2 垄沟覆盖材料类型 |
1.2.3 垄沟覆盖系统的水分效应 |
1.2.4 土壤效应 |
1.2.5 作物生理生态效应 |
1.2.6 增产效应 |
1.2.7 垄沟覆盖集雨系统的负面效应 |
1.3 研究目的及意义 |
1.4 研究内容 |
1.5 技术路线 |
第二章 试验材料与方法 |
2.1 试验地概况 |
2.2 试验设计 |
2.3 观测项目和方法 |
2.3.1 气象资料 |
2.3.2 生育期资料 |
2.4 测定项目和方法 |
2.4.1 土壤水分及耗水测定 |
2.4.2 土壤温度测定 |
2.4.3 土壤养分测定 |
2.4.4 土壤酶活性测定 |
2.4.5 土壤微生物数量测定 |
2.4.6 生理指标测定 |
2.5 数据统计分析 |
第三章 土壤水分对垄沟覆盖方式的响应 |
3.1 土壤水分状况 |
3.2 土壤水分时空动态差异 |
3.3 生育时期和土层间土壤水分稳定性比较 |
3.4 垄沟覆盖增墒与降墒的双重效应 |
3.5 作物阶段耗水特征 |
3.5.1 耗水来源和比例 |
3.5.2 不同土层贮水量消耗差异 |
3.6 结论与讨论 |
第四章 土壤温度对垄沟覆盖方式的响应 |
4.1 土壤温度状况 |
4.2 土壤温度时空动态差异 |
4.3 生育时期和土层间土壤温度稳定性比较 |
4.4 垄沟覆盖增温与降温的双重效应 |
4.5 小结与讨论 |
第五章 土壤质量对垄沟覆盖方式的响应 |
5.1 土壤养分 |
5.1.1 土壤养分分布状况 |
5.1.2 土壤养分间的关系 |
5.1.3 土壤养分与水热间的关系 |
5.2 土壤酶活性 |
5.2.1 土壤酶活性分布状况 |
5.2.2 生育时期和土层间土壤酶活性稳定性差异分析 |
5.2.3 生育时期和土层间土壤酶活性稳定性比较 |
5.2.4 土壤酶活性之间的关系 |
5.2.5 土壤酶活性与土壤水热及养分之间的关系 |
5.3 土壤微生物 |
5.3.1 土壤微生物分布状况 |
5.3.2 生育时期和土层间土壤微生物数量稳定性比较 |
5.3.3 生育时期和土层间土壤微生物数量稳定性比较 |
5.3.4 土壤微生物之间的关系 |
5.3.5 土壤微生物数量与土壤水热、养分及酶活性间的关系 |
5.4 小结与讨论 |
第六章 作物生长指标对垄沟覆盖方式的响应 |
6.1 覆盖与耕作对春玉米生长指标的影响 |
6.1.1 出苗率 |
6.1.2 物候格局 |
6.1.3 茎秆纵向生长动态变化 |
6.1.4 茎秆横向生长动态变化 |
6.1.5 茎秆生物量 |
6.1.6 叶片扩展速率 |
6.1.7 光合有效叶面积及叶面积指数 |
6.1.8 叶片生物量差异 |
6.1.9 地上生物量动态变化 |
6.1.10 地下生物量差异 |
6.1.11 地上生物量分配 |
6.1.12 根冠比 |
6.2 小结与讨论 |
第七章 垄沟覆盖春玉米产量形成及其机制 |
7.1 覆盖与耕作对春玉米产量和水分利用效率的影响 |
7.1.1 农艺指标 |
7.1.2 产量和水分利用效率 |
7.1.3 农艺性状间的相关性 |
7.2 春玉米产量形成因子与土壤环境的关系 |
7.2.1 土壤水分与产量形成的关系 |
7.2.2 土壤温度与产量形成的关系 |
7.2.3 土壤酶活性与产量形成的关系 |
7.2.4 土壤微生物数量与产量形成因子的关系 |
7.2.5 土壤养分与产量形成因子的关系 |
7.3 小结与讨论 |
第八章 结论与展望 |
8.1 主要结论 |
8.2 展望 |
参考文献 |
致谢 |
个人简介 |
导师简介 |
(10)覆盖模式对旱地马铃薯田水热环境及产量形成的影响(论文提纲范文)
中文摘要 |
Summary |
第一章 绪论 |
1.1 研究背景和意义 |
1.2 国内外研究进展 |
1.3 问题的提出 |
1.4 研究内容 |
1.5 技术路线 |
第二章 试验设计与方法 |
2.1 试验区概况 |
2.2 试验设计 |
2.3 测定指标与方法 |
2.4 数据处理 |
第三章 覆盖模式对马铃薯产量及产量形成的影响 |
3.1 覆盖对马铃薯产量的影响 |
3.2 覆盖对马铃薯主要农艺指标的影响 |
3.3 覆盖增产机制分析 |
3.4 小结 |
第四章 覆盖对土壤温度的影响 |
4.1 覆盖对土壤温度时空动态的影响 |
4.2 覆盖对土壤温度稳定性的影响 |
4.3 覆盖对土壤热量传导的影响 |
4.4 覆盖对马铃薯生育期有效积温的影响 |
4.5 覆盖条件下土壤温度与产量形成的关系 |
4.6 小结 |
第五章 覆盖对土壤水分的影响 |
5.1 覆盖对土壤水分时空动态的影响 |
5.2 覆盖对农田耗水量和水分利用效率的影响 |
5.3 土壤水分与土壤温度的关系 |
5.4 覆盖对马铃薯植株水分状况的影响 |
5.5 覆盖对降水24 h后耕作层土壤水分的影响 |
5.6 覆盖条件下土壤水分与产量形成的关系 |
5.7 小结 |
第六章 覆盖对马铃薯生长发育及光合生理的影响 |
6.1 覆盖对马铃薯生长发育的影响 |
6.2 覆盖对叶片SPAD值及叶片N含量(LN)的影响 |
6.3 覆盖对马铃薯叶片光合气体交换的影响 |
6.4 覆盖对叶片叶绿素荧光反应的影响 |
6.5 覆盖提高净光合速率的相关机制 |
6.6 小结 |
第七章 讨论和结论 |
7.1 讨论 |
7.2 结论 |
7.3 主要创新点 |
7.4 研究展望 |
参考文献 |
致谢 |
个人简介 |
导师简介 |
四、有限灌溉对半干旱区春小麦根系发育的影响(论文参考文献)
- [1]施肥量对半干旱区麦田土壤呼吸及冬小麦生长发育的影响[D]. 胡智临. 西北农林科技大学, 2021(01)
- [2]冀西北寒旱区马铃薯田水分特征与节水生产效果研究[D]. 任冬雪. 河北农业大学, 2020(01)
- [3]微灌方式和灌水量对河西春小麦生长和水氮利用的影响[D]. 张舵. 西北农林科技大学, 2020(02)
- [4]覆盖模式对不同旱作区农田土壤主要性状和玉米生长的影响[D]. 黄方园. 西北农林科技大学, 2020(01)
- [5]农艺措施对中国北方地区小麦和玉米产量及水分利用效率影响的meta分析[D]. 马登科. 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2020(01)
- [6]沟垄集雨种植模式下施肥与补灌对冬小麦生长及水肥利用效率的影响[D]. 董昭芸. 西北农林科技大学, 2020
- [7]水氮及群体调控对秸秆覆盖冬小麦产量及水分利用效率的影响与机制[D]. 胡昌录. 西北农林科技大学, 2020
- [8]覆膜种植和施肥对半干旱地区资源高效利用及玉米生产持续性的影响机制[D]. 张旭东. 西北农林科技大学, 2019
- [9]黄土高原不同生态区垄沟覆盖对春玉米生产力和土壤质量的影响及其机理[D]. 邓浩亮. 甘肃农业大学, 2019(02)
- [10]覆盖模式对旱地马铃薯田水热环境及产量形成的影响[D]. 陈玉章. 甘肃农业大学, 2019(02)