一、关于指数函数的性质的证明(论文文献综述)
刘英杰[1](2019)在《高中数学课程标准与高考及课堂教学的一致性研究 ——以近五年全国数学Ⅰ卷为例》文中进行了进一步梳理2003年,教育部颁布的《普通高中数学课程标准(实验)》指导了普通高中课程改革实践十余年。但是,面对我国高中基本普及的新形势,普通高中课程和课程标准仍存在一些不一致和有待改进之处。2013年,教育部启动了普通高中课程的修订工作。2018年,《普通高中数学课程标准(2017年版)》正式颁布。随着新课程标准的颁布,新课程标准与高考及课堂教学的一致性如何?新课程标准对未来的高考命题和课堂教学有何影响?基于新课程标准的课堂教学将会产生哪些变化?这些必将成为未来的教育研究人员共同关注的问题。本研究立足于新、旧课程标准,选取近五年全国数学I卷和高中数学教师的课堂教学作为研究样本,分别将新、旧课程标准与高考及课堂教学进行了一致性研究。首先,运用文献分析法,在查阅大量文献的基础上明确自己的研究思路,确定一致性分析的理论框架。其次,运用内容分析法和比较研究法,从了解、理解、掌握三个维度对新、旧课程标准中的内容标准以及近五年全国数学I卷作量化处理,并利用“SEC”模式进行一致性分析。再次,运用调查问卷法,调查高中数学教师在讲授高中数学相关知识内容时,为使学生达到相应的认知水平,教师在各个认知水平上分别花费的教学时间,并对所得数据进行量化处理,分析其与新、旧课程标准的一致性。最后,根据新、旧课程标准与高考及课堂教学的一致性分析结论,以指数函数和基本不等式(?)为例,给出基于新、旧课程标准的课堂教学设计案例。通过比较分析发现,新、旧课程标准与高考和课堂教学之间没有统计学意义上的显著一致性,但是旧课程标准与高考及课堂教学的一致性高于新课标与高考及课堂教学的一致性。需要说明的是:课程标准的要求是所有学生必须满足的要求,而不是最高要求,相关研究结果符合当前的考试评价与教学现状。因此,在未来的课堂教学中,教师应认真学习和研究新课程标准,全面系统地了解新课程标准,加强新课程标准与考试命题和课堂教学之间的联系。以新课程标准为基础,检查教师的教学质量,开展课堂教学,促进学生更好的发展。
刘银琼[2](2019)在《人教版与上教版教材函数内容的比较 ——以《函数的基本性质》、《基本初等函数(Ⅰ)》为例》文中指出在整个高中数学,函数及其思想贯穿着整个高中阶段的数学内容.函数在实际生活中也有着广泛的应用,它的重要性不言而喻.高中课标明确指出数学教材的编写要体现数学内容的逻辑体系,注重整体结构.教材作为最重要的学习资料,它的编排方式是否体现知识的系统性与逻辑性就尤为重要了.人教A版是目前我国高中数学使用最广泛的教材,而上教版是一套极具发达地区特色的优秀教材,这两套教材各有特定的历史渊源,是中国近二十年高中数学的重要代表性教材,在内容体系上有着各自的特点与优势.本论文以横向比较为主,纵向比较为辅.从教材的历史沿革进行纵向比较分析.横向比较上,对比了教材相对应的课程标准、知识的的逻辑结构特征和教材中4个专题的概念体系构建.在以往对教材的横向比较中,多是以对比教材难度、例习题难度为主要的研究,无触及教材的学科性等本质问题,没有太大的实际意义.所以本文主要从教材的概念体系进行深入比较.为了更加全面地对教材进行对比分析,还对比了两套教材的学习训练体系.本文的研究方法有文献研究法、内容分析法和比较研究法.在两版教材概念体系的对比上,通过相关文献的研究,建立了“函数的概念”和“对数函数的概念”两个教材评价标准,并在此基础上分析两版教材的概念体系构建.通过“函数的概念”、“对数函数的概念”、“幂函数”和“函数的基本性质”这四个专题的对比分析,得出上教版在继承旧教材概念体系系统性强、逻辑性强的基础上,注重概念之间联系的紧密性与呈现的逻辑性,在具体概念构建过程中过渡平稳、符合高一学生的认知水平这一结论.数学课程改革是一个漫长的、不断完善的过程,需要很多代人呕心沥血地不断付出.由于条件的限制,无法对两种版本教材具体使用情况做全面的实证调查.通过对这两版教材的对比分析,力争所得结论能为今后的教学研究提供参考.
陈海云[3](2019)在《HPM视角下中美高中数学教材的比较研究 ——以人教A版与加州McGraw Hill版教材函数内容为例》文中研究表明函数思想贯穿着整个数学学习过程,数学史对数学教育具有重要意义。本文在历史发生原理、“再创造”原理、历史相似性原理的指导下,以函数为载体,在HPM视角下,对中、美高中数学教材进行比较,具体分为以下几个部分:首先,从教材版面设计与知识点两方面,通过内容分析法,对中、美教材函数内容的安排进行比较。两国教材目录都以“章节条目—总结—测试题”为主线,栏目结构都以“正文前—正文—正文后”为主线,但“正文前”的“章开头”,中国A版教材以“文化背景知识”为主,美国M版教材则提出“学习目标”;知识编写方面,中国A版以“直线型”为主,注重形成系统性知识,美国M版教材则以“螺旋型”为主,侧重知识的实际运用。其次,通过比较维度的探讨,采用软件Excel与统计分析软件SPSS20.0对数据进行录入分析,研究两国教材函数部分数学史的运用情况。利用Pearson卡方检验以及Fisher精确检验,分析数学史知识模块分布、栏目分布、运用方式、呈现方式的异同。总体上,两国教材数学史知识模块分布、栏目分布总体差异不显著,但运用方式、呈现方式都有显著差异。显著差异体现在,运用方式上中国A版教材没有“重构式”数学史,且每种运用方式的频数差异较大,美国M版教材五种方式都有涉及,且每种运用方式频数差异不大;呈现方式上,中国A版教材中显性数学史的占比稍多,相对中国而言,美国教材函数内容中显性数学史和隐性数学史的频数相差不大。然后,采用文献分析法和内容分析法,结合历史上对“函数概念”、“指数函数”、“三角函数”的扩充顺序,绘制历史和教材的结构图、散点图,根据图形结构及变化趋势,分析中、美两国教材的编写顺序与历史发生顺序的异同及相似程度。美国M版教材“函数概念”、“指数函数”的编写顺序更接近历史扩充顺序,中国A版教材“三角函数”的编写顺序则更接近历史扩充顺序。最后,基于以上研究结果,本文对高中数学教材的编写提出了一些建设性意见。适当调整数学史栏目分布,重新审视教材数学史的运用方式。基于历史相似性,适当调整知识内容顺序。
陈星宇[4](2020)在《在函数教学中培养学生数学抽象素养的研究》文中提出新一轮以核心素养为中心的课程改革已然开始,培养学生的数学核心素养是数学教育工作者不容忽视的责任。数学抽象素养作为首要的数学核心素养,基于课堂教学培养学生的数学抽象素养具有重大意义。本研究通过测试调查的方法,利用SPSS25.0和Excel分析测试卷,得到高一学生的数学抽象素养现状,在相应的数学抽象素养水平上,分别有73%、62%、29%的学生达到了水平一、水平二、水平三,达到相应水平的学生人数比例随着数学抽象素养水平的升高而不断降低。在四个数学活动的数学抽象素养水平上,学生数学抽象素养现状表现为情境与问题>思维与表达>知识与技能>交流与反思。根据调查得到的学生数学抽象素养现状,得到了在四个数学活动中培养学生数学抽象素养的教学策略。在情境与问题维度:(1)创设有效的教学情境,使学生充分经历数学抽象的过程;(2)引导学生概括出结论,关注概括过程中学生存在的问题。在知识与技能维度:(1)设置合理的教学目标,明确对数学基础知识的认知需求;(2)建构系统的知识体系,促进学生对数学知识的理解贯通;(3)运用合理的信息技术,促进学生对相应数学内容的理解。在思维与表达维度:(1)掌握数学语言的使用,促进学生熟练表达相关数学问题;(2)注重数学思想的渗透,引导学生感悟数学的通性与通法。在交流与反思维度:(1)注重知识的实际应用,拉近数学知识与现实生活的距离;(2)开展数学交流与反思,促进学生交流与积累相应的经验。以基本初等函数(Ⅰ)的三节教学课为例,首先利用数学抽象度分析理论分析相应的教学内容,然后分析相应教学内容的课程目标,再将相应的教学策略融入到APOS教学四阶段中去,通过实验法来检验相应的培养学生数学抽象素养的教学策略和教学设计的有效性。教学实验结果表明,培养学生数学抽象素养的教学策略与教学设计有效。
李昌官[5](2016)在《高中数学导研式教学研究》文中认为针对学生研究力严重不足与知识经济社会要求的矛盾,以及高中数学教学理念、教学模式与教学设计思路、程序、方法等方面存在的问题,构建了操作性与可行性强、旨在增强学生研究力的高中数学导研式教学。研究的技术路线图是:实践反思——文献溯源——提出问题——寻找依据——建立模型模式——检验模型模式——修正模型模式——实践应用。研究方法主要有文献法、案例法、调查法、访谈法、准实验法。高中数学导研式教学是指学生在教师创设的问题情境中,在教师提供的认知策略与研究支架指导下,通过独立研究或合作研究自主提出问题、自主解决问题、自主拓展问题,旨在掌握数学知识和创造数学知识、研究数学问题的一般思路与方法,增强研究力的教学。其实质是教师强有力的元认知指导下的学生自主学习与研究,其基本理念是学习即研究、教学即研究指导。高中数学导研式教学围绕“一个中心”(即发展学生的核心素养),立足“两个基本点”(即学生的研与教师的导),坚持“三个原则”(即以研定导、以导促研、导研耦合),追求“教学四性”(即元指导性、整体性、结构性和激励性),按照“五环节十步骤”(即背景与问题—联想与方法—猜想与验证—运用与内化—反思与拓展)开展。该教学模式具有六大优势:一是利于学生学习有根、有背景的知识;二是利于培养和发展学生提出问题能力;三是利于学生更好地掌握建构数学知识和研究数学问题的一般思路与方法;四是强化了猜想与反驳的思维过程,使研究更真实、有效;五是利于学生养成良好的思维习惯与思维方式;六是学生带着值得研究的问题在课外继续研究,利于建构课内、课外一体的学习与研究机制。在分析、反思经典教学设计模型的基础上,根据导研式教学的特点与需求,在案例研究和反复修正的基础上,建构了包含学习目标设计、学习过程设计、学习指导设计、学习评价设计4张思维导图在内的“ADE”(即Analysis, Development, Evaluation)设计模型。其中,学习目标设计包括习得内容、习得程度、习得方式、习得差异四方面;学习过程设计与教学模式相适应;学习指导设计分概念、定理法则、问题解决三种情况。整个设计模型具有价值为先、研究为本、问题为重、操作为上四大特点。调查表明:一线教师高度认可高中数学导研式教学设计模型和教学模式,并在实践中取得了良好的效果。实验和分析比较表明:与对照班相比,按此模式和模型设计的数学课,学生研究某类问题能力的3个维度均有0.01或0.025水平的显著性差异;在此指导下的教学设计与原生态设计相比,在12个维度上均有0.005或0.01或0.05水平的显著性差异,但与研究者参与的教学设计相比,10个维度明显滞后,2个维度无差异。这表明此模式和模型能把教师的教学水平向上提升一个层级,但还达不到理想的水平。
殷烁[6](2020)在《核心素养背景下的高一函数学习现状的调查研究》文中认为《普通高中数学课程标准》(2017版)已经颁布,首次提出了数学核心素养的概念,要在教学过程中培养学生数学抽象、逻辑推理、数学建模、直观想象、数学运算以及数据分析素养。2018级的高中生马上要面对2021年新模式的高考,但是学生使用的教材还是2003版的课标教材。在这段新旧教材交替的时期,学生核心素养的养成情况怎么样,教师在课堂教学中落实核心素养的意识情况怎么样,怎样培养学生数学核心素养,怎样将核心素养培养落实到课堂教学,都是一线数学教师非常关注的问题。由于高一函数部分是整个高中数学的核心内容,体现数学核心素养非常的集中,所以在数学核心素养的观点下对高一函数进行教学研究是有现实意义和价值的。本文通过查阅文献资料了解有关2017版新课标数学核心素养、有关函数概念、函数思想以及高一函数教学的最新发展,为笔者的研究提供理论支持;在此基础上,通过对高一学生进行函数内容测试卷调查和学生学习函数的非智力因素问卷调查,调查分析高一学生函数学习的基本情况,数学核心素养的落实情况,分析学生在函数学习中的现状以及函数学习的方法、习惯等等;对本校数学教师的访谈调查,研究从老师的视角看数学核心素养,看学生学习函数中的问题,研究教师在课堂教学中对学生数学核心素养培养的落实情况。通过各项调查研究得到学生学习函数现状的结论是:(1)数学核心素养的养成情况不容乐观,数学运算、数学抽象、逻辑推理、直观想象等各有欠缺;(2)解题能力不足,表现为审题能力不高,读不懂题、不能将题目信息转化为有效的数学信息;综合能力水平不高,函数题目复杂,需要用到的知识点繁多,不能灵活应用所学知识;(3)未养成良好的学习习惯,还停留在初中阶段的被动的学习的状态。由调查所得的结论,针对学生学习函数的现状问题,提出以下解决策略:(1)为函数解题做好计算铺垫;(2)将抽象的函数问题具体化;(3)注重学生数形结合方法解决函数问题;(4)充分利用教材培养逻辑思维能力;(5)构建适合学生认知的函数课堂教学;(6)提高学习函数兴趣,增强学习函数信息,培养学习方法。依据本文的理论基础,结合提出的教学建议,参考教师访谈研究,对教师一致反映核心素养集中的三个章节做出教学案例研究。
穆明星[7](2020)在《高中数学逻辑推理素养培养研究》文中研究说明高中阶段数学核心素养的培养对学生的影响是终身的,对于人才的培养也是必要的。核心素养的培养作为人才培养的一个非常重要部分,不可缺少。2014年,教育部出版《关于全面深化课程改革落实立德树人根本任务的意见》中,提出“核心素养”,2016年,我国出版《21世纪学生发展核心素养研究》,2018年,教育部出版《普通高中数学课程标准(2017年版)》,“核心素养”成为课表修订的指引。二十一世纪,各国之间的竞争转化为人才之间的竞争,人才的培养才是我们教育的出发点和落脚点。“核心素养”的出现是顺应潮流,顺应时代发展的需要,这就把人才的培养,转化为对人才的核心素养的培养上来了,本文就如何培养高中生数学逻辑推理进行相关的探索研究。通过找到数学教学和逻辑推理素养培养之间的关系,进行逻辑推理素养的培养。在高中数学六个核心素养中选择逻辑推理,是因为逻辑推理核心素养会间接的影响到其他的核心素养的培养,数学逻辑推理能力是解决数学问题非常重要的部分。凡是需要计算的、推断的、证明的都离不开逻辑推理。考虑到逻辑推理在中学阶段中的重要性,对逻辑推理素养的培养进行系统化的研究,主要从人教版高中数学必修1第二章基本初等函数(Ι)单元主题教学设计的角度进行研究,对学生逻辑推理素养的培养过程进行探索。研究分为四个部分,分别为文献分析、内涵解读、单元主题教学设计、研究建议。在文献分析、内涵解读的基础上进行了单元主题教学设计,并给出了逻辑推理素养培养建议,其中重点是内涵解读和单元主题教学设计的部分。内涵解读包括了单元主题教学内容的教学要素、内容解读和高考解题应用三个部分。单元主题教学设计部分是对整个单元的内容进行整体布局设计,给出了单元主题教学目标和阶段划分,划分为六个阶段,(一)基于逻辑推素养培养的一次函数、二次函数知识回顾的教学,(二)基于逻辑推素养培养的指数、对数和幂的基本运算法则的教学,(三)基于逻辑推素养培养的指数函数、对数函数和幂函数定义的教学,(四)基于逻辑推素养培养的指数函数、对数函数和幂函数图象的教学,(五)基于逻辑推素养培养的指数函数、对数函数和幂函数性质的教学,(六)基于逻辑推素养培养的指数函数、对数函数和幂函数应用的教学。再依据每个阶段内容的实际情况分配教学课时,一次函数、二次函数的函数知识回顾教学占1课时,指数、对数和幂的基本运算法则教学占1课时,指数函数、对数函数和幂函数的定义教学占2课时,指数函数、对数函数和幂函数的图象教学占2课时,指数函数、对数函数和幂函数的性质教学占2课时,指数函数、对数函数和幂函数的应用教学占3课时,共11个教学课时。基于上述的单元主题教学设计,本研究分别从全面把握和理解数学核心素养与逻辑推理素养的内涵、加强对教学内容的深刻解读与理解、加强教学整体的设计三个层面对高中数学教师提出相应的建议,希望能对高中学生逻辑推理素养的培养有所帮助。
邹岩[8](2013)在《新中国成立以来我国高中教科书中函数内容60年演变研究》文中指出对动态和变量的描述,推进了函数思想的产生,并且随其发展,函数及其思想方法逐渐在数学中占有越来越重要的地位。数学家霍维逊(Howison, G.H.)说过:“算术是函数赋值的科学,而代数则是函数变换的科学①。”函数是高级中学数学教学中的重要内容之一。主要对我国高中数学教科书中函数内容的变化进行比较研究,研究时间锁定在1949以来。通过考察60多年间函数内容在我国中学数学教科书中的变化与发展状况,了解我国教科书的发展以及函数部分在中学数学教科书中的变化过程。文章包括以下几部分:第1章,导论。包括研究的目的与意义、国内外研究现状、研究方法与思路以及创新之处。目前,我国关于教科书的研究颇多,但大都是宏观上对教科书的整体结构和发展历史进行研究,对教科书中细节知识的变化介绍较少。本文以函数为研究内容,以高中为研究阶段,以教科书为载体,对我国新中国成立以来高级中学数学教科书中函数内容的变化情况进行考察。运用了文献研究法、比较法、图表法等研究方法。尽所能地考察高级中学教科书中函数内容的变迁。另外,此部分对选定教科书的版本和考察阶段作了说明。第2章,教科书中函数内容的变迁及启示。此部分对我国高级中学教科书中函数内容的整体变化情况予以介绍。另外,对函数内容变迁的影响因素及其合理性进行分析。第3章,函数的定义与性质的变迁。这一部分主要研究对象为函数的定义及性质。对教科书中函数的定义及总体性质进行比较。以研究思路为依据,从整体结构、总体要求、引入、定义、表达式、例题以及习题等方面进行比较,总结其变化趋势,根据其变化和发展趋势提出得到的启示和今后教科书修改意见和建议。此部分还加入了高中一次函数与二次函数的变迁情况,由于高中阶段,这两个函数属于过渡内容,仅简单介绍。第4章,我国高中教科书中指数函数、对数函数、幂函数和反函数的比较。此部分主要是指数函数、对数函数以及幂函数的比较,还包括指数函数和对数函数的对应关系引出的反函数的比较。其中,由于指数函数是高中的第一个以前未接触过的重点函数类型,故以此为重点,将指数函数的整体结构、引入方法、定义及表示方法、图象与性质、例题与习题等分别进行比较和研究,并根据其启示设计教科书中的指数函数内容。第5章,三角函数内容的比较。在分科时期,代数、几何、三角分别是独立的教科书。现在的混合教学中三角内容减少、难度要求降低,在教科书中有明显的体现。此章作为重点研究内容,对高级中学教科书中三角函数内容做详细的比较分析。依据研究的基本思路,对三角函数的定义、性质及图象进行比较。第6章,结束语。根据以上研究,针对研究阶段我国高级中学数学教科书中函数内容,争取回答以下几个问题。函数内容增加了什么?减少了什么?其内容增减的合理性怎样?难度上是提高了还是降低了?变化的基本趋势是什么样的?引入、课时安排、数学活动的设置是否得当?通过这些变化得出怎样的启示?并从函数内容的变迁情况窥探我国高中数学教科书发展趋势。
丁名杨[9](2020)在《中日高中数学代数内容教材对比研究 ——以集合与函数为例》文中指出我国于2017年颁布了新版高中数学课程标准,据此新编教材也于2019年秋季开始在各地投入使用。新版教材的编写特色如何,与同一时期其他国家的教材存在何种差异,均需要相关的教材对比研究。跨体系的国际教材比较研究,不仅可以有效学习和借鉴他国教育经验,而且还有助于充分了解我国高中数学教材,为一线教师提供教学上的理论参考。以此作为研究逻辑的出发点,本文选取中国高中数学人教A版教材(2019年)与日本新兴出版社启林馆修订版高中数学教材(平成30年),以两国代数内容为宏观比较对象,从课程目标、设计特征、代数内容分布、代数知识选取及编排四个方面探讨中日两国代数内容的异同,发现在代数内容中,集合与函数的内容分布差异较大,进而以集合与函数内容为微观比较对象,探讨其在内容要求、知识点引入、知识点呈现、具体编排结构、概念图结构上有何差异。本文以文献研究法、内容分析法、个案分析法等文本分析为主,辅以相关统计方法和统计工具进行定性与定量相结合的比较研究。由此得到宏观研究结论:(1)日本数学课程选择性较强,重视数学活动,中国总体目标强调数学学科核心素养;(2)人教A版教材栏目数量和内容更加丰富,启林馆版教材更重细节设计、关注学生兴趣、教材可读性强;(3)函数内容在两国教材中均占有核心地位,且人教A版教材在集合与函数上的内容分布明显多于启林馆版教材;(4)启林馆版教材代数知识选取跨度更大、范围更广,呈明显的螺旋式编排,人教A版教材则采取直线式与螺旋式相结合的混合编排方式。集合与函数的微观比较结论如下:(1)我国内容要求更加细致明确,广度较高,但深度不及日本;(2)启林馆版教材知识点多采取“开门见山式”引入,人教A版教材多采用“数学问题式”引入;(3)启林馆版教材多采用“图表辅助”呈现知识,而人教A版教材多使用“举例说明”、“探究思考”的呈现方式;(4)在集合与函数内容上,人教A版教材更重提高学生对知识内在联系的理解,启林馆版教材更重视知识在运算与证明中的运用;除“三角函数”内容外,人教A版教材知识之间的内部联系程度不及启林馆版教材。基于上述宏微观比较结论,得到针对人教A版教材编写的启示:(1)丰富卷首与卷末的栏目设置,注重细节设计;(2)注重知识的拓展和延伸,丰富函数类型;(3)充分利用图表,设多级标题区分不同知识点;(4)加强概念之间的内部联系,注重知识衔接。通过对中日两国高中代数内容的教材对比分析,期望能为教材的进一步修订和完善提供借鉴,为一线教师提供教学实践的参考。
雷焰麟[10](2020)在《高中数学新旧教科书函数部分比较研究》文中进行了进一步梳理教育部颁布的《普通高中数学课程标准》(2017年版)提出数学课程学习要使学生获得对未来发展所需的“四基”“四能”,培养学生“数学学科核心素养”。教科书作为数学课程内容学习的知识载体,它的改革迫在眉睫,使用率最高的人教A版高中数学教科书的再修订也成为此次课程改革的重要内容。新版人教A版教科书的编写是否符合课程理念的要求、与旧版教科书相比具有哪些改进和不足之处尚需进一步研究分析。因此,本文选取人教A版新旧两版教科书进行比较,目的是为今后研究课程改革、教科书的编写与使用提供文本依据。函数是贯穿高中数学课程的主线,是刻画变量之间的语言与工具,以人教A版新旧两版教科书的函数内容为研究对象,运用文献研究法、比较研究法、统计分析法、案例分析法等教科书的研究方法从教科书的三个部分进行研究,第一部分文献综述,系统地介绍教科书相关的定义、教科书的编写依据,总结前人针对各地区不同版本教科书的一般比较方法。第二部分内容比较,课程标准对函数的教学要求、知识体系与内容安排、栏目设置、章节引入方式、概念与性质的呈现方式、章末回顾的内容结构等方面进行比较。第三部分难度比较,对比两版教科书的深度、广度、难度。研究表明:新版教科书是在旧版教科书的内容结构基础上渗透新课程标准的理念,通过改变知识的引入、引例、引言方式,调整素材背景,弥补例题安排与栏目分类,设置符合学生学情的问题,采用更多样的研究环节,分层次安排习题,章末总结调整结构等完成编写。本研究希望从新旧两版教科书不同之处进行量化分析,为教师使用教科书提出相关的建议:(1)形成探究式的教学模式(2)注重知识内容的背景设置(3)加强数学思想方法的渗透(4)信息技术融入数学课堂。为后续教科书对比分析提供方法与思路,为一线教师的函数教学提供参考。
二、关于指数函数的性质的证明(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、关于指数函数的性质的证明(论文提纲范文)
(1)高中数学课程标准与高考及课堂教学的一致性研究 ——以近五年全国数学Ⅰ卷为例(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 研究现状 |
1.2.1 国外研究现状 |
1.2.2 国内研究现状 |
1.3 研究问题 |
1.4 研究方法 |
1.5 论文框架 |
第二章 一致性理论及其研究概述 |
2.1 相关概念的界定 |
2.1.1 一致性 |
2.1.2 课程标准 |
2.1.3 内容主题 |
2.1.4 认知水平 |
2.2 三种一致性分析模式 |
2.2.1 韦伯一致性分析模式 |
2.2.2 成功一致性分析模式 |
2.2.3 “SEC”一致性分析模式 |
2.2.4 三种模式的比较分析 |
第三章 一致性分析框架的构建、相关编码及数据处理 |
3.1 一致性分析框架 |
3.1.1 内容主题的分类 |
3.1.2 认知水平的分类 |
3.2 课程标准的编码与数据处理 |
3.2.1 对课程标准的编码说明 |
3.2.2 对课程标准的编码举例 |
3.2.3 对课程标准数据的整理及编码 |
3.3 数学高考试卷的编码与数据处理 |
3.3.1 对试卷的编码说明及举例 |
3.3.2 对试卷数据的处理及编码 |
3.3.3 对试卷数据的整理及计算 |
3.4 课堂教学调查问卷的编码与数据处理 |
3.4.1 对问卷的说明及举例 |
3.4.2 对问卷数据的处理及编码 |
3.4.3 对问卷数据的整理及计算 |
第四章 课程标准与高考及课堂教学的一致性分析 |
4.1 课程标准与近五年Ⅰ卷的一致性分析 |
4.1.1 新、旧课标与近五年Ⅰ卷的一致性临界值 |
4.1.2 新、旧课标与近五年Ⅰ卷的一致性分析 |
4.2 课程标准与课堂教学的一致性分析 |
4.2.1 新、旧课标与课堂教学的一致性临界值 |
4.2.2 新、旧课标与课堂教学的一致性分析 |
4.3 本章结论 |
第五章 基于新课标的课堂教学实施 |
5.1 关于指数函数的新授课 |
5.1.1 基于新课标的教学设计 |
5.1.2 基于新课标的课堂教学反思 |
5.2 关于指数函数的习题课 |
5.2.1 基于新课标的教学设计 |
5.2.2 基于新课标的课堂教学反思 |
5.3 关于基本不等式(?)的新授课 |
5.3.1 基于新课标的教学设计 |
5.3.2 基于新课标的课堂教学反思 |
5.4 关于基本不等式(?)的习题课 |
5.4.1 基于新课标的课堂教学设计 |
5.4.2 基于新课标的课堂教学反思 |
第六章 结语 |
6.1 研究结论 |
6.2 反思与展望 |
参考文献 |
致谢 |
附录A 在读期间发表的学术论文及获奖情况 |
附录B 近五年全国数学Ⅰ卷的编码 |
附录C 高中数学课堂教学调查问卷 |
(2)人教版与上教版教材函数内容的比较 ——以《函数的基本性质》、《基本初等函数(Ⅰ)》为例(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 研究背景及问题提出 |
1.2 相关概念的界定 |
1.2.1 教材 |
1.2.2 教材结构体系及学科逻辑 |
1.2.3 数学学习训练体系和课程难度模型 |
1.3 研究方法及研究框架 |
1.4 研究的意义 |
2 研究综述 |
2.1 我国中学数学课程历史沿革 |
2.2 教材研究现状及综述 |
2.2.1 关于函数内容体系的中外教材对比研究 |
2.2.2 关于函数内容的不同版本教材对比研究 |
2.3 研究现状的分析与总结 |
3 两典型版本教材演变的历史沿革 |
3.1 人教A版新旧教材函数章节内容的历史沿革 |
3.1.1 新旧教材函数章节内容沿革的整体分析 |
3.1.2 新旧教材函数章节知识体系的沿革 |
3.2 上教版新旧教材函数章节内容的改良 |
3.2.1 上海两期课改下函数章节内容的调整 |
3.2.2 两期课改函数章节内容编排的特点 |
3.3 分析与总结 |
4 两版教材对应课程标准的比较 |
4.1 上教版与人教A版相应课标的分析 |
4.1.1 两版课标的基本信息 |
4.1.2 两版课标课程理念的比较 |
4.2 两版教材对应课标与2017 版课标“函数”内容的对比 |
4.2.1 三版课标“函数”部分课程目标的比较研究 |
4.2.2 三版课标“函数思想”渗透阶段的比较研究 |
4.2.3 小结 |
5 函数章节内容逻辑结构的特征分析 |
5.1 两版教材函数章节内容模块的编排分析 |
5.2 两版教材函数章节知识点的编排分析 |
6 两版教材概念建构的比较 |
6.1 数学概念的习得及课本素材支持 |
6.2 两版教材函数概念建构的对比分析 |
6.2.1 “概念的同化”特征的函数概念学习素材体系 |
6.2.2 “概念的形成”特征的函数概念学习素材体系 |
6.2.3 两版教材函数概念建构对比分析 |
6.2.4 “函数概念”的教学内容及其教材评价模型 |
6.3 两版教材“对数函数”概念建构的对比分析 |
6.3.1 “基于对应的抽象”特征的对数函数概念学习素材体系 |
6.3.2 “基于内涵的抽象”特征的对数函数概念学习素材体系 |
6.3.3 两版教材对数函数概念对比分析 |
6.3.4 “对数函数概念”的教学内容及其教材评价模型 |
6.4 两版教材幂函数概念建构的对比分析 |
6.4.1 两版教材幂函数课标对比分析 |
6.4.2 “概念的形成”特征的幂函数概念学习素材体系 |
6.4.3 “概念的同化”特征的幂函数概念学习素材体系 |
6.5 两版教材函数的基本性质学习的对比分析 |
6.5.1 两版教材函数的基本性质课标对比分析 |
6.5.2 两版教材函数的基本性质对比分析 |
7 上教版与人教A版函数学习训练体系分析 |
7.1 关于函数学习训练体系的整体设计与改进任务 |
7.1.1 关于函数学习训练的整体设计 |
7.1.2 关于改进函数学习训练体系的任务 |
7.2 关于函数学习训练的习题案例评述 |
7.2.1 关于函数学习训练的内容 |
7.2.2 关于函数学习训练的方式 |
7.2.3 关于现代信技在函数学习训练中的应用 |
7.3 关于函数学习训练体系分析小结与建议 |
7.4 量化分析两版教材函数章节内容的难度 |
7.4.1 高中数学教材难度定量模型 |
7.4.2 两版教材函数章节内容深度、广度比较 |
7.4.3 两版教材习题综合难度的比较分析 |
8 结论与建议 |
8.1 研究结论 |
8.1.1 两种版本教材的共同特点 |
8.1.2 两种版本教材的编写特色 |
8.1.3 两版教材四个专题的比较结论 |
8.1.4 高中数学课程改革的反思 |
8.2 研究不足及展望 |
参考文献 |
附录 |
致谢 |
(3)HPM视角下中美高中数学教材的比较研究 ——以人教A版与加州McGraw Hill版教材函数内容为例(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究的背景和意义 |
1.1.1 从ICME看 HPM |
1.1.2 问题的提出 |
1.1.3 研究的意义 |
1.2 核心名词界定 |
1.3 研究的内容 |
1.4 阶段性计划与技术路线 |
1.4.1 阶段性计划 |
1.4.2 研究的技术路线 |
1.5 文章的结构 |
1.6 创新点 |
第2章 文献综述 |
2.1 文献搜集的途径 |
2.2 数学史融入数学教育的研究 |
2.2.1 国外有关数学史融入数学教育的研究 |
2.2.2 国内有关数学史融入数学教育的研究 |
2.3 数学教材比较研究概况 |
2.3.1 国外数学教材比较研究 |
2.3.2 国内数学教材比较研究 |
2.4 小结 |
第3章 研究方案设计 |
3.1 研究对象 |
3.1.1 比较国家的选择 |
3.1.2 比较版本的选择 |
3.1.3 比较内容的选择 |
3.2 研究理论 |
3.2.1 历史发生原理 |
3.2.2 “再创造”原理 |
3.2.3 历史相似性原理 |
3.3 研究方法及数据处理 |
3.3.1 函数内容安排的比较 |
3.3.2 HPM视角下函数内容数学史运用的比较 |
3.3.3 HPM视角下三个函数相关知识模块历史发展与编写顺序的比较 |
3.4 研究框架 |
第4章 中、美教材函数内容安排比较 |
4.1 教材版面设计的比较 |
4.1.1 教材目录的比较 |
4.1.2 教材栏目结构的比较 |
4.2 知识点的比较 |
4.2.1 知识点涵盖面的比较 |
4.2.2 知识点呈现方式的比较 |
4.3 小结 |
第5章 HPM视角下函数内容数学史运用的比较 |
5.1 比较维度的探讨 |
5.1.1 教材维度 |
5.1.2 历史维度 |
5.2 HPM视角下各知识模块数学史运用的比较 |
5.2.1 HPM视角下“集合与函数概念”的比较 |
5.2.2 HPM视角下“基本初等函数(Ⅰ)”的比较 |
5.2.3 HPM视角下“函数的应用”的比较 |
5.2.4 HPM视角下“三角函数”的比较 |
5.2.5 HPM视角下“三角恒等变换”的比较 |
5.2.6 HPM视角下“解三角形”的比较 |
5.2.7 HPM视角下“数列”的比较 |
5.3 各维度数学史频数总分布的比较 |
5.3.1 维度1:函数知识模块总分布 |
5.3.2 维度2:数学史栏目总分布 |
5.3.3 维度3:数学史运用方式总分布 |
5.3.4 维度4:数学史呈现方式总分布 |
5.4 小结 |
第6章 HPM视角下三个函数相关知识历史发展与编写顺序的比较 |
6.1 函数概念的比较 |
6.1.1 函数概念的历史发展 |
6.1.2 HPM视角下函数概念编写顺序的比较 |
6.2 指数函数的比较 |
6.2.1 指数符号的历史发展 |
6.2.2 HPM视角下指数函数编写顺序的比较 |
6.3 三角函数的比较 |
6.3.1 三角函数发展史 |
6.3.2 HPM视角下三角函数编写顺序的比较 |
6.4 小结 |
第7章 总结与展望 |
7.1 结论 |
7.1.1 函数内容的安排 |
7.1.2 数学史的运用 |
7.1.3 三个函数相关知识点历史发展与编写顺序 |
7.2 建议 |
7.3 展望 |
参考文献 |
攻读硕士期间发表的论文 |
致谢 |
(4)在函数教学中培养学生数学抽象素养的研究(论文提纲范文)
摘要 |
ABSTRACT |
1.引言 |
1.1 研究背景 |
1.2 研究内容 |
1.3 研究过程与方法 |
1.3.1 研究过程设计 |
1.3.2 研究方法 |
1.4 研究目的与意义 |
1.4.1 研究目的 |
1.4.2 研究意义 |
2.文献综述 |
2.1 关于数学抽象的研究 |
2.1.1 数学抽象 |
2.1.2 数学抽象素养 |
2.2 培养学生数学抽象素养的教学研究 |
2.2.1 培养学生数学抽象素养的途径 |
2.2.2 培养学生数学抽象素养的函数教学研究 |
2.3 研究的理论基础 |
2.3.1 数学抽象度分析理论 |
2.3.2 杜宾斯基的APOS教学理论 |
2.4 研究述评 |
3.关于高一学生数学抽象素养水平现状的调查设计 |
3.1 调查目的 |
3.2 调查对象 |
3.3 调查试卷 |
3.3.1 测试卷题目的划分标准及分值 |
3.3.2 测试卷题目的设计 |
4.关于高一学生数学抽象素养的现状分析 |
4.1 测试卷的信度分析 |
4.2 学生数学抽象素养水平的整体现状分析 |
4.2.1 总体水平分布的现状分析 |
4.2.2 各个数学活动水平分布的现状分析 |
4.3 学生数学抽象素养水平的各维度现状分析 |
4.3.1 情境与问题维度的现状分析 |
4.3.2 知识与技能维度的现状分析 |
4.3.3 思维与表达维度的现状分析 |
4.3.4 交流与反思维度的现状分析 |
5.培养学生数学抽象素养的教学策略与实验 |
5.1 培养学生数学抽象素养的教学策略 |
5.1.1 情境与问题维度的教学策略 |
5.1.2 知识与技能维度的教学策略 |
5.1.3 思维与表达维度的教学策略 |
5.1.4 交流与反思维度的教学策略 |
5.2 教学设计框架 |
5.3 基本初等函数(Ⅰ)的教学设计 |
5.3.1 教学内容分析 |
5.3.2 课程目标分析 |
5.3.3 教学过程设计分析 |
5.4 教学实验 |
5.4.1 实验目的 |
5.4.2 实验对象 |
5.4.3 实验过程 |
5.4.4 实验结果 |
5.4.5 实验反思 |
6.总结与反思 |
6.1 研究的结论 |
6.2 研究的不足 |
6.3 研究的展望 |
参考文献 |
附录1 |
附录2 |
附录3 |
附录4 |
致谢 |
(5)高中数学导研式教学研究(论文提纲范文)
内容摘要 |
ABSTRACT |
第一章 引论 |
第一节 研究的背景与内容 |
一、研究背景 |
二、研究内容 |
第二节 研究的目标与意义 |
一、研究目标 |
二、研究意义 |
第三节 研究的方法与路径 |
一、研究方法 |
二、研究路径 |
第二章 文献述评 |
第一节 高中数学教学模式述评 |
一、“讲解—接受”型教学模式 |
二、“自学—辅导”型教学模式 |
第二节 高中数学探究型教学述评 |
一、探究型教学一般理论 |
二、探究型教学模式 |
第三节 高中数学导研式教学的提出 |
一、已有的数学探究型教学理论的局限 |
二、探究型教学兴衰的经验与教训 |
三、高中数学导研式教学应时而生 |
第三章 高中数学导研式教学理据 |
第一节 学生视角 |
一、研究力的含义与价值 |
二、高中生作为研究者的可能性 |
三、高中生作为研究者的必要性 |
第二节 教师视角 |
一、作为数学知识再创造者的教师 |
二、作为学生研究指导者的教师 |
三、作为研究共同体创建者的教师 |
第三节 数学视角 |
一、作为思维体操的数学 |
二、作为高度结构化学科的数学 |
三、作为创造性活动的数学 |
第四节 教学视角 |
一、教学目的 |
二、教学过程 |
三、教与学的关系 |
第四章 高中数学导研式教学的构建 |
第一节 导研式教学基本理念 |
一、学习即研究 |
二、教学即研究指导 |
第二节 导研式教学设计原则 |
一、价值为先原则 |
二、研究为本原则 |
三、问题为重原则 |
四、操作为上原则 |
第三节 导研式教学设计模型 |
一、教学设计流程图 |
二、教学设计思维导图 |
第四节 导研式教学基本模式 |
一、自然地合理地提出问题 |
二、自然地合理地解决问题 |
三、运用巩固、内化迁移 |
四、自然地合理地拓展问题 |
第五章 高中数学导研式教学案例研究 |
第一节 案例研究概况 |
一、案例研究的目标 |
二、案例研究样本的选取 |
三、案例研究的过程与方法 |
第二节 “指数函数及其性质”的导研式教学 |
一、学习目标及其设计说明 |
二、教学过程及其设计说明 |
三、结论与反思 |
第三节 “直线的倾斜角与斜率”导研式教学 |
一、学习目标及设计说明 |
二、教学过程及设计说明 |
三、结论与反思 |
第四节 “正、余弦定理的发现之旅”导研式教学 |
一、学习目标及设计说明 |
二、教学过程及设计说明 |
三、结论与反思 |
第五节 教师对导研式教学的认识 |
一、教师导研式教学实践概况 |
二、教师对导研式教学设计模型和教学模式的总体评价 |
三、教师对导研式教学设计模型和教学模式的修正建议 |
第六章 高中数学导研式教学设计模型与教学模式修正 |
第一节 高中数学导研式教学设计模型修正 |
一、学习目标设计思维导图修正 |
二、学习过程设计思维导图修正 |
三、学习指导设计思维导图修正 |
四、学习评价设计思维导图修正 |
第二节 高中数学导研式教学模式修正 |
一、呈现背景,提出问题 |
二、联想激活,寻求方法 |
三、提出猜想,验证猜想 |
四、运用新知,巩固内化 |
五、回顾反思,拓展问题 |
第七章 高中数学导研式教学的实施 |
第一节 高中数学导研式教学实施条件 |
一、教学内部条件 |
二、教学外部条件 |
第二节 高中数学导研式教学适用范围 |
一、教学内容层面 |
二、教师层面 |
三、学生层面 |
第三节 高中数学导研式教学注意事项 |
一、导研式教学设计模型使用注意事项 |
二、导研式教学模式使用注意事项 |
第八章 高中数学导研式教学使用效果分析 |
第一节 三种不同条件下的同课教学设计 |
一、原生态下的“曲线与方程”教学设计 |
二、“曲线与方程”的导研式教学设计 |
三、“曲线与方程”导研式教学设计的优化 |
第二节 三个教学设计之比较 |
一、分析比较的指导思想 |
二、分析比较的内容 |
三、分析比较所得材料与数据 |
四、分析比较所得的结论 |
第三节 教师使用效果调查 |
一、调查内容与方法 |
二、调查数据与结论 |
第四节 导研式教学对学生学习的影响调查 |
一、“指数函数及其性质”导研式教学对学生学习影响 |
二、“正、余弦定理的发现之旅”导研式教学对学生学习影响 |
第九章 结果、反思与展望 |
第一节 研究结果与反思 |
一、研究结果及其创新之处 |
二、研究的反思与体会 |
三、有待继续研究的问题 |
第二节 研究展望 |
一、继续深化、完善与推广 |
二、形成有鲜明特色的教学品牌 |
参考文献 |
附录:教学设计前期分析思维导图 |
后记 |
作者简历及在学期间所取得的科研成果 |
(6)核心素养背景下的高一函数学习现状的调查研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 研究目的 |
1.3 研究内容 |
1.4 研究方法 |
1.4.1 文献研究法 |
1.4.2 问卷调查法 |
1.4.3 访谈法 |
1.5 研究流程 |
第2章 文献综述与理论基础 |
2.1 概念界定 |
2.1.1 函数 |
2.1.2 高一函数 |
2.2 研究现状 |
2.2.1 有关数学核心素养的文献分析 |
2.2.2 有关函数概念理解的文献分析 |
2.2.3 有关函数思想的文献分析 |
2.2.4 有关高一函数教学的文献分析 |
2.2.5 文献综述 |
2.3 理论基础 |
2.3.1 建构主义理论 |
2.3.2 皮亚杰的认知发展理论 |
第3章 研究设计 |
3.1 函数测试卷的研究设计 |
3.1.1 研究对象 |
3.1.2 测试卷的编制 |
3.1.3 测试目的 |
3.1.4 评价标准 |
3.1.5 测试卷的信度和效度 |
3.2 适应性及函数学习调查问卷的设计 |
3.2.1 调查目的 |
3.2.2 调查问卷的编制 |
3.3 教师访谈提纲的设计 |
3.3.1 访谈对象 |
3.3.2 访谈目的 |
3.3.3 访谈提纲的编制 |
第4章 现状调查研究与分析 |
4.1 函数学习情况的调查研究 |
4.1.1 调查结果及分析 |
4.1.2 问卷调查小结 |
4.2 非智力因素调查及分析 |
4.2.1 调查结果统计 |
4.2.2 学生问卷调查结果分析 |
4.3 教师访谈及分析 |
4.3.1 高中教师访谈记录 |
4.3.2 高一数学教师访谈分析 |
第5章 研究结论、教学建议与案例分析 |
5.1 研究结论 |
5.1.1 数学核心素养养成方面 |
5.1.2 解题能力方面 |
5.1.3 学生非智力因素方面 |
5.2 教学建议 |
5.2.1 为函数解题做好计算铺垫 |
5.2.2 将抽象的函数问题具体化 |
5.2.3 注重学生数形结合方法解决函数问题 |
5.2.4 充分利用教材培养逻辑推理能力 |
5.2.5 构建适合学生认知的函数课堂教学 |
5.2.6 提高学习函数兴趣,增强学习函数信心,培养学习方法 |
5.3 教学案例研究与实施 |
5.3.1 函数相关课题的研究 |
5.3.2 教学目标的分析研究 |
5.3.3 案例1:《函数的概念》教学案例 |
5.3.4 案例2:《指数函数及其性质》教学案例 |
5.3.5 案例3:《函数的图象》教学案例 |
第6章 不足与展望 |
6.1 不足 |
6.2 展望 |
参考文献 |
附录 |
附录1 |
附录2 |
附录3 |
致谢 |
攻读学位期间取得的科研成果清单 |
(7)高中数学逻辑推理素养培养研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景和意义 |
1.1.1 研究背景 |
1.1.2 研究意义 |
1.2 国内外研究现状及述评 |
1.2.1 核心素养与数学核心素养 |
1.2.2 逻辑推理素养的内涵研究 |
1.2.3 关于逻辑推理素养培养的研究 |
1.2.4 逻辑推理素养的测评研究 |
1.2.5 逻辑推理素养的培养策略研究 |
1.2.6 逻辑推理素养的应用研究 |
1.2.7 相关研究述评 |
1.3 研究思路及方法 |
1.3.1 研究思路 |
1.3.2 研究方法 |
1.4 核心概念界定 |
1.4.1 素养 |
1.4.2 核心素养 |
1.4.3 数学核心素养 |
1.4.4 逻辑推理 |
1.4.5 数学单元教学设计 |
1.4.6 深度学习 |
1.4.7 学科“大概念” |
1.4.8 怎样解题表 |
1.5 创新之处 |
第二章 逻辑推理在基本初等函数中的体现——以人教版高中数学必修1《基本初等函数(Ι)》为例的维度分析 |
2.1 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学内容的数学分析 |
2.1.1 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学内容的数学本质和数学文化 |
2.1.2 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学内容中的数学思想 |
2.1.3 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学内容的地位分析 |
2.1.4 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学内容与其他知识点的联系 |
2.2 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学内容的课标分析 |
2.2.1 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学内容的要求 |
2.2.2 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学内容各自的关联 |
2.3 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学内容的学情分析 |
2.4 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学内容的教材分析 |
2.4.1 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学内容的新旧教材比较分析 |
2.4.2 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学内容的不同版本教材比较分析 |
2.5 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)的单元主题教学的重难点分析 |
2.5.1 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)的单元主题教学内容的单元整体教学重难点分析 |
2.5.2 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学内容的具体课时的重难点分析 |
2.6 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学的教学方式分析 |
2.7 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学的内容解读 |
2.7.1 在基本初等函数(Ι)的定义中体现的数学逻辑推理素养 |
2.7.2 在基本初等函数(Ι)的图象中体现的数学逻辑推理素养 |
2.7.3 在基本初等函数(Ι)的性质中体现的数学逻辑推理素养 |
2.7.4 在基本初等函数(Ι)的应用中体现的数学逻辑推理素养 |
2.8 基于逻辑推理素养培养的三种函数的联系和区别 |
2.9 基于逻辑推理素养培养的人教版必修1基本初等函数(Ι)单元主题教学的解题应用 |
2.9.1 基于逻辑推理素养培养的基本初等函数(Ι)单元主题教学的指数函数解题应用 |
2.9.2 基于逻辑推理素养培养的基本初等函数(Ι)单元主题教学的对数函数解题应用 |
2.9.3 基于逻辑推理素养培养的基本初等函数(Ι)单元主题教学的幂函数解题应用 |
2.9.4 基于逻辑推理素养培养的基本初等函数(Ι)单元主题教学内容的综合解题应用 |
2.9.5 基于逻辑推理素养培养的基本初等函数(Ι)单元主题教学内容的解题应用总结 |
2.10 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学内涵解读的总结 |
第三章 数学逻辑推理素养培养的单元主题教学设计研究 |
3.1 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学内容的教学目标及教学流程 |
3.1.1 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学目标 |
3.1.2 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学流程 |
3.2 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学方案 |
3.3 基于逻辑推理素养培养的人教版高中数学必修1基本初等函数(Ι)单元主题教学设计的总结 |
第四章 数学逻辑推理素养培养建议 |
4.1 研究建议 |
4.1.1 全面把握和理解数学核心素养与逻辑推理素养的内涵 |
4.1.2 加强对教学内容的深刻解读与理解 |
4.1.3 加强教学的整体设计 |
4.2 研究局限和研究展望 |
参考文献 |
致谢 |
作者简介 |
附件 |
(8)新中国成立以来我国高中教科书中函数内容60年演变研究(论文提纲范文)
中文摘要 |
ABSTRACT |
第1章 导论 |
1.1 选题的目的和意义 |
1.1.1 选题的目的 |
1.1.2 选题的意义 |
1.2 国内外研究现状 |
1.2.1 国内研究现状 |
1.2.2 国外研究现状 |
1.3 研究方法及思路 |
1.3.1 文献研究法 |
1.3.2 比较法 |
1.3.3 图表法 |
1.4 创新之处 |
第2章 新中国成立以来我国高中教科书中函数内容的变迁及启示 |
2.1 函数内容简介与变迁情况 |
2.2 函数内容变迁的影响因素及其合理性 |
第3章 新中国成立以来我国高中教科书中函数的定义与性质的变迁 |
3.1 函数定义的变迁 |
3.1.1 函数定义的内容及变迁 |
3.1.2 函数定义变迁的特点及启示 |
3.2 函数定义的引入方式的变迁 |
3.2.1 函数定义的引入方式 |
3.2.2 函数定义引入方式的几点启示 |
3.3 函数的表示方法 |
3.3.1 函数的表示方法 |
3.3.2 函数表示方法的分析 |
3.4 一次函数和二次函数内容的变迁 |
3.4.1 一次函数与二次函数内容简介 |
3.4.2 一次函数与二次函数内容变迁的启示 |
第4章 新中国成立以来我国高中教科书中指数函数、对数函数与幂函数的变迁 |
4.1 指数函数的比较 |
4.1.1 指数函数内容的整体结构的比较 |
4.1.2 指数函数的引入比较 |
4.1.3 指数函数的定义及表达式的比较 |
4.1.4 指数函数的图象与性质的比较 |
4.1.5 指数函数的例题与习题的比较 |
4.1.5.1 指数函数的例题与习题的数量及题型 |
4.1.5.2 指数函数的例题及习题中蕴含的思想与方法 |
4.2 对数函数的比较 |
4.2.1 对数函数定义的引入的比较 |
4.2.2 对数函数定义的比较 |
4.2.3 对数函数的图象的比较 |
4.2.4 对数函数的性质的比较 |
4.2.5 反函数的变迁 |
4.3 幂函数的比较 |
4.3.1 幂函数内容简介 |
4.3.2 幂函数呈现的几个特点 |
第5章 新中国成立以来我国高中教科书中三角函数的变迁 |
5.1 三角函数定义的比较 |
5.1.1 三角函数定义的引入的比较 |
5.1.2 三角函数定义的表述及特点的比较 |
5.2 三角函数图象的比较 |
5.2.1 三角函数的图象简介 |
5.2.2 三角函数的图象表述的特点及启示 |
5.3 三角函数性质的比较 |
5.3.1 三角函数性质简介 |
5.3.2 三角函数性质表述的特点及启示 |
第6章 结束语 |
参考文献 |
研究中的部分教科书 |
硕士在读期间科研情况 |
致谢 |
(9)中日高中数学代数内容教材对比研究 ——以集合与函数为例(论文提纲范文)
中文摘要 |
英文摘要 |
第一章 绪论 |
第一节 研究背景 |
第二节 研究意义 |
一、实践意义 |
二、理论意义 |
第二章 文献综述 |
第一节 教材比较研究动态 |
第二节 国内外教材比较研究现状 |
一、国内教材比较研究 |
二、国际教材比较研究 |
第三节 中日数学课程比较研究现状 |
一、对课程标准的比较 |
二、对教科书整体的比较 |
三、对教材中某一领域(或某一知识点)的比较 |
四、代数内容的比较研究 |
第四节 相关研究综述小结 |
第三章 研究设计 |
第一节 研究对象 |
第二节 研究问题 |
第三节 概念界定与研究方法 |
一、概念界定 |
二、研究方法 |
第四节 研究框架 |
第四章 中日高中数学代数内容宏观分析 |
第一节 中日数学课程目标比较 |
一、中日数学课程简介 |
二、中日高中数学课程目标比较 |
第二节 中日高中数学教材设计特征比较 |
一、教材整体信息比较 |
二、教材体例结构比较 |
三、教材前言的比较 |
四、栏目设置的比较 |
第三节 中日高中代数内容分布的比较 |
第四节 中日高中代数内容选取及编排的比较 |
一、代数知识内容的选取 |
二、代数知识内容的编排 |
第五章 中日高中数学教材“集合与函数”的微观分析 |
第一节 内容要求的比较 |
一、“集合与常用逻辑用语”内容要求比较 |
二、“指数函数与对数函数”内容要求比较 |
三、“三角函数”内容要求比较 |
第二节 知识点引入方式的比较 |
一、知识点引入方式说明 |
二、知识点引入方式比较 |
第三节 知识点呈现方式的比较 |
一、知识点呈现方式说明 |
二、知识点呈现方式比较 |
第四节 “集合与函数”知识选取及编排的比较 |
一、“集合与常用逻辑用语”的比较 |
二、“指数函数与对数函数”的比较 |
三、“三角函数”的比较 |
第六章 研究结论与建议 |
第一节 中日代数内容宏观比较结论 |
一、中日两国课程目标比较结论 |
二、教材设计特征比较结论 |
三、代数内容分布比较结论 |
四、代数内容选取及编排比较结论 |
第二节 中日代数“集合与函数”的微观比较结论 |
一、内容要求的比较结论 |
二、知识点引入方式的比较结论 |
三、知识点呈现方式的比较结论 |
四、“集合与函数”知识选取及编排的比较结论 |
第三节 研究启示 |
一、丰富卷首与卷末的栏目设置,注重细节设计 |
二、注重知识的拓展和延伸,丰富函数类型 |
三、充分利用图表,设多级标题区分不同知识点 |
四、加强概念之间的内部联系,注重知识衔接 |
第四节 有待进一步研究的问题 |
参考文献 |
附录 |
致谢 |
(10)高中数学新旧教科书函数部分比较研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
(一)教科书的编写背景 |
(二)函数的教学背景 |
二、研究问题 |
三、研究意义 |
(一)理论意义 |
(二)实践意义 |
第二章 文献综述 |
一、概念界定 |
(一)教科书的概念 |
(二)教科书的地位 |
二、教科书的历史演变 |
(一)课程结构的变化 |
(二)函数内容在教科书中的历史演变 |
三、数学教科书的研究综述 |
(一)国外数学教科书研究现状 |
(二)国内数学教科书的研究现状 |
(三)综述小结 |
第三章 研究设计 |
一、研究对象 |
二、研究方法 |
(一)文献分析法 |
(二)比较分析法 |
(三)统计分析法 |
三、研究框架 |
第四章 教科书“函数”内容的对比分析 |
一、课程标准对“函数”的教学要求 |
(一)课时安排与教学目标 |
(二)单元教学建议 |
二、教科书内容分析 |
(一)知识体系与内容安排 |
(二)栏目设置 |
(三)章节引入方式 |
(四)概念与性质的呈现方式 |
(五)章末回顾 |
三、教科书探究活动的分析 |
(一)数学探究与信息技术的运用程度 |
(二)数学建模与函数应用意识的培养程度 |
(三)数学文化的渗透程度 |
第五章 教科书“函数”难度的比较分析 |
一、新旧版教科书函数部分内容广度的比较 |
二、新旧版教科书函数部分内容深度的比较 |
(一)抽象度分析法 |
(二)新版教科书函数内容的深度分析 |
(三)旧版教科书函数内容的深度分析 |
三、新旧版教科书函数部分例题与习题难度的比较 |
(一)例题的界定与数量统计分析 |
(二)习题的界定与数量统计分析 |
第六章 结论与建议 |
一、研究结论 |
二、建议 |
(一)形成探究式教学模式 |
(二)注重知识内容的背景设计 |
(三)合理安排知识顺序 |
(四)渗透数学思想方法 |
(五)融入现代信息技术 |
结语 |
注释 |
参考文献 |
攻读硕士学位期间所发表的学术论文 |
致谢 |
四、关于指数函数的性质的证明(论文参考文献)
- [1]高中数学课程标准与高考及课堂教学的一致性研究 ——以近五年全国数学Ⅰ卷为例[D]. 刘英杰. 济南大学, 2019(01)
- [2]人教版与上教版教材函数内容的比较 ——以《函数的基本性质》、《基本初等函数(Ⅰ)》为例[D]. 刘银琼. 广州大学, 2019(01)
- [3]HPM视角下中美高中数学教材的比较研究 ——以人教A版与加州McGraw Hill版教材函数内容为例[D]. 陈海云. 云南师范大学, 2019(01)
- [4]在函数教学中培养学生数学抽象素养的研究[D]. 陈星宇. 湖南师范大学, 2020(01)
- [5]高中数学导研式教学研究[D]. 李昌官. 华东师范大学, 2016(05)
- [6]核心素养背景下的高一函数学习现状的调查研究[D]. 殷烁. 河北师范大学, 2020(07)
- [7]高中数学逻辑推理素养培养研究[D]. 穆明星. 石河子大学, 2020(08)
- [8]新中国成立以来我国高中教科书中函数内容60年演变研究[D]. 邹岩. 内蒙古师范大学, 2013(S2)
- [9]中日高中数学代数内容教材对比研究 ——以集合与函数为例[D]. 丁名杨. 中央民族大学, 2020(01)
- [10]高中数学新旧教科书函数部分比较研究[D]. 雷焰麟. 哈尔滨师范大学, 2020(01)