一、The Expression of the Plasmid DNA Encoding TGF-β_1 in Endothelium after Injection into the Anterior Chamber(论文文献综述)
Xu Li,Bingyang Dai,Jiaxin Guo,Lizhen Zheng,Quanyi Guo,Jiang Peng,Jiankun Xu,Ling Qin[1](2021)在《Nanoparticle–Cartilage Interaction: Pathology-Based Intra-articular Drug Delivery for Osteoarthritis Therapy》文中研究指明Osteoarthritis is the most prevalent chronic and debilitating joint disease,resulting in huge medical and socioeconomic burdens.Intra-articular administration of agents is clinically used for pain management.However,the effectiveness is inapparent caused by the rapid clearance of agents.To overcome this issue,nanoparticles as delivery systems hold considerable promise for local control of the pharmacokinetics of therapeutic agents.Given the therapeutic programs are inseparable from pathological progress of osteoarthritis,an ideal delivery system should allow the release of therapeutic agents upon specific features of disorders.In this review,we firstly introduce the pathological features of osteoarthritis and the design concept for accurate localization within cartilage for sustained drug release.Then,we review the interactions of nanoparticles with cartilage microenvironment and the rational design.Furthermore,we highlight advances in the therapeutic schemes according to the pathology signals.Finally,armed with an updated understanding of the pathological mechanisms,we place an emphasis on the development of "smart" bioresponsive and multiple modality nanoparticles on the near horizon to interact with the pathological signals.We anticipate that the exploration of nanoparticles by balancing the efficacy,safety,and complexity will lay down a solid founda?tion tangible for clinical translation.
陈芳芳[2](2021)在《脂肪细胞来源外泌体在糖尿病动脉粥样硬化疾病中的作用及机制研究》文中进行了进一步梳理研究背景糖尿病是21世纪全球最严重的公共卫生问题之一,我国已成为糖尿病患者总数最多的国家。与未患糖尿病的成年人相比,大约75%的2型糖尿病患者死于心血管并发症。研究表明,冠心病合并2型糖尿病患者的冠状动脉受累程度高且弥漫病变较多、狭窄程度较重,临床治疗困难明显增加。经皮冠状动脉介入治疗(Percutaneous coronary interventions,PCI)是目前用于治疗冠心病合并糖尿病的有效手段。但是在PCI日臻完善的今天,糖尿病一直是PCI术中并发症和术后近、远期预后不良的独立危险因素。糖尿病患者PCI术后支架内再狭窄发生率显着升高,是严重影响患者预后的主要因素。支架内再狭窄(Int-stentrestenosis,ISR)是涉及多种机制的复杂疾病过程,是恶化2型糖尿病心血管并发症患者预后的核心问题。现有观点认为以平滑肌细胞增殖为核心的血管内膜增生是支架内再狭窄的主要病理过程和关键环节。以此为靶点开发的雷帕霉素、紫杉醇药物洗脱支架可在一定程度上降低支架内再狭窄的发生率,但存在“晚期追赶现象”,且晚期支架内再狭窄发生率仍高达10%。由此推测平滑肌细胞增殖可能只是血管内膜增生的主要中间过程而非启动因素,而糖尿病导致PCI术后支架内再狭窄发生率显着增高的关键机制也尚未阐明。因此,探索糖尿病条件下血管内膜增生的启动环节,寻找以此为靶点的干预方法,才能从源头上阻断支架内再狭窄的发生发展。对于血管结构而言,内皮细胞作为管壁组织与血液中各种病理性刺激的天然屏障,是保护平滑肌细胞免受刺激因素干扰的关键,在血管内膜增生过程中可能是先于平滑肌细胞发挥作用的核心角色。支架的植入过程中存在内皮细胞受损,内皮细胞损伤是启动动脉粥样硬化的关键步骤。围手术期药物的规范应用已在最大程度上保护了内皮细胞的完整性,而平滑肌细胞仍能不断受到刺激而增殖。近期关于内皮细胞在刺激因素下向间质细胞转变即内皮间质转化(Endothelial-Mesenchymal Transition,EndMT)的研究给了我们一定的启示。EndMT 是指在某些特定的生理或病理条件下,内皮细胞失去其自身特异性抗原,而获得间质细胞抗原,同时其生物学特性明显改变,获得较强的增殖、迁移、收缩能力。EndMT在冠状动脉和肺动脉的发育过程中可使内皮细胞向平滑肌细胞进行转化,对心血管系统的正常发育有至关重要的作用。EndMT参与了诸多与血管内膜增生相关疾病的发生过程,促进动脉粥样硬化,但未涉及PCI术后再狭窄防治的研究。因此,EndMT可能是支架内再狭窄发生的关键步骤。近来研究证实,多种外界刺激因素在内皮细胞发生EndMT中起重要作用,包括高糖、炎症、低氧、脂代谢异常、氧化应激、机械牵张力、吸烟等,但是糖尿病、动脉粥样硬化及支架内再狭窄的发病机制复杂,涉及上述多种机制的协同作用。外泌体(Exosomes)能够携带大量蛋白质、核酸及脂质成分,整合来源细胞的有效刺激信息,有效实现信号的级联放大和远距离传输。Exosomes所携带、传递的信息成分多与其来源细胞/组织密切相关。糖尿病状态下,脂肪细胞来源外泌体(Adipocyte-derived exosomes,AdExos)含有脂肪组织炎症及胰岛素抵抗的相关蛋白及核酸成分,能够通过作用于靶细胞诱发多种生物学功能,可能是链接胰岛素抵抗的脂肪组织与糖尿病动脉血管之间的重要桥梁,是整合机体多种刺激因素,诱发EndMT的关键载体。Sonic hedgehog(Shh)作为Hedgehog蛋白三种同源形式之一,表达最广泛,活性最高,是参与胚胎发育的关键蛋白。在肿瘤领域的研究发现,Shh具有激活Snail信号通路促进上皮间质转化(Epithelial-mesenchymal transition,EMT)的作用,而EndMT是EMT的一种特殊类型。进一步研究证实,Snail信号通路亦是调节EndMT形成的关键信号通路。综上,我们提出研究假说:糖尿病状态下,携带Shh的AdExos增多,被内皮细胞摄取,AdExos通过其表面携带的Shh激活Snail依赖的EndMT过程,导致内皮细胞发生表型转换,逐渐向间质细胞转化,促进血管内膜增生,最终导致支架内再狭窄的发生。鉴于以上假说,我们将进行体内及体外实验,在整体和细胞水平研究脂肪细胞来源外泌体在血管再狭窄中的作用及具体机制。研究目的1.在整体动物水平证实AdExos通过其携带的Shh促进内皮间质转化,加剧血管内膜增生,进而影响糖尿病血管再狭窄的发生;2.从细胞水平探索AdExos促内皮间质转化的特性,验证AdExos通过其携带的Shh激活内皮细胞Snail信号通路并促进EndMT,为2型糖尿病PCI术后支架内再狭窄防治提供新的靶点。研究方法1.培养、诱导分化3T3-L1前脂肪细胞并建立胰岛素抵抗模型首先,我们通过胰岛素、3-异丁基-1-甲基,黄嘌呤与地塞米松联合诱导的方法将3T3-L1前脂肪细胞诱导分化为成熟的脂肪细胞,再通过高糖联合高胰岛素的方法建立胰岛素抵抗的脂肪细胞模型,采用无exosomes血清培养并收集细胞上清,获取对照组(Control,Ctrl)及胰岛素抵抗组(Insulin resistance,IR)脂肪细胞上清。2.Shh腺病毒转染3T3-L1脂肪细胞在建立胰岛素抵抗模型的基础上,我们再将Shh干扰及过表达的腺病毒转染入成熟脂肪细胞中,采用无exosomes血清培养后,收集细胞上清,获取胰岛素抵抗组、Shh干扰的胰岛素抵抗组、Shh过表达的胰岛素抵抗组及空载体胰岛素抵抗组的脂肪细胞上清。3.AdExos的分离提取及特征鉴定将前文中获得的多种脂肪细胞上清通过超速差速离心法,分离提取上清中的外泌体,由此获得对照组外泌体(Ctrl-AdExos)、胰岛素抵抗组外泌体(IR-AdExos)、Shh干扰的胰岛素抵抗组外泌体(IR-AdExosshh-)、Shh过表达的胰岛素抵抗组外泌体(IR-AdExosshh+)及空载体胰岛素抵抗组外泌体(IR-AdExosvector);再采用透射电镜、动态光散射粒度仪、流式细胞仪及Western blot等方法进行AdExos的特征鉴定。4.2型糖尿病血管再狭窄ApoE-/-小鼠模型的构建4周龄的雄性ApoE-/-小鼠,适应性喂养1周后,禁食处理12~14小时,进行腹腔糖耐量试验(Intraperitoneal glucose tolerance test,IPGTT)后随机分为高脂饮食组和普通饮食组,高脂饮食组予以高脂饲料喂养,普通饮食组予以普通生长繁殖饲料喂养;6周后再次进行IPGTT试验,出现胰岛素抵抗的高脂饮食组小鼠给予一次性腹腔注射链脲佐菌素(Streptozotocin,STZ)(剂量标准为75mg/kg),普通饮食组小鼠给予同等剂量的枸橼酸钠缓冲液进行腹腔注射;继续以原饲料喂养2周后,再次进行IPGTT试验和随机血糖检测,如果小鼠的随机血糖水平≥11.1mmol/L,且有多饮、多尿、多食等现象,则纳入2型糖尿病组。对2型糖尿病组小鼠和对照组小鼠通过植入股动脉袖套的方法构建血管再狭窄模型。分别给予生理盐水、IR-AdExos及IR-AdExosshh-经尾静脉注射,最后得到动物分组分别为普通饮食再狭窄组(Chow)、普通饮食+IR-AdExos再狭窄组(Chow+IR-AdExos)、普通饮食+IR-AdExosshh-再狭窄组(Chow+IR-AdExosshh)、糖尿病再狭窄组(DM)、糖尿病+IR-AdExos再狭窄组(DM+IR-AdExos)及糖尿病+IR-AdExosshh-再狭窄组(DM+IR-AdExosshh-)。5.小鼠体内血管对AdExos的摄取为了验证小鼠血管能够摄取AdExos,我们采用PKH26染料标记AdExos,经尾静脉注射入再狭窄模型小鼠,制作血管标本切片,通过免疫荧光染色观察AdExos在体内的摄取情况。6.病理组织学染色观察血管再狭窄情况对股动脉再狭窄部位组织标本切片进行Hematoxylin-eosin staining(HE)染色、Verhoeffs Van Gieson弹性纤维染色及免疫组化染色,观察血管再狭窄情况。7.免疫荧光染色检测再狭窄部位EndMT发生情况通过进行 CD31 和 SM22α、CD31 和 Vimentin、Ve-Cadherin 和 SM22α、Ve-Cadherin和Vimentin免疫荧光共定位染色的方法检测血管再狭窄部位EndMT的发生情况。8.分离提取小鼠主动脉内皮细胞,验证内皮细胞对AdExos的摄取为了进一步研究AdExos对内皮细胞发生内皮间质转化的影响,我们进行了体外细胞实验,通过酶消法提取小鼠主动脉内皮细胞,给予PKH26标记的AdExos,采用鬼笔环肽标记细胞骨架蛋白,显微镜下观察内皮细胞对AdExos的摄取。9.AdExos刺激孵育小鼠主动脉内皮细胞,检测细胞中EndMT发生情况再将所获取的Ctrl-AdExos、IR-AdExos、IR-AdExosshh-、IR-AdExosshh+、IR-AdExosvector等不同培养条件来源的AdExos及TGF-β、SHH重组蛋白用以刺激孵育小鼠主动脉内皮细胞,通过免疫荧光染色及Western blot的方法评价内皮标记物和间质标记物的表达变化及EndMT的发生情况。10.Western blot 检测分子机制方面,取AdExos及重组蛋白刺激孵育后的小鼠主动脉内皮细胞,提取蛋白质,采用Western blot方法检测Shh、内皮细胞及间质细胞标记物的表达及信号通路分子的表达情况。研究结果1.建立3T3-L1脂肪细胞胰岛素抵抗模型3T3-L1前脂肪细胞诱导分化至成熟脂肪细胞后,细胞质内出现较多、较大的脂滴;高糖高胰岛素条件培养成熟脂肪细胞24h后,脂肪细胞总蛋白中总IRS1表达量显着减少,磷酸化Ser307位点的IRS1表达量显着增高,Akt的磷酸化水平降低;脂肪细胞细胞膜蛋白Glut4表达减少而细胞浆蛋白Glut4表达增加,提示胰岛素抵抗状态下Glut4细胞膜转位减少;胰岛素抵抗状态下,脂肪细胞脂质沉积增多。上述结果表明我们成功建立了 3T3-L1脂肪细胞胰岛素抵抗模型。2.AdExos的分离提取及特征鉴定透射电镜观察下发现AdExos呈膜包被的囊泡状,直径在30~100nm范围内;动态光散射粒度仪结果表明AdExos直径范围分布于30~100nm;Western blot及流式细胞学结果表明AdExos阳性表达CD63、TSG101及CD81,而不表达GRP94和Calnexin。3.构建2型糖尿病血管再狭窄ApoE-/-小鼠模型ApoE-/-小鼠通过高脂饮食饲养联合链脲佐菌素(Streptozotocin,STZ)一次性注射的方法构建2型糖尿病模型,糖尿病小鼠随机血糖≥11.1 mmol/L,且有多饮、多尿、多食等现象。在此模型的基础上,通过股动脉袖套植入的方式构建再狭窄模型。4.糖尿病脂肪组织来源外泌体富集Shh分子通过Western blot方法检测对照组和糖尿病组小鼠脂肪组织来源外泌体蛋白中Shh分子的表达情况,结果表明糖尿病组小鼠脂肪组织来源外泌体中Shh含量显着高于对照组,证明糖尿病脂肪组织来源外泌体富集Shh分子。5.小鼠体内血管对AdExos的摄取在免疫荧光显微镜下进行观察,发现PKH26标记的AdExos呈红色荧光,分布于小鼠血管范围内,证明小鼠血管能够成功摄取AdExos。6.IR-AdExos通过携带的Shh分子促进血管再狭窄高分辨率显微超声技术检测股动脉收缩期最大流速(Peak systolic velocity,PSV),HE染色分析血管再狭窄,综合二者结果确定血管再狭窄情况。结果表明,糖尿病组小鼠股动脉再狭窄情况与普通饮食组相比明显加重;与普通饮食组或糖尿病组相比,普通饮食+IR-AdExos组或糖尿病+IR-AdExos组的再狭窄情况进一步加重;而Shh蛋白敲减后的IR-AdExos,其促血管再狭窄的能力有所下降,即普通饮食+IR-AdExosshh-组小鼠股动脉再狭窄较普通饮食+IR-AdExos组小鼠更轻,糖尿病+IR-AdExosshh-组小鼠股动脉再狭窄程度比糖尿病+IR-AdExos组小鼠更轻。7.IR-AdExos通过携带的Shh分子促进股动脉再狭窄部位EndMT的发生通过免疫荧光共定位的方法检测血管再狭窄部位发生EndMT的情况,免疫荧光共定位时,如果内皮细胞同时表达内皮细胞特征性标志物(CD31、Ve-Cadherin)和间充质细胞特征性标志物(SM22α、Vimentin)则记为发生内皮细间质转化的细胞。结果表明糖尿病状态下,内皮细胞标志物减少,间质细胞标志物增加,提示发生EndMT;尾静脉注射IR-AdExos能够进一步促进EndMT的发生,而敲减Shh的IR-AdExos其促EndMT作用减弱,证明IR-AdExos表面的Shh分子是IR-AdExos发挥促EndMT作用的主要分子靶点。8.成功提取原代小鼠主动脉内皮细胞,小鼠主动脉内皮细胞能够摄取AdExos我们采用酶消法成功提取小鼠主动脉内皮细胞,经免疫荧光染色证明所提取的内皮细胞阳性表达内皮细胞标记物CD31,证明小鼠主动脉内皮细胞提取成功。将PKH26标记的AdExos与小鼠主动脉内皮细胞共同孵育,显微镜下观察可见细胞浆内有红色荧光,即为被小鼠主动脉内皮细胞摄取的AdExos,证明小鼠主动脉内皮细胞能够摄取AdExos。9.AdExos促进内皮细胞发生EndMT将 Ctrl-AdExos、IR-AdExos、IR-AdExosshh-、IR-AdExosshh+、IR-AdExosvector等不同培养条件来源的AdExos及TGF-β、SHH重组蛋白刺激孵育小鼠主动脉内皮细胞后,通过免疫荧光共定位的方法检测内皮细胞EndMT的发生。免疫荧光共定位时,如果内皮细胞同时表达内皮细胞特征性标志物(CD31、Ve-Cadherin)和间充质细胞特征性标志物(α-SMA、FAP、FSP-1)则记为发生内皮细间质转化的细胞。与Ctrl组相比,IR-AdExos组内皮细胞发生EndMT增多;与IR-AdExos组相比,IR-AdExosshh-组发生EndMT的内皮细胞数量并无显着增加,而IR-AdExosshh+组中发生EndMT的内皮细胞数量进一步增加;TGF-β作为阳性对照,在其刺激下,发生EndMT的内皮细胞数量显着增加;SHH重组蛋白刺激组中,发生EndMT的内皮细胞数量也有显着增加。上述结果表明,IR-AdExos能够促进内皮细胞发生EndMT,且该作用是经由其携带的Shh分子发挥的。另,TGF-β及SHH也具有促进内皮细胞发生EndMT的作用。10.IR-AdExos促进血管再狭窄EndMT的分子机制与Ctrl组相比,IR-AdExos组内皮细胞中Snail和Slug表达显着升高。证明IR-AdExos的促EndMT作用是通过其表面的Shh作用于下游的Snail和Slug分子发挥作用。研究结论1.胰岛素抵抗条件下,脂肪细胞中脂质含量增多,脂肪细胞来源外泌体富集Shh分子;2.IR-AdExos能够通过携带的Shh分子,经由Shh/Snail/Slug信号通路促进小鼠主动脉内皮细胞发生EndMT;3.富集Shh的IR-AdExos能够明显促进血管内皮细胞发生间质转化,进而加剧糖尿病小鼠血管再狭窄的发生,可能是糖尿病脂肪组织促进血管再狭窄的重要机制之一,IR-AdExos有望成为进一步防治糖尿病ISR的新靶点。研究背景糖尿病已成为21世纪威胁人类生命健康的重大慢性疾病之一。近年来,我国糖尿病患病率增长迅速,中国已成为全球糖尿病患者总数最多的国家。心血管疾病是糖尿病患者的主要死亡原因。粥样斑块破裂导致的急性冠脉综合征是糖尿病患者心血管事件的主要原因。但是糖尿病患者冠状动脉病变严重、易损斑块发生率高的机制尚未完全阐明。循证医学证据表明,积极控制血糖可以降低糖尿病患者微血管病变的发生率,但强化降糖治疗能否降低2型糖尿病患者心血管事件的发生率尚未得到证实。这提示血糖和胰岛素水平仅能反映代谢水平,而不是糖尿病患者冠状动脉病变严重、易损斑块发生率高的根本原因。因此,亟需深入探讨糖尿病患者大血管并发症增加的深层次机制。既往研究发现动脉粥样硬化斑块内常出现病理性新生血管,且在易损斑块和斑块易损部位尤为明显,与斑块稳定性密切相关。病理性新生血管是动脉粥样硬化易损斑块形成的关键环节。越来越多的证据表明,动脉损伤部位病理性新生血管形成与粥样硬化斑块引起的急性冠脉综合症有关,这些斑块脆性较大且易发生破裂,进而导致血管阻塞。除了斑块内出血机制以外,病理性新生血管还通过白细胞征募来促进动脉粥样硬化斑块的不稳定性。2型糖尿病和动脉粥样硬化同属慢性炎症性疾病,在2型糖尿病状态下,脂质在脂肪细胞中不断存储,随着脂肪细胞逐渐增大,导致脂肪细胞功能失调,脂肪因子分泌紊乱,大量促炎因子合成释放,引发全身代谢性炎症反应、胰岛素抵抗,从而加速斑块进展,促进易损斑块的形成。此外,有研究发现,脂肪细胞能够分泌内皮特异性丝裂原和促血管生长因子,参与新生血管的形成。但功能失调的脂肪组织如何促进斑块内新生血管的形成,从而促进斑块发生发展的确切机制至今尚未见报道。近期,有学者认为外泌体(Exosomes)是脂肪组织与血管间信息传递的重要载体。Exosomes是由多种细胞(如血小板、内皮细胞、单核细胞等)产生的,携带大量与其细胞/组织来源和功能密切相关的蛋白质、核酸和脂质成分。可实现信号的级联放大和远距离传输。在人体内所有exosomes中,脂肪细胞来源的exosomes(Adipocyte-derived exosomes,AdExos)与糖尿病动脉粥样硬化的发生发展及新生血管形成的关系日益引起人们的关注。Hulsmans等认为,AdExos是将脂肪组织产生的炎症及氧化应激信息传递到血管的重要使者,从而引起内皮损伤、诱发动脉粥样硬化。但是,AdExos对于斑块稳定性变化及斑块内病理性新生血管的形成有无影响尚未见报道。研究发现AdExos富含纤粘连蛋白、层粘连蛋白,有利于循环中的AdExos粘附、迁移、浸润于内皮细胞。糖尿病慢性低度炎症状态下,受损的内皮细胞通透性增加且炎症因子(IL-6、IL-8)、趋化因子(MCP-1)、粘附因子(VCAM-1、E-selectin)表达上调,为循环中的AdExos粘附、浸润创造了良好的条件。此外,AdExos携带丰富的促血管生成miRNA,如miR221、miR27b、miR21、miR17~92等。脂肪组织作为内分泌器官,是多器官间相互联系的纽带。Hedgehog 蛋白在哺乳动物中有 Sonichedgehog(Shh)、Indianhedgehog(Ihh)及Desert hedgehog(Dhh)三种同源形式,其中Shh表达最广泛,活性最高。Hedgehog在斑马鱼胚胎发育中通过VEGF促进主动脉生成。Shh缺失的小鼠发育中的肺缺乏正常血管化的能力。Hedgehog信号可通过控制众多促血管生成因子包括VEGF-a,VEGF-b,VEGF-c及AngII的表达而调控新生血管的生成。Hedgehog蛋白促血管生成功能的发挥是通过连接到一种12次跨膜受体蛋白--Patched实现的。在正常情况下,Patched受体与另一种7次跨膜受体蛋白——Smoothened(Smo)相结合且抑制Smo的作用。当Hedgehog蛋白与Patched受体结合后,解除了对Smo的抑制作用,进而启动信号转导。Smo是Hedgehog信号通路的信息转换器,把细胞外的Hedgehog蛋白信号向细胞内传递,激活胶质瘤相关原癌基因(Glioma-associated oncogene homolog,Gli)转录因子。综上所述,我们提出了如下假说:糖尿病状态下,功能失调的脂肪组织释放入循环血液中的AdExos数量增多,其通过其表面的Hedgehog蛋白与内皮细胞上的Patched受体结合,促进病理性新生血管的形成,加速斑块进展及易损斑块的形成。研究目的1.从细胞水平分析AdExos促血管生成的特性;2.体外验证AdExos是否通过启动Hedgehog信号通路,促进新生血管的形成。研究方法1.培养、诱导分化3T3-L1前脂肪细胞并建立胰岛素抵抗模型通过胰岛素、3-异丁基-1-甲基-黄嘌呤与地塞米松联合诱导的方法将3T3-LI前脂肪细胞诱导分化为成熟的脂肪细胞。再通过高糖+高胰岛素的方法建立胰岛素抵抗的脂肪细胞模型。采用无exosomes血清培养并收集细胞上清,获取对照组(Control,Ctrl)及胰岛素抵抗组(Insulin resistance,IR)脂肪细胞上清。2.Shh腺病毒转染3T3-L1脂肪细胞在建立胰岛素抵抗模型的基础上,我们再将Shh干扰及过表达的腺病毒转染入成熟脂肪细胞中,采用无exosomes血清培养后,收集细胞上清,获取胰岛素抵抗组、Shh干扰的胰岛素抵抗组、Shh过表达的胰岛素抵抗组及空载体胰岛素抵抗组的脂肪细胞上清。3.AdExos的分离提取将前文中获得的多种脂肪细胞上清通过超速差速离心法,分离提取上清中的外泌体,由此获得对照组外泌体(Ctrl-AdExos)、胰岛素抵抗组外泌体(IR-AdExos)、Shh干扰的胰岛素抵抗组外泌体(IR-AdExosshh-)、Shh过表达的胰岛素抵抗组外泌体(IR-AdExosshh+)及空载体胰岛素抵抗组外泌体(IR-AdExosvector)。4.分离提取小鼠主动脉内皮细胞,验证内皮细胞对AdExos的摄取为了进一步研究AdExos对内皮细胞血管新生能力的影响,我们进行了体外细胞实验,通过酶消法提取小鼠主动脉内皮细胞,给予PKH26标记的AdExos,显微镜下观察内皮细胞对AdExos的摄取。5.AdExos刺激孵育小鼠主动脉内皮细胞,检测内皮细胞功能的改变将所获取的 Ctrl-AdExos、IR-AdExos、IR-AdExosshh-、IR-AdExosshh+、IR-AdExosvector等不同培养条件来源的AdExos及VEGF、SHH重组蛋白用以刺激孵育小鼠主动脉内皮细胞,通过PCNA/KI67免疫荧光染色检测内皮细胞增殖功能,通过细胞划痕实验检测迁移功能。6.小管形成实验检测AdExos促血管新生的特性将 Ctrl-AdExos、IR-AdExos、IR-AdExosshh-、IR-AdExosshh+、IR-AdExosvector等不同培养条件来源的AdExos及VEGF、SHH重组蛋白用以刺激孵育小鼠主动脉内皮细胞,通过小管形成实验观察小管形成的数量及分支长度,评价AdExos的促血管新生的能力。7.Hedgehog信号通路在AdExos促血管新生中的作用分子机制方面,给予Hedgehog蛋白阻断剂——环巴胺阻断Hedgehog信号通路,通过小管形成实验观察小管形成的数量及分支长度,检测内皮细胞的小管形成功能。给予Hedgehog蛋白阻断剂——环巴胺和Gli抑制剂——Gant61刺激孵育,提取小鼠主动脉内皮细胞的蛋白质,通过Western blot方法检测信号通路分子的表达情况。研究结果1.成功提取原代小鼠主动脉内皮细胞,小鼠主动脉内皮细胞能够摄取AdExos我们采用酶消法成功提取小鼠主动脉内皮细胞,经免疫荧光染色证明所提取的内皮细胞阳性表达内皮细胞标记物CD31,证明小鼠主动脉内皮细胞提取成功。将PKH26标记的AdExos与小鼠主动脉内皮细胞共同孵育,显微镜下观察可见细胞浆内有红色荧光,即为被小鼠主动脉内皮细胞摄取的AdExos,证明小鼠主动脉内皮细胞能够摄取AdExos。2.IR-AdExos改变小鼠主动脉内皮细胞的增殖和迁移功能用Ctrl-AdExos、IR-AdExos、VEGF及SHH重组蛋白刺激孵育小鼠主动脉内皮细胞。首先进行PCNA和KI67免疫荧光染色,结果显示:与对照组相比,Ctrl-AdExos刺激组的PCNA和KI67的表达量有所增加,IR-AdExos刺激组的PCNA和KI67的表达量显着增加,以VEGF作为促血管新生的阳性对照用以刺激内皮细胞,结果发现,与对照组相比,VEGF刺激组中内皮细胞的PCNA及KI67表达量均显着增加。表明IR-AdExos、VEGF能够显着增强内皮细胞的增殖功能。细胞划痕实验结果显示:与对照组相比,Ctrl-AdExos刺激组的细胞迁移率有增加,IR-AdExos细胞迁移率显着增加,VEGF刺激组细胞迁移率明显增加。表明IR-AdExos、VEGF能够显着增强内皮细胞的迁移功能。3.AdExos促进小鼠主动脉内皮细胞的小管形成功能用Ctrl-AdExos、IR-AdExos、VEGF及SHH重组蛋白刺激孵育小鼠主动脉内皮细胞。进行小管形成实验,结果发现:与对照组相比,Ctrl-AdExos刺激组细胞小管形成数量、分支长度增加,IR-AdExos刺激组细胞小管形成数量、分支长度显着增加,VEGF阳性对照组内皮细胞小管形成数量、分支长度显着增加。表明IR-AdExos、VEGF能够明显增强内皮细胞的小管形成功能。4.Shh基因干预的IR-AdExos影响小鼠主动脉内皮细胞的增殖和迁移功能用 IR-AdExos、IR-AdExosshh-、IR-AdExosshh+、IR-AdExosvector 等不同培养条件来源的AdExos及VEGF、SHH重组蛋白刺激孵育小鼠主动脉内皮细胞。进行PCNA和KI67免疫荧光染色,结果显示:与IR-AdExos组相比,IR-AdExosshh-组中内皮细胞PCNA、KI67的表达量有所降低,IR-AdExosshh+组内皮细胞中PCNA、KI67的表达量显着增加。表明Shh是IR-AdExos促进内皮细胞增殖功能的重要分子。细胞划痕实验结果显示:与IR-AdExos组相比,IR-AdExosshh-组中细胞迁移率降低,IR-AdExosshh+组内皮细胞细胞迁移率显着增加。表明Shh是IR-AdExos促进内皮细胞迁移功能的重要分子。5.Shh基因干预的IR-AdExos影响小鼠主动脉内皮细胞的小管形成功能用 IR-AdExos、IR-AdExosshh-、IR-AdExosshh+、IR-AdExosvector 等不同培养条件来源的AdExos及VEGF、SHH重组蛋白刺激孵育小鼠主动脉内皮细胞。进行小管形成实验,结果显示:与IR-AdExos组相比,IR-AdExosshh-组中内皮细胞小管形成数量、分支长度降低,IR-AdExosshh+组内皮细胞小管形成数量、分支长度显着增加。表明Shh是IR-AdExos促进内皮细胞血管新生的重要分子。6.Hedgehog信号通路在AdExos促血管新生中的作用给予 Hedgehog 抑制剂环巴胺和 IR-AdExos、IR-AdExosshh-、IR-AdExosshh+、IR-AdExosvector等不同培养条件来源的AdExos以及VEGF重组蛋白刺激孵育小鼠主动脉内皮细胞和人脐静脉内皮细胞,检测内皮细胞小管形成功能,结果表明IR-AdExos+环巴胺组的小管形成数量、分支长度显着降低,证明Hedgehog是AdExos促血管新生的关键分子。7.AdExos促血管新生信号通路分子的表达情况给予Hedgehog抑制剂环巴胺、Gli抑制剂Gant61及IR-AdExosshh+刺激孵育小鼠主动脉内皮细胞和人脐静脉内皮细胞。Western blot结果显示:IR-AdExosshh+刺激条件下,小鼠主动脉内皮细胞中Gli表达量显着升高;给予环巴胺和Gant61(Gli抑制剂)后,Gli表达量显着降低,证明AdExos通过Patched/Gli信号通路促进血管新生。研究结论1.IR-AdExos能够增强小鼠主动脉内皮细胞增殖、迁移和小管形成功能,促进血管新生;2.Shh是IR-AdExos促进内皮细胞功能改变的关键分子;3.IR-AdExos通过Patched/Gli信号通路促进血管新生。
Anila Khalique[3](2021)在《线粒体靶向纳米酶的仿生合成及在心脏缺血再灌注损伤治疗上的研究》文中研究表明由缺血引发的组织损伤是造成心血管疾病的主要原因,如心肌梗塞和缺血再灌注等。组织缺血最初会造成组织供血不足,伴随物质及能量代谢的不平衡,最终造成了组织的损伤。对于缺血性疾病治疗的主要策略是恢复供血,包括血液再灌注以及血管网络的重新建立。然而,再灌注会造成组织的进一步损伤,即缺血再灌注损伤。造成缺血再灌注损伤的分子机理十分复杂,其中研究比较深入的是再灌注造成的氧自由基爆发,主要包括线粒体呼吸链产生的超氧自由基。因而,针对线粒体活性氧爆发,发展新的治疗缺血再灌注损伤的策略尤为重要。本论文利用一种人源的可以自我组装的蛋白纳米载体--铁蛋白纳米笼(FTn),仿生设计和开发了基于铁蛋白纳米笼的纳米酶,来模拟超氧化物歧化酶和过氧化氢酶活性,并结合铁蛋白自身靶向缺氧组织和高的组织渗透能力的特点,通过全身递送和局部粘附两种方式,探索其应用于缺血再灌注损伤中组织的修复与再生。纳米酶是一种具有类酶活性的纳米材料。近年来研究发现,某些纳米酶可以模拟天然抗氧化酶,有效的清除机体的活性氧。TPP是一种亲脂性阳离子化合物,之前的研究表明其可以在电负性的线粒体上富集,被广泛地用于各种配体的线粒体靶向。本论文设计了一种TPP修饰的纳米酶,利用TPP靶向线粒体的同时,利用纳米酶的类酶活性清除线粒体活性氧。首先,我们利用FTn内部空腔合成了具有超氧化物歧化酶(SOD)及过氧化氢酶(CAT)活性的Mn O2纳米酶,同时将TPP修饰在FTn外部以实现线粒体的靶向。与单独的纳米酶(Mn O2-Fenozyme)相比,偶联TPP的纳米酶(Mito-Fenozyme)可以实现溶酶体逃逸,有效的靶向线粒体,并清除线粒体活性氧。进而,我们在体外,利用大鼠心肌细胞H9C2证实Mito-Fenozyme可以显着提高线粒体DNA拷贝数及ATP的产生,有效的缓解了氧化应激造成的线粒体损伤。另外,我们研究发现,缺血组织的缺氧状态会导致铁蛋白的受体(TIM-2)高表达,因此,铁蛋白纳米酶自身就具有靶向缺血组织的特性,我们也通过尾静脉注射荧光标记的铁蛋白,利用小动物成像证明了铁蛋白在缺血再灌注心脏上的富集能够显着提高。随后,我们也利用小鼠缺血再灌注模型,将Mito-Fenozyme经尾静脉给药,考察其对缺血再灌注损伤的保护作用。超声波心动扫描结果显示,Mito-Fenozyme可以有效的恢复心脏功能。病理切片结果分析,与对照相比,Mito-Fenozyme治疗组小鼠心脏梗死区血管壁厚度及梗死面积都得到了显着改善。儿茶酚功能化的仿贻贝水凝胶对组织有很好的黏附效果,近年来作为粘附性水凝胶也被用于再生医学上。因此,我们探索能否利用心脏补片技术实现线粒体靶向纳米酶在心脏缺血再灌注损伤部位的局部原位治疗。我们将上述具有线粒体靶向能力的纳米酶包覆在透明质酸-儿茶酚胺水凝胶中,制备了心脏补片(Mitofegel)。将心脏补片局部移植到心脏损伤部位,结果显示心脏补片可以在心脏长时间的驻留。我们发现,Mitofegel可以实现线粒体靶向纳米酶的有效缓慢释放,并渗透到心脏组织内。通过TTC和Evans blue双染色考察Mitofegel处理对心肌梗死面积的影响,结果显示Mitofegel可以有效的减少心脏梗死区面积。与手术组相比,超声波心动扫描及病理组织切片均显示Mitofegel可以有效的恢复缺血再灌注损伤后的心脏功能。综上所述,我们的结果显示铁蛋白纳米笼是一种良好的蛋白纳米载体,通过按需设计,可以清除线粒体活性氧,保护线粒体功能,为治疗缺血再灌注损伤提供了新的策略。
张杰[4](2021)在《E3泛素连接酶TRIM31在高血压肾病中的作用及机制研究》文中研究表明研究背景高血压作为心脑血管疾病发生的主要致病因素,同时也是导致肾脏发生损伤的重要原因。高血压肾病(Hypertensive Renal Disease,HRD)是由原发性高血压导致的肾脏结构和功能的损害,是内科常见疾病之一,但其发病机制尚未完全清楚。高血压肾损害主要表现为蛋白尿增多、良性肾小球硬化、肾脏间质纤维化以及炎症细胞浸润。肾小管及间质的纤维化、炎症和免疫激活是导致HRD持续进展的重要因素。细胞外基质蛋白合成及其降解之间的平衡受损造成过量的基质沉积,这是纤维化过程的一个典型特征。炎症因子的分泌以及炎症细胞的浸润是肾脏纤维化的始动因素。目前还没有有效的方法可预防纤维化的进展,因此提高对HRD纤维化和炎症进展的细胞及分子机制的认识至关重要。目前研究中常见的HRD发病机制有遗传因素、盐敏感、氧化应激、内皮细胞功能障碍以及肾素-血管紧张素醛固酮系统(Renin-Angiotensin-Aldosterone System,RAAS)的激活。抑制RAAS的过度激活是目前减缓肾脏疾病进展的最有效的方法。血管紧张素Ⅱ(Angiotension Ⅱ,AngⅡ)作为RAAS的主要效应因子,主要通过血流动力学和非血流动力学两方面参与血压和靶器官损害的调节。它可作用于肾脏血管平滑肌细胞,导致血管收缩;它也可作为促炎剂,激活细胞内信号传导系统,促进肾脏的炎症反应;而且它可通过上调转化生长因子β1(Transforming growth factor-beta 1,TGF-β1)的表达、增加成纤维细胞增殖,促进细胞外基质的合成、抑制细胞外基质的降解,加速肾脏纤维化的过程。因此,AngⅡ是HRD进展中的关键调节因子。泛素化修饰作为一种常见的蛋白质翻译后修饰,不仅是蛋白酶体降解目的蛋白的标记,也是蛋白-蛋白相互作用和酶激活的调节因素。目前研究发现多种E3泛素连接酶可调控高血压及其靶器官的损害,但针对高血压肾损伤的泛素化修饰研究还鲜有报道。发现调控HRD的新型E3泛素连接酶及探寻其调控机制,将为阐述HRD发病机制及研发HRD药物提供良好的理论基础,这也成为当前该领域的热点问题。TRIM(The tripartite motif)31属于TRIM家族的一员,也是一个非常重要的E3泛素连接酶,其是否同样在高血压及HRD中发挥重要作用尚未报道。既往研究表明,TRIM31在多种疾病发展中发挥着关键的调控作用,尤其是在肿瘤的增殖、迁移过程中,机制方面主要涉及到TRIM31调控核因子κB(Nuclear factor kappa-B,NF-κB)的活化参与炎症反应。因NF-κB的活化在HRD的病理进展中发挥着至关重要的作用,提示TRIM31可能同样参与到HRD疾病的发生和发展中。在本实验中,我们提出以下科学假设:在AngⅡ构建的HRD小鼠模型中,E3泛素化连接酶TRIM31可改善肾脏功能、纤维化和炎症反应。为了验证以上假说,我们精心设计了一系列的体内和体外实验。研究目的1.探讨TRIM31与人和小鼠HRD病理进展的相关性;2.探讨TRIM31是否参与调节HRD小鼠的肾脏功能损害;3.探讨TRIM31是否参与调节HRD小鼠的肾脏纤维化;4.探讨TRIM31是否参与调节HRD小鼠的肾脏炎症反应。研究方法1.实验动物利用 TALEN(Transcription activator-like effectors Nucleases)技术构建TRIM31基因敲除(TRIM3 1-/-)小鼠,小鼠背景为C57BL/6J。与野生型C57BL/6J小鼠杂交扩繁,得到同窝纯合野生型C57BL/6J(TRIM31+/+)小鼠和TRIM31-/-小鼠。野生型C57BL/6J小鼠购买于维通利华(北京)实验动物技术有限公司。所有动物实验均遵循国家卫生部动物管理办法(documentation No 55,2001),同时遵守山东大学齐鲁医院伦理委员会对动物实验的要求和规定。2.实验动物分组(1)选取8周龄雄性野生型(Wildtype,WT)C57BL/6J小鼠,随机分成两组,每组15只:生理盐水组,AngⅡ组。(2)分别选取8周龄雄性TRIM31-/-小鼠和同窝雄性TRIM31+/+小鼠,随机分为四组,每组15只:TRIM31+/++生理盐水组,TRIM31-/-+生理盐水组,TRIM31+/++AngⅡ 组,TRIM31-/-+AngⅡ 组。3.HRD小鼠模型的建立预先将微量渗透泵灌注适当剂量AngⅡ分别埋入8周龄雄性小鼠的背侧皮下,以泵速1000ng/kg/min持续泵入AngⅡ 42天,构建高血压小鼠模型,对照组泵入同等体积的无菌生理盐水(每组15只)。分别于造模前和造模后每周定时测量小鼠血压、体重,并留取小鼠24h尿液。实验结束时,将小鼠进行安乐死,测量体重及左右肾重,并留取小鼠血液、肾脏、心脏、肝脏、小肠等组织标本进行下一步组织和细胞分子学研究。4.临床高血压肾病患者肾活检标本收集和检测我们从山东大学病理学教研室获得行肿瘤切除术的无高血压患者的正常癌旁肾组织(Control)、无高血压的肾小球轻微病变(Glomerular minor lesion,GML)患者肾脏活检组织、HRD患者肾脏活检组织样本。利用免疫组化(immunohistochemistry,IHC)检测TRIM31蛋白的表达情况,同时利用苏木素-伊红染色(Hematoxylin andeosin,HE)和 Masson’s trichrome 染色探讨 TRIM31蛋白表达与肾脏损伤和纤维化程度的相关性。5.小鼠基因型鉴定利用鼠尾提取试剂盒提取小鼠鼠尾DNA,PCR扩增后通过测序对小鼠进行基因型鉴定。同时提取小鼠的肾脏组织蛋白,通过蛋白免疫印迹分析(Western blot)的方法检测TRIM31的蛋白表达水平,评估TRIM31的基因敲除效率。6.细胞培养和处理实验中采用人近端肾小管上皮细胞系(Human proximal renal tubular eβ1thelial cell-2,HK2),培养在 10%FBS 的 RPMI1640 培养基中,于含 5%CO2 的 37℃孵箱中增殖。主要处理见下:(1)时间浓度实验:选用10-5MAngⅡ分别刺激HK2细胞0,4h,8h,12h,24h,36h,收集细胞。(2)浓度梯度实验:分别选用 0,10-8M,10-7M,10-6M,10-5M,10-4M的 AngⅡ刺激HK2细胞24h,收集细胞。7.小鼠血压测量利用Data Sciences International(DSI)无线遥感测量方法分别于造模前和造模后每周定时测量4组小鼠(TRIM31+/++生理盐水组,TRIM31-/-+生理盐水组,TRIM31+/++AngⅡ 组,TRIM31-/-+AngⅡ 组)的收缩压(Systolic blood pressure,SBP)和舒张压(Diastolic blood pressure,DBP)。8.小鼠组织样本取材分别于造模前和造模后每周定时测量小鼠血压、体重,并留取小鼠尿液进行相关肾脏功能指标检测。实验结束时,将小鼠进行安乐死,并留取小鼠血液、肾脏、心脏、肝脏、小肠等组织标本,对心脏和左右肾脏进行称重,剥除肾脏包膜,依后期实验需求将各个组织放于液氮保存或者放于4%多聚甲醛中固定24-48h或者放于2%戊二醛中固定以待后续实验使用。9.小鼠肾脏功能和24h尿蛋白检测留取小鼠血液和尿液,利用全自动生化仪和ELISA的方法检测TRIM31-/-小鼠与 TRIM31+/+小鼠血清中尿素氮(Blood urea nitrogen,BUN)、肌酐(serum creatinine,Cr)、尿酸(Uric acid,UA)以及24h尿蛋白等主要肾脏功能指标的差异。10.透射电镜(Transmission electron microscope,TEM)观察小鼠肾脏超微结构取4组小鼠的肾脏皮质,利用2.5%的戊二醛固定组织后,利用透射电镜观察4组小鼠的肾小球足突细胞、基底膜等超微结构。11.Meso Scale Discovery(MSD)检测血清中炎症相关指标取的4组小鼠冻存在-80℃冰箱的血清,基于电化学发光的原理,利用预包埋好的MSD多因子检测板和MSD检测器来检测小鼠血清中TNF-α、IL-6、IL-1β和MCP-1的含量。12.小鼠肾脏组织学和IHC染色将固定在4%多聚甲醛中的4组小鼠肾脏组织脱水包埋成蜡块,制备石蜡切片(厚度:4μm)。通过Masson’s trichrome和天狼猩红染色检测4组小鼠肾脏间质的纤维化情况。过碘酸雪夫氏染色(Periodic acid-schiffstain,PAS)观察小鼠肾脏中肾小球硬化的差异。利用IHC的方法检测4组小鼠肾脏组织中TRIM31、KIM-1、Nephrin、Collagen Ⅰ、Collagen Ⅲ、Collagen Ⅳ、Fibronectin、α-SMA、CD68、TNF-α、IL-6和IL-1β的表达差异。13.组织RNA提取、反转录和实时荧光定量PCR(Real-time PCR,RT-PCR)提取4组小鼠肾脏组织和HK2细胞的RNA,利用TAKARA反转录试剂盒进行mRNA的反转录,然后通过RT-PCR获得目的基因trim31、collagen Ⅰ、collagen Ⅲ、collagen Ⅳ、fibronectin、α-sma、tnf-α、il-6和il-1β的 Ct 值,利用β-actin作为内参,将所得的Ct值,采用公式(2-ΔΔCT)计算目的分子表达量的的相对变化。14.Western blot 分析利用蛋白提取试剂盒提取4组小鼠肾脏组织蛋白,或利用细胞裂解液提取HK2细胞蛋白,BCA调定蛋白浓度后进行SDS-PAGE凝胶电泳,检测TRIM31、TRIM31、KIM-1、Nephrin、Collagen Ⅰ、Collagen Ⅲ、Collagen Ⅳ、Fibronectin、Δ-SMA、TNF-Δ、IL-6 和 IL-1β 的蛋白含量。15.数据统计分析方法所有数据分析均使用的GraphPad Prism 8软件,以均数(mean)±标准误(SEM)进行表示。首先采用Shaβ1ro-Wilk检验对数据分布进行正态性假设的评估。对于属于正态分布的单因素数据,两组间的统计差异采用非配对t检验分析,多组间的统计差异采用单因素方差分析。对于具有两个变量的多组数据,验证数据属于正态分布后,使用双因素方差分析进行分析其统计差异。对于不属于正态分布的数据,我们使用的Kruskal-Wallis检验进行非参数统计分析。在所有的统计比较中,p值小于0.05为有统计学意义。研究结果1.在AngⅡ诱导的HRD小鼠模型肾组织中TRIM31的表达量明显下调我们通过在小鼠皮下埋入AngⅡ缓释泵成功构建了 HRD小鼠模型。通过IHC、Western blot和RT-PCR的方法进行检测,发现与生理盐水组对比,AngⅡ组小鼠肾脏的TRIM31表达量明显下调。2.AngⅡ剂量和时间依赖性调控肾小管上皮细胞中TRIM31的表达体外培养的HK2细胞,AngⅡ刺激细胞不同的时间(0,4h,8h,12h,24h,36h)或以不同的浓度(0,10-8 M,10-7M,10-6 M,10-5 M,10-4 M)的 AngⅡ刺激细胞,利用Western blot和RT-PCR的方法进行检测,发现伴随AngⅡ的梯度刺激,TRIM31的表达在蛋白水平和mRNA水平均呈现显着降低。以上体内外实验说明,TRIM31的表达与HRD存在一定相关性,提示我们TRIM31可能参与到HRD疾病进展过程。3.利用TRIM31敲基因小鼠构建AngⅡ诱导的小鼠HRD模型(1)在C57BL/6J的小鼠背景下,利用TALEN技术成功构建TRIM31敲基因小鼠。提取小鼠鼠尾基因组DNA进行鼠尾基因型鉴定,证实了 TRIM31敲基因小鼠成功构建。同时提取TRIM3 1+/+和TRIM3 1-/-小鼠肾脏组织蛋白,利用Western blot的技术进一步验证了 TRIM31敲基因小鼠中TRIM31的蛋白敲除效率。(2)测量4组小鼠(TRIM31+/++生理盐水组,TRIM3 1-/-+生理盐水组,TRIM31+/++AngⅡ组,TRIM3 1-/-+AngⅡ组)造模前后的体重和取材后左右肾重量,发现TRIM31基因敲除并不影响小鼠的肾重/体重比。4.TRIM31基因缺失不影响AngⅡ诱导的小鼠血压的改变利用DSI遥感法对4组小鼠的SBP及DBP进行测量,结果显示,与生理盐水组对比,AngⅡ组小鼠血压在泵入后第一周起即出现明显升高,并在接下来的几周持续在较高水平。DSI测量结果显示AngⅡ组小鼠造模结束前最后一周血压均大于140mmHg,达到高血压的水平,证实了小鼠高血压模型构建成功。然而在泵入生理盐水或者AngⅡ后,TRIM31+/+与TRIM31-/-两组小鼠间无明显血压改变。以上结果说明,TRIM31基因缺失不影响小鼠血压的基线水平,也不影响影响AngⅡ诱导的小鼠血压的改变。5.TRIM31基因缺失加重AngⅡ诱导的高血压肾功能损伤小鼠血清Cr、BUN和24h尿蛋白的测量表明,AngⅡ诱导的HRD小鼠出现了肾功能的损伤和小鼠肾滤过屏障的损害,而TRIM31基因缺失进一步加重了AngⅡ诱导的HRD小鼠的肾损伤。肾脏Nephrin、KIM-1的Western blot和IHC染色提示,TRIM31基因敲除加重了 AngⅡ引起HRD小鼠的肾小管的损伤和肾脏足突细胞的损害。同时PAS染色表明,AngⅡ诱导的HRD小鼠的发生了肾小球硬化,TRIM31基因敲除进一步加重HRD小鼠的肾小球硬化。此外,TEM检测发现TRIM31基因敲除后明显加AngⅡ诱导的HRD小鼠肾脏的足突和基底膜的损害。以上说明TRIM31基因缺失明显加重了 HRD小鼠的肾功能损伤。6.TRIM31基因缺失加重AngⅡ诱导的高血压肾纤维化Masson’s trichrome和天狼猩红染色显示,AngⅡ诱导的HRD小鼠的肾脏呈现明显的纤维化,并且TRIM31-/-小鼠较TRIM31+/+小鼠更严重。Collagen Ⅰ、Collagen Ⅲ、Collagen Ⅳ、纤连蛋白(Fibronectin)和促纤维化因子 α-smooth muscle actin(α-SMA)的 IHC、Western blot、RT-PCR 实验显示在泵入 AngⅡ后,与TRIM31+/+对比,TRIM3 1-/小鼠的以上纤维化指标表达明显增加。提示TRIM31基因缺失可明显加重AngⅡ诱导的高血压肾纤维化。7.TRIM31基因缺失加重AngⅡ诱导的HRD小鼠肾脏的炎症反应利用MSD多因子检测技术检测4组小鼠(TRIM31+/++生理盐水组,TRIM31-/-+生理盐水组,TRIM3 1+/++AngⅡ组,TRIM31-/-+AngⅡ组)血清中炎症相关指标,结果显示泵入AngⅡ后,小鼠血清中TNF-α、IL-6、IL-iβ的表达量明显增加,与TRIM31+/+小鼠对比,TRIM31-/-小鼠增加的更为显着。利用巨噬细胞表面Marker CD68抗体对4组小鼠肾脏进行IHC染色,结果显示泵入AngⅡ后,巨噬细胞浸润明显增加,与TRIM31+/+小鼠对比,TRIM31-/-进一步加重了HRD小鼠的肾脏组织中巨噬细胞的浸润。同时IHC、Western blot和RT-PCR的方法检测4组小鼠肾脏炎症指标表达量,结果同样提示与TRIM31+/+小鼠对比,TRIM31基因敲除后明显增强小鼠肾脏组织中炎症相关分子TNF-α、IL-6、IL-1β的表达。8.TRIM31在HRD患者肾活检组织中的表达明显下降利用IHC的检测方法,我们发现与非高血压患者的正常癌旁肾组织Control和非高血压的GML活检肾组织相比,HRD患者的肾组织切片中TRIM31的表达量明显下调。实验结论1.TRIM31在HRD的病理组织中蛋白表达量降低。2.TRIM31基因缺失明显加重了小鼠高血压肾功能损害、纤维化和炎症反应。研究背景炎症和纤维化是高血压肾病(Hypertensive Renal Disease,HRD)的两个主要病理特征,血管紧张素Ⅱ(AngiotensionⅡ AngⅡ)在诱发肾脏组织发生炎症和纤维化的过程中发挥着关键作用。转化生长因子β1(Transfoiming growth factor-beta 1,TGF-β1)是HRD炎症、纤维化发病机理中的主要调控因子。TGF-β1可诱导细胞外基质(Extracellular Matrix,ECM)的生成和沉积、促进成纤维细胞的增殖和分化和上皮细胞的转分化等病理过程。机制方面,TGF-β1主要通过介导Smad依赖的信号通路和非Smad依赖的信号通路(主要是MAPKs和NF-kB信号通路)的活化来调控肾脏纤维化及肾脏炎症,靶向抑制TGF-β1下游信号通路的激活对HRD的治疗具有重大意义。研究显示,Angll可诱导肾脏过度分泌TGF-β1等细胞因子,并进一步通过TGF-β1加重高血压肾损伤。探讨TGF-β1信号通路的调控机制,有利于进一步阐明高血压肾病的发病原因,并为高血压肾病药物研发提供理论依据。TGF-β-activated kinase 1(TAK1)是一种丝裂原活化蛋白激酶激酶激酶(Mitogen-activated protein kinase kinase kinase,MAP3K)。TAK1的激酶活性受到TGF-β1等多种细胞因子的调控。研究显示,活化的TAK1进一步磷酸化TGF-β1信号通路下游关键接头蛋白,在非Smad依赖的信号通路(主要是MAPKs和NF-kB)的活化及炎症因子的产生过程中发挥着关键作用。然而,在HRD发生发展过程中,TAK1是否同时参与调控TGF-β1介导的经典Smad信号通路及肾脏纤维化进展仍有待进一步的研究阐明。泛素化修饰是一种重要的蛋白质翻译后修饰,是泛素本身通过7个内部的赖氨酸(K6、K11、K27、K29、K33、K48和K64)形成多聚泛素链。E3泛素连接酶决定了泛素分子结合到靶蛋白的特异性,因此也是蛋白质泛素过程中最关键的分子。蛋白质泛素化修饰在多种疾病发生发展过程中发挥着关键作用。研究蛋白质泛素化修饰调控HRD发生的分子机制,并寻找新型治疗靶点具有重要的科学意义和临床价值。已有文献报道,蛋白泛素化修饰在TGF-β1下游信号转导以及TAK1生物学功能的发挥着重要的作用,然而相关的E3泛素连接酶有待进一步的发现。在我们第一部分研究中已证实The tripartite motif 31(TRM31)参与并调控HRD小鼠肾功能损伤、纤维化和炎症反应。TRIM31是否通过调控TGF-β1信号通路在HRD中发挥作用,以及具体的分子机制有待进一步研究。因此,我们在本研究中提出了以下科学假说:TRIM31可通过泛素化修饰TGF-β1信号通路中的靶蛋白,从而参与到TGF-1P相关信号通路在HRD中的激活,进而在HRD病理进程中发挥保护作用。在本研究中,我们将通过体内和体外实验研究进一步探讨TRIM31在HRD中发挥作用的分子机制,为高血压肾损害的治疗寻找新的靶点。研究目的1.探讨在HRD病理进展中TRIM31对TGF-β1信号通路活化的影响;2.探讨TGF-β1信号通路TRIM31的靶分子;3.探讨TRIM31对靶分子的泛素化修饰情况;4.探讨TAK1在TGF-β1信号通路中的作用。研究方法1.实验动物分组分别选取8周龄雄性TRIM31-/-小鼠和同窝雄性TRJM31+/+小鼠,随机分为四组,每组15只:TRIM31+/++生理盐水组,TRIM31-/-+生理盐水组,TRJM31+/++AngⅡ组,TRIM31-/-+AngⅡ组。2.HRD小鼠模型的建立将预先灌注好AngⅡ的微量渗透泵,分别埋入小鼠的背侧皮下,按照以1000ng/kg/min的泵速持续泵入AngⅡ42天,构建HRD小鼠模型,对照组泵入同等体积的无菌生理盐水。实验结束时,将小鼠进行安乐死,并留取小鼠肾脏进行下一步组织和细胞分子学研究。3.临床髙血压肾病患者肾活检标本收集和检测我们从山东大学病理学教研室获得行肿瘤切除术的无高血压患者的正常癌旁肾组织(Control)、无高血压的肾小球轻微病变(Glomerular minor lesion,GML)患者肾脏活检组织、HRD患者肾脏活检组织样本。利用免疫组化(immunohistochemistry,IHC)检测TGF-β1、Collagen Ⅰ、pSmad3、TAK1、TNF-a、pP65的表达情况。4.细胞培养和处理实验中采用人近端肾小管上皮细胞系(Human proximal renal tubular eβ1thelial cell-2,HK2)、小鼠原代肾小管上皮细胞(Mouse Primary renal tubular eβ1thelial cells,MRPTEβ1C)、人胚肾细胞(HEK-293T),分别培养在含10%FBS的RPMI1640、高糖DMEM培养基和Eβ1CM-A培养基中,于含5%CO2的37°C孵箱中增殖。主要处理见下:(1)HK2细胞处理:1)选择hTGF-β1作为HRD体外刺激因子。体外培养HK2细胞,给予不同浓度的hTGF-β1(0,2ng/mL,4ng/mL,6ng/mL,8ng/mL,10ng/mL)刺激24h或以10ng/mL的hTGF-β1刺激不同时间(0,4h,8h,12h,24h,36h),收集细胞;2)体外培养HK2细胞,给予TGF-β1中和抗体预处理后,以10-5 M浓度的AngⅡ刺激HK2细胞时间梯度(0,4h,8h,12h,24h,36h),提取细胞蛋白;3)体外培养HK2细胞,利用RNAiMAX转染细胞TRIM31的小干扰RNA敲减TRIM31的表达,使用10ng/mL的hTGF-β1刺激细胞0、12h或24h,提取细胞蛋白;4)将构建的将Flag标签的TRIM31-WT、缺失突变体TRIM31-ΔRing以及点突变TRIM31-C53A/C56A过表达质粒利用Lipo3000转染试剂分别转染体外培养的HK2细胞,并利用10ng/mL hTGF-β1刺激细胞0或24h,提取细胞蛋白,进行Western blot实验;5)体外培养HK2细胞,lOng/mLhTGF-β1刺激0.5h或lh后,提取细胞蛋白,进行Western blot或免疫共沉淀实验(Co-immunopreciβ1tation,Co-IP)实验;6)体外培养HK2细胞系,利用TAK1的特异性抑制剂5z-7-oxozeaenol(5z7)抑制TAK1的激酶活性,或利用TAK1的小干扰RNA敲减TAK1的蛋白表达,使用10ng/mLhTGF-β1刺激细胞0.5h和lh后,提取细胞蛋白。(2)MRPTEpiC细胞处理:体外培养MRPTEpiC细胞,利用TAK1的特异性抑制剂5z7抑制TAK1的激酶活性,或者利用TAK1的小干扰RNA敲减TAK1的蛋白表达,使用10ng/mL hTGF-β1刺激细胞0.5h和lh后,提取细胞蛋白。(3)HEK-293T细胞处理:1)将TRAF6、TAK1、Smad2、Smad3及Smad4的过表达质粒,与TRIM31过表达质粒分别共转染入HEK293T细胞系。提取细胞蛋白进行Co-IP实验;2)将GFP标签的TRIM31和Myc标签的TAK1过表达质粒共转染HEK293T细胞系,进行细胞免疫荧光染色;3)将TRIM31不同的截断突变体(TRIM31-ΔRing,TRIM31-AB,TRIM31-AC-C,TRIM31-AC)和TAK1的不同截断突变体(l-300aa,l-480aa,30I-579aa),分别与野生型TAK1或者野生型TRIM31过表达质粒共转染入HEK293T细胞系,提取细胞蛋白进行Co-IP实验;4)将不同浓度的Flag-TRIM31过表达质粒与相同浓度Myc-TAKl过表达质粒共转染HEK293T细胞系,提取细胞蛋白;5)将Flag-TRIM31与Myc-TAKl过表达质粒共转染HEK293T细胞系后培养24h,提取细胞蛋白前4h分别加入蛋白酶体途径抑制剂Bortezomib和溶酶体途径抑制剂氯喹(chloroquine),提取细胞蛋白;6)将Flag标签的TRIM31-WT、TRIM31-ARing以及TRM31-C53A/C56A与Myc-TAKl过表达质粒共转染HEK293T细胞系24h,提取细胞蛋白;7)将HA标签的不同类型(WT、K48或K63)泛素过表达质粒,与Flag-TRIM31、Myc-TAKl过表达质粒共转染HEK293T细胞系24h,提取细胞蛋白,进行CO-1P实验;8)将TAK1赖氨酸点突变过表达质粒Myc-TAK1-K72R、Myc-TAK1-K158R,分别与Flag-TRIM31和HA标签的泛素过表达质粒共转染HEK293T细胞系,24h后提取蛋白,进行CO-IP实验。5.小鼠组织样本取材造模结束后将小鼠进行安乐死,留取小鼠肾脏标本,剥除肾脏包膜后,分别放于液氮保存或者放于4%多聚甲醛中固定2448h以待后续实验使用。6.小鼠肾脏组织制备和IHC染色将固定在4%多聚甲醛中的4组小鼠肾脏组织脱水包埋成蜡块,制备石蜡切片(厚度:4pn)。利用IHC染色的方法检测4组小鼠肾脏组织中TGF-β1的表达差异。7.组织RNA提取、反转录和实时荧光定量(Real-time PCR,RT-PCR)提取4组小鼠肾脏组织和HK2细胞的RNA,利用TAKARA反转录试剂盒进行mRNA的反转录,然后通过RT-PCR获得目的基因八Ⅰ、collagen Ⅲ、collagen Ⅳ、Jibronectin、a-sma、tnf-a、il-6和il-1β办的Ct值,利用P-actin作为内参,将所得的Ct值,采用2-AACT公式计算目的分子的相对表达量的变化。8.Western blot分析利用蛋白提取试剂盒提取4组小鼠肾脏组织蛋白,或利用细胞裂解液提取HK2、HEK293T或MRPTEβ1C细胞蛋白,BCA调定蛋白浓度后进行SDS-PAGE凝胶电泳,检测各个目的分子的蛋白含量。9.激光共聚焦检测TRIM31与TAK1的共定位将GFP标签的TRIM31和Myc标签的TAK1过表达质粒共转染HEK293T细胞系,细胞免疫荧光染色后,利用激光共聚焦显微镜检测TRIM31与TAK1在细胞内的共定位情况。10.表达载体和点突变的构建通过目的基因的引物设计、扩增、酶切和连接等步骤进行重组质粒和点突变质粒的构建和抽提,用于进一步的过表达和体外转录翻译实验。11.免疫共沉淀魏(Co-IP)体外培养HK2,利用内源性抗体进行Co-IP检测内源性目的分子的结合。体外培养HEK293T细胞,并构建各种目的分子的过表达质粒转染细胞,利用标签抗体进行Co-IP检测内源性目的分子的结合。体外翻译系统表达目的分子蛋白,利用标签抗体进行Co-IP检测目的分子的外源性结合。12.细胞转染体外培养HK2、HEK293T或MRPTEβ1C细胞,将TRIM31或TAK1的小干扰RNA利用RNAiMAX转染细胞,敲减目的基因的表达。将过表达质粒利用Lip3000转染细胞进行目的基因的过表达。13.体外翻译系统进行体外蛋白表达实验构建含有T7启动子的PCDNA3.1过表达质粒,利用Promega公司的TNT Quick Coupied Transcription/translation System试剂盒进行网织红细胞体外转录翻译系统,或者利用Mini Expression Module试剂盒进行大肠杆菌体外翻译对TAK1和TRIM31等表达质粒进行体外转录翻译。14.体外泛素化修饰实验将体外翻译系统获得的蛋白加入BostonBiochem公司的体外泛素修饰系统(包含有El,UbcH5a,K48,K63等蛋白),室温反应30分钟后,利用Western blot的方法检测体外泛素化修饰的情况及泛素化修饰的类型。15.数据统计分析方法所有数据使用GraphPad Prism 8软件进行分析,表示为均数(mean)土标准误(SEM)。采用Shapiro-Wilk检验进行数据分布的正态性假设的评估。采用非配对t检验分析正态分布的单因素数据中两组间的统计差异,采用单因素方差分析分析正态分布的的多组间的统计差异。对于具有两个变量的多组数据,验证数据属于正态分布后,使用双因素方差分析进行分析其统计差异。不属于正态分布的数据,使用Kruskal-Wallis检验进行非参数统计分析。在所有的统计比较中,p值小于0.05为有统计学意义。研究结果1.TGF-β1参与了AngⅡ诱导的小鼠高血压肾损害TGF-β1是高血压肾损伤和肾小管间质纤维化的关键细胞因子。Western blot、IHC和RT-PCR检测发现,TGF-β1在AngⅡ诱导的小鼠HRD的肾脏组织中的表达量明显增加,说明TGF-β1参与了HRD的疾病进展。同时,TGF-β1的表达量在TRIM31+/+和TRIM31I小鼠之间没有统计学差异,说明TRIM31的基因敲除并不影响TGF-β1在HRD肾脏中的表达量。2.TGF-β1抑制TRIM31的蛋白表达Western blot及RT-PCR结果显示,伴随hTGF-β1刺激HK2细胞不同时间或利用不同浓度的hTGF-β1刺激细胞,肾小管上皮细胞中TRIM31的表达均呈现显着降低。这些结果说明TGF-β1抑制TRIM31基因的转录和翻译,并提示TRIM31可能参与TGF-β1介导的信号通路。而在给予TGF-β1中和抗体预处理的情况下,Angll导致TRIM31蛋白水平下降的情况得以恢复。以上提示TGF-β1负向调控TRIM31的蛋白表达,而Angn对TRIM31的蛋白表达调控可能是通过TGF-β1发挥的。3.TRIM31负调控hTGF-β1介导的肾小管上皮细胞的纤维化及炎症反应Western blot和RT-PCR检测结果显示,TRIM31基因敲减能明显加重hTGF-β1诱导的肾小管上皮细胞纤维化进程和炎症相关指标的表达。野生型TRIM31基因过表达可明显改善hTGF-β1诱导的肾小管上皮细胞的纤维化进程和炎症相关指标的表达。而过表达缺失E3泛素连接酶活性的TRIM31 Ring结构域缺失突变体TRIM31-ARing以及E3泛素连接酶活性缺失点突变过表达质粒TRIM31-C53A/C56A不影响hTGF-β1诱导的肾小管上皮细胞的纤维化进程和炎症相关指标的表达。以上结果说明,TRIM31通过其E3泛素连接酶活性抑制hTGF-β1诱导的肾小管上皮细胞的纤维化进程和炎症反应。4.TRIM31介导了TGF-β1信号的通路活化经典Smad信号通路以及非Smad信号通路在肾脏纤维化过程中发挥着重要作用,其中Smad2、Smad3的磷酸化代表经典Smad信号通路活化,ERK、JNK、P38、NF-κB的磷酸化代表非Smad信号通路的活化。提取4组小鼠(TRIM31+/+生理盐水组,TRIM31-/+生理盐水组,TRIM31+/++AngⅡ组,TRIM31-/-+AngⅡ组)肾脏蛋白,Western blot检测显示,相比野生型小鼠HRD肾脏组织,TRIM31-/-HRD小鼠肾脏组织中Smad2、Smad3、ERK、JNK、P38、NF-κB磷酸化明显升高。体外培养HK2细胞,发现TRIM31基因敲减同样能明显增强TGF-β1诱导的经典Smad信号通路以及非Smad信号通路的活化水平。以上结果说明TRIM31可负向调控TGF-β1信号通路的活化水平。5.明确了TGF-β1信号通路中TRIM31的靶分蛋白前期结果表明TRIM31可调控TGF-β1介导的信号通路,我们将重点寻找该信号通路中TRIM31作用的靶蛋白。将TGF-β1信号通路中关键接头分子TRAF6、TAK1、Smad2、Smad3及Smad4等的过表达质粒与TRIM31过表达质粒分别共转染入HEK293T细胞系。利用Co-IP实验检测发现TRIM31与TRAF6、TAK1发生了明显的结合。同时体外培养HK2细胞,hTGF-β1刺激不同时间点后,利用TRIM31特异性抗体进行Co-IP实验,同样检测到了内源性TRIM31与TAK1、TRAF6的结合,同时发现伴随着hTGF-β1刺激时间的增加,HK2细胞中TRIM31与TAK1的结合呈现增多的趋势。以上结果提示TAK1、TRAF6可能是TGF-β1信号通路中TRIM31调控的靶分子。6.TRIM31靶向降解TAK1将浓度梯度的TRIM31过表达质粒与TRAF6或TAK1过表达质粒分别共转染HEK293T细胞系,利用Western blot的方法检测到TRIM31可降低TAK1蛋白表达量,并且存在浓度梯度依赖性。然而,TRM31的过表达并不影响TRAF6的蛋白表达量。我们同时发现,转染TRIM31-ARing以及TRIM31-C53A/C56A过表达质粒不影响TAK1的蛋白表达量。以上结果说明,TRIM31可通过其E3泛素连接酶活性特异性降解TAK1,而对TRAF6的蛋白表达无影响。至此,我们确定TAK1为TGF-β1信号通路中TRIM31的结合及降解靶点。7.TRIM31对TAK1进行了蛋白酶体途径的降解泛素-蛋白酶体途径和自噬-溶酶体途径是体内蛋白质发生降解的主要途径。我们将Flag标签的TRIM31过表达质粒与Myc标签的TAK1过表达质粒共转染HEK293T细胞系,培养24h后分别加入蛋白酶体途径抑制剂Bortezomib和溶酶体途径抑制剂chloroquine处理4h,提取细胞蛋白,利用Western blot的方法检测到蛋白酶体抑制剂Bortezomib可恢复TRIM31介导的TAK1降解,而溶酶体抑制剂chloroquine对TRIM31介导的TAK1降解无影响。以上说明TRIM31通过蛋白酶体途径介导TAK1的降解。8.TRIM31与TAK1在细胞浆中共定位将GFP标签的TRIM31和Myc标签的TAK1过表达质粒共转染HEK293T细胞系,细胞免疫荧光染色后,利用激光共聚焦显微镜检测发现TRIM31与TAK1在细胞中存在明显的共定位。9.TRIM31与TAK1体外结合利用大肠杆菌和网织红细胞体外翻译系统分别获得TRIM31和TAK1的体外表达蛋白,利用glutathione S-transferase(GST)pull-down实验和Co-IP的方法检测到体外表达的TRIM31与TAK1蛋白可发生直接结合。10.TRIM31与TAK1发生结合的结构域通过构建一系列TRIM31与TAK1的关键结构域截断突变体,共转染HEK293T细胞系,Co-IP实验表明TRIM31的130-425氨基酸序列与TAK1的1-300氨基酸序列分别在TRIM31与TAK1的结合中发挥着重要作用。11.TRIM31对TAK1进行了泛素化修饰前期结果证明TRIM31介导了TAK1蛋白酶体途径的降解,TRIM31作为E3泛素连接酶家族的一员,我们进一步探索了TRIM31是否是通过泛素化修饰TAK1进而介导其发生蛋白酶体途径降解。将泛素过表达质粒、TRIM31过表达质粒、TAK1过表达质粒共转染HEK293T细胞系,Co-IP实验表明TRIM31明显促进了TAK1的泛素化修饰,过表达泛素连接酶活性关键结构域缺失突变体TRIM31-ARing以及泛素连接酶活性缺失点突变体TRIM31-C53A/C56A则没有此作用,说明TRIM31可促进TAK1的泛素化修饰,这一作用与TRIM31的E3泛素连接酶功能密切相关。作为对照,TRM31并不能促进接头分子TRAF6的泛素化修饰。12.证明TRIM31促进TAK1进行了K48位泛素化修饰前面验证了TRIM31可对TAK1进行泛素化修饰,为进一步探索TRIM31对TAK1进行泛素化修饰的类型,我们分别将不同类型(WT、K48或K63)的泛素过表达质粒,与TRIM31过表达质粒、TAK1过表达质粒共转染HEK293T细胞系,泛素化实验表明TRIM31可明显促进TAK1 K48位的泛素化修饰。同时培养HK2细胞系,利用TRIM31小干扰RNA敲减TRIM31的表达,hTGF-β1刺激后,提取细胞蛋白,利用TAK1特异性抗体进行Co-IP,结果显示TRIM31同样可介导内源性TAK1蛋白的K48位的泛素化修饰。13.发现了TRIM31对TAK1进行泛素化修饰的具体位点为了进一步探索TRIM31对TAK1上哪个赖氨酸位点进行了泛素化修饰,我们通过查阅文献发现TAK1上第158位赖氨酸位点和第72位赖氨酸位点可能发生泛素化修饰,但调控这2个位点进行修饰的E3泛素连接酶却一直没有被发现。我们进一步构建了K158位和K72位赖氨酸突变的TAK1过表达质粒,分别与TRIM31过表达质粒和K48泛素过表达质粒共转染HEK293T细胞系,通过泛素化实验检测发现TRIM31可对TAK1第72位赖氨酸进行了K48位的泛素化修饰。14.利用体外蛋白拥译系统和体外泛素化系统验证了TRIM31对TAK1的泛素化修饰为了进一步探索TRIM31是否直接对TAK1进行泛素化修饰,我们将TAK1和TRIM31分别构建到含有T7启动子的PCDNA3.1-Myc过表达质粒上和含有T7启动子的PCDNA3.1-Flag过表达质粒上,然后利用Promega公司的TNT体外转录翻译系统对TAK1和TRIM31的表达质粒进行体外转录翻译,将翻译后的蛋白加入BostonBiochem公司的体外泛素化修饰系统,利用Western blot的方法进一步证明了TRM31对TAK1进行了K48位的泛素化修饰。同时构建只保留K72位赖氨酸残基(Myc-TAK1-K72)和只突变掉K72赖氨酸残基(Myc-TAK1-K72R)的TAK1的点突变过表达质粒,并进行体外转录翻译得到Myc-TAKl、Myc-TAK1-K72、Myc-TAK1-K72R、FIag-TRIM31的蛋白,然后加入体外泛素化修饰系统,同样发现TRIM31只对含有K72位赖氨酸残基的TAK1进行泛素化修饰。以上结果共同说明了TRIM31可直接对TAK1的第72位赖氨酸进行K48位的泛素化修饰。15.TAK1介导了TGF-β1信号通路的活化体外培养HK2细胞系以及小鼠原代肾小管上皮细胞MRPTEβ1C,利用TAK1的抑制剂5z7抑制TAK1的激酶活性或者利用Si-RNA敲减TAK1的表达后,hTGF-β1介导的Smad2、Smad3、ERK、JNK、P38、NF-kB磷酸化表达水平均明显下降。以上说明,在肾小管上皮细胞中,TAK1同时参与调控TGF-P1信号通路中经典Smad信号通路以及非Smad信号通路的活化。16.临床患者TAK1、炎症、纤维化和TGF-β1信号通路与HRD的相关性从山东大学病理学教研室获得行肿瘤切除术的无高血压患者的正常癌旁组织、无高血压的GML患者肾活检组织、HRD患者肾活检组织切片,并进行IHC检测。结果发现纤维化水平代表性指标Collagen Ⅰ、炎症水平代表性指标TNF-α、TGF-β1信号通路活化代表指标(TGF-β1、pSmad3、pP65)、以及TAK1的表达在HRD活检组织样本中明显增加。这些结果进一步提示我们,TAK1在HRD肾脏纤维化、炎症反应及疾病进展中可能发挥着重要作用。同时,伴随HRD疾病进展,TRIM31表达逐渐降低可能是导致TAK1表达升高及HRD疾病加重的重要原因。实验结论1.TRIM31参与了TGF-β1介导的肾脏纤维化和炎症反应;2.TRIM31通过靶向调控TAK1 K48位的泛素化修饰和蛋白酶体途径的降解进而负调控TGF-β1下游经典Smad信号通路以及非Smad信号通路的活化,最终改善高血压肾损害。
李钟奇[5](2020)在《椎间盘退变关键标志物筛选及携载TGF-β3支架对椎间盘修复的实验研究》文中研究表明研究背景腰痛(Low back pain,LBP)是工业化国家的主要健康问题之一,是人致残的主要原因。LBP 与椎间盘退变(Intervertebral disc degeneration,IDD)有关。椎间盘(intervertebraldisk,IVD)高度因退变而降低,改变了受影响脊髓节段的力学特性。这个过程加速了邻近节段和其他脊柱结构的退变,如小关节、韧带和肌肉等。IDD不仅影响IVD,还影响其周围组织,如肌肉和韧带,并影响脊柱应对日常生活中正常生理负荷的能力。从长远来看,IDD会导致腰椎管狭窄和随之而来的神经组织压迫。腰椎管狭窄是引起下腰部疼痛和神经性跛行的主要原因,尤其是老年人。考虑到现今社会生活水平提高和医疗卫生事业的发展,老年人口在逐年增加。老年患者往往还合并有骨质疏松,心脑血管等慢性疾病,因此这类患者LBP和IDD相关疾病的治疗问题变得更加困难。目前对IDD的治疗包括药物治疗、物理治疗等保守治疗和椎间盘摘除术、脊柱融合术、椎间盘置换术等侵入性治疗,但这些方法都不能恢复IVD的原有结构和功能。近些年,生物信息学的快速发展为研究IDD带来了机遇,它将统计学、数学、信息学和计算机科学的方法恰当的整合在一起来解决问题。生物信息学应用的主要领域包括:发现基因、预测基因表达、序列比对、蛋白结构比对、预测蛋白结构、预测蛋白间相互作用等。通过公共数据库检索方式,可以挖掘并验证与IDD相关的潜在基因与信号通路,以此从基因层面了解IDD的发病机制,并为IDD的预防和治疗研究提供新的思路和研究方向。近年来,以细胞为基础的组织工程对IDD的治疗已被证明是一种很有前景的治疗方法,应用组织工程学方法构建与IVD结构和功能相符的组织工程植入体,可以替代退变IVD并保留其力学运动范围,从而对退变的IVD结构进行重建和修复,使IVD功能得到恢复,达到治疗IDD的目的。纤维环组织工程就是以纤维环的再生和修复为目的的一种修复方法。通过筛选,应用新型的复合支架,即脱细胞纤维环基质/壳聚糖水凝胶作为纤维环损伤修复的支架材料,因其具有较好的生物相容性、可降解性及力学性能,并能携载和连续释放合适的生长因子,满足新生纤维环组织在不同阶段对生长因子的需求,最终达到修复受损的IVD的目的。第一部分:椎间盘退变关键标志物的筛选研究目的:本研究同时应用GSE56081和GSE124272这两个数据集去挖掘和验证与IDD相关的潜在基因与信号通路,为IDD的发病机制的研究提供新思路。研究方法:首先,对GEO数据库下载的GSE56081和GSE124272这两个数据集中的数据进行预处理,然后利用limma包提供的经典贝叶斯方法对IDD和Healthy两组的差异表达基因进行分析。随后,在毒性与基因比较数据库(CTD)中搜索疾病相关基因,并将搜索到的疾病相关基因与差异表达基因取交集,得到的交集基因被判断为疾病相关的差异表达基因。接着根据得到的疾病相关的差异表达基因,利用 DAVID 软件进行 Gene Ontology(GO)和 Kyoto Encyclopedia of Genes and Genomes(KEGG)富集分析。并且,利用STRING数据库对疾病相关的差异表达基因进行蛋白互作(protein-protein interaction,PPI)网络分析,筛选PPI网络中的hub蛋白,通过Cytoscape软件的MCODE插件筛查重要模块,并利用DAVID对重要模块进行KEGG通路富集分析。接着将PPI网络中筛选得到的hub基因与模块基因取交集作为关键基因,并将在GSE124272数据集中验证成功的基因作为marker基因。随后使用ROC曲线来证明得到的marker基因的诊断效能,最后使用基因集合富集分析(GSEA)对marker基因进行分析。研究结果:本研究共筛选出1184个差异表达基因,随后与CTD数据库中得到的2295个疾病相关基因取交集,共得到142个疾病相关的差异表达基因。富集分析结果显示,这142个疾病相关的差异表达基因共富集了 130个GO-biological process(BP),18 个 GO-cellular component(CC),28 个 GO-molecular function(MF)以及27条KEGG信号通路(最显着富集的为肿瘤坏死因子信号通路和HTLV-I感染)。随后,还对这142个疾病相关的差异表达基因进行PPI网络分析,结果共得到了 223个PPI关系对,包括83个编码蛋白,其中金属蛋白酶组织抑制因子(TIMP1)连接度最高,并挖掘出1个关键的子模块,模块中包含的基因有基质金属蛋白酶2(MMP2)、I型胶原α2链(COL1A2)、SMAD家庭成员3(SMAD3)、SMAD家庭成员2(SMAD2)、转化生长因子β1(TGFB1)、Ⅳ型胶原α1链(COL4A1)、丝裂原活化蛋白激酶1(MAPK1)、转录因子snail 1(SNAI1)、TIMP1、聚集蛋白聚糖(ACAN)。KEGG信号通路富集分析结果显示,模块共富集到16条信号通路,其中最显着富集到结肠直肠癌信号通路。接着,将模块基因与top20 hub基因取交集,共得到9个交集基因,其中ACAN基因在GSE56081和GSE124272这两个数据集中的相对表达水平上下调一致。因此,将ACAN作为marker基因。ACAN的ROC面积在两个数据集中均达到了 0.8以上,具有良好的诊断效能。最后,GSEA富集分析显示,ACAN富集到10条正相关的信号通路和9条负相关的信号通路,其中最显着的正相关信号通路是帕金森病通路,最显着的负相关信号通路是嗅觉传导信号通路。研究结论:HTLV-I感染和肿瘤坏死因子信号通路可能在IDD过程中发挥着重要作用;TIMP1基因可能通过HIF-1α信号通路调节髓核细胞凋亡在IDD过程中扮演重要角色;COL1A2可能通过血小板激活、黏着斑、PI3K-Akt信号通路在IDD过程中起作用;ACAN基因可能是诊断IDD的一个潜在治疗靶点,并通过帕金森病通路和嗅觉传导信号通路发挥重要作用。本研究为IDD的潜在标志物进行分析,并对疾病相关的差异表达基因进行富集分析,为探索IDD侵袭、增殖、凋亡等生物学行为的调控机制提供了新的观点,并可能为探索IDD的研究提供了新的线索。第二部分:携载TGF-β3的脱细胞纤维环基质/壳聚糖水凝胶修复退变椎间盘的实验研究研究目的:运用脱细胞纤维环基质/壳聚糖水凝胶作为纤维环损伤修复的支架材料,通过包裹转化生长因子β3(Transforming Growth Factor-β3,TGF-β3)达到缓释效果,观察纤维环源干细胞在携载TGF-β3脱细胞纤维环基质/壳聚糖水凝胶的生长情况以细胞-基材复合体在体内外对退变纤维环修复情况,为构建IVD纤维环组织工程支架材料和细胞因子的选择提供一定的理论基础和实践依据。研究方法:首先从纤维环组织中分离并纯化纤维环源干细胞,检测其自我更新多向分化能力。接着制备携载TGF-β3脱细胞纤维环基质/壳聚糖水凝胶,并检测T GF-β3、细胞增殖、I型胶原蛋白(Collagen Ⅰ)、Ⅱ型胶原蛋白(Collagen Ⅱ)和聚集蛋白聚糖(Aggrecan,ACAN)的基因表达情况。最后,采用磁共振成像(MRI)方法和做苏木精-伊红染色(HE染色)观察纤维环修复情况,以检测携载TGF-β3的脱细胞纤维环基质/壳聚糖水凝胶在体内对IDD的修复作用。研究结果:从电镜图可以明显看到支架上孔结构比较大,孔与孔相连构成通孔,形成三维立体网状结构,并且。TGF-β3含量随时间的延长而增加,到第7天时达到峰值。在第1、3、5天,3组之间细胞增殖情况没有明显差异,但在第7天,携载TGF-β3的脱细胞纤维环基质/壳聚糖水凝胶组的细胞增殖情况明显高于其他两组。Collagen Ⅰ、Collagen Ⅱ和Aggrecan基因mRNA及蛋白表达水平在携载TGF-β3的脱细胞纤维环基质/壳聚糖水凝胶组明显高于不携载TGF-β3的脱细胞纤维环基质/壳聚糖水凝胶组。通过大鼠的体内实验,将所构建的携载TGF-β3的脱细胞纤维环基质/壳聚糖水凝胶植入受损的IVD内,通过4周、8周MRI结果和4周HE染色结果分析实验组和对照组,表明携载TGF-β3的脱细胞纤维环基质/壳聚糖水凝胶在体内对IDD有明显的修复作用。研究结论:所构建的携载TGF-β3的脱细胞纤维环基质/壳聚糖水凝胶具有相互沟通的空隙,初步显示出携载TGF-β3的脱细胞纤维环基质/壳聚糖水凝胶具有良好的结构性能;所构建的携载TGF-β3的脱细胞纤维环基质/壳聚糖水凝胶对体外分离培养的纤维环源干细胞的生长、增殖无明显的抑制作用,并且纤维环源干细胞能在其表面及内部黏附、生长和增殖,初步显示出携载TGF-β3的脱细胞纤维环基质/壳聚糖水凝胶具有良好的细胞相容性;所构建的携载TGF-β3的脱细胞纤维环基质/壳聚糖水凝胶植入动物体内,4周及8周以后能够缓解椎间隙的狭窄和生物力学性能的降低,4周HE染色提示结构接近正常,初步显示出携载TGF-β3的脱细胞纤维环基质/壳聚糖水凝胶对IDD具有良好的修复作用。
陈刚[6](2020)在《外周血中HCMV-MIR-UL112-3p水平与颈动脉IMT增加的相关性及HCMV引起脐静脉内皮细胞内皮-间质转化的分子机制》文中进行了进一步梳理第一部分外周血中HCMV-MIR-UL112-3p水平与颈动脉IMT增加的相关性1研究背景动脉粥样硬化是一种进行性疾病,以脂质和纤维成分在动脉中聚集为主要特征。炎症反应在动脉粥样硬化发生过程中发挥重要作用,是引起心血管疾病的最重要原因,包括中风、心肌梗死、心力衰竭和血管瘤等。流行病学研究表明动脉粥样硬化存在多种危险因子,然而动脉粥样硬化的发病机制和病因尚不完全清楚。人巨细胞病毒(Human Cytomegalovirus,HCMV)属于疱疹病毒β亚科,为双链DNA病毒。在全球范围成人血清抗体阳性率为60-90%以上,与所有的疱疹病毒一样,一旦发生感染,HCMV会在宿主体内(唾液腺、白细胞等处)建立持续终生的潜伏感染,潜伏感染常会间断性地被激活而发生再激活感染。血管系统中的HCMV感染与心血管疾病如动脉粥样硬化、再狭窄和移植血管硬化,均存在相关性。HCMV可通过改变细胞粘附分子的表达、诱导内皮功能障碍和干扰细胞因子信号来加重病变血管的炎症反应。抗病毒药物更昔洛韦已被证明能降低心脏移植相关的动脉粥样硬化发生。HCMV编码至少26个成熟的mi RNA,但这些mi RNA与临床病理的相关性仍不确定。HCMV-mir-UL112-3p(mi R-UL112-3p)是HCMV编码的mi RNA中研究最广泛的一种,可以靶向调控宿主细胞和病毒转录。先前的研究表明,在高血压患者中,mi R-UL112-3p是唯一高表达的循环型HCMV编码mi RNA,并且它与高血压风险的增加有关。此外,有研究显示血浆HCMV-Ig G或抗CMV抗体水平与动脉粥样硬化有关,而另一些临床研究则发现HCMV感染与动脉粥样硬化之间的相关性不强。在本研究中我们检测了动脉粥样硬化患者血浆/血清中的mi R-UL112-3p和HCMV Ig G水平,同时通过颈动脉超声检查患者内膜中层厚度(IMT),分析mi R-UL112-3p和HCMV Ig G、Ig M水平与IMT之间的关系,评估HCMV感染与动脉粥样硬化的相关性。2研究目的通过回顾性调查分析动脉粥样硬化患者颈动脉IMT和外周血炎性细胞因子水平与外周血中HCMV Ig G、Ig M和mi R-UL112-3p水平之间的关系,评估HCMV感染与动脉粥样硬化的相关性。3研究方法3.1研究对象和检测方法招募2012年9月至2016年6月在安徽医科大学第一附属医院心内科、神经内科、内分泌科就诊的颈动脉粥样硬化患者458名,收集患者临床资料,包括年龄、性别、糖尿病史、体重指数(BMI)、吸烟史和高血压史。抽血检测空腹血糖(FBG)、餐后血糖(PBG)、总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C)、T3、游离T4和促甲状腺激素(TSH)。通过颈动脉超声检查患者IMT值。通过荧光定量PCR(Polymerase Chain Reaction)检测外周血中mi R-UL112-3p的拷贝数,使用梅里埃酶联荧光试剂盒分析(ELFA)HCMV Ig M和Ig G水平,使用ELISA试剂盒检测血浆中TNF-α、IL-6和IL-1β的水平。3.2统计学分析采用Excel 2007建立数据库,SPSS 16.0进行统计分析,正态分布定量资料采用均数标准差进行描述,组间比较采用t检验或方差分析。定性资料采用构成比或频率进行描述,组间比较使用χ2检验。对于IMT值的以高于平均IMT值定义为“高”。为了确定独立的风险因素和高IMT的优势比(OR),置信区间(cis)设为95%,采用多元逻辑回归模型,包括mi R-UL112-3p阳性率、HCMV Ig G滴度、Framingham评分以及IL-1β含量的对数、TNF-α含量的对数和IL-6含量的对数,单变量分析P<0.05,以确保没有显着的多重共线性。利用单一的线性单变量相关(Pearson相关系数)和逐步多变量回归分析来评价抗HCMV Ig G抗体滴度和其它变量的值之间关系。以P<0.05为差异有统计学意义。4研究结果共458名参与者被纳入研究,其中247人(53.9%)被指定为高(IMT)组。多变量logistic回归分析显示高IMT的四个独立危险因素分别是mi R-UL112-3p阳性(OR 1.05,95%CI 1.01-1.07;P=0.004),抗HCMV抗体滴度高(OR 1.04,95%CI 1.01-1.06;P=0.003),Framingham评分高(OR1.14,95%CI 1.02-1.27;P=0.018),高IL-1β含量(OR 2.96,95%CI 1.26-6.97;P=0.013)。多变量相关性分析显示mi R-UL112-3p阳性率与最大IMT(r=0.328,P<0.001)、游离T4水平(r=0.247,P=0.032)和对数(TNF-α)(r=0.509,P<0.001)显着正相关。5研究结论本研究首次评估了颈动脉粥样硬化与亚洲人群中mi R-UL112-3p阳性率之间的相关性。研究结果表明HCMV与动脉粥样硬化存在相关性。第二部分HCMV通过MMP-2促进内皮-间质转化后脐静脉内皮细胞中的TGF-β1活化1研究背景HCMV属于疱疹病毒β亚科(β-herpesvirus),为双链DNA病毒。世界范围内HCMV感染非常普遍,在成年前大部分人群均已感染,一旦感染病毒将终身存在于宿主体内。现已发现HCMV与多种心血管疾病,如动脉粥样硬化(AS)、冠心病和高血压存在联系,此外HCMV感染还与血管内皮细胞功能障碍有关。血管内皮细胞能够参与心血管疾病的多种生理和病理过程。内皮功能障碍以及与其相关的心血管疾病是由于内皮细胞间质转化(End MT)引起的。在End MT过程中,内皮细胞(ECs)失去特异性血管内皮标记物如血管内皮钙粘蛋白(VE-cadherin)和白细胞分化抗原31(CD31),获得间质细胞标志物α-平滑肌肌动蛋白(α-SMA)、成纤维细胞特异性蛋白1(角蛋白)和纤维连接蛋白,获得迁移性、侵袭性和增殖性表型。End MT的发生受到多种细胞因子的调节,其中TGF-β1(Transforming growth factor-β1)是End MT发生的关键细胞因子,同时也是血管病理生理过程中重要的细胞因子。TGF-β1的表达水平升高能够促进心血管疾病的发生,如引起肺动脉高压(PAH)和动脉粥样硬化,阻断TGF-β1的表达可以抑制PAH过程和不稳定AS斑块形成。在人成纤维细胞中HCMV感染5h后即可由HCMV IE基因激活TGF-β1启动子,使TGF-β1的表达量提高4倍。此外,TGF-β1可以被蛋白酶(plasmin)、金属蛋白酶(MMPs)、血小板反应蛋白-1(TSP-1)、αvβ6和αvβ8激活,由无活性状态转变为高活性状态。因此,我们推测HCMV感染可能引起血管内皮细胞中TGF-β1表达水平提高或激活潜伏的TGF-β1,使得血管内皮细胞出现End MT,参与动脉粥样硬化的发生。2研究目的观察HCMV感染对血管内皮细胞End MT的影响,讨论HCMV感染参与动脉粥样硬化发生和进展的可能分子机制。3研究方法3.1细胞和病毒培养脐静脉内皮细胞(Human Umbilical vein endothelial cells,HUVEC)用含有BFGF(20 ng/ml)、EFG(10 ng/ml)和人血浆纤连蛋白(10μg/ml)的Human Endothelial-SFM(Life Technologies,Carlsbad CA,USA)无血清培养基进行培养。HELF和水貂肺上皮细胞用含10%胎牛血清(Life Technologies,Carlsbad CA,USA)的DMEM培养基(Life Technologies,Carlsbad CA,USA)培养。HCMV TR株病毒在HELF细胞上传代培养,将病毒培养物上清通过4℃,16000×g离心2h,用Human Endothelial-SFM培养液重悬病毒,并分装冻存于-80℃。对于紫外线灭活病毒,将病毒置于无菌交联小室(Bio-Rad,Hercules CA,USA)中用150 m J的紫外线照射。3.2病毒滴度检测在96孔细胞培养板中每孔加入2.5×104个HELF培养过夜;次日,每孔加入100μl稀释后的病毒悬液,在37℃,5%CO2培养箱中培养过夜;次日,弃去培养液,用PBS洗涤3次,每孔加入无水乙醇50μl室温固定20min,弃去无水乙醇,立即用PBS水化15min;用PBS洗涤3次,每孔加入20μl稀释好的HCMV IE单克隆抗体,室温孵育2h;用PBS洗涤3次,每孔加入20μl稀释好的山羊抗小鼠Ig G-FITC,室温孵育1h;用PBS洗涤3次,每孔加入用PBS配制的70%甘油20μl,于倒置荧光显微镜下观察。根据以下公式计算感染单位(in infectious units/ml)),IU/ml=IE阳性信号数×10×1×稀释倍数。3.3间接免疫荧光细胞爬片至盖玻片上,按照MOI=1接种HCMV TR,加入或不加入ra TGF-β1孵育5d或48h,用4%的多聚甲醛固定,再于0.1%的Triton X-100透化。向细胞中加入一抗4℃孵育过夜,洗涤,与Alexa Fluor 488或Alexa Fluor 594标记的二抗室温孵育1h,加入Alexa Fluor 488标记的鬼笔环肽和4’,6-二脒基-2-苯基吲哚(DAPI),或单独使用DAPI室温孵育15min,洗涤后封片,在荧光显微镜(Olympus Fluoview BX51,Center Valley PA)下观察。3.4蛋白质印迹法(Western Blot)裂解细胞,取30μg总蛋白用的10%的SDS-PAGE胶进行电泳,使用半干式转膜仪(Bio-Rad)转移至PVDF膜上。将膜置于5%脱脂奶粉溶液中室温封闭2h,加入适当稀释的一抗4°C孵育过夜,洗涤后加入适当稀释的辣根过氧化物酶(HRP)标记二抗室温孵育1h。将膜洗涤3次后在膜上涂布ECL发光液,在化学发光成像仪上观察结果。3.5 RNA提取、逆转录和荧光定量PCR检测收集细胞,用RNeasy kit提取总RNA,使用RT2 First Strand Kit将RNA反转录成c DNA,所有操作按照说明书进行。通过荧光定量PCR检测目的基因的表达水平,以18S RNA作为内参进行标化。3.6 TGF-β1含量检测分别使用水貂肺上皮细胞报告基因生物测定法和ELISA试剂盒测定细胞培养上清中总TGF-β1和活化TGF-β1的含量。3.7免疫共沉淀用预冷含蛋白酶抑制剂的RIPA裂解液裂解细胞,加入MMP-2抗体,4℃孵育过夜,再与protein A-agarose孵育,用RIPA裂解液洗涤并重悬,加入SDS-PAGE上样缓冲液,煮沸,用8%的SDS-PAGE胶进行电泳,保留免疫共沉淀前的细胞裂解液作为对照。使用TIMP-2,MT1-MMP和MT3-MMP分别对免疫共沉淀前、后的细胞裂解液进行Western blot检测。3.8 sh RNA转染将MMP-2 sh RNA及其对照质粒通过Amaxa cell line nucleofector Kit V转染HUVEC细胞,24h后在荧光显微镜下观察到细胞出现明显的绿色荧光时,即可判定为转染成功。转染步骤参考试剂盒说明书进行。3.9统计学分析所有分析在Prism 5.0软件上进行。使用Student T test和one-way analysis of variance(ANOVA)比较不同组间差异,以P<0.05表示差异有显着性。4.研究结果1)HCMV可以在HUVEC细胞中增殖但不受ra TGF-β1的影响;2)HCMV能够感染被TGF-β1诱导发生EndMT的HUEVC;3)HCMV可以诱导发生EndMT的HUEVC细胞中TGF-β1活化;4)细胞中新合成活化TGF-β1的量与TGF-β1及HCMV的感染量呈正相关;5)MMP-2参与了HCMV感染引起发生EndMT的血管内皮细胞上调活化TGF-β1。5研究结论在本研究中我们发现感染HCMV的脐静脉内皮细胞与未感染细胞一样,在经过TGF-β1处理后出现End MT相关的形态和基因表达变化。感染HCMV的HUEVC细胞,经TGF-β1处理后,可以通过激活MMP-2活化细胞外潜伏状态的TGF-β1。HCMV感染不会阻止或减少TGF-β1诱导的End MT,相反可以上调发生End MT的细胞中大量纤维化分子的表达,这可能是HCMV影响动脉粥样硬化发生发展的分子机制之一。
Ye Shen,He Shen,Dongyu Guo,Xinghuai Sun,Yuan Sun,Nan Hong,Xiawei Wang,Chen Xie,Yuan Zhao,Qin He,Le Jin,Yingying Wen,Bo Jiang,Chenying Yu,Miaomiao Zhu,Feng Cai,Jianwu Dai[7](2020)在《Recent developments in regenerative ophthalmology》文中指出Regenerative medicine(RM) is one of the most promising disciplines for advancements in modern medicine, and regenerative ophthalmology(RO) is one of the most active fields of regenerative medicine. This review aims to provide an overview of regenerative ophthalmology, including the range of tools and materials being used, and to describe its application in ophthalmologic subspecialties, with the exception of surgical implantation of artificial tissues or organs(e.g., contact lens, artificial cornea, intraocular lens, artificial retina, and bionic eyes) due to space limitations. In addition, current challenges and limitations of regenerative ophthalmology are discussed and future directions are highlighted.
章萌[8](2020)在《促红细胞生成素导致腹主动脉瘤形成的作用及分子机制研究》文中提出研究背景腹主动脉瘤(abdominal aortic aneurysm,AAA)是一种潜在的致命性血管疾病,其定义为腹主动脉局部扩张,直径大于3cm或超过正常主动脉直径50%。AAA主要累及肾动脉分支以下的腹主动脉,患者通常没有症状,即使医生查体也难以触及扩张的腹主动脉,患者常由于其他临床指征行腹部超声或CT检查时偶然发现AAA,因此早期发现极为困难。一旦发生AAA破裂,死亡率高达85%-90%,几乎是不治之症。如何发现AAA的发病原因和快速膨胀因素并进行有效的抑制,是临床医学界面临的重大难题。尽管在AAA发病机制的研究领域已取得了巨大进展,但目前尚无有效的临床预测因子或药物治疗来降低AAA的发病风险或限制其进展。当男性和女性患者的AAA内径分别大于55mm和50mm时,可实施外科矫正术或血管内介入手术,术后存活率超过95%。因此,对于预防AAA破裂,手术矫正和支架介入是唯一有效的方法,但这些操作均有创伤性和并发症。大力研发可抑制AAA发生和发展的新药,已成为AAA研究领域中的当务之急。促红细胞生成素(EPO)由165个氨基酸和4条分子量为34kd的紧密球状结构的碳水化合物侧链组成。EPO对正常红细胞的产生至关重要,主要由胎儿肝脏及成年人肾脏合成。EPO主要通过刺激造血系统中的促红细胞生成素受体(EPOR)起到促进红细胞生成的作用。EPO可在缺氧时由肾小管间质细胞产生,通过促进红细胞生成和抑制红细胞祖细胞的凋亡而增加红细胞数量。此外,EPO潜在的造血外功能也备受关注。研究表明,EPO可由肾脏以外组织产生,且EPORs在红系祖细胞以外的其他组织中亦有广泛分布。肾脏以外产生的EPO是通过旁分泌/自分泌的途径而发挥作用,而非造血功能中的激素样作用。在创伤和炎症反应中,EPO及其受体表达明显增加,从而触发创伤组织和器官中的关键保护反应。EPO的组织保护作用已在多个动物的疾病模型中得到证实,包括局灶性脑缺血、栓塞性卒中、创伤性脑损伤、心肌缺血、急性肾损伤、肢体缺血、组织创伤等。临床研究表明,在严重创伤患者中给予EPO治疗可降低患者的死亡率。最近的研究发现,EPO可通过促进内皮细胞增殖迁移和基质金属蛋白酶2(MMP2)表达促进血管新生。接受腹主动脉腔内修复的AAA患者有三分之一患有贫血,其血红蛋白水平与AAA的大小呈独立负相关,但其机制并不明确。最近一项高脂血症小鼠中输注血管紧张素Ⅱ(Ang Ⅱ)的实验研究发现,抑制缺氧诱导因子-1α(HIF-1α)减弱了 AAA的进展。众所周知,慢性贫血和HIF可增加EPO的生成,而最近的证据表明,Ang Ⅱ可直接刺激造血祖细胞的受体或间接调节EPO的基因表达来影响造血功能。有罕见病例报道,一位长期进行血液透析并应用重组人EPO治疗的患者,无明显原因地对重组人EPO产生了耐药性,并CT检测发现了 AAA。这些临床和实验研究强烈提示EPO和AAA之间可能存在着某种联系,主动脉壁新生血管的形成,也被称为血管新生,是实验和临床AAAs的病理标志。有证据表明,主动脉瘤管壁内的血管新生可能在动脉瘤的进展和破裂中起关键作用。在人动脉瘤组织中,尤其是在邻近破裂区域和被白细胞浸润的区域,血管新生更为普遍。抑制实验性AAA进展的药物,也会减少动脉壁血管新生。基质金属蛋白酶(MMPs)家族密切参与新血管形成的过程,并发挥关键的促血管生成作用,而MMPs与动脉管壁的降解和破裂有关。缺氧和炎症是刺激血管新生的两个关键因素。HIF-1α及其靶基因在人类和实验性AAAs中表达增加。抑制HIF-1a治疗可以阻止实验性AAA进展,并减轻管壁白细胞浸润、血管新生和MMPs的过度表达。炎症和免疫相关疾病与血管新生相关,因为大多数白细胞能够产生一系列促血管生成因子,如血管内皮生长因子(VEGF)、血小板衍生生长因子(b-FGF)、碱性成纤维细胞生长因子(b-FGF)、单核细胞趋化蛋白-1(MCP-1)以及蛋白酶,如糜蛋白酶、胰蛋白酶、MMPs。有报道称肥大细胞特异性的糜蛋白酶和胰蛋白酶诱导内皮细胞(ECs)表达粘附分子和趋化因子,其利用趋化因子受体2(CCR2)作为募集趋化因子的受体,降解基质蛋白,促进血管新生,诱导平滑肌细胞凋亡。AAA发生和发展过程涉及了多种病理过程,比如血管新生、炎症浸润、氧化应激和平滑肌细胞凋亡等,在本研究中,我们提出如下科学假说,在ApoE-/-小鼠或野生型小鼠中,EPO可以剂量依赖性地导致AAA的发生,并且EPO通过促进血管新生,增加炎症浸润,诱导平滑肌凋亡,导致AAA的发生,为了验证这一假说,我们精心设计并进行了一系列的体内外实验。研究目的1.探讨EPO是否可在ApoE-/-小鼠和野生型小鼠中导致AAA的产生及其剂量效应;2.探讨EPO对小鼠AAA的影响是否受高脂喂养和高脂血症的影响;3.探讨EPO通过何种类型受体发挥作用对AAA产生影响;4.探讨EPO引起小鼠AAA的病理生理机制;5.探讨EPO对血管壁三种细胞(内皮细胞、平滑肌细胞和巨噬细胞)的作用及其机制。6.探讨在AAA临床患者中,血清EPO与AAA的发生有无关联。研究方法1.动物模型的建立和分组(1)雄性ApoE-/-小鼠60只,全程给予高脂饲料喂养,随机分为4组,每组15只;分别给予生理盐水、EPO 2,500 IU/kg/day、EPO 5,000 IU/kg/day 和 EPO 10,000 IU/kg/day腹腔注射,期间每天观察小鼠有无死亡情况,记录死亡数量和原因,4周后小鼠给予安乐死。(2)雄性ApoE-/-小鼠60只,全程给予普通饲料喂养,随机分为4组,每组15只;分别给予生理盐水、EPO 2,500 IU/kg/day、EPO 5,000 IU/kg/day 和 EPO 10,000 IU/kg/day腹腔注射,期间每天观察小鼠有无死亡情况,记录死亡数量和原因,4周后小鼠给予安乐死。(3)雄性野生型小鼠60只,全程给予普通饲料喂养,随机分为4组,每组15只;分别给予生理盐水、EPO2,500 IU/kg/day、EPO 5,000 IU/kg/day 和 EPO 10,000 IU/kg/day腹腔注射,期间每天观察小鼠有无死亡情况,记录死亡数量和原因,4周后小鼠给予安乐死。(4)雌性APoE-/-小鼠30只,全程给予高脂饲料喂养,随机分为2组,每组15只;雌性野生型小鼠30只,全程给予普通饲料喂养,随机分为2组,每组15只;分别给予生理盐水和EPO5,000IU/kg/day腹腔注射,期间每天观察小鼠有无死亡情况,记录死亡数量和原因,4周后小鼠给予安乐死。(5)雄性ApoE-/-小鼠45只,全程给予高脂饲料喂养,随机分为3组,每组15只;雄性野生型小鼠45只,全程给予普通饲料喂养,随机分为3组,每组15只;分别给予生理盐水、焦谷氨酸螺旋B表面肽(pHBSP)30 mg/kg/day和pHBSP 300mg/kg/day持续泵入,期间每天观察小鼠有无死亡情况,记录死亡数量和原因,4周后小鼠给予安乐死。(6)雄性ApoE-/-小鼠或野生型小鼠各30只,随机分为两组,每组15只;对照组给予生理盐水持续泵入,实验组给予Ang Ⅱ(1.44mg/kg/day)持续泵入,全程给予高脂高胆固醇喂养或普通饲料喂养,期间每天观察小鼠有无死亡情况,记录死亡数量和原因,4周后小鼠给予安乐死。2.鼠尾血压测量应用小动物鼠尾血压计测量所有小鼠的血压,测量部位为小鼠尾动脉,每只小鼠检测3次,取其平均值作为最终数值。3.组织取材小鼠取材前饥饿6-8小时,麻醉小鼠后取材,留取全血、血清、心脏、肝脏、脾脏、肾脏、脂肪组织和主动脉;各组织一部分放入液氮速冻,-80℃冰箱保存,一部分置于4%多聚甲醛中固定,以备后续实验。4.血脂血常规、肝肾功检测检测各组小鼠血清总胆固醇、甘油三酯、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇、谷丙转氨酶、谷草转氨酶、肌酐和尿素氮的水平;检测各组小鼠全血红细胞计数、血红蛋白含量和红细胞压积。5.血管组织全基因组测序分析接受EPO中剂量注射的ApoE-/-小鼠3只,正常对照组3只,取出其主动脉组织,加入RNAlater液氮速冻,送至北京诺禾致源生物科技有限公司进行RNA测序。6.病理学检测腹主动脉组织或肝肾组织制备石蜡切片,主要进行H&E染色、Verhoff弹力纤维染色和 Masson 染色。对 Endomucin、MMP2、MMP9、MT1-MMP、CD68、ICAM-1、VCAM-1、IL-6、IL-1β、MCP-1和TNF-α等指标进行免疫组织化学染色,对 CD68、IL-6、IL-1β、MCP-1、TNF-α、CD144 和 Ki67 等指标进行组织免疫双荧光染色。7.蛋白免疫印迹实验提取腹主动脉段血管组织蛋白和各种细胞总蛋白,进行BCA蛋白浓度测定。配制SDS-PAGE凝胶,通过蛋白免疫印迹检测胶原Ⅰ、胶原Ⅲ、MMP2、MMP9、MT1-MMP、VEGF、TGF-β1、KDR、Tie2、CD68、ICAM-1、VCAM-1、IL-6、IL-1β、MCP-1和TNF-α的蛋白含量。8.明胶酶谱实验配制含1%明胶的SDS-PAGE凝胶,提取腹主动脉段血管组织蛋白和各种细胞总蛋白,并进行BCA蛋白浓度测定。使用明胶酶谱试剂盒检测MMP2和MMP9的蛋白酶活性。9.RNA 提取、mRNA 逆转录、RT-PCR提取腹主动脉段血管组织RNA和各种细胞总RNA,应用TaKaRa#RR047A逆转录试剂盒进行mRNA逆转录。通过实时荧光定量PCR,得出循环阈值Ct值,通过公式2-ΔΔCT计算出cDNA的相对表达水平。10.细胞培养和信号通路(1)根据EPO浓度梯度预实验,5 IU/mL EPO刺激HUVEC 24小时,所表达的MMP2和MMP9酶活性最高,因此接下来的细胞实验选用EPO 5 IU/mL刺激24小时,作为实验组条件;(2)HUVEC、HAEC、HASMC和巨噬细胞:实验组加入5IU/mLEPO,对照组加入等体积1x PBS,刺激24小时,收集细胞和上清;(3)HUVEC实验组加入5 IU/mL EPO,对照组加入等体积1x PBS,刺激24小时,收集上清;加入预先种好板的HASMC中,刺激24小时,收集细胞和上清;(4)HUVEC实验组加入5 IU/mL EPO,对照组加入等体积1x PBS,刺激24小时,收集上清;加入预先种好板的巨噬细胞中,分别刺激0、2、4、6、8和10小时,收集细胞和上清;(5)HUVEC实验组加入10mg/L pHBSP,对照组加入等体积1xPBS,刺激24小时,收集细胞和上清;(6)实验分为4组:对照组加入DMSO(作为溶剂对照),EPO组加入EPO(5 IU/mL)+DMSO,JAK2 抑制剂组加入 EPO(5 IU/mL)+TG101348(1 μM)[49,50],STAT5 抑制剂组加入 EPO(5IU/mL)+CAS285986-31-4(50μg/mL),刺激24小时,收集细胞或者观察拍照。11.EDU细胞增殖实验使用EDU试剂盒检测HUVEC或HASMC的增殖能力。12.内皮细胞迁移实验通过划痕实验和Transwell小室细胞迁移实验,检测HUVEC和HAEC在EPO作用下的迁移能力。13.体外小管生成实验利用低生长因子Matrigel基质胶观察HUVEC和HAEC在EPO作用下体外小管生成能力。14.主动脉环出芽实验取野生型小鼠胸主动脉段,将血管剪成长约1mm的小段,置于Matrigel基质胶中,加入相应的药物刺激,每天观察拍照,软件分析计算主动脉出芽数量和长度。15.单核-内皮细胞粘附实验将HUVEC给予EPO刺激24小时;用BCECF-AM(pH荧光探针)标记THP-1细胞悬液;取1x105/mL THP-1混悬液加入到上述HUVEC细胞培养板中,孵育至少1小时;4%多聚甲醛固定细胞。16.TUNEL细胞凋亡检测给予HASMC EPO或者EPO处理过的HUVEC上清干预,使用TUNEL试剂盒检测HASMC的凋亡情况。17.腹腔巨噬细胞的提取选取8-12周雄性野生型小鼠,提前3天给予腹腔注射6%淀粉溶液1mL;小鼠脱颈处死,撕开皮肤,充分暴露腹膜;用无菌注射器注入DMEM于腹腔中,回抽液体至新的50mL离心管中;冲洗腹腔3次,直至DMEM变澄清,得到腹腔巨噬细胞混悬液。18.体内基质胶塞血管新生实验使用高浓度Matrigel基质胶,配制基质胶与药物混合液,取0.7mL基质胶混合液,注入小鼠皮下。14天后,切除基质胶塞;4%多聚甲醛固定过夜,观察基质胶塞大体形态颜色;石蜡包埋,切片,进行常规染色和免疫组化。19.酶联免疫吸附实验使用ELISA方法检测血清中EPO的水平。20.腹主动脉瘤病人血清收集我们纳入40例AAA患者,在患者住院24小时内采集血样。患有贫血、心衰、慢性呼吸系统疾病和肾功能衰竭的病人排除入组。纳入45例健康志愿者的血清作为正常对照组。21.数据统计分析所有数据均以均数±标准误来表示,两组计量资料采用独立样本t检验,多组计量资料采用单因素方差分析LSD事后检验;计数资料采用卡方检验;生存分析采用Log-Rank检验;P<0.05认为有统计学差异。研究结果1.EPO剂量依赖性地诱导ApoE-/-小鼠和野生型小鼠AAA的发生腹腔注射高中低剂量EPO4周后,发现EPO剂量依赖的增加了小鼠AAA的发生率,腹主动脉直径明显增加;同时,小鼠死亡率也呈剂量依赖性增加。EPO高剂量组诱导ApoE-/-小鼠AAA发生率与Ang Ⅱ相当,而EPO高剂量组诱导野生型小鼠AAA发生率明显高于Ang Ⅱ。2.EPO导致ApoE-/-小鼠和野生型小鼠腹主动脉管壁增厚弹力板断裂结果显示注射低中高剂量EPO后,动脉管壁明显增厚,弹力纤维断裂,管腔内可伴有血栓形成。3.EPO不影响ApoE-/-、鼠和野生型小鼠血压和血脂的变化EPO注射4周后,与对照组相比,EPO低中高剂量组血压并无显着差异;同样,EPO注射后没有影响小鼠血脂水平变化。由此推断,EPO注射4周,对小鼠的血压和血脂无显着影响。4.EPO不影响ApoE-/-小鼠和野生型小鼠肝功和肾功的变化EPO注射四周后,与对照组相比,EPO低中高剂量组的指标没有明显变化;取对照组和EPO高剂量组小鼠的肝脏和肾脏进行H&E染色,组织形态亦没有明显差别。由此,从药物毒理学角度推测,EPO注射4周,并没有引起肝脏和肾脏的功能障碍。5.高脂饮食不影响EPO对ApoE-/-小鼠AAA形成的剂量效应在全程普通饲料喂养过程中,发现EPO剂量依赖的增加了 ApoE/-小鼠AAA的发生率,且与高脂喂养模型的发生率无显着差异;同时,高脂喂养与否,EPO高剂量组小鼠的死亡率无明显统计学意义。由此得出,高脂饮食不影响EPO对ApoE-/-小鼠AAA形成的剂量效应。6.EPO可诱导雌性ApoE-/-小鼠和野生型小鼠AAA的发生结果显示,在中剂量EPO刺激下雌性ApoE-/-小鼠和雌性野生型小鼠均有AAA发生,但都略低于雄性小鼠发生率,这符合人类AAA发病率中,男性高于女性的特征。7.pHBSP不能剂量依赖性的诱导小鼠AAA的发生结果显示pHBSP不能诱导两种基因型的小鼠发生AAA,因此推断EPO可能通过同源二聚体受体发挥作用,导致AAA。8.AAA患者血清EPO水平明显增高两组之间在年龄、性别、肾功能和药物治疗方面没有显着差异,但吸烟者在AAA组比正常对照组更常见。通过分析显示,年龄在>65岁和≤65岁之间、男性和女性之间、吸烟者和非吸烟者之间的腹主动脉直径没有显着差异,这表明在这组患者中,AAA直径不受传统动脉粥样硬化危险因素的影响。与健康对照组相比,AAA患者的血清EPO水平显着升高,这表明该组患者分泌了更多的EPO于循环血液中。9.基因测序分析EPO对ApoE-/-小鼠主动脉组织mRNA表达谱的影响基因本体论分析发现,两组间差异基因主要富集在血管形态发生、血管新生、细胞周期和迁移、炎症反应、白细胞浸润、和细胞外基质重塑中。10.血管新生和胶原代谢参与EPO诱导AAA的过程结果显示,与对照组相比,EPO组腹主动脉管壁胶原显着减少,尤其是胶原Ⅰ和胶原Ⅲ表达。MMPs蛋白表达和活性明显高于对照组。EPO组腹主动脉管壁微血管密度明显增加,VEGF、TGF-β1、KDR和Tie2蛋白表达明显增高。11.炎症反应参与EPO诱导AAA的过程结果显示,EPO组腹主动脉CD68阳性细胞浸润动脉壁的程度明显高于对照组。同时 ICAM-1、VCAM-1、IL-6、IL-1β、MCP-1 和 TNF-α 等炎症因子 mRNA水平和蛋白水平表达明显多于对照组。CD68阳性细胞来源的炎症因子明显增高。MSD检测发现,血清炎症因子水平也明显高于对照组小鼠。12.EPO对小鼠红细胞、白细胞和血小板数量的影响给予小鼠EPO注射4周后,结果显示与对照组相比,EPO组红细胞计数、血红蛋白和红细胞压积明显增高。而白细胞计数、单核细胞计数、淋巴细胞计数、粒细胞计数和血小板计数在两组之间无显着性差别。13.三种细胞中内皮细胞EPOR mRNA表达水平最高与平滑肌细胞和巨噬细胞相比,内皮细胞的EPOR表达最高,提示EPO可能主要以内皮细胞为靶点发挥作用。14.EPO促进内皮细胞的增殖和迁移通过EDU实验可以观察到EPO促进HUVEC增殖。通过划痕实验和Transwell小室细胞迁移实验观察到EPO促进HUVEC和HAEC迁移。15.EPO促进内皮细胞体外小管形成和小鼠主动脉环出芽结果显示EPO组内皮细胞更容易形成闭合的管状结构。小鼠胸主动脉环种植于Matrigel基质胶中,在EPO刺激下,主动脉环比对照组更容易出芽,出芽的数量和出芽长度明显增加。16.EPO促进内皮细胞血管新生相关蛋白的表达结果显示,给予EPO刺激后HUVEC或HAEC的MMPs蛋白表达水平和活性明显高于对照组。EPO组细胞的KDR和Tie2表达明显增高。17.pHBSP不能促进HUVEC迁移、体外小管形成和MMPs的表达结果显示,对照组和pHBSP组细胞迁移数量无明显差别,形成小管数量和小管总长度无显着差异。给予pHBSP刺激后HUVEC的MMPs蛋白表达水平和酶活性与对照组无明显差别。18.EPO促进内皮-单核细胞间的粘附作用结果显示,与对照组相比,EPO组粘附的单核细胞数明显增多,由此得出,EPO能够促进内皮-单核细胞间的粘附作用。19.EPO对巨噬细胞炎症因子表达的影响直接给予EPO刺激,巨噬细胞炎症因子的表达无意义;溶剂对照或EPO刺激HUVEC 24小时后,取细胞培养液来刺激巨噬细胞,结果显示,IL-6、IL-1β和TNF-α在6小时明显增高,MCP-1在8小时明显增高,由此得出,内皮细胞参与是EPO诱导巨噬细胞炎症因子上调的关键环节。20.EPO对巨噬细胞MMPs表达的影响溶剂对照或EPO刺激巨噬细胞24小时后,两组MMP2和MMP9的蛋白表达和酶活性无明显差别。溶剂对照或EPO刺激HUVEC 24小时后,取细胞培养液来刺激巨噬细胞,结果发现,两组MMP2和MMP9的蛋白表达和酶活性依然没有明显差别。由此推断,EPO并不能影响巨噬细胞MMPs的表达。21.EPO对平滑肌细胞胶原蛋白、MMPs和凋亡相关蛋白表达的影响给予浓度梯度的EPO刺激HASMC后,其胶原Ⅰ、胶原Ⅲ、MMP2和MMP9表达没有明显变化。EPO组HASMC表达BCL2和BAX与对照组也没有明显差异。溶剂对照或EPO刺激HUVEC 24小时后,取细胞培养液来刺激平滑肌细胞,结果显示,EPO组HASMC表达胶原Ⅰ和胶原Ⅲ明显减少,而MMP2和MMP9蛋白表达和酶活性明显增加。EPO组表达抗凋亡蛋白BCL2明显少于对照组,而表达促凋亡蛋白BAX明显多于对照组。22.EPO对平滑肌细胞增殖和凋亡的影响结果显示直接给予EPO刺激,诱导的HASMC增殖和凋亡的数量与对照组无明显差别。溶剂对照或EPO刺激HUVEC 24小时后,取细胞培养液来刺激HASMC,结果显示EPO组TUNEL 阳性细胞比例明显高于对照组,而EDU 阳性细胞比例明显低于对照组。23.EPO在体内水平促进血管新生和炎症浸润14天后从小鼠体内取出基质胶塞显示:混有溶剂对照的基质胶塞呈清晰的黄色,而含有EPO的基质胶塞呈红色,说明基质胶塞内形成了血管。EPO组侵袭的细胞和血管数量明显增多。EPO组CD144和Ki67阳性细胞数量明显高于对照组,说明EPO促进内皮细胞的增殖和迁移。并且EPO组切片CD68阳性细胞浸润程度和炎症因子表达明显高于对照组,这表明EPO促进炎症细胞入侵和炎症因子的表达。24.EPO通过JAK2/STAT5通路诱导血管新生结果显示,EPO明显增强了 JAK2和STAT5的磷酸化水平,而JAK2抑制剂明显抑制了 JAK2和STAT5的磷酸化水平,STAT5抑制剂只抑制了 STAT5的磷酸化水平,并没有影响JAK2的磷酸化水平。加入JAK2抑制剂和STAT5抑制剂后明显抑制了内皮细胞闭合管状结构的形成。通过以上结果可知,EPO通过JAK2/STAT5通路促进内皮细胞形成新生血管。25.EPO诱导AAA形成和发展的机制通过以上体内体外实验,我们基本得出EPO诱导AAA形成和发展的机制为:EPO刺激血管内皮细胞,激活JAK2/STAT5通路,促进血管新生、基质金属蛋白分泌、平滑肌细胞凋亡,抑制平滑肌细胞合成胶原蛋白,增强炎性细胞聚集和炎症因子释放,导致AAA的形成和发展。实验结论1.EPO剂量依赖性地促进了 ApoE-/-小鼠和野生型小鼠AAA的形成,EPO导致ApoE-/-小鼠AAA发生率与Ang Ⅱ相当,EPO导致野生型小鼠AAA发生率明显高于Ang Ⅱ;2.EPO是通过(EPOR)2同型二聚体发挥作用促进AAA的形成;3.EPO通过引起血管新生、炎症反应和胶原降解而导致AAA的形成;4.EPO通过内皮细胞的介导诱导巨噬细胞表达炎症因子,抑制HASMC胶原分泌,促进HASMC凋亡。研究背景在腹主动脉瘤(AAA)发生发展过程中,由于AAA常与主动脉壁严重动脉粥样硬化损伤相关,因此传统认为AAA是动脉粥样硬化的结果。但这一传统观点近年来受到越来越多的挑战。与不合并动脉粥样硬化性心血管疾病的人群相比,合并冠心病、周围血管疾病、颈动脉疾病、脑血管疾病的患者发生AAA的OR值分别为1.72、1.59、1.51和1.18。在6446例接受颈动脉、股动脉和腹主动脉超声检查的Troms0研究中,斑块负荷与AAA发生率之间无量效关系,提示动脉粥样硬化与AAA可能是伴随关系而非因果关系。糖尿病是动脉粥样硬化的重要危险因素,但却是AAA的保护性因素,在美国310万人AAA流行病学调查中,与非糖尿病患者相比,糖尿病患者发生AAA的OR值为0.75,提示糖尿病可使AAA风险减少25%。这一反常现象提示,动脉粥样硬化与AAA可能是两个互相独立的疾病。吸烟与AAA的发生有很强的临床联系。吸烟人群中AAA的患病率是终身不吸烟人群的四倍以上。一份比较慢性吸烟者罹患不同疾病的相对风险的报告显示,罹患AAA的风险比罹患冠状动脉疾病的风险高出三倍,比罹患脑血管疾病的风险高出近五倍。2011年在瑞典进行的26256例65岁以上老年男性超声检查结果表明,AAA的发病率已下降至2.2%,其主要原因可能是吸烟人群的减少,提示控制吸烟可能是一个预防AAA的有效策略。基于这些临床观察,慢性吸烟可能是AAA发生发展的最重要的环境危险因素。除了吸烟外,其他危险因素还包括男性、年龄、高血压、慢性阻塞性肺疾病、高脂血症和家族病史。动物模型是一种强有力的工具,可以提供AAA发生和发展机制的理解。目前,AngⅡ注射模型是最常用的AAA动物模型。在高脂喂养的ApoE-/-或LDLR-/-小鼠皮下埋置微量渗透泵,持续注射大剂量Ang Ⅱ,可导致AAA,因此目前有关AAA发生和发展的细胞和分子机制主要来自于这类模型的研究。已提出的AAA发病机制包括:氧化应激机制:AAA患者或小鼠模型中促氧化剂增多,而抗氧化剂减少,从而导致ROS水平的上升,氧化应激增加,刺激血管紧张素转换酶(ACE)表达,内源性Ang Ⅱ增多,炎症反应增强。肾素-血管紧张素激活机制:持续滴注AngⅡ首先导致腹主动脉的炎症反应,继之出现弹性蛋白降解、血管中层断裂和管腔扩张,这些作用通过AT1R所介导,使用ACEI、ARB和ACE2过表达等方法以减少Ang Ⅱ的产生和作用,均可减轻小鼠AAA病变。AMPKa2激活机制:尼古丁和Ang Ⅱ可通过激活细胞膜表面的G蛋白偶联受体增加胞内的活性氧水平,活性氧可激活AMPK,形成AMPKa2/AP-2o/MMP2级联反应,从而活化MMP2的基因转录,最终导致血管壁细胞外基质的降解加速,引发AAA。胶原代谢机制:炎性因子不仅通过刺激MMPs表达而增加细胞外间质的降解,而且使得胶原合成障碍,加速AAA的形成。由于AAA是一个病因不明、病程迁延、病变发展、治疗有限、预后险恶的多因素疾病,且所得出的干预靶点在临床试验中尚无成功的先例,因此,对于AAA发生和发展机制的研究,我们仍处于早期阶段。Ang Ⅱ可以促进特定造血细胞系的増殖,而且Ang Ⅱ也参与了EPO在体内的调控。对健康志愿者的临床研究表明,Ang Ⅱ通过激活AT1R使血清EPO浓度升高约35%或更高。此外,在另一项对健康志愿者的研究中,ACEI类药物卡托普利和依那普利显着降低了血浆EPO水平,降幅高达20-30%。这些发现表明Ang Ⅱ在体内通过受体依赖信号调节EPO的产生,但EPO是否介导了Ang Ⅱ在体内的生物学作用,且引起AAA产生尚无报道。结合本研究论文I和论文Ⅱ的结论,EPO能够导致AAA的产生,因此我们假设在ApoE-/-小鼠中,EPO介导了Ang Ⅱ诱导的AAA的发生和发展,因此我们设计了一系列体内体外实验以验证此假说。研究目的1.探讨EPO/EPOR信号通路在Ang Ⅱ诱导AAA过程中起到的作用;2.探讨Ang Ⅱ诱导野生型小鼠AAA发生率较低的原因;3.探讨Ang Ⅱ作用于EPO的分子机制。研究方法1.动物模型的建立和分组(1)雄性ApoE-/-小鼠60只,随机分为4组:其中对照组给予生理盐水持续泵入+生理盐水尾静脉注射,Ang Ⅱ组给予Ang Ⅱ持续泵入+生理盐水尾静脉注射,Ang Ⅱ+IgG2a组给予Ang Ⅱ持续泵入+EPO尾静脉注射,Ang Ⅱ+EPO中和抗体组给予Ang Ⅱ持续泵入+EPO中和抗体尾静脉注射,4周后小鼠给予安乐死。(2)实验组为EPOR+/-ApoE-/-双敲小鼠,对照组为同窝ApoE-/-小鼠,同时给予Ang Ⅱ持续栗入,4周后小鼠给予安乐死。(3)雄性野生型小鼠30只,随机分为两组,每组15只;对照组给予生理盐水持续栗入,实验组给予Ang Ⅱ持续泵入,全程给予普通饲料喂养,4周后小鼠给予安乐死。2.细胞培养和分组(1)实验分为四组:对照组(溶剂对照),Ang Ⅱ(50μM)组,Ang Ⅱ+替米沙坦(lμM)组,AngII+PD123319(50μM)组,刺激12小时,收集细胞;(2)实验分为四组:对照组(溶剂对照),Ang Ⅱ(50μM)组,Ang 11+替米沙坦(lμM)组,AngII+U0126(50μM)组,刺激12小时,收集细胞。3.鼠尾血压测量在给予药物干预4周末,应用小动物鼠尾血压计测量所有小鼠的血压,测量部位为小鼠尾动脉,每只小鼠检测3次,取其平均值作为最终数值。4.组织取材步骤小鼠取材前饥饿6-8小时,麻醉小鼠后取材,留取全血、血清、心脏、肝脏、脾脏、肾脏、脂肪组织和主动脉;各组织一部分放入液氮速冻,-80℃冰箱保存,一部分置于4%多聚甲醛中固定,以备后续实验。5.血常规检测使用兽用全自动血液细胞分析仪检测各组小鼠全血红细胞计数,血红蛋白含量和红细胞压积。6.免疫组织化学染色腹主动脉组织制备石蜡切片,对IL-6、IL-lβ、MCP-1和TNF-α进行免疫组织化学染色。7.蛋白免疫印迹实验提取腹主动脉段血管姐织蛋白和各种细胞总蛋白,进行BCA蛋白浓度测定。配制SDS-PAGE凝胶,通过蛋白免疫印迹检测EPO、EPOR、ERK1/2的蛋白含量。8.RNA提取、mRNA逆转录、RT-PCR提取腹主动脉段血管组织RNA和各种细胞总RNA,应用TaKaRa#RR047A逆转录试剂盒进行mRNA逆转录。通过实时荧光定量PCR,得出循环阈值Ct值,通过公式2-△△CT计算出cDNA的相对表达水平。9.酶联免疫吸附实验使用ELISA方法检测血清中EPO的水平。10.数据统计分析所有数据均以均数±标准误来表示,两组计量资料采用独立样本t检验,多组计量资料采用单因素方差分析LSD事后检验;不符合正态分布的数据采用秩和检验;计数资料采用卡方检验;生存分析采用Log-Rank检验;户<0.05认为有统计学差异。研究结果1.EPO在Ang Ⅱ诱导ApoE-/-小鼠发生AAA的过程中起到重要作用结果显示,Ang Ⅱ组和Ang Ⅱ+IgG2a组AAA发生率明显增高;Ang Ⅱ组和Ang Ⅱ+IgG2a组之间无显着性差异,而Ang Ⅱ+EP0中和抗体组AAA发生率降为20%。Ang Ⅱ+EP0中和抗体组腹主动脉直径明显降低,死亡率明显下降。2.EPOR在Ang Ⅱ诱导ApoE-/-小鼠发生AAA的过程中起到重要作用由于EPOR-/-纯合小鼠致死,故我们只能获得EPOR+/-杂合小鼠。给予Ang Ⅱ埋泵4周后,结果显示与ApoE+小鼠组相比,EPOR+/-ApoE-/-双敲小鼠组AAA发生率明显降低,且腹主动脉直径明显降低,死亡率降低至0。3.EPOR敲除抑制Ang Ⅱ诱导ApoE-/-小鼠AAA中炎症因子的表达EPOR+/-ApoE-/-双敲小鼠组腹主动脉管壁IL-6、IL-lp、MCP-1、TNF-a的表达明显少于ApoE-/-小鼠组。4.各组小鼠血清EPO水平比较ApoE-/-小鼠和野生型小鼠给予Ang Ⅱ千预后,Ang Ⅱ组的血清EPO水平比对照组高出2倍以上。同样给予Ang Ⅱ干预的ApoE-/-小鼠的血清EPO水平显着高于野生型小鼠的血清EPO水平。在野生型小鼠中,EPO注射组导致的血清EPO水平远高于Ang Ⅱ干预组。在Ang Ⅱ和EPO诱导的ApoE-/-小鼠和野生型小鼠AAA发病机制中EPO起了至关重要的作用。5.EPO介导了Ang Ⅱ诱导ApoE-/-小鼠的脾肿大和造血增加解剖小鼠后发现,与对照组相比,Angll组小鼠有明显的脾肿大现象,且脾脏重量明显高于对照组。EPO中和抗体治疗后,脾脏的大小和重量明显减少,且可显着抑制Ang Ⅱ诱导的RBC、HGB和HCT的增加。而EPOR+/-ApoE-/-小鼠与ApoE-/-小鼠相比,经Ang Ⅱ干预后造血表型无明显改变。6.Ang Ⅱ上调EPO表达的机制与对照组相比,Ang Ⅱ组表达EPO水平明显增高,Ang 11+替米沙坦组表达EPO水平显着低于Ang Ⅱ组,Ang Ⅱ+PD123319组表达EPO水平与Ang Ⅱ组无明显差异。Ang Ⅱ+U0126组表达EPO含量明显低于Ang Ⅱ组。Ang Ⅱ对786-0和HASMC有同样的作用。实验结论1.EPO/EPOR信号通路在Ang Ⅱ诱导AAA过程中起到关键性作用;2.血清EPO水平在Ang Ⅱ和EPO诱导的ApoE-/-和野生型小鼠AAA发病机制中起到关键作用;3.Ang Ⅱ通过AT1R/ERK1/2通路上调肾脏细胞和平滑肌细胞EPO表达,分别增加循环EPO水平和局部组织EPO水平。
王珵珵[9](2020)在《针对丙型肝炎病毒E2包膜糖蛋白后层结构域开发相应中和抗体》文中研究指明丙型肝炎病毒(Hepatitis C Virus,HCV)是一种小型的单股正链带包膜的RNA病毒,系黄病毒科,丙型肝炎病毒属。目前已经鉴定出八种基因型和八十六个亚型。丙型肝炎病毒感染引发不同程度的肝炎,从轻症肝炎,到肝硬化,甚至肝癌。丙型病毒肝炎危机全球3.5亿多人的生活质量,大约40%到95%的丙肝病毒感染者会发展为慢性丙肝病毒感染,即血液中持续存在丙肝病毒RNA。慢性丙肝病毒感染因此成为一个全球性的健康问题。在2016年,世界卫生组织制定全球抗肝炎策略,目标在2030年消除病毒性肝炎对人类健康的威胁。随着对丙肝病毒的结构及其生活周期的深入了解,最新研发的一种多基因型直接抗病毒药物(direct acting antivirals,DAA)的临床应用彻底改变了传统的丙肝治疗。这种靶向HCV编码蛋白的DAA疗法能够治愈90%以上的感染患者,其中包括HCV感染的晚期肝病患者。但是随着病毒耐药性的形成,治疗失败也常有发生。而目前仍存在的困难包括:在低收入国家能获得诊断的人数少,治疗成本高以及没有抗HCV疫苗的问题。因此,研制预防性疫苗是控制全球丙肝病毒感染的必要手段。HCV的E1和E2包膜糖蛋白会在病毒表面形成异质二聚体,通过与宿主细胞受体结合介导病毒的进入。在过去的几十年内,人们在体外表达的E1E2异质二聚体往往质量不高,因而难以对其结构和功能进行研究。基于对HCV包膜糖蛋白的部分已知结构及对比其他黄病毒包膜蛋白特点,推测E2蛋白是经典的融合蛋白,而E1可能是参与融合的蛋白。E2包膜糖蛋白的胞外域是呈球形的非延伸的折叠,并分为不同的两层:包括有前层结构域及中央免疫球蛋白折叠结构域的前层,和后层(Back layer,BL)。有研究发现E1和可溶性E2糖蛋白的后层结构域(soluble E2-Back layer domain,sE2-BLd)之间存在关键相互作用,而sE2-BLd与E1相互作用正参与HCV包膜与细胞膜融合发生显着构象变化的过程中。我们实验室前期实验结果发现HCV包膜糖蛋白sE2-BLd以可溶形式,在HCV进入宿主细胞过程中发挥抑制作用。为研究E2-BLd多肽是否可以作为免疫原引发机体产生中和HCV的免疫反应,我们构建了用于表达E2,E2-BLd的质粒。为优化E2-BLd的表达,我们还对其中未配对的半胱氨酸进行了突变,避免蛋白聚集的形成。将构建的这些质粒转染哺乳动物细胞中表达带有组氨酸标签(histidine-tag,his-tag)的蛋白,发现这些组氨酸标签蛋白难以纯化。因此,为提升蛋白产量,我们构建了带谷胱甘肽巯基转移酶标签(glutathione S-transferase tag,GST-tag)的质粒,用于在大肠杆菌DE3菌株(Escherichia coli DE3/BL21,E.coli DE3/BL21)中表达可溶性重组蛋白,其蛋白产量足够用于建立酶联免疫吸附实验(Enzyme-linked immunosorbent assay,ELISA)。之后,我们决定采取直接将质粒电脉冲到小鼠肌肉中表达E2和E2-BLd,这种DNA免疫方法同时具备操作方便和免疫原纯度高的优势。细胞培养扩增的HCV病毒(Cell-culture grown HCV,HCVcc)可用于研究病毒复制过程中吸附和入侵阶段的机制。为了评估E2-BLd抗体对病毒感染的潜在保护效果,我们分离免疫小鼠血清并检测其对HCVcc病毒的中和能力。但未检测到E2和E2-BLd免疫的小鼠产生了具有中和病毒效力的特异性免疫应答。然而,我们采用蛋白免疫印迹实验(Western Blotting,WB)和酶联免疫吸附实验却能检测到小鼠血清中存在能够识别来自HCV病毒H77毒株和J6毒株抗原的特异性抗体。综上所述,我们通过DNA免疫小鼠的方法获得了抗HCV核心蛋白,E2和E2-BLd(来源HCV H77毒株)的多克隆抗体,证实我们的免疫方法有效。为后续研究E2-BLd抗体抑制HCV进入宿主细胞奠定了生物学基础。
张姜[10](2020)在《NK和iNKT细胞的转录调控研究》文中提出Natural killer(NK)cells are innate lymphoid cells widely recognized as important effectors during antiviral and anti-tumor responses.T-bet and Eomes are two transcription factors from the T-box family that are homologous with each other for protein sequence and DNA binding preferences.Both factors were previously shown to regulate NK cell development,but how they work together remains unclear.In this study,we identified complementary roles of Eomes and T-bet in the control of gene expression during NK cell maturation and found that T-bet and Eomes regulate mostly different gene sets and at different maturation stages.Analysis of genomic binding revealed a significant overlap between Eomes and T-bet.In addition,in silico analysis of DNA binding suggests that Eomes and T-bet rely on other co-factors to allow TF-specific activity.Moreover,T-bet or Eomes also regulate chromatin accessibility resulting in the control of NK cell development.Invariant natural killer T(iNKT)cells are unconventional T cells bearing an invariant T cell receptor and are distinct from conventional CD4 or CD8 single positive T cells.Previous analyses suggested a role for Zeb1 in T cell development.We demonstrated that Zeb1 was essential for the development of NK1.1+T cell especially iNKT cells.The truncated form of Zeb1 in the Cellophane mutant mouse abrogated iNKT cell development mainly through the deregulation of TCR signaling and survival and the repression of proliferation in T cell progenitors including DN2 and DP stages.A transcriptomic analysis on WT and Cellophane DP revealed that Zeb1 regulated the expression of multiple genes involved in cell cycle and TCR signaling,which was consistent with the phenotypes that we observed in mice.Finally,multiple lines of evidence suggest that Zeb1 acts in coordination with E-proteins such as TCF1 and HEB during T cell development.
二、The Expression of the Plasmid DNA Encoding TGF-β_1 in Endothelium after Injection into the Anterior Chamber(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、The Expression of the Plasmid DNA Encoding TGF-β_1 in Endothelium after Injection into the Anterior Chamber(论文提纲范文)
(1)Nanoparticle–Cartilage Interaction: Pathology-Based Intra-articular Drug Delivery for Osteoarthritis Therapy(论文提纲范文)
HIGHLIGHTS |
1 Introduction |
2 Limitations of Current OA Therapy Demands Research and Development(R&D) of E ective Drug Delivery Systems |
2.1 Pathological Mechanisms of OA |
2.2 Inadequate Clinical Therapy E cacy |
2.3 Advantages of Nanoparticles for the Treatmentof Cartilage Disease |
3 Transports of Nanoparticles Within the Joint Cavity |
3.1 Pharmacokinetics and Biodistribution of Nanoparticles |
3.2 Size?Dependent Penetration Within Cartilage Matrix |
3.3 Targeting Therapy to Facilitate Nanoparticle– Cartilage Interaction |
3.4 Interactions with Targeted Cells |
3.5 Summary of Size Design |
4 Materials Design of Nanoparticles |
4.1 Major Compositions of Transport Carriers |
4.1.1 Synthetic Polymers |
4.1.2 Natural Polymers and Their Derivatives |
4.1.3 Liposomes |
4.2 Components Derived from Native ECM |
4.2.1 Hyaluronic Acid |
4.2.2 Chondroitin Sulfate |
4.3 Intra?articular Delivery Choices |
4.4 Summary of Material Design According to the Pathology Features |
5 Therapeutic Schemes According to the Pathology Mechanisms |
5.1 Prophylactic Administration |
5.1.1 Viscosupplementation |
5.1.2 Cartilage Maintenance by MinimizingChondrogenic Hypertrophy |
5.1.3 Cartilage Maintenance by Improving ChondrocytesSurvival |
5.2 Symptomatic Treatment |
5.2.1 Pain Relief by Inhibiting Inflammation |
5.2.2 Against Oxidative Damage |
5.3 In situ Cartilage Regeneration |
5.3.1 Recruitment of Joint?resident Endogenous StemCells |
5.3.2 Promoting Chondrogenesis |
5.4 Perspective of Novel Therapeutic Schemes |
5.4.1 Targeting Synovial Membrane and Subchondral Bone |
5.4.2 Pain Relief Targeting Nervous System |
5.4.3 Pain Relief Targeting Blood Vessel |
6 Perspective of“Smart”Bioresponsive and Multi?modality Nanoparticles |
6.1 Bioresponsive Nanoparticles for Controlled Delivery |
6.1.1 External?Responsive Nanoparticles |
6.1.2 Internal Stimuli?Responsive Nanoparticles |
6.2 Multi?modality Nanoparticles |
6.2.1 Nanoparticles in OA Diagnosis |
6.2.2 Nanoparticles in Cell Tracking |
6.2.3 Theranostic Applications of Metal Nanoparticles |
7 Translation from‘Bench to Bedside’ |
8 Conclusions |
(2)脂肪细胞来源外泌体在糖尿病动脉粥样硬化疾病中的作用及机制研究(论文提纲范文)
论文Ⅰ 脂肪细胞来源外泌体介导的内皮间质转化在糖尿病血管再狭窄中的作用及机制研究 |
中文摘要 |
英文摘要 |
符号说明 |
前言 |
材料与方法 |
结果 |
讨论 |
创新点 |
限制性 |
结论 |
附图 |
参考文献 |
论文Ⅱ 脂肪细胞来源外泌体在血管新生中的作用及机制研究 |
中文摘要 |
英文摘要 |
符号说明 |
前言 |
材料与方法 |
结果 |
讨论 |
创新点 |
限制性 |
结论 |
附图 |
参考文献 |
致谢 |
攻读学位期间发表的论文 |
SCI论文Ⅰ |
SCI论文Ⅱ |
SCI论文Ⅲ |
学位论文评阅及答辩情况表 |
(3)线粒体靶向纳米酶的仿生合成及在心脏缺血再灌注损伤治疗上的研究(论文提纲范文)
中文摘要 |
Abstract |
Abbreviation |
Chapter1:Introduction |
1.1 Cardiovascular Diseases(CVDs) |
1.2 Myocardial Ischemia |
1.3 Ischemia Reperfusion(IR)Injury of Myocardium |
1.3.1 Reversible ischemia Reperfusion Injury of the Myocardium |
1.3.2 Irreversible Ischemia Reperfusion Injury of the Myocardium |
1.4 Reactive Oxygen Species(ROS) |
1.5 Physiological Functions of ROS |
1.6 Generation and Regulation of ROS |
1.6.1 ROS generation by NADPH |
1.6.2 ROS generation by mitochondrial ETC |
1.7 ROS Generation in IR injury of heart |
1.7.1 NADPH oxidases produce ROS in IR injury of heart |
1.7.2 The role of mitochondria in IR injury |
1.7.3 Mitochondrial O_2~(·-)and H_2O_2 |
1.7.4 Role of Complex-I in IR injury |
1.7.5 Role of Complex-III in IR injury |
1.7.6 Role of m PTP in IR injury |
1.8 Nanozymes |
1.8.1 Types of Nanozymes |
1.8.2 Design and Engineering of Nanozymes |
1.8.3 Therapeutic application of Nanozymes in various diseases |
Chapter2:Investigating the systemic delivery of Mito-Fenozyme for IR therapy |
2.1 Introduction |
2.1.1 Experimental reagents and kits |
2.2 Materials |
2.2.1 Equipment |
2.2.2 Animals |
2.2.3 Solution preparation |
2.3 Methods |
2.3.1 Extraction of human FTn heavy-chain protein |
2.3.2 Synthesis of metal oxide(FTn-Mn O2/Fe3O4) |
2.3.3 Conjugation of FTn with Cy5/TPP |
2.3.4 Cell Culture |
2.3.5 H9C2 Sub Culture |
2.3.6 Cell revival and cryopreservation |
2.3.7 Subcellular localization of Fenozyme |
2.3.8 Evaluation of POD-like enzyme activity |
2.3.9 Evaluation of SOD-like enzyme activity |
2.3.10 Evaluation of CAT-like enzyme activity |
2.3.11 In vitro detection of OH~(·-) |
2.3.12 In vitro detection of O_2~(·-) |
2.3.13 Staining of the intracellular free radical |
2.3.14 Mitochondrial DNA copy number |
2.3.15 Quantitative Polymerase Chain Reaction(q PCR) |
2.3.16 Detection of ATP generation |
2.3.17 DCFH Staining |
2.3.18 Ischemia-reperfusion(IR)model |
2.3.19 Biodistribution of TPP labeled FTn in vivo |
2.3.20 Systemic delivery of Mito-Fenozyme for IR treatment |
2.3.21 Dissection of Experimental Animals |
2.3.22 Western Blot |
2.3.23 Hematoxylin& Eosin(H&E)staining |
2.3.24 Masson Trichrome Staining |
2.3.25 Immunostaining |
2.3.26 Statistical Analysis |
2.4 Result |
2.4.1 Fabrication and synthesis of Fenozymes |
2.4.2 Characterization of Fenozymes |
2.4.3 Superoxide dismutase(SOD)like activity of Fenozymes |
2.4.4 Catalase(CAT)like activity of Fenozymes |
2.4.5 Peroxidase(POD)like activity of Fenozymes |
2.4.6 OH~(·-)generation of Fenozyme |
2.4.7 Scheme of the enzymatic activities of Fenozyme |
2.4.8 Lysosomal escape of Mito-Fenozymes |
2.4.9 Mitochondrial accumulation of Mito-Fenozyme |
2.4.10 Scheme of the protective effect of Mito-Fenozyme |
2.4.11 O_2~(-·)Scavenging ability of Mito-Fenozyme in the mitochondria |
2.4.12 ROS Scavenging ability of Mito-Fenozyme in vitro |
2.4.13 OH~(·-)generation ability of different Fenozymes |
2.4.14 Mito-Fenozyme protects mitochondrial function |
2.4.15 IR induces FTn receptor Expression |
2.4.16 Biodistribution of Mito-Fenozyme in vivo |
2.4.17 Accumulation of Mito-Fenozyme in IR heart tissue |
2.4.18 Systemic delivery of Mito-Fenozymes improve cardiac functions |
2.4.19 Mito-Fenozyme protects scar formation |
2.4.20 Mito-Fenozyme rescues mitochondrial functions |
2.4.21 Biocompatibility of Mito-Fenozyme |
2.5 Summary and Conclusion |
Chapter3:Investigating the self-adhesive patch of Mito-Fenozyme for IR therapy |
3.1 Introduction |
3.2 Materials |
3.3 Methods |
3.3.1 Preparation of HA-CA Hydrogel |
3.3.2 In vitro release of FTn-TPP-Cy5 |
3.3.3 Biodistribution of FTn-TPP-Cy5 |
3.3.4 Acute Heart Ischemia Evaluation |
3.3.5 Nanozyme loaded in hydrogel for local IR treatments |
3.3.6 Dissection of experimental animals |
3.3.7 Paraffin section |
3.3.8 Masson’s trichrome staining |
3.3.9 Wheat germ agglutinin staining |
3.3.10 Isolectin-B4 staining |
3.4 Results |
3.4.1 Synthesis of HA-CA hydrogel |
3.4.2 Conjugation of HA with Catecholamine(CA) |
3.4.3 Characterization and rheomatric analysis of HA-CA hydrogel |
3.4.4 Release of Mito-Fenozyme from HA-CA hydrogel |
3.4.5 Adhesion and retention of mitofegel on heart |
3.4.6 Ex vivo retention of Mitofegel |
3.4.7 Tissue penetration of Mito-Fenozyme |
3.4.8 Mitofegel decreases infarct size |
3.4.9 Mitofegel improves cardiac function |
3.4.10 Mitofegel reduces myocardial fibrosis |
3.4.11 Mitofegel reduces cardiac hypertrophy |
3.4.12 Mitofegel increases capillary density |
3.5 Summary and Conclusion |
Chapter4:Discussion |
References |
Acknowledgments |
Publications and Awards |
(4)E3泛素连接酶TRIM31在高血压肾病中的作用及机制研究(论文提纲范文)
第一部分: E3泛素连接酶TRIM31调控高血压肾病发生的实验研究 |
中文摘要 |
ABSTRACT |
缩略语说明 |
1. 前言 |
2. 材料与方法 |
3. 实验结果 |
4. 讨论 |
5. 结论 |
附表 |
附图 |
参考文献 |
第二部分: E3泛素连接酶TRIM31改善高血压肾病的分子机制研究 |
中文摘要 |
ABSTRACT |
缩略语说明 |
1. 前言 |
2. 材料与方法 |
3. 实验结果 |
4. 讨论 |
5. 结论 |
附图 |
参考文献 |
致谢 |
攻读学位期间发表的学术论文 |
学位论文评阅及答辩情况表 |
外文论文Ⅰ |
外文论文Ⅱ |
(5)椎间盘退变关键标志物筛选及携载TGF-β3支架对椎间盘修复的实验研究(论文提纲范文)
摘要 |
Abstract |
符号说明 |
前言 |
第一部分 椎间盘退变关键标志物的筛选 |
1 材料与方法 |
2 结果 |
3 讨论 |
4 结论 |
第二部分 携载TGF-β3的脱细胞纤维环基质/壳聚糖水凝胶对椎间盘退变修复的实验研究 |
1 材料与方法 |
2 结果 |
3 讨论 |
4 结论 |
参考文献 |
综述 |
参考文献 |
附图 |
附表 |
致谢 |
攻读硕士期间发表文章 |
学位论文评阅及答辩情况表 |
英文论文一 |
英文论文二 |
(6)外周血中HCMV-MIR-UL112-3p水平与颈动脉IMT增加的相关性及HCMV引起脐静脉内皮细胞内皮-间质转化的分子机制(论文提纲范文)
英文缩略词表 |
中文摘要 |
英文摘要 |
第一部分 外周血中HCMV-MIR-UL112-3p水平与颈动脉IMT增加的相关性 |
1 前言 |
2 资料与方法 |
2.1 主要仪器和设备 |
2.2 主要试剂和耗材 |
2.3 病例选择与排除标准 |
2.4 试验方法 |
2.4.1 一般资料收集 |
2.4.2 临床资料收集 |
2.4.3 颈动脉IMT测量方法 |
2.4.4 血清HCMV抗体及炎症因子水平检测 |
2.4.5 血浆中HCMV mi R-UL112-3p表达水平检测 |
2.4.6 统计学分析 |
3 结果 |
3.1 人口统计学和临床概况 |
3.2 临床和实验室参数分析 |
3.3 外周血mi R-UL112-3p阳性与高IMT相关 |
3.4 HCMV与临床因素或生物学因素的相关性 |
4.讨论 |
4.1 HCMV感染、炎症因子与AS的相关性 |
4.2 HCMV感染、临床参数与AS的相关性 |
4.3 HCMV mi RNA与 AS的相关性 |
4.4 本研究的不足之处 |
5 结论 |
参考文献 |
第二部分 HCMV通过MMP-2 促进内皮-间质转化后脐静脉内皮细胞中的TGF-β1活化 |
1 前言 |
1.1 HCMV感染对血管中主要细胞的影响 |
1.2 内皮间质转化与动脉粥样硬化 |
1.3 HCMV感染影响TGF-β1 的表达和活性 |
1.4 本研究的假说 |
2 资料与方法 |
2.1 主要仪器和设备 |
2.2 主要试剂和耗材 |
2.3 实验方法 |
2.3.1 细胞和病毒 |
2.3.2 细胞复苏 |
2.3.3 细胞传代 |
2.3.4 HCMV的培养和滴度测定 |
2.3.5 间接免疫荧光 |
2.3.6 MMP-2 sh RNA转染 |
2.3.7 RNA提取、逆转录和荧光定量PCR检测 |
2.3.8 免疫印迹(Western blot) |
2.3.9 免疫共沉淀 |
2.3.10 TGF-β1含量检测 |
2.4 统计学分析 |
3 结果 |
3.1 HCMV可以在HUVEC细胞中增殖但不受ra TGF-β1 的影响 |
3.2 HCMV能够感染被TGF-β1 诱导发生End MT的 HUVEC |
3.3 HCMV可以诱导发生End MT的 HUVEC细胞中TGF-β1 活化 |
3.4 新生成激活状态TGF-β1 的量与TGF-β1及HCMV的感染量呈正相关 |
3.5 MMP-2 参与了HCMV感染引起发生End MT的血管内皮细胞上调活化TGF-β1 |
4 讨论 |
4.1 HCMV感染与血管内皮损伤 |
4.2 HCMV通过MMP-2 激活TGF-β1 促进血管内皮细胞End MT |
4.3 本研究的创新之处 |
4.4 本研究的不足之处 |
5.结论 |
参考文献 |
附录 |
致谢 |
综述 HCMV 感染与冠心病的研究现状和进展 |
参考文献 |
(8)促红细胞生成素导致腹主动脉瘤形成的作用及分子机制研究(论文提纲范文)
论文Ⅰ 促红细胞生成素诱导小鼠发生腹主动脉瘤的作用及分子机制研究 |
中文摘要 |
英文摘要 |
缩略语说明 |
前言 |
材料与方法 |
实验结果 |
讨论 |
结论 |
附表 |
附图 |
参考文献 |
论文Ⅱ 促红细胞生成素在血管紧张素II诱导腹主动脉瘤小鼠模型中的作用和机制研究 |
中文摘要 |
英文摘要 |
缩略语说明 |
前言 |
材料与方法 |
实验结果 |
讨论 |
结论 |
附表 |
附图 |
参考文献 |
致谢 |
攻读学位期间发表的学术论文目录 |
学位论文评阅及答辩情况表 |
外文论文1 |
外文论文2 |
外文论文3 |
(9)针对丙型肝炎病毒E2包膜糖蛋白后层结构域开发相应中和抗体(论文提纲范文)
摘要 |
Abstract |
中文部分 |
第1章 引言 |
1.1 丙型肝炎病毒的发现 |
1.2 丙型肝炎病毒的病原学 |
1.2.1 丙型肝炎病毒基因组及病毒蛋白 |
1.2.2 丙型肝炎病毒颗粒的结构 |
1.2.3 丙型肝炎病毒生命周期 |
1.3 丙型肝炎病毒研究中面临的主要困难 |
1.4 丙型肝炎病毒E2包膜糖蛋白后层结构域 |
1.5 项目概况 |
第2章 材料与方法 |
2.1 质粒构建 |
2.1.1 质粒及引物的设计与合成 |
2.1.2 构建质粒方法 |
2.1.3 质粒扩增 |
2.2 细胞培养 |
2.2.1 细胞株及细胞培养基 |
2.2.2 细胞传代 |
2.2.3 细胞冻存 |
2.2.4 细胞复苏 |
2.2.5 构建稳转细胞株 |
2.3 蛋白表达与纯化 |
2.3.1 细胞转染 |
2.3.2 细胞裂解 |
2.3.3 蛋白免疫印迹 |
2.3.4 抗体 |
2.3.5 考马斯亮蓝染色及丽春红染色 |
2.3.6 蛋白表达 |
2.3.7 蛋白纯化 |
2.4 小鼠免疫 |
2.4.1 小鼠 |
2.4.2 质粒DNA免疫 |
2.4.3 丙型肝炎病毒假病毒颗粒包装 |
2.4.4 丙型肝炎病毒传染性颗粒的制备 |
2.4.5 病毒滴度的测定 |
2.4.6 中和实验 |
2.4.7 酶联免疫吸附实验 |
2.4.8 免疫血清对病毒抗原的识别 |
第3章 结果 |
3.1 哺乳动物细胞表达丙型肝炎病毒包膜糖蛋白 |
3.1.1 真核表达载体的构建 |
3.1.2 构建表达丙型肝炎病毒包膜糖蛋白的稳转细胞株 |
3.1.3 丙型肝炎病毒包膜糖蛋白的表达与纯化 |
3.2 原核细胞表达丙型肝炎病毒包膜糖蛋白 |
3.2.1 原核表达载体的构建 |
3.2.2 优化原核表达条件 |
3.2.3 原核表达蛋白的制备与纯化 |
3.3 制备丙型肝炎病毒 |
3.3.1 丙型肝炎病毒假病毒颗粒的包装 |
3.3.2 丙型肝炎病毒传染性颗粒的制备 |
3.4 小鼠免疫实验 |
3.4.1 小鼠免疫程序 |
3.4.2 免疫小鼠血清中和感染性丙型肝炎病毒颗粒 |
3.4.3 酶联免疫吸附法检测免疫小鼠血清中特异性抗体 |
3.4.4 免疫小鼠血清抗体识别病毒抗原 |
第4章 讨论 |
第5章 结论与展望 |
参考文献 |
附录 |
致谢 |
作者简历及攻读学位期间发表的学术论文与研究成果 |
英文部分 |
Abstract |
Chapter1 Introduction |
1.1 Discovery of Hepatitis C Virus |
1.2 Etiology of Hepatitis C Virus |
1.2.1 HCV genomes and viral proteins |
1.2.2 Structure of the hepatitis C virus particle |
1.2.3 HCV life cycle |
1.3 Major Difficulties in HCV Research |
1.4 HCV Glycoproteins E2 Back Layer Domain |
1.5 Project Overview |
Chapter2 Materials and Methods |
2.1 Plasmids Construction |
2.1.1 Constructs analysis and gene synthesize |
2.1.2 Plasmids construction |
2.1.3 Constructs amplification |
2.2 Cell culture |
2.2.1 Cell lines and cell culture medium |
2.2.2 Cell passage |
2.2.3 Cell cryopreservation |
2.2.4 Cell thawing |
2.2.5 Stable cell line generation |
2.3 Protein expression and purification |
2.3.1 Transfection |
2.3.2 Cell lysis |
2.3.3 Western blotting |
2.3.4 Antibodies |
2.3.5 Coomassie blue staining |
2.3.6 Protein expression |
2.3.7 Protein purification |
2.4 Mouse immunization |
2.4.1 Mice |
2.4.2 Plasmid DNA immunization |
2.4.3 HCV pseudoparticles packaging and infection |
2.4.4 Preparation of cell-culture grown HCV replication |
2.4.5 Viral Titration |
2.4.6 Neutralization test |
2.4.7 Enzyme-linked immunosorbent assay |
2.4.8 Recognition of viral antigens by immune serum |
Chapter3 Results |
3.1 Mammalian cells expression of HCV glycoprotein |
3.1.1 Construction of eukaryotic expression plasmids |
3.1.2 Generating stable cell lines that expressing hepatitis Cvirus glycoproteins |
3.1.3 Expression and purification of E2- BLd |
3.2 Prokaryotic cells expression of HCV glycoprotein |
3.2.1 Construction of prokaryotic expression plasmids |
3.2.2 Optimizing prokaryotic expression condition |
3.2.3 Preparation and purification of prokaryotic expressed proteins |
3.3 Preparation of hepatitis C virus |
3.3.1 Hepatitis C virus pseudo particles packaging |
3.3.2 Cell culture grown hepatitis C virus preparation |
3.4 In vivo expression approach using DNA mouse immunization |
3.4.1 Mice immunization strategies |
3.4.2 Neutralization ability of the immunized mice sera towards HCVcc |
3.4.3 Validate the specific antibodies in mice sera by ELISA |
3.4.4 Immunized mice sera recognize viral antigen |
Chapter4 Discussion |
Chapter5 Conclusion and prospect |
References |
Appendix |
Acknowledgement |
About the author |
(10)NK和iNKT细胞的转录调控研究(论文提纲范文)
abstract |
Résumé |
Acknowledgement |
List of abbreviations |
1 Natural Killer Cells |
1.1 Development |
1.1.1 Commitment to becoming a killer |
1.1.2 Making a mature killer |
1.1.3 Dispatching killers to the frontline |
1.2 NK Cell Surface Receptors |
1.2.1 Inhibitory receptors |
1.2.2 Activating receptors |
1.2.3 Cytokine receptors |
1.2.4 Chemotactic receptors |
1.2.5 Adhesion receptors |
1.3 NK Cell Education |
1.4 NK Cell Function |
1.4.1 Killer’s weapon:cytolysis |
1.4.2 Killer’s weapon:cytokine secretion |
1.5 NK Cell Memory |
2 Transcription Factors Important for NK cell Development and Function |
2.1 Generalities on Transcription Factors |
2.2 Ets-family:Ets-1,PU.1,and Mef |
2.3 Nfil3 |
2.4 Id2 and E-box proteins |
2.5 T-box Family:T-bet and Eomes |
2.5.1 The T-box family of transcription factors |
2.5.2 T-bet and Eomes in NK cells |
2.6 Zeb family transcription factors:Zeb1,Zeb2 |
2.7 Runx proteins:Runx3 |
2.8 Gata proteins:Gata3 |
2.9 Blimp1 |
2.10 Other TFs |
3 NK-like Immune Cells or NK Paralogues |
3.1 CD8~+Cytotoxic T cells |
3.2 Innate Lymphoid Cells(ILCs) |
3.2.1 ILC1 cells |
3.2.2 ILC2 cells |
3.2.3 ILC3 cells |
3.2.4 LTi cells |
3.3 iNKT |
3.3.1 Development of iNKT cells |
3.3.2 Function of iNKT cells |
3.3.3 Transcriptional regulation of iNKT cell development and function |
3.4 NK1.1~+γδT cells |
4 Research projects |
4.1 Scientific context and objectives |
4.2 Project1:T-bet and Eomes in NK cell development |
4.2.1 Article1 |
4.3 Project2:Zeb1 in iNKT cell development. |
4.3.1 Article2 |
4.3.2 Extended results |
5 Discussion |
5.1 Project1:T-bet and Eomes in NK cell development |
5.1.1 Eomes and tissue-residency |
5.1.2 Eomes,T-bet and CD11b,CD27 |
5.1.3 T-box family and proliferation |
5.1.4 T-box family and cytokine signaling |
5.1.5 Working model of T-bet and Eomes actions |
5.2 Project2:Zeb1 in iNKT cell development |
5.2.1 Cellophane and Zeb1~(?13/+)mice |
5.2.2 Splenomegaly,fibrosis and ILCs |
5.2.3 Zeb1 and lymphoma |
5.2.4 Zeb1 and E-proteins |
5.2.5 Zeb1 and iNKT cells |
6 Conclusion and perspectives |
6.1 Conclusion |
6.2 Perspectives |
References |
Annex |
四、The Expression of the Plasmid DNA Encoding TGF-β_1 in Endothelium after Injection into the Anterior Chamber(论文参考文献)
- [1]Nanoparticle–Cartilage Interaction: Pathology-Based Intra-articular Drug Delivery for Osteoarthritis Therapy[J]. Xu Li,Bingyang Dai,Jiaxin Guo,Lizhen Zheng,Quanyi Guo,Jiang Peng,Jiankun Xu,Ling Qin. Nano-Micro Letters, 2021(10)
- [2]脂肪细胞来源外泌体在糖尿病动脉粥样硬化疾病中的作用及机制研究[D]. 陈芳芳. 山东大学, 2021(10)
- [3]线粒体靶向纳米酶的仿生合成及在心脏缺血再灌注损伤治疗上的研究[D]. Anila Khalique. 南开大学, 2021(02)
- [4]E3泛素连接酶TRIM31在高血压肾病中的作用及机制研究[D]. 张杰. 山东大学, 2021
- [5]椎间盘退变关键标志物筛选及携载TGF-β3支架对椎间盘修复的实验研究[D]. 李钟奇. 山东大学, 2020(04)
- [6]外周血中HCMV-MIR-UL112-3p水平与颈动脉IMT增加的相关性及HCMV引起脐静脉内皮细胞内皮-间质转化的分子机制[D]. 陈刚. 安徽医科大学, 2020(04)
- [7]Recent developments in regenerative ophthalmology[J]. Ye Shen,He Shen,Dongyu Guo,Xinghuai Sun,Yuan Sun,Nan Hong,Xiawei Wang,Chen Xie,Yuan Zhao,Qin He,Le Jin,Yingying Wen,Bo Jiang,Chenying Yu,Miaomiao Zhu,Feng Cai,Jianwu Dai. Science China(Life Sciences), 2020(10)
- [8]促红细胞生成素导致腹主动脉瘤形成的作用及分子机制研究[D]. 章萌. 山东大学, 2020(12)
- [9]针对丙型肝炎病毒E2包膜糖蛋白后层结构域开发相应中和抗体[D]. 王珵珵. 中国科学院大学(中国科学院上海巴斯德研究所), 2020(08)
- [10]NK和iNKT细胞的转录调控研究[D]. 张姜. 华东师范大学, 2020(02)
标签:糖尿病论文; 内皮细胞论文; 脂肪细胞论文; 主动脉粥样硬化论文; 胰岛素抵抗综合征论文;