一、陀螺仪温度变化第三组试验(论文文献综述)
张新宇[1](2021)在《基于互补滤波的汽车姿态数据采集系统研究》文中提出为了掌握汽车行驶过程中的各种姿态数据,监控汽车运行状态,设计了一种汽车姿态数据采集系统。采用MEMS九轴运动传感器,基于惯性导航原理,运用互补滤波算法,结合高性能嵌入式处理器,实时采集汽车姿态数据,并进行数据校准、互补滤波和数据修正,解算出有效的全方位姿态数据,包括俯仰角、翻滚角和航向角。经过实车测试,能够真实地反映出汽车的运行状态。这些数据可以描绘出汽车的运行轨迹;还可以用来还原事故现场,进行责任认定;回放行驶路线、分析驾驶员驾驶行为。
龚肇沛[2](2021)在《空间变负载磁浮隔振系统建模及主动抑振控制研究》文中研究说明天宫一号/二号空间实验室于2011年与2016年相继入轨,中国空间站将于2022年完成在轨部署,这对推动我国空间环境探测高质量发展再上新台阶意义重大。作为承载精密载荷、连接空间站、抵消扰动的关键设备,空间主动抑隔振系统直接影响精密科学实验任务的成败。空间环境中人员活动、姿轨控调整、机械往复运动会产生宽频、小幅值振动扰动,如何在多源振动扰动工况中,为不同试验任务的负载提供准静环境,成为空间抑振系统圆满完成任务的关键。本文以空间环境中磁悬浮主动隔振系统为研究对象,建立了考虑实验负载更换对系统影响的运动学与耦合动力学模型,推导了系统耦合主动解耦与非线性冗余驱动协调方法,研究了基于多源信息的磁浮隔振系统主动抑振策略,并通过地面实验系统与实验手段,验证了所提方法的有效性。针对现有抑振系统大多基于负载确定的问题,本文围绕变负载工况,开展了负载变化与冗余驱动对系统影响的分析。本文在特殊欧式群(3)空间中建立了考虑变负载工况的系统六维运动学与动力学模型;引入统一变量刻画负载变化对系统运动学与动力学模型造成的影响。通过整合与分析,推导出面向控制系统的规范化模型,为状态耦合解耦与先进抑振控制提供基本参考。进一步,基于此模型提出利用光学/惯性传感器阵列的多源运动信息估计测量方法,建立基于多源感知信息的运动状态融合与估计策略,满足空间特殊环境下的模型关键信息获取需求,为模型的使用奠定基础。在深入分析系统耦合属性的基础上,本文推导了耦合主动解耦与非线性冗余驱动协调方法。当隔振系统依照任务需求进行负载更换,动力学模型已知的假设被破坏,引发的运动状态耦合会大大降低隔振系统抑振效果。为解决此问题,以提升空间无人环境下隔振系统的负载适应性与系统智能性为目标,对冗余驱动的多入多出系统开展可逆性分析,给出基于逆系统原理的状态耦合解析解耦与自解耦方法。为解决非线性冗余驱动引入的内力对抗、热耗不均、能量损耗问题,分别对两种典型工况推导了各自的驱动力最优协调方法。最终通过将驱动协调与状态解耦相配合,构建了从可控自由度,到系统实际运动状态的解耦映射。为了在多扰动源工况下为实验载荷提供准静环境,本文提出了一种基于多源信息的主动抑振控制策略。对抑振系统控制目标与评价指标开展分析,基于多源信息,构建了由频域赋权的多目标控制模型,与振动路经自适应补偿模型。基于模型对控制律进行最优化求解,设计了满足多目标需求的反馈主动抑振控制律,与振动传递路径自适应前馈补偿控制律,在不同频域错峰满足了相矛盾的抑振与跟踪控制需求。通过与前述的状态感知、非线性驱动力协调以及运动状态解耦相结合,构建了六维磁浮隔振系统的主动隔振控制器。在已有磁悬浮抑振平台机械框架基础上,研制了具备高精度采集、驱动系统与强实时控制系统的磁浮隔振系统样机,及地面有限自由度零重力模拟辅助装置。经该装置辅助的样机,可在地面同时模拟三自由度零重力工况,相较于落塔法有效降低了低重力地面试验的复杂度,提升了地面试验的便捷性。基于此样机,对前述章节提出的感知与测量策略、主动解耦方法、非线性冗余驱动力协调方法方法及多源扰动下的主动抑振策略,分别开展了对应的地面环境实验验证,对缺乏物理实验验证条件的部分开展了对应性的仿真验证。一系列实验结果表明了前述感知、解耦、协调与控制方法的有效性。本文的研究成果可被应用于空间站低重力抑隔振系统的分析、设计、制造、控制,对提升近地轨道近零重力环境的有效利用,具有一定的理论指导意义和工程实现价值。
宫宸博[3](2021)在《一种不受本征频率限制的干涉型光纤陀螺仪研究》文中研究指明
张永超[4](2021)在《基于SINS的高精度水下运动测量装置的设计与实现》文中进行了进一步梳理
张征[5](2021)在《基于多传感器数据融合的煤矿井下移动机器人精确定位技术研究》文中研究说明
袁林中[6](2021)在《滚转飞行器旋转隔离装置机电系统设计及解旋性能研究》文中进行了进一步梳理本文的滚转飞行器主要是围绕课题项目旋转制导弹药进行研究的。旋转制导弹药的姿态参数测量一直是旋转制导的研究重点,它是评定旋转制导综合性能和提高制导精度的重要依据。面对旋转制导弹药及其内部零部件小型化、制导精密化的高要求,突破惯性测量系统小型化和精密化的技术瓶颈成为关键。目前,IMU(Inertial Measurement Unit)惯性测量系统中的小体积陀螺仪关键器件处于国产量程小、精度较低、高端进口受阻的状态,而采用国产陀螺仪进行自旋飞行器的转速测量,还存在转速测量量程不够、测量参数误差大等问题,影响制导精度。因此,设计一种具有解旋功能的隔离装置来降低自旋对IMU惯性测量系统测量精度的影响,对于提高飞行姿态等相关参数的测量精度具有十分重要的意义。针对上述问题,本文设计了一种可隔离弹体自旋轴、用于安装惯性测量系统的旋转隔离装置,使弹药弹体旋转时IMU惯性测量系统跟随飞行器绕旋转轴线同步反转,以消除IMU惯性测量系统绕弹体轴线的对地旋转(称为解旋)。研究的主要内容如下:1、根据设计要求,对旋转隔离装置机电系统进行了稳态设计和动态设计,确定了执行元件等主要元件的选型,建立了机电系统的数学模型,设计了控制系统校正器。2、采用了设计的模糊PID控制器和数学模型,通过模块化设计思路搭建了无刷电机模块、PWM逻辑输出模块,电压逆变器模块、速度控制模块等关键子模块,通过Simulink仿真模型验证了机电系统的动态性能和稳态性能,表明旋转隔离装置机电控制系统的鲁棒性强、动态特性良好。3、基于上述理论分析和空间受限等设计要求,设计了旋转隔离装置机械模块和机电控制系统,机电控制系统主要包括硬件设计和软件设计。硬件设计中包括主控制板硬件电路设计、电源电路设计、驱动电路设计、电流采样电路、编码器接口电路等硬件电路模块,软件设计主要包括主程序、中断子程序和模糊PID子程序等软件模块。4、为研究旋转隔离装置机电系统的解旋性能,设计了试验平台的机械部分和控制系统。经试验参数调试,在空载和负载两种情况下进行解旋性能试验研究,采集了转速稳态阶段和变速阶段的数据,试验表明:机电系统的转速控制精度和系统响应速度均符合旋转隔离装置设计要求,解旋效果好。
张慧杰[7](2021)在《基于神经网络的三浮陀螺仪控制算法的研究》文中研究说明三浮陀螺仪在军事战略仪器,航空航天设备等领域中有着十分重要的地位。我国对三浮陀螺的研制,比国外晚了近30年,截止目前我国三浮陀螺仪的精度与国外相差2-3个数量级。因此提高三浮陀螺仪精度及稳定性仍然是行业里的重中之重。本文针对三浮陀螺仪的磁悬浮控制系统开展了进一步研究,旨在设计精度更高的有源磁悬浮控制算法。本课题依据西安航天十六所的现有技术水平以及通过阅读大量的科研资料,确定以三浮陀螺控制系统为研究内容,针对三浮陀螺仪在动态工作情况下存在多个输入输出变量,并且变量之间具有不确定性的耦合关系以及系统模型复杂无法精准确定等问题,设计两种不同算法并应用于控制系统,对比分析其控制效果。本文所做工作如下:(1)研究三浮陀螺仪的工作原理及其加力原理,并对本系统进行了整体阐述,然后分别对系统的位置检测、中心控制、输出加力以及浮子组件等部分进行了理论分析与模型建立;(2)分析陀螺浮子在外力干扰下的运动规律,以经典PID控制原理为基础,对三维浮子仿真模型的软件平台进行设计与实现,然后分析研究不同的适用于多变量控制系统的解耦控制算法,并通过仿真实验比较,选出既可以解决各个方向变量之间存在的耦合关系对系统精度的影响,又可以实现控制参数可调的高精度磁悬浮控制算法;(3)为了使算法更加贴合实际需求,本文提出了一种将神经网络结构应用于PID控制的算法,充分应用神经网络对控制环境的强适应能力,通过模型训练来进行自身调节从而获得控制参数的最优解:并且由仿真实验,验证了神经网络PID控制的高效性;最后,将控制算法应用在实际的三浮陀螺仪试验转台上进行试验,实验结果显示陀螺的固定位置漂移精度有所提高,“跷跷板”效应有所减弱,说明了该算法的可行性。经过仿真和实测的数据对比,充分验证了本文提出的神经网络PID控制算法在三浮陀螺控制系统中的优良性能。同时,该算法又减弱了控制系统的多变量耦合效应,为三浮陀螺的性能提高提供了良好思路。
冯甜甜[8](2021)在《城市小径缆控管道检测机器人定位技术研究》文中指出
王远[9](2021)在《基于最优翻滚的平台系统自标定技术研究》文中研究表明
张泽[10](2021)在《基于PSD的机抖激光陀螺抖动检测》文中研究指明
二、陀螺仪温度变化第三组试验(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、陀螺仪温度变化第三组试验(论文提纲范文)
(1)基于互补滤波的汽车姿态数据采集系统研究(论文提纲范文)
1 惯性导航原理 |
2 系统总体设计 |
3 系统硬件设计 |
4 汽车姿态数据解算 |
4.1 九轴数据校准 |
4.2 九轴姿态解算 |
4.3 航向角修正 |
5 试验验证 |
6 结论 |
(2)空间变负载磁浮隔振系统建模及主动抑振控制研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 课题背景及研究的目的和意义 |
1.1.1 课题来源 |
1.1.2 课题背景 |
1.1.3 课题研究目的及意义 |
1.2 空间振动抑制与隔离系统研究现状 |
1.2.1 被动隔振系统研究现状 |
1.2.2 主动隔振系统研究现状 |
1.2.3 主被动混合隔振系统研究现状 |
1.3 主动隔振系统关键技术及方法研究现状 |
1.3.1 主动隔振系统驱动方法 |
1.3.2 主动隔振系统力学模型构建方法 |
1.3.3 主动隔振系统运动耦合解耦方法 |
1.3.4 主动隔振系统先进抑振控制方法 |
1.4 国内外研究现状分析 |
1.5 本文主要研究内容 |
第2章 空间变负载磁浮隔振系统模型建立及状态估计 |
2.1 引言 |
2.2 空间六维磁浮隔振系统简介 |
2.3 变负载磁浮隔振系统耦合模型建立 |
2.3.1 考虑负载变化的隔振系统运动学建模 |
2.3.2 变负载磁浮隔振系统耦合动力学建模及分析 |
2.4 空间磁浮隔振系统运动状态测量与估计策略 |
2.4.1 基于光学相对传感器阵列的位姿信息解算 |
2.4.2 基于惯性传感器阵列的加速度信息解算 |
2.4.3 基于多源信息的运动状态融合与估计策略 |
2.5 本章小结 |
第3章 变负载磁浮隔振系统状态解耦与非线性驱动力协调方法 |
3.1 引言 |
3.2 变负载六维隔振系统状态耦合解析解耦方法 |
3.2.1 六维隔振系统耦合问题描述 |
3.2.2 基于逆系统的状态解耦方法 |
3.2.3 六维隔振系统动力学模型可逆性证明 |
3.2.4 六维隔振系统状态解析解耦研究 |
3.3 变负载六维隔振系统状态耦合自解耦方法 |
3.3.1 神经网络与基于神经网络的逆系统 |
3.3.2 基于神经网络逆系统的隔振系统耦合自解耦 |
3.4 隔振系统非线性冗余驱动力协调方法 |
3.4.1 协调优化目标与约束条件分析 |
3.4.2 电磁多场耦合等效模型估计 |
3.4.3 非线性驱动力最优协调问题求解 |
3.5 系统解耦与协调驱动的分析及实现 |
3.5.1 磁浮隔振系统耦合问题分析 |
3.5.2 磁浮隔振系统解耦方法实现 |
3.6 本章小结 |
第4章 基于多源信息的隔振系统抑振控制策略研究 |
4.1 引言 |
4.2 隔振系统性能定义与控制目标分析 |
4.2.1 多扰动下单自由度隔振系统模型建立 |
4.2.2 扰动分析与参数定义 |
4.2.3 性能指标与控制目标分析 |
4.3 面向单自由度抑振系统的多目标主动抑振控制策略 |
4.3.1 多扰动源下的单自由度振动抑制分析 |
4.3.2 基于混合范数性能指标的多目标控制律设计 |
4.4 基于多源信息的六自由度主动抑振控制策略 |
4.4.1 固定前馈补偿控制律设计 |
4.4.2 振动自适应补偿控制律设计 |
4.4.3 六自由度隔振系统主动抑振控制策略分析与实现 |
4.5 本章小结 |
第5章 空间磁浮隔振系统样机研制与振动抑制实验验证 |
5.1 引言 |
5.2 空间磁浮隔振系统与地面零重力模拟装置研制 |
5.2.1 机械结构与零重力模拟装置简介 |
5.2.2 运动状态测量系统设计 |
5.2.3 电磁隔振单元驱动系统设计 |
5.2.4 控制系统设计 |
5.3 运动状态测量仿真与实验验证 |
5.3.1 相对位姿状态估计实验验证 |
5.3.2 加速度状态估计实验验证 |
5.3.3 角加速度状态估计实验验证 |
5.4 非线性冗余驱动协调实验验证 |
5.4.1 电磁多场耦合等效模型估计方法验证 |
5.4.2 冗余驱动力协调方法实验验证与分析 |
5.5 变负载工况状态耦合解耦实验验证 |
5.5.1 径向基神经网络逆系统建立实验验证 |
5.5.2 变负载耦工况多自由度解耦实验验证 |
5.6 基于多源信息的隔振系统主动抑振控制实验验证 |
5.6.1 多目标控制方法验证与分析 |
5.6.2 基于多源信息的主动抑振控制方法验证与分析 |
5.7 本章小结 |
结论 |
参考文献 |
攻读博士学位期间发表的论文及其他成果 |
致谢 |
个人简历 |
(6)滚转飞行器旋转隔离装置机电系统设计及解旋性能研究(论文提纲范文)
摘要 |
abstract |
主要符号说明 |
第一章 绪论 |
1.1 课题来源 |
1.2 课题研究背景和意义 |
1.3 国内外研究现状 |
1.3.1 制导炮弹国内外研究现状 |
1.3.2 旋转弹制导技术及隔离控制系统相关研究现状 |
1.4 论文研究的主要内容 |
第二章 旋转隔离装置设计要求分析及机电系统设计 |
2.1 旋转隔离装置设计要求分析 |
2.2 旋转隔离装置机电系统稳态设计 |
2.2.1 负载分析 |
2.2.2 执行元件匹配设计 |
2.3 旋转隔离装置机电系统执行元件选型设计 |
2.3.1 直流无刷电机的基本结构 |
2.3.2 直流无刷电机工作原理及旋转磁场的产生 |
2.4 旋转隔离装置机电系统动态设计 |
2.4.1 机电系统数学模型的建立 |
2.4.2 机电系统稳定性分析和校正器设计 |
2.4.3 机电系统直流无刷电机的运行特性分析 |
2.5 本章小结 |
第三章 旋转隔离装置机电控制系统设计及仿真 |
3.1 控制系统及PID调节技术 |
3.1.1 控制系统选择 |
3.1.2 PID调节技术及作用 |
3.2 模糊PID控制器设计 |
3.2.1 模糊控制算法 |
3.2.2 模糊PID控制器的设计 |
3.3 旋转隔离装置机电控制系统仿真分析 |
3.3.1 MATLAB/Simulink特点 |
3.3.2 旋转隔离装置直流无刷电机模块 |
3.3.3 PWM逻辑输出模块 |
3.3.4 电压逆变器模块 |
3.3.5 速度控制模块 |
3.3.6 机电系统仿真结果和分析 |
3.4 本章小结 |
第四章 旋转隔离装置机电系统设计 |
4.1 旋转隔离装置机械设计 |
4.1.1 动力输出及硬件电路控制模块 |
4.1.2 惯导系统信息采集模块 |
4.2 旋转隔离装置机电控制系统总体架构设计 |
4.3 旋转隔离装置机电控制系统硬件设计 |
4.3.1 硬件电路主控制器设计 |
4.3.2 电源电路设计 |
4.3.3 驱动电路设计 |
4.3.4 电流采样电路设计 |
4.3.5 编码器接口电路设计 |
4.3.6 串口通信电路设计 |
4.4 旋转隔离装置机电控制系统软件设计 |
4.4.1 主程序设计 |
4.4.2 中断子程序设计 |
4.4.3 PWM调制方法 |
4.5 本章小结 |
第五章 试验研究和分析 |
5.1 试验平台机电系统设计 |
5.1.1 试验平台机械设计 |
5.1.2 试验平台机电系统总体架构设计及软硬件系统设计 |
5.2 试验装配系统 |
5.3 旋转隔离装置动态性能试验调试 |
5.4 空载试验解旋性能分析 |
5.5 负载试验解旋性能分析 |
5.6 本章小结 |
第六章 总结与展望 |
6.1 论文工作总结 |
6.2 工作展望 |
参考文献 |
个人简历 在读期间发表的学术论文 |
致谢 |
(7)基于神经网络的三浮陀螺仪控制算法的研究(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 课题研究背景及意义 |
1.2 国内外研究现状 |
1.3 课题研究内容 |
1.4 论文结构安排 |
2 三浮陀螺基础理论及工作原理 |
2.1 三浮陀螺简介 |
2.2 磁悬浮技术 |
2.3 系统结构组成及工作方式 |
3 系统各部件模型的建立与仿真 |
3.1 位置检测模型 |
3.2 加力输出模型 |
3.3 控制系统模型 |
3.4 浮子力学模型 |
3.5 浮子的运动规律 |
3.5.1 常值阶跃力 |
3.5.2 瞬时冲击力 |
3.5.3 简谐变化力 |
3.6 三维仿真模型 |
3.7 仿真模型单通道PID控制设计 |
3.8 浮子运动仿真 |
4 控制算法研究与设计 |
4.1 模糊PID控制 |
4.1.1 模糊PID控制原理 |
4.1.2 模糊PID控制算法设计 |
4.1.3 模糊PID实现与仿真分析 |
4.2 PID神经网络控制算法设计 |
4.2.1 PID神经网络控制原理 |
4.2.2 前向计算 |
4.2.3 反向传播(BP)学习算法 |
4.2.4 算法流程设计 |
4.2.5 PID神经网络控制仿真分析 |
5 磁悬浮控制系统的实验研究 |
5.1 实验环境概述 |
5.2 系统主程序设计 |
5.3 实验结果分析 |
5.3.1 浮子定中实验 |
5.3.2 耦合控制实验 |
5.3.3 稳测试验 |
5.4 总结 |
6 结论 |
致谢 |
参考文献 |
攻读硕士学位期间主要研究成果 |
四、陀螺仪温度变化第三组试验(论文参考文献)
- [1]基于互补滤波的汽车姿态数据采集系统研究[J]. 张新宇. 电子器件, 2021(04)
- [2]空间变负载磁浮隔振系统建模及主动抑振控制研究[D]. 龚肇沛. 哈尔滨工业大学, 2021
- [3]一种不受本征频率限制的干涉型光纤陀螺仪研究[D]. 宫宸博. 燕山大学, 2021
- [4]基于SINS的高精度水下运动测量装置的设计与实现[D]. 张永超. 哈尔滨工程大学, 2021
- [5]基于多传感器数据融合的煤矿井下移动机器人精确定位技术研究[D]. 张征. 中国矿业大学, 2021
- [6]滚转飞行器旋转隔离装置机电系统设计及解旋性能研究[D]. 袁林中. 华东交通大学, 2021(01)
- [7]基于神经网络的三浮陀螺仪控制算法的研究[D]. 张慧杰. 西安理工大学, 2021(01)
- [8]城市小径缆控管道检测机器人定位技术研究[D]. 冯甜甜. 哈尔滨工程大学, 2021
- [9]基于最优翻滚的平台系统自标定技术研究[D]. 王远. 哈尔滨工程大学, 2021
- [10]基于PSD的机抖激光陀螺抖动检测[D]. 张泽. 南昌大学, 2021