一、松软破碎岩层中巷道联合支护的试验与应用(论文文献综述)
马新世[1](2021)在《深部大断面煤巷围岩变形特征及控制技术研究》文中认为巷道支护技术发展至今已有150余年历史,主要经历了由被动支护向主动支护转变的过程,支护技术、工艺日趋成熟、稳定,其中以锚杆锚索为核心的巷道支护成套技术现已成为一些浅部地质条件下围岩相对完整煤矿巷道的常见支护方案,锚杆锚索支护由于其主动加固调动围岩承载能力及其良好的经济性、支护的有效性解决了浅部地质条件下各类巷道的支护问题。但随着开采深度的增加,不少采用锚杆索支护的巷道由于应力高、断面大、煤层松软破碎、构造复杂等因素影响,出现片帮、底鼓、塌顶等强烈的矿压显现现象,需要经过多次巷修依然不能保证巷道的安全使用,对巷道支护提出了更高的要求。本文以晋煤集团赵庄煤矿33192深部大断面煤巷为研究背景,综合采用现场调研、理论分析、数值模拟和工程试验等方法,针对在回采过程中两帮变形比较严重,经常发生煤壁片帮、内挤现象,致使护表构件严重弯曲损坏等问题,系统研究了深部大断面煤巷变形特征和深部大断面巷道围岩注浆改性机理并提出相对应的支护方案,具体工作如下:(1)根据现场观测对33192深部大断面煤巷围岩变形特征进行分析,局部巷道顶板下沉、煤帮破碎严重,单一锚杆索支护方法已不能满足需求,认为其巷道变形主要与巷道埋深、围岩结构、工作面采动及巷道掘进、支护方法有关,故提出锚杆锚索以及注浆的联合支护理念。(2)基于窥视法、围岩松动圈测试法确定出了煤帮破碎带的范围在0.5~2m之内,通过围岩物理力学特性实验得出了岩体试样的破坏载荷、抗拉强度、弹性模量泊松比等力学参数。(3)通过FLAC3D数值模拟对锚杆长度、直径、间排距、预紧力进行详细的分析,利用正交试验对各初设参数进行优化设计,通过对比极差得出各因子影响程度排序,对两种方法的锚杆支护参数进行对比,得出锚杆初步支护参数。(4)从理论上分析巷道围岩注浆改性机理,得出注浆可改善围岩强度、减小巷道围岩松动圈、改善主动支护效果,并通过力学分析推导出巷道围岩注浆力学模型,得出可通过增加注浆承载层的厚度来实现巷道围岩稳定。(5)通过FLAC3D数值模拟对比原支护方案和现设计支护方案,模拟各方案下巷道围岩塑性区、应力场分布、顶底板及两帮变形量等巷道围岩变化特征,得出支护设计方案的可行性。
谢正正[2](2020)在《深部巷道煤岩复合顶板厚层跨界锚固承载机制研究》文中指出随着国家煤炭开采重心向资源禀赋好、开采条件好的西部地区转移,这一地区深部开采已成必然趋势。基于工程因素的考虑,煤巷高度一般小于工作面采高,造成煤岩复合顶板巷道在我国西部,尤其是鄂尔多斯地区越来越常见。由于深部煤层强度低、节理发育,造成煤层碎胀变形严重,顶煤易与直接顶产生离层变形,且煤帮易发生大范围劈裂破坏,给巷道维控带来极大困难。与此同时,西部地区采煤装备的迅速发展全面推进了综采技术的进度,而对应的综掘技术发展相对滞后,采掘接续高度紧张,再次加重了煤巷的控制难度。所以煤岩复合顶板巷道控制难度大、掘进效率低的问题一直困扰着西部地区矿井的安全高效生产,研究深部巷道煤岩复合顶板变形破坏机理及高效控制技术,对破解围岩控制和掘进效率相制约的难题具有重大意义。本文主要以西部地区葫芦素煤矿煤岩复合顶板巷道为工程背景,针对巷道安全性差和支护效率低的科学问题,采用现场实测、实验室实验、数值计算、理论分析、相似模拟、材料研发和现场试验相结合的研究方法,多角度分析了煤岩复合顶板分层渐进垮冒规律,揭示了煤岩复合顶板厚层跨界锚固机理,阐明了复合顶板厚层锚固系统承载和破坏机制,创新了煤岩复合顶板跨界长锚固柔化结构,取得如下主要研究成果:(1)揭示了煤岩复合顶板巷道变形破坏特征。通过现场测试分析,最大水平主应力高达22.33 MPa,煤层和直接顶孔裂隙发育,尤其是煤层分布着大量横纵交错的微裂隙,造成煤体和直接顶抗压强度仅为10.8 MPa和32.1 MPa,是煤岩复合顶板离层破坏的内在原因;巷道跨度为5.4 m、锚杆初锚力仅为26 k N,锚杆锚固深度为2.1 m,无法遏制巷道围岩的初始变形和后期持续变形,是煤岩复合顶板巷道变形失稳的外在原因。(2)阐明了煤岩组合试样力学特性差异及能量耗散过程。由实验室实验分析,随着煤样高度增加,组合试样应变增高区范围越大,发生局部应变突变的可能越大,使得试样的力学性能参数越小。能量耗散过程证明了能量演化以弹性应变能为主,占总能量的81%~98.3%,当超过峰值强度这一关键节点后,煤样弹性应变能迅速释放,促使岩样在交界面萌生裂隙,并进一步引起裂隙的扩展与贯通,造成组合试样的拉剪破坏。解析了巷道开挖释放的弹性变形能是浅部顶煤变形与裂隙发育的主要因素,及时强力支护可使微裂隙重新闭实,遏制消耗能的增加,恢复巷道围岩相对的能量平衡。(3)发现了应力释放过程中煤岩复合顶板巷道渐进破坏规律。由离散元模拟分析,随着应力逐渐释放,煤岩复合顶板变形呈阶段性渐进增长,顶煤最先离层断裂,后引起直接顶分层破坏,顶板最终呈“三角”型整体垮冒,揭示了顶煤是诱发围岩发生整体性变形和渐进失稳的主要因素,指出了抑制顶煤裂隙扩展与贯通是控制煤岩复合顶板渐进破坏的关键;同时阐明了围岩变形量和顶板裂隙数量与煤层厚度具有较强的正相关,顶煤厚度变厚加大了巷道的控制难度。(4)解析了煤岩复合顶板厚层跨界锚固原理。根据模拟计算分析,锚杆长度的增加根本上改变了顶板变形方式,由大范围“三角”型断裂式下沉变为小范围“圆弧”型均匀式下沉;同时缩小了裂隙扩展范围,由广泛分布在锚杆锚固区内外,再到最深分布在锚杆端头区域,最后仅存在于锚杆锚固区浅部;揭示了锚杆端头损伤区随着锚杆长度增加发生上移并渐进弱化的厚层跨界锚固原理。(5)研发了顶板厚层锚固系统并提出了跨界长锚固技术。根据理论分析,利用长锚杆在顶板构建水平、垂直方向上均能实现应力连续传递的厚层稳态岩梁,这是厚层锚固系统的内涵,具有抗弯刚度大、裂隙化程度低和锚杆支护效率高的特点;验证了厚层跨界锚固下强力护表可有效抑制张拉裂隙的数量,由占比34.9%降低至20.5%,顶板应力实现连续化传递,同时缓解作用到煤帮的压力,双向优化顶帮控制,有利于巷道长期稳定。(6)确定了煤岩复合顶板厚层锚固承载作用机制。由相似模拟分析,高预应力柔性长锚杆构建了高强度和高刚度的顶板厚层锚固结构,充分调动顶板更深处围岩参与承载,降低了顶板应力释放幅度,提高了巷道抗变形能力;锚杆初始预紧力越高,锚杆反应越灵敏,对围岩的支护作用越及时,进而抑制裂隙的扩展。经冲击动载实验表明,顶板薄层锚固结构被强动载瞬间冲垮,呈整体“刀切”型破坏,而厚层锚固结构具有较强的抗冲击特性,其巷帮先被冲垮带动顶板发生“扇形”整体性下沉,围岩完整性得到有效保持,确保了煤巷的安全。(7)研制了不受巷高限制且实现旋转式快速安装的柔性锚杆。经多工况实验分析,确定了影响柔性锚杆力学性能的锁紧套管参数,锚杆峰值力超过330 k N,延伸率达到5%,具有良好的承载能力和延展性能;揭示了柔性锚杆在长期载荷和循环载荷作用下的力学特征和破坏机制,验证了柔性锚杆在不同淋水环境、不同安装角度等特殊井下环境的可靠性,并在三种复杂条件巷道中进行了推广应用。(8)在葫芦素和门克庆煤矿两个典型煤岩复合顶板巷道中开展厚层锚固系统的工程验证,巷道掘进速度提高了60%,尤其是门克庆煤矿,创下了深井大断面煤岩复合顶板巷道单巷单排单循环月进1040 m的掘进纪录;同时,显着提升了巷道控制效果,将顶板裂隙降至0.8 m以内,煤帮变形也得到根本改善,为类似条件巷道的推广应用提供了有力参考。该论文有图159幅,表28个,参考文献175篇。
孙元田[3](2020)在《深部松散煤体巷道流变机理研究及控制对策》文中认为随着煤炭资源开采深度的增加,大量深部煤层巷道变形的时间效应显现加剧。对于围岩强度极低的松散煤层巷道,流变大变形现象十分普遍。鉴于此,本文紧紧围绕松散煤体巷道流变问题,采用人工智能、室内实验、理论分析、工程调研、数值计算及现场试验相结合的研究方法,基于煤岩参数反演模型,实验室构建了等效松散煤体试样,揭示了松散煤体的流变特性,建立了符合该类煤体的流变模型,反演了巷道煤体流变参数并揭示了巷道流变机理,提出了旋喷注浆加固松散煤体的控制对策并试验其可行性,探索了旋喷加固技术抑制巷道流变机理,为研究与治理松散煤体巷道提供了新的思路。本文的主要研究内容和成果如下:(1)搭建了煤岩体参数反演的算法模型。在分析参数的反演必要性前提下,采用人工智能手段对本文松散煤体研究涉及的两类物理力学参数即“构建参数”和“流变参数”进行反演模型搭建。将机器学习的支持向量机算法和高效寻优的生物启发式天牛须算法有机结合起来,进一步的建立起基于天牛须搜索的进化支持向量机参数反演模型(BAS-ESVM),确定了该模型反演实现的主要步骤。其中天牛须算法不仅对支持向量机的参数(核参数和罚参数)进行调优形成进化支持向量机(ESVM),还对待反演参数进行寻优输出。利用该模型对室内煤体构建的参数和巷道煤体的流变参数进行了精确反演。(2)提出了室内构建煤试件等效于现场松散煤体的方法。鉴于典型的松散煤层实际赋存状态,常规手段难以对其开展煤岩物理力学试验。该法以松散煤体坚固性为纽带,旨在将室内的成型煤体的孔隙率和强度与现场煤体孔隙率和强度等效。实验室测定了现场煤体的孔隙率(9.8%)和坚固性系数的反算强度(2.5MPa),并提出了成型煤体的孔隙率测定方法。理论分析确定了“成型压力、成型时间和成型水分(含水率)”为煤体成型过程中的关键影响参数,确定了煤体成型工艺并分析了成型机理及影响成型效果的因素,得到了煤体成型过程中的三阶段曲线即“初始压密变形、塑性变形及弹性变形阶段”。通过试验得到成型煤体的孔隙率和强度样本数据,揭示了成型煤体破坏的五阶段曲线即“孔隙裂隙压密、弹性变形、稳定破裂、加速破坏和峰后破坏阶段”。基于“BAS-ESVM”模型反演得到了现场原煤孔隙率和强度下的实验室型煤体构建参数即成型压力23.7MPa,成型时间33.5 min,含水率4.82%。按照该参数成功建立起试验煤体,成型煤体测试强度为2.52 MPa,孔隙率为10%,与原煤高度接近,验证了该模型和参数的合理准确性。(3)揭示了松散煤体流变特性并建立了相适应的流变模型。基于已构建的高度等效现场的松散煤体试样,采用分级加载方法,测得其单轴流变全过程蠕变曲线,揭示了松散煤体的流变变形特性即松散煤体存在“瞬时变形、减速蠕变、等速蠕变及加速蠕变阶段,卸载后存在残余变形”。得到了试样轴向四阶段应力应变规律即“孔隙裂隙压密阶段、线性变形阶段、裂隙孔隙发育阶段、加速破坏阶段”,分析了蠕变煤体受长时蠕变损伤下的等时应力应变曲线和瞬时加载变形模量规律。在松散煤体流变元件模型选取原则指导下,提出了适合松散煤体流变特征的改进型CVISC流变模型,推导了相关蠕变方程及其差分形式。提出了对添加的粘性单元参数计算方法,对松散煤体的流变参数进行了辨识,后经数值模型分析,验证了所提出模型的合理与正确性。(4)反演了深部巷道松散煤体流变参数并揭示了巷道流变机理。基于一个具有典型流变性质的松散煤层巷道工程案例,分析了其流变规律即该松散煤巷具有“前期减速大流变和后期等速大流变”特征,确定了帮部软弱松散煤体长时流变是巷道失稳破坏的关键因素。理论分析选取了适合松散煤体的流变模型及相关流变参数的取值范围,通过正交流变参数组合设计,并经三维巷道数值模拟计算,得到含有时间序列的巷道位移。基于现场流变位移数据,通过“BAS-ESVM”模型反演得到了实测变形下的巷道煤体流变参数,经正算验证了所反演的流变参数及整体模型的建立是合适与正确的。进一步,通过对该流变巷道围岩水平与垂直位移、最大主应力与最小主应力、塑性区扩展随时间的演化规律分析,揭示了松散煤体巷道的不稳定变形时间长,煤体内高应力积聚,塑性区扩展范围远超支护范围等破坏机理。(5)提出了高压旋喷加固流变巷道的技术对策并试验其对松散煤体的扩孔成桩效果。理论分析了控制流变巷道的根本是提高松散煤体的自身性质,探索性的提出通过高压旋喷技术深度改性松散煤体,从而抑制巷道流变。深入分析了高压旋喷的“剪切、拉伸及内损伤”破煤机理,讨论了高压射流在煤体中扩孔范围与关键影响因素,分析了水泥浆旋喷成桩作用与改性固结煤体机理。讨论了旋喷技术在深部松软煤层适用的可行性,计算选取了旋喷相关设备,分析了射流流量及压力对煤体作用,并在地面预先验证了设备和参数设置合理性。确定了两套旋喷工艺及流程,现场试验结果显示高压旋喷射流技术对坚硬的泥岩体扩孔范围有限,而对松散煤体扩孔成桩效果较好,尺寸在400 mm~500 mm左右,满足预加固支护要求,但也仍需优化选取试验地点和部分旋喷参数。(6)探索了旋喷加固控制松散煤巷方案并分析了其抑制流变机理。基于旋喷注浆成型桩体在松散煤层中的存在状态,实验室内构建了旋喷煤浆固结体,理论计算确定了煤与水泥浆液的合理比例为1.3,设计了煤浆混合物并测定了其坍落度。从宏观微观角度试验分析了水泥浆对煤体的改性作用,认为煤浆固结体是介于混凝土和煤体之间的在强度和延展性上具有优异性能的复合材料,试验确定了该材料力学参数的尺寸效应和抗流变的特性。提出了旋喷注浆加固巷道的设计思路、原则和关键技术,建立了以“旋喷改性加固为主体,联合喷射混凝土和U型棚强化”的松散煤层巷道控制方案并确定了相关参数,概括为“浅表改性、预先加固、提高承载、边放边抗、柔中有刚、多重支护”的基本控制思想。建立了含有旋喷加固体的三维数值模型,合理选取了本构模型和相关参数。探索了两种旋喷方案在巷道流变变形抑制、围岩应力优化及塑性区扩展控制上的机理,综合对比分析认为旋喷注浆加固松散煤体技术可以明显降低顶板和帮部变形,最大分别减小69%和78%;减少巷道稳定时间,从60天减少至15天;优化围岩应力,应力集中系数可最大降低35%;大幅度减小围岩塑性区,顶板塑性区范围减小84%,帮部塑性区范围最大降低42%;对松散煤巷流变的研究与治理进行了新的尝试并提供了新的思路。该论文有图130幅,表39个,参考文献282篇。
姜鹏飞[4](2020)在《千米深井巷道围岩支护—改性—卸压协同控制原理及技术》文中研究指明我国埋深1000m以下的煤炭资源丰富,主要分布在中东部地区。与浅部煤矿相比,千米深井最大的特点是地应力高、采动影响强烈,巷道开挖后即表现为变形大、持续时间长、稳定性差,受到工作面采动影响后,围岩变形与破坏进一步加剧,甚至出现冒顶、冲击地压等灾害。适用于中浅部煤矿的围岩控制方法与技术不能解决千米深井难题。为此,本文以我国淮南矿区中煤新集口孜东矿千米深井121302工作面运输巷为工程背景,采用理论分析、实验室试验、相似材料模型试验、数值模拟及井下试验相结合的方法,研究千米深井巷道围岩大变形机理及支护-改性-卸压协同控制原理及技术,为千米深井巷道围岩控制提供基础。本文研究内容包括五个方面:(1)从地应力、围岩裂化、超长工作面采动、偏应力诱导围岩扩容等多个角度研究千米深井巷道围岩大变形机理。(2)采用相似材料模型试验对比研究单一锚杆锚索支护与支护-改性-卸压协同控制2种方案下巷道围岩及支护体受力、巷道裂隙分布与变形规律。(3)采用数值模拟研究单一锚杆锚索支护、支护-改性-卸压等多种方案下巷道围岩变形破坏机理,揭示千米深井巷道支护-改性-卸压协同控制原理。(4)研发千米深井巷道支护-改性-卸压协同控制技术。(5)提出口孜东矿千米深井巷道支护-改性-卸压协同控制方案,并进行井下试验与矿压监测,对研究成果进行验证。通过论文研究,取得以下结论:(1)井下实测得出口孜东矿试验巷道所测区域最大水平主应力21.84MPa,垂直应力25.12MPa,地应力场以垂直应力为主。实验室测试得出13-1煤层顶底板以泥岩为主,强度低、胶结性差,煤岩层中粘土矿物含量占除煤质以外矿物总含量的60%,极易风化和遇水软化。井下测量发现巷道变形主要为帮部大变形和强烈底鼓,大量肩窝锚杆、锚索破断,托板翻转、钢带撕裂,导致支护破坏与失效。(2)数值模拟揭示了不同地应力、围岩强度劣化、工作面长度及偏应力等地质力学与生产条件参数对千米深井巷道围岩变形影响机制,揭示了千米深井巷道围岩大变形机理和3个主要影响因素:高应力、软岩与流变、超长工作面强采动作用,提出了千米深井软岩巷道的支护-改性-卸压协同控制方法和“三主动”原则:采用高预应力锚杆与锚索实现主动支护;采用高压劈裂注浆主动对软弱破碎煤层改性;采用超前水力压裂实施主动卸压。(3)相似材料模型试验结果表明,直接顶初次垮落步距30m,基本顶初次来压步距55m,周期来压滞后工作面后方5m。受高应力与顶板泥岩的影响,工作面随采随冒。对比分析了非压裂与压裂两种情况下上覆岩层垮落与断裂形态,未进行水力压裂卸压时,受工作面开采影响,煤柱上方顶板产生1条断裂线;采用水力压裂卸压后,煤柱上方顶板产生了2条断裂线,且在压裂范围产生了1条明显的裂隙和多条微小裂隙,减小了上覆坚硬岩层的悬顶范围,激活了原生裂隙,降低了煤柱采动应力,从而减弱了强烈采动影响。(4)相似材料模型试验研究获得了单独采用锚杆锚索支护与采用支护-改性-卸压协同控制2种方案下围岩与支护体受力、巷道变形与破坏特征。采用支护-改性-卸压协同控制方案巷道围岩承载能力较单独采用锚杆锚索支护时增强,锚杆锚索受力增大,巷道围岩完整性、强度、锚固力提升,采动应力降低,巷道围岩裂隙长度、宽度和分布范围减小,支护-改性-卸压三者存在协同互补的关系。采用支护-改性-卸压协同控制方案后,巷道断面收缩率30.8%;较单独采用锚杆锚索支护方案断面收缩率降低61.5%。(5)采用数值模拟研究了支护-改性-卸压协同控制巷道围岩受力、变形与裂隙分布特征,并与无支护、锚杆锚索支护进行了对比分析。巷道围岩采用支护-改性-卸压控制后,巷道周围煤岩体垂直应力均明显高于无支护及锚杆锚索支护巷道,而煤柱侧中部至采空区区域及实体煤侧深部区域其垂直应力较无支护及锚杆锚索支护巷道降低,巷道变形、产生的剪切和张拉裂隙显着减少。(6)提出了支护-改性-卸压协同控制原理:通过高预应力锚杆、锚索及时主动支护,减小围岩浅部偏应力和应力梯度,抑制锚固区内围岩不连续、不协调的扩容变形;通过高压劈裂主动注浆改性,提高巷帮煤体的强度、完整性及煤层中锚杆、锚索锚固力;工作面回采前选择合理层位进行水力压裂主动卸压,减小侧方悬顶和采空区后方悬顶,并产生新裂隙,激活原生裂隙,降低工作面回采时采动应力量值和范围;三者协同作用,控制千米深井巷道围岩大变形。(7)研发出巷道支护-改性-卸压协同控制技术:开发了CRMG700型超高强度、高冲击韧性锚杆支护材料,揭示出锚杆的蠕变特性及在拉、剪、扭、弯、冲击复合载荷作用下力学响应规律。研究了微纳米无机有机复合改性注浆材料性能,该材料注浆改性后较未注浆的裂隙原煤抗剪强度提高81.5%,能够起到提高煤体结构面强度、完整性和锚杆锚索锚固性能的作用。提出了水力压裂分段压裂工艺技术及效果评价方法。(8)提出支护-改性-卸压巷道围岩控制布置方案与参数,并进行了井下试验和矿压监测。结果表明,与原支护相比,支护-改性-卸压协同控制方案应用后,充分发挥了锚杆、锚索主动支护作用,锚杆、锚索破断率降低90%;高压劈裂注浆提高了巷帮煤体的强度和完整性;顶板上覆坚硬岩层实施水力压裂,减小了工作面超前采动应力量值与变化幅度,降低了液压支架工作阻力。支护-改性-卸压协同控制方案井下应用后使巷道围岩变形量降低了50%以上。
张超[5](2020)在《平煤一矿高应力软岩巷道底鼓机理及控制技术研究》文中研究表明高应力软岩巷道底鼓治理,是长期困扰矿井安全生产的难题。本论文以平煤一矿三水平下延-950水平回风大巷为工程背景,根据围岩结构探测,分析了巷道围岩的结构特征和破坏范围;经现场取样测定了底板岩层物理物理力学性质和矿物组分,得到巷道底板为砂质泥岩及膨胀性粘土矿物,揭示巷道底板岩性软弱是易发生底鼓的重要原因;根据地应力测试数据,分析了原岩应力与巷道底鼓的关系;以巷道原有支护体系为研究对象,分析了底板支护强度对底鼓的影响;通过理论计算和经验公式分析了围岩应力、岩石膨胀和塑性变形引起底鼓的过程和造成的底鼓量,并提出了一套解释巷道底鼓的力学模型,从理论上分析了该巷道底鼓发生的机理。在分析总结底鼓的主要影响因素和发生机理的基础上,指出控制该巷道底鼓的途径,利用FLAC数值模拟软件对比分析了原支护方案、底板卸压、底板锚固和底板注浆技术时该巷道的底鼓量,分析了围岩应力分布和塑性区情况,由此提出了锚注加固和底板爆破卸压两种底鼓治理方案,工业性试验结果表明,-950水平回风大巷底鼓控制效果良好,巷道底板可以保证长期稳定。论文研究结果对同类巷道底鼓控制问题提供一定参考。
支光辉[6](2020)在《“三软”厚煤层综放工作面沿空掘巷围岩锚固控制研究》文中指出赵家寨矿属于典型的“三软”厚煤层,回采巷道托顶煤平均厚度2~3m不等,沿空掘巷局部地段破坏严重,影响现场正常使用。在施工锚网索支护时,存在锚固孔成孔质量差、塌孔现象严重以及锚固力较低等问题,临近采空区小煤柱表现尤为严重。因此,论文基于赵家寨矿现有地质开采条件,采用现场观测、理论分析、数值模拟、相似模拟以及现场试验等方法对“三软”厚煤层综放工作面沿空掘巷矿压显现规律、松软破碎煤体钻-封-注一体化锚固机理及工艺、装置等进行了系统深入的研究。主要取得了以下研究成果:(1)在现场观测的基础上,分析了留小煤柱沿空巷道围岩变形破坏特征,发现沿空掘巷围岩变形呈现非对称形式,小煤柱侧变形值及所受垂直应力较大;围岩塑性区范围较大,小煤柱完全呈现塑性状态,且小煤柱内有一剪切带,可能会导致小煤柱的失稳破坏。(2)基于自主设计的钻-封-注一体化可接长锚杆,通过理论分析,论述了“三软”厚煤层综放工作面沿空小煤柱巷道钻-封-注一体化锚固机理。优化确定了钻-封-注一体化可接长锚杆杆体和连接件的强度和尺寸,确定了最优注浆压力,分析了封孔长度与封堵效果关系。发现在软煤中注浆裂隙扩展范围较大,注浆稳定后相同测量圆孔隙率、应力均呈现软煤>中软煤体>硬煤特征。(3)自主研发了注浆锚固技术综合试验台,通过对钻进过程中钻-封-注一体化可接长锚杆的振动特征监测发现,松软煤体中钻进时锚杆的纵向振动加速度值远大于破碎煤体,为识别煤体的完整性提供了依据。超声波无损检测注浆效果发现,注浆范围能够使锚固范围内形成承载体。通过锚杆拉拔检测试验可知,松软煤体中锚杆拉拔力峰值平均值比破碎煤体中大,说明松软煤体中注浆锚固质量更好,锚固系统承载能力更高。(4)在井下现场对沿空掘巷煤柱侧进行钻-封-注一体化锚固试验,验证了实验室实验的结果和有效性。试验结果显示,各试验段锚固后的锚杆拉拔力峰值的平均值明显比附近的树脂锚固锚杆高、煤柱侧变形量小,由于钻-封-注一体化可接长锚杆杆体为空心、封孔为胶套、薄皮钢管加工的钻头,成本和同长度?20mm螺纹钢锚杆价格相当,减小了巷道支护和返修成本。
袁侨坤[7](2020)在《玻璃纤维锚杆在金属矿山破碎矿体巷道支护的应用研究》文中提出我国部分地下金属矿山由于矿体破碎等复杂的开采条件,通常采用锚喷网联合支护。然而,常用的钢筋锚杆锚固性能差,在回采矿石中会留下大量的金属残件,影响矿石回收效率,易对运输胶带造成破坏,并加大后期选矿难度。为解决以上问题,不少矿山对锚杆材质的改变进行了尝试,也取得了良好的效果。本文依据龙首矿西二采区矿体开采技术条件,进行了玻璃纤维锚杆在金属矿山破碎矿体巷道支护的应用研究。首先,通过物理试验,得出玻璃纤维锚杆与砂浆的黏结性能优于钢筋锚杆,而且抗拉强度大、低成本,具备地下矿山支护的可行性。同时TENSAR网能提升混凝土抗折强度,能与玻璃纤维锚杆进行联合支护。其次,通过理论分析,得出玻璃纤维锚杆的锚固机理为:锚杆与锚固剂、围岩共同形成锚固体,抑制岩层沿锚杆轴向的膨胀变形和垂直于锚杆轴向的剪切错动,相邻锚固体之间相互作用形成加固拱,共同对巷道的位移进行抑制;理论研究发现全长黏结锚杆拉拔试验时力的分布曲线与现场锚杆中性点后力的分布曲线相似;同时得出锚杆中性点的位置及受力长度与是否施加预应力及其大小无关;经过理论计算得出,西二采区玻璃纤维锚杆的理论长度不得低于1.86m。然后,运用数值模拟,对比使用玻璃纤维锚杆和钢筋锚杆时巷道的受力与位移情况,结果表明:两种支护条件下的巷道应力大小、分布及位移情况相差不大;对于限制塑性区发育而言,使用玻璃纤维锚杆的锚喷网支护效果优于使用钢筋锚杆支护的锚喷网支护。最后,通过现场试验,发现长度为2m,直径为20mm的玻纤砂浆锚杆的极限抗拔力达到11.2t,说明玻璃纤维锚杆有良好的支护强度和支护性能;现场监测得出采用玻纤砂浆锚杆+TENSAR网+喷射混凝土联合支护能有效地降低巷道的收敛量,这种支护方式能在地下矿山巷道支护工程中进行运用。通过对玻璃纤维锚杆在龙首矿西二采区的应用研究可以得出,玻璃纤维锚杆在地下金属矿山破碎矿体是可应用的,它优良的力学性能、较低的经济成本、良好的现场支护效果使其能够替代目前的钢筋锚杆作为支护材料对巷道围岩进行支护。
杨亚威[8](2020)在《多孔洞岩溶区软泥入侵复合顶板回撤通道支护技术研究》文中进行了进一步梳理永聚煤业10#煤层顶板为坚硬的石灰岩,顶板岩层内存在大量孔洞,局部存在软泥入侵,采煤工作面回撤期间撤架通道数次出现冒顶、压架事故,造成很大的经济损失且存在安全隐患,永聚煤业10#煤层大断面回撤通道的支护在其它矿区开采过程中均没有可借鉴的经验,为避免工作面装备搬撤期间发生压架、漏顶等事故影响矿井安全生产,需要对该问题进行系统研究。本文以永聚煤业10#煤层综采工作面大断面回撤通道为工程背景,通过实地调研、理论分析、数值计算、数值模拟及现场工程实践等方法,系统研究了多孔洞复合顶板条件下大断面回撤通道的变形破坏规律,揭示围岩失稳变形的机理,据此提出以保证顶板整体性、完整性为核心的支护理念,设计以高强预应力锚杆、中空注浆锚索、单体柱+π型梁为主导的围岩控制技术,主要得到以下成果:多孔洞复合顶板回撤通道围岩典型破坏特征为:顶板表面岩层坚硬且裂隙发育破碎,冒顶事故频发,顶板大面积冒顶或沿煤帮切落式垮落造成压架事故;帮部煤体松软破碎,片帮明显。通过顶板钻孔窥视表明:顶板岩层0~4 m内,裂隙发育,存在轻微离层;顶板岩层4~8 m内溶洞发育,存在大量孔洞,岩体节理、裂隙充分发育,强度低,松散破碎;深度8 m及以上顶板岩层,岩体坚硬完整。永聚煤业10#煤层顶板岩层4~8 m内岩石质量指标(RQD值)约为深度8m以上岩层的三分之一,约为深度0~4 m岩层的二分之一,且该区域岩样的抗压强度、抗拉强度均明显低于0~4 m和8~13 m范围内的岩样,孔洞发育导致岩体的完整性、连续性、整体性大幅度降低。永聚煤业10#煤层回撤通道顶板悬臂梁长度11.3 m,顶板不稳定岩层的深度小于12 m,回撤通道顶板支护的对象为均厚12.79 m的石灰岩基本顶。石灰岩内孔洞发育区存在多个孔洞和多组结构面,使该区域岩体的强度、自稳及承载能力大幅度降低。初步提出孔洞发育顶板回撤通道围岩失稳机理:回撤通道开挖后,顶板浅部岩层裂隙延展发育,孔洞发育区内节理、裂隙扩展发育,进一步增大顶板不稳定岩层的深度,顶板完整性、整体性不断降低,孔洞发育区岩层易出现较大离层,逐渐发展为冒顶或大面积切落式垮落,造成压架事故。采用FLAC3D数值模拟软件模拟分析孔洞发育对回撤通道围岩稳定性的影响,结果表明,顶板孔洞发育层位越浅,对于巷道围岩稳定性影响越大;孔洞分布层位上部岩层和下部岩层相向移动,孔洞围岩受剪破坏明显;孔洞分布密度越大,顶板塑性破坏越严重,表面位移量越大,当孔洞体积达到整个孔洞发育区的25%后,顶板沿煤壁附近发生切落式垮落,回撤通道围岩整体失稳,充分说明了孔洞发育是导致回撤通道围岩难以控制的关键因素,验证了回撤通道顶板失稳破坏机理。根据多孔洞复合顶板的破坏特性,将顶板岩层分为裂隙破碎区、孔洞发育区、坚硬自稳区,并提出以保证顶板的完整性、整体性为核心的多级支护技术,分析永聚煤业回撤通道现有支护存在的问题,结合具体的工程实例,设计以高强预应力锚杆、中空注浆锚索、单体柱+π型梁为主导的多层级围岩控制技术方案,分析探讨锚杆锚索预应力、长度等对支护效果的影响,选择恰当的支护理论确定锚杆、锚索支护的具体参数。现场应用期间进行实地调研和矿压监测,结果表明,新方案充分调动深部稳定岩层的承载能力,深部岩层和浅部岩层组合为稳定承载结构,充分发挥围岩的自承和承载能力,有效控制顶板岩层的离层、相向移动及裂隙扩展发育,将巷道顶板下沉量控制在合理范围内,避免了顶板的非连续大变形及冒顶事故的发生,取得了良好的应用效果。研究成果具有重要的现实意义和深远的历史意义。
王茂盛[9](2019)在《赵庄矿深部大断面复合顶板煤巷变形破坏机理与控制对策》文中进行了进一步梳理煤系地层具有典型的层状特征,工程岩体层理、裂隙、软弱夹层等结构面发育,其中层状复合顶板巷道所占比重较大。复合顶板巷道作为一类复杂困难巷道,其围岩稳定性控制问题一直是巷道支护领域研究的重点和难点。随着矿井开采深度增加,岩体的工程响应与浅部相比将会发生根本变化。对于深部大断面复合顶板煤巷而言,其稳定性控制问题将会更加突出。本文以赵庄矿深部大断面复合顶板煤巷为工程背景,综合采用现场调研、理论分析、数值模拟和现场工程试验等方法,研究了深部大断面复合顶板煤巷变形破坏机理;分析了不同断面巷道围岩受力状态,优化了巷道断面形状;从调控围岩荷载效应出发,提出了以强力锚杆与高预应力锚索为基础,以“密闭围岩、强化小结构、调动大结构”为核心的大、小结构叠加耦合支护技术。主要取得以下结论:(1)进行了巷道围岩地质力学测试,获得了原岩应力场分布规律、围岩粘土矿物含量和围岩力学参数,并对巷道围岩稳定性进行了初步分类。原岩应力场中水平构造应力占主导,最大水平主应力方位角为N350W,侧压系数为1.17。巷道顶板泥岩粘土矿物含量大于50%,遇水易风化碎裂;煤体强度不足8MPa,较为松软。采用模糊聚类分析方法,对赵庄矿区15条煤巷进行了稳定性分类,得到了围岩稳定性分类聚类中心,并建立了煤巷围岩稳定性分类指标模板。(2)总结分析了深部大断面复合顶板煤巷变形破坏特征,阐明了复合顶板离层演化规律,揭示了大断面复合顶板煤巷变形失稳机理。顶板下沉剧烈,冒顶隐患大;煤壁极易片帮,挤压变形显着;支护结构损坏严重,巷道返修率高是大断面复合顶板煤巷典型破坏特征。复合顶板内部结构多变,呈现非连续和跳跃性破坏。大断面煤巷复合顶板离层演化过程为:顶板挠曲—层间剪切—非协调变形—离层扩展;巷道宽度、侧压系数和分层厚度对复合顶板离层变形影响显着。软弱夹层极易导致复合顶板的沿层与穿层破坏,软弱夹层数量增加,冒顶高度和风险增加,软弱夹层的存在是造成复合顶板非连续和跳跃性破坏的关键因素。煤帮破坏程度与范围增加,复合顶板稳定性降低,为了保证巷道稳定,须坚持“顶帮协同控制”的原则。井下潮湿环境加剧顶板风化碎裂,巷道掘出后须及时喷射混凝土层,降低工程岩体强度劣化。大断面煤巷复合顶板在竖向荷载与水平荷载共同作用下产生挠曲离层,随着离层的扩展演化,在顶板上方形成潜在冒落块体;潜在冒落块体挠曲变形过程中造成支护结构失效,支护强度下降,当潜在冒落块体的下滑阻力不足以克服下滑的剪力时,复合顶板将会发生失稳。工程地质条件复杂,围岩强度低;顶板结构多变,离层扩展显着;煤帮松软破碎,难以为顶板提供有效支撑;顶板泥岩易风化碎裂,锚索预应力损失严重;支护方案针对性差,围岩承载能力低是造成大断面复合顶板煤巷变形失稳的关键因素。(3)构建了巷道圆弧拱形顶板受力模型,研究了不同因素影响下顶板承载力学特性,优化了复合顶板煤巷断面形状。以结构力学的观点,构建了复合顶板巷道圆弧拱形顶板受力模型,得到了不同矢跨比和巷道宽度影响下,圆弧拱形顶板不同位置处弯矩、剪力与轴力的变化规律。采用数值软件分析了 11种断面形状影响下巷道围岩的受力状态、塑性区特征与位移分布规律。随着巷道矢跨比的增加,围岩受力状态逐渐变好,有利于围岩的控制。当矢跨比达到0.3后继续增加,巷道受力状态变好的增幅不再明显;同时考虑施工的难度,大断面复合顶板煤巷采用矢跨比为0.3的直墙圆弧拱形断面。(4)从调控围岩荷载效应出发,提出了以强力锚杆与高预应力锚索为基础,以“密闭围岩、强化小结构、调动大结构”为核心的大小结构叠加耦合支护技术。分析了复合顶板煤巷支护存在的主要问题:对工程岩体中的软弱结构面考虑不足,不能正确认识复合顶板变形失稳机理;不重视巷道围岩地质力学测试,巷道支护方式单一,造成区域支护不足和局部支护浪费;对锚杆与锚索的协同作用机理认识不足,不能实现锚杆与锚索的协调支护;缺乏及时的巷道矿压数据监测,对于巷道支护方案设计的合理性不能进行有效的评价。在此基础上,提出了复合顶板煤巷围岩控制思路。锚杆锚索间距增加,支护应力场叠加程度降低,由群体承压拱结构效应向个体效应转化;密集的锚杆锚索支护有利于在围岩中形成双层承压拱结构;锚索间距过小时,虽可形成刚度较大的外层承压拱结构,但锚杆锚索协同承载范围有限。锚杆锚索预紧力增加,支护应力场叠加程度增大,有利于形成刚度更大的双层承压拱结构,增加支护的层次型,有利于提高支护系统的可靠性。锚索长度增加,围岩的支护加固范围逐渐增大,但其有效支护应力有所降低,对于结构极复杂的复合顶板可在锚杆支护的基础上,考虑采用长短锚索,增加支护的层次,形成三层承压拱结构,充分发挥围岩的自承能力。预紧力是影响锚杆锚索对复合顶板控制效果的关键因素,应保证设计预紧力可以在围岩中形成有效压应力区,使软弱夹层处于夹紧状态,避免其劣化和沿层扩展,显着降低复合顶板变形破坏对工程扰动的敏感性。根据大断面煤巷不同深度顶板发生变形破坏程度差异,划分为非稳定层、亚稳定层和稳定层。为保证围岩稳定须重点控制浅部的非稳定层和中部的亚稳定层,并调动深部稳定层承载。把浅部的非稳定层与中部的亚稳定层视为围岩的小结构,深部稳定层视为围岩的大结构。从调控围岩荷载效应出发,提出了以强力锚杆与高预应力锚索为基础,以“密闭围岩、强化小结构、调动大结构”为核心的大、小结构叠加耦合支护技术。(5)基于大小结构叠加耦合支护技术,选取典型的试验巷道,提出具体的支护方案与关键技术参数,并进行现场工程试验,取得了良好的支护效果。大小结构叠加耦合支护技术以“长短结合、强弱结合、疏密结合”的支护系统为依托,形成多层次支护。选取典型的试验巷道,根据具体的工程地质条件选择强力锚杆与高预应力锚索联合支护顶板,形成连续的预应力承载结构,消除或降低复合顶板中软弱结构面的影响;并选择合理的护表构件,同时加强煤帮控制,及时喷层密闭围岩。现场监测结果表明,采用新支护方案后巷道围岩变形量小,长期稳定性高,支护效果好。
宋德林[10](2017)在《西石门铁矿北区难采矿体崩落法安全高效开采工艺技术研究》文中认为随着易采铁矿资源的大量消耗和国民经济发展对铁矿石需求量的不断增大,我国复杂难采铁矿资源逐渐投入开采规划,其中松软破碎矿体、受复杂民采空区破坏矿体、以及原开采区域的矿柱矿量,是目前投入开采的复杂难采矿体的主要组成部分,解决这三类矿体安全高效开采的工艺技术难题,对保障国内铁矿石生产的可持续发展,具有重要意义。西石门铁矿北区是具有上述三种类型难采矿体的典型矿山,存在大量的高应力破碎矿体、复杂空区矿体与矿柱矿量,由于缺少适宜的开采工艺技术,这些矿体均未得到有效开采。本文运用三律(岩体冒落规律,散体流动规律与地压活动规律)适应性理论,对这些难采矿体,分别进行了改进分段崩落法开采工艺技术的试验研究工作,优化了无底柱分段崩落法的采场结构参数、改进了回采顺序与采空区管理方式、优选了采准巷道支护技术,解决了采场地压与采空区岩移控制、以及复杂残矿精益回收等技术难题,形成了这三类难采矿体崩落法安全高效开采的实用工艺技术。论文主要进行了如下几方面研究工作:(1)在现场调研与矿岩稳定性分级的基础上,分析计算出,在矿山开采中段,矿体与顶板近矿围岩临界冒落跨度的最大值分别为16.7 m与20.2 m,据此提出了双进路齐头并退的回采方式,使回采时空适应了矿体与近矿围岩的可冒性。(2)采用达孔量法测定了矿石散体的流动参数,并据此分析了矿石散体的流动粘滞性,结合采场地压控制需要,分析确定了无底柱分段崩落法的采场结构参数,提高了缓倾斜矿体崩落法开采的矿石回采率。(3)采用现场调查统计分析与数值模拟相结合的方法,研究了采场地压活动规律,揭示了巷道持续变形、顶板冒落、两帮内收、底鼓等破坏特性的机理,提出楔形体压力作用区的新概念,优选了采准工程的支护形式,保障了三类复杂难采矿体采准工程的可靠性。(4)在以上研究的基础上,综合考虑采场结构参数、巷道布置、回采顺序、铲运设备选型、掘进支护、放矿控制、导流放出等,提出了适合矿山条件的高应力破碎矿体的强掘强支强采技术。(5)对于复杂空区矿体,评估了突水危险源和水源补给条件,制定了空区钻孔探测和疏水方案;分析了下盘损失矿量的位置、构成、形态,并给出了损失矿量的计算方法。在此基础上,从避免空区危害、减少下盘损失和降低采准工程掘支难度的角度出发,研究提出了分段诱导冒落安全高效开采方案。(6)依据临界散体柱支撑理论,采用废石充填塌陷坑的方法,提高采空区冒透地表的塌陷角,缩小了保安矿柱的范围,并根据可采矿柱条件,提出了地表用磁滑轮甩弃废石随时充填塌陷区、地下用平底堑沟诱导冒落法缩采矿柱的新方法,既保障了矿柱的保安功能,又实现了矿柱释放矿量的安全回采。本文提出的强掘强支强采技术、空区钻孔探测技术、充水空区疏干方案、矿柱缩采技术、采准工程支护技术等,已经在西石门北区得到实际应用,取得良好技术经济效果。生产实践与理论分析表明,这些按三律适应性原理研究提出的工艺技术,包括分段诱导冒落开采技术,能够高度适应北区复杂难采矿体条件,可实现破碎矿体、复杂空区矿体与矿柱矿量的安全高效开采。
二、松软破碎岩层中巷道联合支护的试验与应用(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、松软破碎岩层中巷道联合支护的试验与应用(论文提纲范文)
(1)深部大断面煤巷围岩变形特征及控制技术研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 锚杆支护理论研究现状 |
1.2.2 巷道围岩变形失稳机理研究现状 |
1.2.3 现存问题及方向 |
1.3 主要研究内容及研究方法 |
1.4 技术路线 |
第2章 深部大断面巷道围岩力学测试及变形破坏特征研究 |
2.1 赵庄煤矿工程地质背景 |
2.1.1 矿井概况 |
2.1.2 工作面概况及围岩地质特征 |
2.1.3 工作面巷道支护现状 |
2.2 大断面煤巷围岩变形特征 |
2.3 围岩物理力学参数测试 |
2.4 大断面煤巷围岩结构窥视方案及结果分析 |
2.4.1 巷道围岩结构窥视仪器 |
2.4.2 巷道围岩结构窥视测站布置及分析 |
2.5 大断面煤巷围岩松动圈测试及结果分析 |
2.5.1 测试设备的选取及其原理 |
2.5.2 测试地点的布置及结果分析 |
2.6 本章小结 |
第3章 深部大断面煤巷锚杆支护数值模拟研究 |
3.1 大断面煤巷锚杆支护方案及参数影响分析 |
3.1.1 数值模拟模型建立 |
3.1.2 锚杆支护参数的分析 |
3.1.3 锚杆构件分析 |
3.2 巷道锚杆支护参数正交分析 |
3.2.1 正交试验 |
3.2.2 正交试验结果分析 |
3.2.3 锚杆初步支护参数确定 |
3.3 本章小结 |
第4章 深部大断面煤巷围岩注浆加固机理及工艺 |
4.1 破碎围岩注浆机理 |
4.1.1 改善巷道围岩强度 |
4.1.2 加固减小巷道围岩松动圈 |
4.1.3 改善主动支护效果 |
4.2 巷道围岩注浆加固力学分析 |
4.2.1 大断面破碎巷道注浆承载层机理 |
4.2.2 大断面破碎巷道注浆承载层力学分析 |
4.3 注浆改善锚杆受力状态 |
4.4 注浆工艺及参数 |
4.5 本章小结 |
第5章 深部大断面煤巷支护系统优化数值模拟研究 |
5.1 数值模拟计算模型及方案 |
5.1.1 数值模拟计算模型 |
5.1.2 模拟方案的建立 |
5.2 巷道回采期间原支护方案模拟分析 |
5.2.1 原支护回采期间巷道围岩塑性区分布 |
5.2.2 原支护回采期间巷道位移分布 |
5.2.3 原支护回采期间巷道围岩垂直应力 |
5.3 巷道回采期间现设计支护方案模拟分析 |
5.3.1 现设计支护回采期间巷道围岩塑性区分布 |
5.3.2 现设计支护回采期间巷道位移分布 |
5.3.3 现支护回采期间巷道围岩垂直应力 |
5.4 本章小结 |
第6章 工程应用 |
6.1 试验巷道段布置 |
6.2 巷道监控效果分析 |
6.2.1 巷道表面位移监测 |
6.2.2 锚杆应力监测 |
6.3 本章小结 |
第7章 结论 |
7.1 结论 |
7.2 不足 |
参考文献 |
攻读学位期间取得的研究成果 |
致谢 |
(2)深部巷道煤岩复合顶板厚层跨界锚固承载机制研究(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.3 主要研究内容与方法 |
1.4 技术路线 |
2 煤岩复合顶板巷道变形破坏特征 |
2.1 矿井概况 |
2.2 21205 工作面运输巷概况 |
2.3 地应力测试 |
2.4 围岩物理力学性能测试 |
2.5 煤岩样微观测试 |
2.6 巷道变形特征及控制效果评价 |
2.7 本章小结 |
3 煤岩组合试样力学特性差异及能量耗散过程 |
3.1 数字散斑相关测量方法 |
3.2 实验方案及设备 |
3.3 不同高比煤岩组合试样的力学特性 |
3.4 不同高比煤岩组合试样的应变场演变规律 |
3.5 不同高比煤岩组合试样的能量耗散规律 |
3.6 本章小结 |
4 基于应力释放的煤岩复合顶板巷道渐进破坏规律 |
4.1 关键参数确定及数值模型建立 |
4.2 无支护条件下巷道围岩位移场与裂隙场演化规律 |
4.3 顶煤厚度对巷道围岩稳定性的影响规律 |
4.4 煤岩复合顶板巷道的控制原则 |
4.5 本章小结 |
5 煤岩复合顶板厚层跨界锚固机制 |
5.1 锚固系统研发背景 |
5.2 不同长度锚杆锚固区损伤演化规律 |
5.3 顶板厚层跨界锚固原理及厚层锚固系统研发 |
5.4 巷道支护系统设计及模拟分析 |
5.5 本章小结 |
6 煤岩复合顶板厚层锚固承载作用机制 |
6.1 相似模拟材料力学测试及参数确定 |
6.2 相似模拟实验设计及模型建立 |
6.3 围岩应力演化特征及巷道变形破坏规律 |
6.4 顶板厚层锚固系统的抗冲击特性 |
6.5 本章小结 |
7 跨界长锚固柔化结构设计及多工况力学性能分析 |
7.1 长锚杆适用条件及新型柔性锚杆研发 |
7.2 实验的设备、材料及方法 |
7.3 柔性锚杆关键参数选择及拉伸力学性能研究 |
7.4 长期荷载下柔性锚杆力学特性研究 |
7.5 循环荷载下柔性锚杆力学特性研究 |
7.6 柔性锚杆现场应用研究 |
7.7 本章小结 |
8 工业性试验研究 |
8.1 葫芦素煤矿21205 运输巷典型工程实例 |
8.2 门克庆煤矿3108 运输巷典型工程案例 |
8.3 本章小结 |
9 结论 |
9.1 主要结论 |
9.2 主要创新点 |
9.3 研究展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(3)深部松散煤体巷道流变机理研究及控制对策(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 选题背景与意义 |
1.2 国内外研究现状 |
1.3 目前研究存在的不足 |
1.4 研究内容与方法 |
2 煤岩体参数反演的算法及模型 |
2.1 参数反演的意义及对象 |
2.2 支持向量机原理 |
2.3 天牛须算法原理 |
2.4 进化支持向量机(ESVM) |
2.5 煤岩参数反演的BAS-ESVM模型 |
2.6 本章小结 |
3 实验室构建等效松散煤体 |
3.1 典型松散煤层实际赋存状态 |
3.2 成型煤体等效于现场松散煤体的方法 |
3.3 原煤分筛与含水率测定 |
3.4 实验室成型煤体及样本构建 |
3.5 基于BAS-ESVM反演模型构建等效型煤 |
3.6 本章小结 |
4 松散煤体流变特性与模型研究 |
4.1 煤体试样单轴流变试验 |
4.2 流变特性试验结果与分析 |
4.3 松散煤体蠕变方程的建立 |
4.4 松散煤体流变模型参数辨识 |
4.5 本章小结 |
5 深部巷道松散煤体流变参数反演与机理分析 |
5.1 典型松散煤巷流变工程案例 |
5.2 基于BAS-ESVM模型的巷道煤体流变参数反演 |
5.3 流变参数反演结果分析 |
5.4 松散煤体巷道流变失稳演化机理研究 |
5.5 本章小结 |
6 高压旋喷加固松散煤体现场试验研究 |
6.1 高压旋喷注浆破煤与加固机理 |
6.2 高压水平旋喷扩孔成桩现场试验 |
6.3 试验结果与分析 |
6.4 本章小结 |
7 煤巷旋喷加固数值模拟研究 |
7.1 煤浆固结体物理力学性质测试 |
7.2 高压旋喷加固技术方案初步设计 |
7.3 旋喷加固巷道数值模型建立 |
7.4 旋喷加固控制巷道流变机理分析 |
7.5 旋喷加固技术方案优化及控制效果分析 |
7.6 支护方案的综合对比分析 |
7.7 本章小结 |
8 结论与展望 |
8.1 结论 |
8.2 创新点 |
8.3 展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(4)千米深井巷道围岩支护—改性—卸压协同控制原理及技术(论文提纲范文)
摘要 |
abstract |
第1章 绪论 |
1.1 选题意义 |
1.2 国内外研究概况—文献综述 |
1.2.1 深部高应力巷道围岩控制机理研究现状 |
1.2.2 锚杆支护机理研究现状 |
1.2.3 巷道围岩注浆改性机理研究现状 |
1.2.4 采动巷道水力压裂卸压机理研究现状 |
1.2.5 存在的问题 |
1.3 论文主要研究内容 |
1.4 论文研究方法与技术路线 |
1.4.1 研究方法 |
1.4.2 技术路线 |
第2章 千米深井巷道围岩大变形机理及协同控制方法 |
2.1 千米深井巷道地质力学条件及支护现状 |
2.1.1 试验巷道地质与生产条件 |
2.1.2 巷道原支护方案与状况 |
2.1.3 巷道支护存在的问题 |
2.2 巷道围岩物理力学特性研究 |
2.3 千米深井巷道围岩大变形数值模拟分析 |
2.3.1 数值模拟方案及参数 |
2.3.2 地应力对巷道围岩变形影响分析 |
2.3.3 围岩强度劣化对巷道围岩变形影响分析 |
2.3.4 工作面长度对巷道围岩变形影响分析 |
2.3.5 偏应力对巷道围岩变形影响分析 |
2.3.6 千米深井软岩巷道围岩大变形机理 |
2.4 巷道围岩控制方法确定 |
2.5 本章小结 |
第3章 巷道支护-改性-卸压协同控制相似材料模型试验研究 |
3.1 试验方案 |
3.1.1 试验工程背景 |
3.1.2 试验内容 |
3.1.3 试验方案 |
3.2 模型相似材料与参数 |
3.2.1 模型相似材料选取 |
3.2.2 支护-改性-卸压相似参数 |
3.3 大型高刚度可旋转采场相似模型试验系统 |
3.3.1 高刚度可旋转式承载框架 |
3.3.2 液压双向加载系统 |
3.3.3 伺服控制系统 |
3.3.4 多源信息监测系统 |
3.4 模拟方案与模型铺设 |
3.5 工作面开采矿压规律分析 |
3.5.1 工作面开采覆岩破断形态及位移变化规律 |
3.5.2 水力压裂对工作面回采覆岩断裂及裂隙分布的影响 |
3.5.3 工作面开采阶段拟开挖巷道围岩采动应力演化规律 |
3.5.4 工作面中部底板采动应力演化规律 |
3.6 锚杆锚索支护巷道相似材料模型试验结果分析 |
3.6.1 锚杆锚索支护方案模型内部应力分布规律 |
3.6.2 锚杆锚索支护方案模型底板应力演化规律 |
3.6.3 锚杆锚索支护巷道支护体受力变化规律 |
3.6.4 锚杆锚索支护巷道围岩裂隙场分布及变形规律 |
3.7 支护-改性-卸压协同控制巷道相似模型试验结果分析 |
3.7.1 支护-改性-卸压协同控制方案模型内部应力分布规律 |
3.7.2 支护-改性-卸压协同控制方案模型底板应力演化规律 |
3.7.3 支护-改性-卸压协同控制巷道支护体受力变化规律 |
3.7.4 支护-改性-卸压协同控制巷道围岩裂隙场分布及变形规律 |
3.8 本章小结 |
第4章 巷道支护-改性-卸压协同控制数值模拟研究 |
4.1 相似材料模型尺度下巷道支护-改性-卸压协同控制原理数值模拟 |
4.1.1 相似材料模型尺度下数值计算模型建立 |
4.1.2 工作面回采煤岩层应力及变形情况 |
4.1.3 千米深井巷道围岩受力变形及破坏特征 |
4.1.4 数值模拟与相似材料模型试验对比分析 |
4.2 井下工程尺度下巷道支护-改性-卸压协同控制原理数值模拟 |
4.2.1 井下工程尺度下数值计算模型建立 |
4.2.2 千米深井巷道围岩支护-改性-卸压协同控制原理 |
4.3 本章小结 |
第5章 巷道支护-改性-卸压协同控制技术研究 |
5.1 千米深井巷道锚杆承载特性 |
5.1.1 CRMG700 型超高强度高冲击韧性锚杆开发 |
5.1.2 锚杆蠕变试验及分析 |
5.1.3 锚杆拉、剪、扭、弯及冲击复合应力承载试验 |
5.2 高压劈裂注浆改性材料与技术 |
5.2.1 微纳米有机无机复合改性材料及性能 |
5.2.2 煤样注浆改性剪切力学性能试验研究 |
5.2.3 高压劈裂注浆改性井下试验 |
5.3 水力压裂卸压技术 |
5.3.1 水力压裂卸压机具与设备 |
5.3.2 水力压裂卸压工艺 |
5.3.3 压裂效果检测与评价 |
5.4 本章小结 |
第6章 巷道支护-改性-卸压协同控制井下试验 |
6.1 试验巷道支护-改性-卸压协同控制方案 |
6.2 千米深井巷道支护-改性-卸压协同控制井下实施 |
6.2.1 高预应力锚杆支护井下实施 |
6.2.2 超前高压劈裂注浆改性井下实施 |
6.2.3 水力压裂卸压井下实施 |
6.3 千米深井巷道围岩矿压监测与效果分析 |
6.3.1 井下矿压监测测站布置 |
6.3.2 巷道变形与支护结构受力监测与分析 |
6.3.3 一维采动应力监测与分析 |
6.3.4 三维采动应力监测与分析 |
6.3.5 工作面液压支架工作阻力变化分析 |
6.4 本章小结 |
第7章 结论与展望 |
7.1 主要结论 |
7.2 创新点 |
7.3 展望 |
参考文献 |
致谢 |
读博期间发表的学术论文与其他研究成果 |
(5)平煤一矿高应力软岩巷道底鼓机理及控制技术研究(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 研究背景与意义 |
1.2 国内外研究现状 |
1.3 论文主要研究内容 |
1.4 研究方法与技术路线 |
2 工程概况 |
2.1 -950水平回风大巷概况 |
2.2 -950水平回风大巷变形破坏情况调查分析 |
3 高应力软岩巷道围岩结构特征及地质力学分析 |
3.1 巷道围岩结构特征探测 |
3.2 巷道原岩应力测试 |
3.3 岩石物理力学性质测试 |
3.4 岩石矿物组分及微结构分析 |
3.5 岩石崩解实验 |
3.6 巷道类型分析 |
3.7 本章小结 |
4 高应力软岩巷道底鼓机理研究 |
4.1 应力型底鼓 |
4.2 膨胀型底鼓 |
4.3 塑性挤出型底鼓 |
4.4 巷道底鼓的力学模型 |
4.5 -950水平回风大巷底鼓主要影响因素分析 |
4.6 -950水平回风大巷底鼓控制原则 |
4.7 本章小结 |
5 高应力软岩巷道底鼓控制技术研究 |
5.1 -950水平回风大巷底板卸压技术 |
5.2 -950水平回风大巷底板加固技术 |
5.3 -950水平回风大巷底板防治水技术 |
5.4 本章小结 |
6 工业性试验 |
6.1 底鼓控制技术方案 |
6.2 施工工艺及参数 |
6.3 巷道围岩表面位移监测分析 |
6.4 本章小结 |
7 结论 |
参考文献 |
作者简历 |
学位论文数据集 |
(6)“三软”厚煤层综放工作面沿空掘巷围岩锚固控制研究(论文提纲范文)
致谢 |
摘要 |
abstract |
1 绪论 |
1.1 研究目的和意义 |
1.2 国内外研究进展 |
1.2.1 沿空掘巷围岩控制理论 |
1.2.2 沿空掘巷围岩控制方法 |
1.2.3 沿空掘巷围岩控制技术 |
1.3 论文主要研究内容 |
1.4 研究方法和技术路线 |
2 “三软”厚煤层沿空巷道矿压显现规律与围岩力学特征 |
2.1 工程概况 |
2.2 巷道围岩地质力学评估 |
2.2.1 地质力学评估地点选择 |
2.2.2 二_1煤物理力学参数测定试验 |
2.2.3 巷道顶板岩层状态探测 |
2.2.4 工作面回采过程中巷道围岩变形监测 |
2.2.5 原支护结构受力及破坏方式 |
2.3 小煤柱护巷合理性及尺寸确定 |
2.3.1 小煤柱护巷合理性分析 |
2.3.2 小煤柱合理尺寸的确定 |
2.4 沿空掘巷围岩力学特征数值分析 |
2.4.1 数值模拟模型构建 |
2.4.2 沿空巷道围岩应力分布特征 |
2.4.3 沿空巷道围岩位移分布特征 |
2.4.4 沿空巷道围岩塑性区分布特征 |
2.5 本章小结 |
3 钻-封-注一体化可接长锚杆锚固机理与设计 |
3.1 钻-封-注一体化注浆加固原理 |
3.2 注浆后锚固界面受力分析 |
3.3 钻-封-注一体化可接长锚杆设计 |
3.4 钻-封-注一体化可接长锚杆杆体强度测试 |
3.4.1 45号钢实验室拉拔试验结果及分析 |
3.4.2 20号钢实验室拉拔试验结果及分析 |
3.5 钻-封-注一体化可接长锚杆连接件受力数值分析 |
3.5.1 数值模拟模型建立 |
3.5.2 45号钢杆体及连接件受力分析 |
3.5.3 20号钢杆体及连接件受力分析 |
3.5.4 杆体及连接件规格确定 |
3.6 钻-封-注一体化可接长锚杆孔径尺寸数值模拟 |
3.6.1 模型建立和边界条件 |
3.6.2 数值模拟结果 |
3.7 不同参数情况下连接件强度测试 |
3.8 本章小结 |
4 松软破碎煤体钻-封-注一体化锚固过程数值模拟 |
4.1 钻进过程数值模拟及分析 |
4.1.1 基本假设及模型建立 |
4.1.2 钻杆与孔壁接触碰撞特征分析 |
4.2 注浆压力与封孔长度对注浆效果的影响 |
4.2.1 模型建立及参数设置 |
4.2.2 模拟结果 |
4.3 不同硬度煤体内注浆效果分析 |
4.3.1 PFC模拟注浆参数标定与模型建立 |
4.3.2 煤层注浆PFC模拟结果分析 |
4.4 本章小结 |
5 松软破碎煤体钻-封-注锚固实验室试验 |
5.1 实验室相似模拟试验装置设计 |
5.1.1 相似模拟试验原则 |
5.1.2 相似模拟试验装置 |
5.1.3 实验室相似模型配比 |
5.1.4 相似模型制作 |
5.2 钻-封-注一体化可接长锚杆钻进过程振动信息监测 |
5.2.1 钻-封-注一体化可接长锚杆钻进过程 |
5.2.2 钻-封-注一体化可接长锚杆钻进振动特征分析 |
5.3 钻-封-注一体化可接长锚杆注浆加固试验 |
5.3.1 注浆加固实验所需仪器设备及材料 |
5.3.2 注浆压力的确定 |
5.3.3 钻-封-注一体化注浆加固试验过程 |
5.3.4 超声波无损检测注浆效果试验结果分析 |
5.3.5 锚杆拉拔检测注浆效果试验结果分析 |
5.4 本章小结 |
6 井下工业试验 |
6.1 井下试验地点及测站布置 |
6.1.1 试验巷道简介 |
6.1.2 测站布置 |
6.2 钻孔窥视观测 |
6.2.1 试验目的及仪器 |
6.2.2 试验过程及结果 |
6.3 锚杆拉拔检测 |
6.3.1 试验目的 |
6.3.2 试验过程及结果分析 |
6.4 试验巷道围岩变形监测 |
6.4.1 试验目的及仪器 |
6.4.2 试验过程及结果分析 |
6.5 本章小结 |
7 结论与展望 |
7.1 主要结论 |
7.2 创新点 |
7.3 展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(7)玻璃纤维锚杆在金属矿山破碎矿体巷道支护的应用研究(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 纤维复合筋发展应用研究现状 |
1.2.2 锚杆支护技术研究现状 |
1.2.3 锚杆支护理论研究现状 |
1.3 研究目标与主要内容 |
1.3.1 研究目标 |
1.3.2 主要内容 |
1.4 研究技术路线 |
2 玻璃纤维锚杆在地下矿山应用的可行性研究 |
2.1 龙首矿西二采区概况 |
2.1.1 采区现状 |
2.1.2 上部矿体支护现状 |
2.2 玻璃纤维锚杆物理力学性能分析 |
2.3 玻璃纤维锚杆与砂浆黏结性试验 |
2.3.1 试验方法 |
2.3.2 试验过程 |
2.3.3 试验结果与分析 |
2.4 玻璃纤维锚杆与钢筋锚杆的经济比较 |
2.4.1 不同锚杆在相同抗拔力时的经济比较 |
2.4.2 不同锚杆在相同直径时的经济比较 |
2.5 TENSAR网与钢筋网支护性能比较 |
2.5.1 试验方法 |
2.5.2 试验过程 |
2.5.3 试验结果与分析 |
2.6 本章小结 |
3 玻璃纤维锚杆锚固机理及受力情况分析 |
3.1 GFRP锚杆锚固力来源及锚固机理 |
3.2 GFRP锚杆室内物理拉拔试验 |
3.2.1 锚杆受力分析 |
3.2.2 锚杆破坏形式 |
3.2.3 抗拔力与有效锚固长度 |
3.2.4 轴力与切应力分布情况 |
3.3 GFRP锚杆工程现场受力分析 |
3.3.1 锚固微元体在围岩膨胀变形下的受力分析 |
3.3.2 GFRP锚杆在巷道围岩中的受力函数 |
3.3.3 预应力GFRP锚杆在巷道围岩中的受力函数 |
3.4 本章小结 |
4 巷道支护设计与数值模拟研究 |
4.1 支护方案设计 |
4.1.1 西二采区无底柱分段崩落法回采巷道支护概述 |
4.1.2 回采巷道支护设计的理念与目标 |
4.1.3 支护设计依据与支护材料选择 |
4.1.4 支护参数设计与施工工艺 |
4.2 支护数值模拟 |
4.2.1 数值模拟研究的意义 |
4.2.2 建立模型与设定参数 |
4.2.3 巷道主应力分布规律及分析 |
4.2.4 巷道两帮与顶底板位移规律及分析 |
4.2.5 巷道塑性区规律及分析 |
4.3 本章小结 |
5 现场支护试验及效果评价 |
5.1 试验现场概况 |
5.1.1 试验巷道基本情况 |
5.1.2 工程地质条件 |
5.1.3 水文地质条件 |
5.2 现场拉拔试验 |
5.2.1 试验目的 |
5.2.2 试验位置及试验材料 |
5.2.3 试验过程 |
5.2.4 试验结果与分析 |
5.3 巷道围岩变形收敛监测与结果分析 |
5.3.1 监测点位置的设置 |
5.3.2 巷道围岩收敛监测结果与分析 |
5.4 本章小结 |
6 结论与展望 |
6.1 主要结论 |
6.2 研究展望 |
致谢 |
参考文献 |
攻读学位期间取得的研究成果 |
(8)多孔洞岩溶区软泥入侵复合顶板回撤通道支护技术研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 问题的提出与研究意义 |
1.2 国内外研究现状 |
1.2.1 工作面回撤研究现状 |
1.2.2 巷道顶板(围岩)变形破坏机理研究现状 |
1.2.3 巷道围岩控制理论与技术研究现状 |
1.2.4 回撤通道支护技术研究现状 |
1.3 存在问题 |
1.4 论文研究内容及研究方法 |
1.4.1 本论文拟研究的主要内容 |
1.4.2 主要研究方法 |
第二章 回撤通道围岩结构特征与破坏机理研究 |
2.1 工程概况 |
2.1.1 开采技术条件 |
2.1.2 工作面回撤通道概况 |
2.1.3 多孔洞复合顶板回撤通道围岩变形破坏特征 |
2.2 孔洞性顶板原位特性研究 |
2.2.1 顶板赋存状况 |
2.2.2 顶板钻孔窥视 |
2.2.3 地应力测试 |
2.2.4 巷道围岩物理力学特性实验 |
2.3 回撤通道覆岩结构与顶板破坏机理 |
2.3.1 回撤通道覆岩垮落状态分析 |
2.3.2 回撤通道顶板破坏状态 |
2.3.3 回撤通道顶板破坏机理 |
2.3.4 回撤通道覆岩结构 |
2.3.5 回撤通道实体煤帮破坏机理 |
2.4 小结 |
第三章 多孔洞复合顶板回撤通道围岩稳定性数值模拟研究 |
3.1 数值模拟研究背景概述 |
3.2 FLAC~(3D)数值模拟实验研究 |
3.2.1 数值计算软件简介 |
3.2.2 孔洞分布层位对回撤通道围岩稳定性分析 |
3.2.3 孔洞发育密度对回撤通道围岩稳定性分析 |
3.3 小结 |
第四章 多孔洞复合顶板回撤通道围岩控制技术研究 |
4.1 多孔洞复合顶板回撤通道控制思路 |
4.1.1 回撤通道支护存在的主要问题 |
4.1.2 多孔洞复合顶板控制思路 |
4.1.3 各种支护方式的作用 |
4.1.4 多孔洞复合顶板回撤通道多层级支护技术 |
4.2 影响回撤通道支护效果的主要因素 |
4.3 回撤通道支护合理参数设计 |
4.3.1 顶板锚杆支护 |
4.3.2 顶板锚索支护 |
4.3.3 帮部锚杆支护 |
4.4 小结 |
第五章 多孔洞复合顶板回撤通道支护技术应用及效果分析 |
5.1 工作面概况及支护方案 |
5.1.1 末采工序 |
5.1.2 回撤通道施工 |
5.2 应用效果现场监测 |
5.2.1 监测目的及内容 |
5.2.2 巷道表面位移量监测 |
5.2.3 巷道顶板离层监测 |
5.2.4 锚杆锚索受力监测 |
5.2.5 其它测试 |
5.3 小结 |
第六章 结论及展望 |
6.1 主要结论 |
6.2 不足与展望 |
参考文献 |
攻读学位期间取得的科研成果 |
致谢 |
(9)赵庄矿深部大断面复合顶板煤巷变形破坏机理与控制对策(论文提纲范文)
摘要 |
Abstract |
1 引言 |
1.1 问题的提出 |
1.2 国内外研究现状 |
1.2.1 复合顶板巷道变形破坏机理研究现状 |
1.2.2 煤巷锚杆支护理论研究现状 |
1.2.3 巷道围岩控制理论与技术研究现状 |
1.2.4 巷道断面优化研究现状 |
1.2.5 现存在主要问题 |
1.3 研究内容与研究方法 |
1.3.1 主要研究内容 |
1.3.2 研究方法与技术路线 |
2 巷道围岩地质力学测试与稳定性分类 |
2.1 工程地质特征 |
2.2 原岩应力分布特征 |
2.2.1 地应力测量步骤 |
2.2.2 地应力测试结果 |
2.3 围岩矿物成分含量测试 |
2.3.1 粘土矿物总量衍射分析实验 |
2.3.2 粘土矿物相对含量衍射分析实验 |
2.4 围岩力学参数测试 |
2.4.1 试件单轴压缩实验 |
2.4.2 试件劈裂实验 |
2.4.3 试件三轴压缩实验 |
2.5 围岩稳定性分类 |
2.5.1 分类指标的选取 |
2.5.2 分类指标权值的分配 |
2.5.3 围岩稳定性分类子模型 |
2.6 本章小结 |
3 大断面复合顶板煤巷变形破坏机理 |
3.1 大断面复合顶板煤巷变形破坏特征 |
3.1.1 巷道概况与支护方案 |
3.1.2 典型变形破坏特征 |
3.1.3 大断面煤巷复合顶板内部结构探测 |
3.2 大断面煤巷复合顶板离层演化规律 |
3.2.1 巷道宽度对复合顶板离层的影响 |
3.2.2 侧压系数对复合顶板离层的影响 |
3.2.3 不同分层厚度对复合顶板离层的影响 |
3.3 影响大断面复合顶板煤巷变形的主要因素分析 |
3.3.1 软弱夹层对巷道变形的影响 |
3.3.2 煤帮承载特性对巷道变形的影响 |
3.3.3 潮湿环境对巷道变形的影响 |
3.4 大断面复合顶板煤巷变形失稳机理 |
3.4.1 大断面复合顶板煤巷变形规律相似模拟试验 |
3.4.2 大断面复合顶板煤巷变形失稳分析 |
3.5 本章小结 |
4 大断面复合顶板煤巷断面形状优化分析 |
4.1 顶板内力公式推导 |
4.2 关键参数分析 |
4.2.1 顶板荷载 |
4.2.2 计算结果分析 |
4.3 巷道断面形状优化 |
4.3.1 巷道断面形状设计 |
4.3.2 巷道合理断面选择 |
4.4 本章小结 |
5 大断面复合顶板煤巷稳定性控制对策 |
5.1 复合顶板煤巷围岩控制思路 |
5.1.1 复合顶板煤巷支护存在的主要问题 |
5.1.2 复合顶板煤巷围岩控制思路 |
5.2 大断面复合顶板煤巷控制技术 |
5.2.1 支护应力场分布规律 |
5.2.2 描杆锚索对复合顶板结构面的加固作用 |
5.2.3 复合顶板煤巷大小结构叠加耦合支护技术 |
5.3 本章小结 |
6 现场工程试验 |
6.1 试验段巷道护方案 |
6.1.1 工程概况 |
6.1.2 支护方案 |
6.2 支护效果分析 |
6.2.1 矿压监测方案 |
6.2.2 支护效果分析 |
6.3 本章小结 |
7 结论与展望 |
7.1 主要结论 |
7.2 主要创新点 |
7.3 展望 |
参考文献 |
致谢 |
作者简介 |
(10)西石门铁矿北区难采矿体崩落法安全高效开采工艺技术研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究背景及意义 |
1.2 需要解决的关键技术问题 |
1.3 国内外研究现状 |
1.3.1 难采矿体开采技术研究现状 |
1.3.2 三律适应性高效开采理论及应用现状 |
1.3.3 采动岩移控制技术研究现状 |
1.3.4 软破围岩巷道支护理论与技术研究现状 |
1.4 主要研究内容 |
第二章 西石门铁矿地质概况与生产问题 |
2.1 矿区自然地理 |
2.2 矿床地质特征 |
2.3 生产概况 |
2.4 采矿方法 |
2.5 北采区开采情况及遇到的问题 |
第三章 矿山三律特性研究 |
3.1 岩石力学参数测定 |
3.1.1 矿岩点荷载强度的测定 |
3.1.2 矿岩结构面调查 |
3.1.3 岩体基本质量指标计算与稳定性分级 |
3.1.4 基于Hoek-Brown准则的岩体强度参数估算 |
3.2 矿岩可冒性分析 |
3.3 矿石散体流动参数测定 |
3.3.1 实验材料制备与实验模型 |
3.3.2 实验结果 |
3.3.3 实验放出体形态 |
3.3.4 散体流动参数计算 |
3.3.5 散体流动特性分析 |
3.4 地压显现调查及活动规律分析 |
3.4.1 地压显现调查 |
3.4.2 地压显现形式及规律分析 |
3.4.3 地压显现原因及力学状态分析 |
3.4.4 底板和两帮围岩强度差异对破坏模式影响分析 |
3.5 小结 |
第四章 难采矿体开采工艺技术研究 |
4.1 矿柱矿量缩采技术 |
4.1.1 矿体开采条件 |
4.1.2 需要解决的开采技术问题 |
4.1.3 斜井保安矿柱合理尺寸研究 |
4.1.4 开采技术思想和方案 |
4.1.5 矿柱矿量开采安全性模拟验证 |
4.2 高应力破碎矿体强掘强支强采技术 |
4.2.1 矿体开采条件 |
4.2.2 开采技术难题分析 |
4.2.3 采场结构参数及回采顺序 |
4.2.4 超前锚杆预支护 |
4.2.5 掘进爆破 |
4.2.6 快速支护技术 |
4.2.7 落矿和回采 |
4.2.8 损失贫化控制 |
4.2.9 地压管理 |
4.3 复杂空区破坏矿体分段诱导冒落开采方案 |
4.3.1 矿体开采条件 |
4.3.2 开采过程中技术难题分析 |
4.3.3 矿床突水危害防治 |
4.3.4 空区冒落危害及防治 |
4.3.5 垂直进路无底柱分段崩落法下盘残留矿量研究 |
4.3.6 分段诱导冒落开采方案 |
4.4 小结 |
第五章 采准巷道掘支技术优化 |
5.1 矿山现用支护方式 |
5.2 原掘支存在问题分析 |
5.2.1 支护方式随机选择 |
5.2.2 对冒落机理认识不足 |
5.2.3 施工组织不合理 |
5.2.4 爆破问题 |
5.2.5 拱架支护下中深孔施工问题 |
5.2.6 锚网喷支护参数不适应 |
5.3 巷道掘支措施改进研究 |
5.3.1 软破矿岩掘支改进 |
5.3.2 高应力区域地压控制 |
5.3.3 大规模冒落部位掘支措施 |
5.3.4 粉矿固结体围岩巷道掘支技术 |
5.3.5 楔块冒落部位支护 |
5.3.6 拱架支护部位“T”型巷道开口 |
5.3.7 出矿口加强支护 |
5.4 小结 |
第六章 结论与展望 |
6.1 结论 |
6.2 展望 |
6.3 主要创新点 |
参考文献 |
致谢 |
攻读学位期间发表的论着、获奖情况及发明专利 |
四、松软破碎岩层中巷道联合支护的试验与应用(论文参考文献)
- [1]深部大断面煤巷围岩变形特征及控制技术研究[D]. 马新世. 太原理工大学, 2021(01)
- [2]深部巷道煤岩复合顶板厚层跨界锚固承载机制研究[D]. 谢正正. 中国矿业大学, 2020
- [3]深部松散煤体巷道流变机理研究及控制对策[D]. 孙元田. 中国矿业大学, 2020
- [4]千米深井巷道围岩支护—改性—卸压协同控制原理及技术[D]. 姜鹏飞. 煤炭科学研究总院, 2020(08)
- [5]平煤一矿高应力软岩巷道底鼓机理及控制技术研究[D]. 张超. 中国矿业大学, 2020(03)
- [6]“三软”厚煤层综放工作面沿空掘巷围岩锚固控制研究[D]. 支光辉. 河南理工大学, 2020(01)
- [7]玻璃纤维锚杆在金属矿山破碎矿体巷道支护的应用研究[D]. 袁侨坤. 西南科技大学, 2020(08)
- [8]多孔洞岩溶区软泥入侵复合顶板回撤通道支护技术研究[D]. 杨亚威. 太原理工大学, 2020(07)
- [9]赵庄矿深部大断面复合顶板煤巷变形破坏机理与控制对策[D]. 王茂盛. 中国矿业大学(北京), 2019(12)
- [10]西石门铁矿北区难采矿体崩落法安全高效开采工艺技术研究[D]. 宋德林. 东北大学, 2017(01)