一、SURVEY OF THE CHINESE ACADEMY OF GEOLOGICAL SCIENCES——Ⅱ. MAJOR ACTIVITIES OF SCIENCE AND TECHNOLOGY(论文文献综述)
Hengxing LAN,Jianbing PENG,Yanbo ZHU,Langping LI,Baotian PAN,Qiangbing HUANG,Junhua LI,Qiang ZHANG[1](2022)在《Geological and surfacial processes and major disaster effects in the Yellow River Basin》文中进行了进一步梳理The Yellow River Basin(YRB) is characterized by active geological and tectonic processes, rapid geomorphological evolution, and distinct climatic diversity. Correspondingly, major disasters in the YRB are characterized by varied types,extensive distributions, and sudden occurrences. In addition, major disasters in the YRB usually evolve into disaster chains that cause severe consequences. Therefore, major disasters in the YRB destroy ecologies and environments and influence geological and ecological safety in the basin. This paper systematically reviews research on geological and surface processes, major disaster effects, and risk mitigation in the YRB, discusses the trends and challenges of relevant research, analyzes the key scientific problems that need to be solved, and suggests prospects for future research based on the earth system science concept. Themes of research that should be focused on include geological, surface and climatic processes in the YRB and their interlinking disaster gestation mechanisms; formation mechanisms and disaster chain evolutions of giant landslides in the upper reach of the YRB;mechanisms and disaster chain effects of loess water-soil disasters in the middle reach of the YRB; occurrence patterns and amplifying effects of giant flood chains in the lower reach of the YRB; and risk mitigations of major disasters in the YRB. Key scientific problems that need to be solved are as follows: how to reveal the geological, surface and climatic processes that are coupled and interlinked with gestation mechanisms of major disasters; how to clarify the mutual feedback effects between major disasters and ecology; and how to develop a human-environmental harmony-based integrated risk mitigation system for major disasters. Prospects for future studies that follow the earth system science concept include the following: highlighting interdisciplinary research to reveal the interlinked disaster gestation mechanisms of the geology, surface and climate in the YRB in the past, present, and future; forming theories to clarify the regional patterns, dynamic mechanisms, and mutual-feedback effects between disaster chains and ecology in the YRB on land and in rivers in the region; solving technological bottlenecks to develop assessment models and mitigation theories for integrated risks in the YRB by following the human-environment harmony concept; and finally, establishing a demonstratable application pattern characterized by "whole-basin coverage" and "zonal controls", thereby guaranteeing ecological and geological safety in the basin and providing scientific support for ecological conservation and high-quality development of the YRB.
Changzhou DENG,Jiawei ZHANG,Ruizhong HU,Kai LUO,Yanan ZHU,Runsheng YIN[2](2022)在《Mercury isotope constraints on the genesis of late Mesozoic Sb deposits in South China》文中研究指明The late Mesozoic antimony (Sb) mineralization belt in South China hosts a large portion of the world’s Sb reserves.However,the source and mineralization processes of these Sb deposits remain controversial.Here,we measured mercury (Hg) concentrations and isotopic compositions of stibnite in the Banpo Sb-only and Woxi Sbpolymetallic ore deposits,as well as associated rocks in the Yangtze Block in order to constrain the metal sources and ore formation processes in the South China Sb mineralization belt.Stibnite samples from both deposits exhibit significant enrichment in Hg (4.23–50.6 ppm) and have higher δ202Hg values (-0.47‰to 2.03‰) than the studied Precambrian basement rocks (-1.42‰to 0.59‰),Paleozoic sedimentary rocks (-2.40‰to-0.32‰),and other natural Hg reserves (e.g.,marine and continental systems).This indicates that significant mass-dependent fractionation of Hg isotopes occurred during hydrothermal processes.Negative to slightly positive △199Hg values of-0.17‰to 0.02‰were obtained for stibnite from the studied deposits,similar to values for the Precambrian basement rocks,but different from those of the Paleozoic sedimentary rocks and data previously reported for mantle materials.This suggests that Precambrian basement rocks were the source of Hg and associated metals.Our data and the tectonic evolution of South China indicate that late Mesozoic asthenospheric upwelling,in response to the Paleo-Pacific oceanic slab foundering,generated heat that drove the circulation of fluids in the basement and crustal basinal rocks.These fluids leached Sb,Hg,and other metals from the Precambrian basement rocks and formed the world-class Sb mineralization belt in South China.
Ahsan Nawaz[3](2021)在《获取真实领导力与组织学习和创新对CPEC项目管理成功的中介效应》文中研究表明本研究基于巴基斯坦CPEC项目,探讨组织创新与组织学习在真实领导行为之间的中介作用。中巴经济走廊(CPEC)是中国和巴基斯坦政府联合发起并管理的宏大工程,包括基础设施、电力和社会发展等多个项目。本研究以真实领导与组织创新和组织学习变量正相关为基础,旨在探讨组织创新和组织学习如何影响项目成功中的真实领导。本文采用演绎法对假设进行检验,以问卷调查为主要数据收集工具。在数据收集过程中应用了定量和定性技术。本项研究采用横截面的时间范围进行研究,具有解释性和探索性特点。从典型的定量研究框架出发,归纳分析与CPEC项目相关的文献,包括学术论文和相关文件。研究对象包括直接或间接为CPEC项目工作的跨国公司和政府有关组织机构。公司管理者、领导者和项目领导者共同构成本研究样本源,以目的取样为技术手段获取样本,所用研究工具为预先开发好的。本研究从与CPEC项目有关的私营公司或政府相关部门的高中层管理人员中,发放了总共295份调查问卷,以之为基础进行数据整理和分析。研究者采用李克特五点量度测量,被调查者可从选项1(强烈不同意)到选项5(强烈同意)中进行选择,以记录受访者对问题的同意程度。问卷最初用英语编制,然后转换成受访者的语言。研究者选取了中国石油工程建设有限责任公司的59个项目,每个项目选取5个具有权威者填写调查问卷,其中有20份是由CPEC高管填写的。在295份问卷中,有35份因不完整而被归类于废卷,260份有效问卷被进一步分析用于具体的研究中。采用SPSS和AMOS-21统计软件对包变量间的相关性进行分析。最终发现有数据表明,真实领导对组织学习和创新的有效影响是主变量。创新是创造力和学习的结晶,是组织成功的关键因素。真正的领导在于指明方向,并通过利用各种管理策略来促进创新、支持创新并变革凝聚力过程。组织学习是组织内部的行动,有意且非自主性地推动组织的积极变化。在巴基斯坦,本研究一个创新性的学术研究项目,并对世界性此类研究文献增添了新内容。
CHEN Fahu,WU Shaohong,CUI Peng,CAI Yunlong,ZHANG Yili,YIN Yunhe,LIU Guobin,OUYANG Zhu,MA Wei,YANG Linsheng,WU Duo,LEI Jiaqiang,ZHANG Guoyou,ZOU Xueyong,CHEN Xiaoqing,TAN Minghong,WANG Xunming,BAO Anming,CHENG Weixin,DANG Xiaohu,WEI Binggan,WANG Guoliang,WANG Wuyi,ZHANG Xingquan,LIU Xiaochen,LI Shengyu[4](2021)在《Progress and prospects of applied research on physical geography and the living environment in China over the past 70 years (1949–2019)》文中认为Physical geography is a basic research subject of natural sciences. Its research object is the natural environment which is closely related to human living and development, and China’s natural environment is complex and diverse. According to national needs and regional development, physical geographers have achieved remarkable achievements in applied basis and applied research, which also has substantially contributed to the planning of national economic growth and social development, the protection of macro ecosystems and resources, and sustainable regional development. This study summarized the practice and application of physical geography in China over the past 70 years in the following fields: regional differences in natural environments and physical regionalization; land use and land cover changes; natural hazards and risk reduction; process and prevention of desertification; upgrading of medium-and low-yield fields in the Huang-Huai-Hai region; engineering construction in permafrost areas; geochemical element anomalies and the prevention and control of endemic diseases; positioning and observation of physical geographical elements; and identification of geospatial differentiation and geographical detectors. Furthermore, we have proposed the future direction of applied research in the field of physical geography.
Suresh Chaudhary[5](2020)在《尼泊尔山区耕地撂荒的社会与生态环境风险研究》文中提出在尼泊尔和世界许多山区国家,撂荒已成为一种普遍现象。耕地撂荒不仅会给国家和地区带来粮食安全风险,同时在高山地区也会产生生态环境安全风险,危及山区生态系统关键服务的能力。本研究以尼泊尔西北高山区为研究对象,对撂荒引发的生态环境风险及其对控制因素(生物物理,社会经济,气候和社区)的依赖性开展研究,以期实现如下目标:(i)揭示撂荒对尼泊尔高山区社会及生态环境带来的影响;(ii)查明尼泊尔西部高山区撂荒的时空变化、原因及相关的生态环境风险;(iii)研发评估撂荒生态环境风险的指数和方法;(iv)提出可持续利用现有撂荒的相关政策和策略建议。通过对尼泊尔撂荒及其生态环境响应的深入研究,为高山区国家和地区景观管理以及国土可持续利用决策提供理论和技术支持。在收集和分析尼泊尔高山区地理特征、耕作制度和社会经济发展的基础上,本研究选取了撂荒现象较为突出的尼泊尔Dordi河流域作为案例研究区域。该研究区位于尼泊尔西部山区的拉姆琼县(28°8′N–28°27′N,84°24′E–84°42′E),距首都加德满都谷地以西约200公里。研究采取了文献检索、实地调查、无人机及卫星遥感信息提取等方法开展研究。文献检索主要获取有关历史、社会和经济发展等信息信息,同时收集和分析与农业耕地状况和变化指标直接或间接相关的证据;实地调查进行了家庭调查、焦点小组讨论和深入的关键线人访谈,以形象化社会景观及其变化,从而建立山区社会、制度和管理实践的现状和历史。同时开展了地面调查,包括不同时段(1-10年期)撂荒地自然植被恢复、生物多样性、物种入侵、水土流失特征以及撂荒地周边农地及灌溉设施等变化;Google Earth Images和无人机低空遥感勘测(UAV)用于观察流域及撂荒区微地貌与植被变化。在收集和整理数据的基础上,论文首先研究了尼泊尔撂荒地的时空变化,分析了耕地撂荒的驱动因素,并讨论了尼泊尔耕地撂荒的生态环境景观后果。结果表明,尼泊尔撂荒很普遍,但在丘陵和山区更为突出。人口增长、移民、城市化、社会经济发展、自然灾害的发生、土地所有权和分配、土地分割、政治不稳定及其影响是尼泊尔耕地撂荒的主要驱动因素。撂荒导致了社会文化景观和山区生物多样性的变化,加剧了土地退化和自然灾害。这些研究成果可为尼泊尔生态环境管理和社会过程提供有用的信息(第3章)。其次,论文探讨了撂荒的社会影响。研究结果表明,农民的社会习惯包括:(i)本地劳动力交换系统“帕尔马”,(ii)传统管理的灌溉系统,(iii)饮用水供应系统,(iv)社会习惯,仪式,节日活动,(v)土着治理制度,做法和一些现有基础设施(学校、银行、卫生、岗亭、庙宇等)将随着撂荒存在被遗弃的风险。个人和社会参与土地管理做法的减少,增加了撂荒地周边农地撂荒的风险,最终将增加粮食安全风险。这些知识对于理解适当的社会过程,自然资源和环境管理至关重要(第5章)。第三,研究了撂荒地的生态环境变化、土地退化过程及风险。在被调查的全部撂荒耕地中,有92%已经完全不可逆转地受到破坏。破坏始于耕地撂荒后一年内梯田田坎的破坏和冲沟的出现,并进而引起了各种风险,例如滑坡、泥石流、岩石崩塌、沟壑的形成、土壤侵蚀和塌陷的形成,这些都增加了土地资源和植物演替的负面影响。另外研究发现,撂荒后自然恢复的植被难以在短期内阻止梯砍坍塌和冲沟的发育,因此需要进行对撂荒耕地进行管理,以降低水土流失风险。这项研究可以帮助土地规划师和环保主义者制定适当的指南(撂荒前或撂荒后)、计划和立法,以有效解决耕地撂荒的问题(第6章)。第四,研究评估了尼泊尔Dordi河流域的生态环境风险,并提出了基于风险的土地利用规划框架,以减轻风险的影响并加强可持续管理。我们采用层次分析法(AHP),并在地理信息系统中进行了空间叠加分析,以生成生态环境风险图。Dordi河利用评价结果显示,流域面积22.36%属于高风险水平。极高、极高、中度和低度区域分别占17.38%、7.93%、28.49%和23.81%。高水平的生态环境风险主要发生在流域北部和西北部,而中等风险水平则集中在流域的南部。该风险图经实地检验,具有较高的可靠性。该风险图和基于风险的土地利用规划框架可以为制定合理的发展战略和指导方针提供信息和科学依据。同时,作为一种提高意识的工具,它还可以激活社会流程,使社区能够设计和减轻危险事件的后果(第7章)。最后,本研究为尼泊尔面临的撂荒耕地问题和发展提供了一些建议(第8章)。在尼泊尔的山区,可以采用低成本的做法利用现有的撂荒耕地,如种植经济作物或草药。尽管存在一些挑战,如(i)技术-农场所有权,规模,分布以及难以获得的其他来源(农业投入品、市场和运输),(ii)环境(严重的水土流失、滑坡和泥石流),(iii)社会经济挑战(贫困、劳动力短缺、文化和文化障碍)等。但研究提出的一些应对政策和策略建议,如,体制安排、一体化和主流化、资金以及在山区实施能力建设等,以及建立基于环境风险预防和减少的主动撂荒管理系统等。这些针对具体问题和挑战方面的建议,有助于促进政府和社区对山区土地的可持续管理和利用。
SYED ASIM HUSSAIN[6](2020)在《The Use of Elemental and B & Cl Stable Isotope Geochemistry to Unravel the Formation of Salt Rocks,Saline Lakes and Thermal Springs in Pakistan》文中研究表明深入开展蒸发岩、盐湖以及温泉的研究,能够提高我们对盐矿的来源、沉积速率和模式及其形成演化过程中的区域构造条件和古气候的认识。巴基斯坦蒸发盐主要分布在波特瓦尔盆地(PB)的盐岭(SR)和科哈特盆地(KB)中,两者均为欧亚板块和印度板块碰撞所形成。尽管面积较小,但两个盆地都能反映从寒武纪到近现代以来的地质演化过程。大多数年龄较老的岩盐矿床和盐湖位于盐岭,达2000米的盐层厚度、二叠系—三叠系的边界以及区域中多个不整合面,使其闻名于世。科哈特盆地由多个板块组成,这些板块记录了喜马拉雅碰撞的历史。虽然巴基斯坦的热泉流向为自北向南,但大多数温泉和最热的温泉(表面温度达100°C)均位于之间的地幔逆冲区(MMT)和喀拉昆仑逆冲区(MKT)之间的喜马拉雅碰撞带(HCZ)。本次研究以巴基斯坦北部的岩盐、盐泉和温泉为研究对象,采用Cl同位素、B同位素和氢氧同位素与化学分析相结合的方法,揭示巴基斯坦北部盐矿的形成和演化及气候变化对盐湖演化的影响。科哈特盆地和盐岭盆地的岩盐化学特征揭示其为海相成因,但由于水(海相和非海相)多次流入盆地,使盆地中发生了再沉积和重结晶作用。以往的研究表明?37Cl是一个可以较准确的估算盐湖蒸发率的一个指标,可用于表征盐水演化的不同阶段。低?37Cl(±0.7‰)值可反映盐湖蒸发过程中出现了具有商业价值的盐类资源(K、Mg)。KB和SR的石盐中?37Cl组成变化范围为-1.2~1.2‰,大于海相石盐的?37Cl(0±0.5‰)组成。本次研究中低?37Cl组成表明该地区赋存K-Mg盐类矿床沉积,与以往利用地球物理方法得出的研究结论一致。另一方面,高?37Cl则记录了盆地中非海相水的流入以及石盐重结晶的过程。欧亚板块和印度板块的挤压碰撞不仅形成并不断抬升了喜马拉雅山脉,还促进了巴基斯坦温泉的形成。巴基斯坦北部温泉中阴离子主要为SO42-和HCO3-,阳离子以Na+为主。氢氧同位素组成(?D:-88.2‰to-73.3‰、?18O:-12.9to-10.8‰)反映了地热水来源为大气降水,主要为高山融雪。水体的氚浓度在0-60(TU)之间,表明为现代水体。较低的硼含量和极低的硼同位素比值(11B:~-14‰)指示该地区温泉水具有岩浆与变质成因,是不同深度中冷水与热水混合所形成。盐湖作为人类水源、水鸟栖息地,代表着一种特殊的生态系统。由于表层岩石覆盖和气候变化的影响,全球的盐湖面积正在迅速缩减。为了验证这个假说,本文研究了盐岭乌查利(拉姆萨尔遗址)的三个盐湖。通过对其水文地球化学特征的研究表明,盐度的变化是由高蒸发量引起的,但风化作用的影响也不容忽视。?D和?18O组成的高斜率蒸发线表明蒸发作用是造成盐度变化的主要机制,氯同位素的组成特征是由于多种类型水的混合。此外,农业以及家用用水等人类活动,也使得矿化度(TDS)增加。最后,我们将SR中较老地层的元素特征和硼同位素地球化学特征相结合,以此表征古盐度和该区域古气候的演化。结果表明,古代海相岩盐沉积过程中,海水从富钙型(Na-K-Mg-Ca-Cl)卤水向富硫酸盐型(Na-K-Mg-Cl-SO4)卤水转变。离子关系反映这些元素来自多个来源,其相应的端元为海水、粘土中的硼和大气降水。研究区的岩盐显示盆地沉积类型从Na-HCO3型变为Ca-Cl型。结合样品中的B/Cl比与?11B来看,B含量的增加是滑脱带附近粘土矿物中应力驱动机制的结果。此外,B同位素在卤水与岩盐中存在较弱的分馏作用(δ11B~1‰)。离子浓度比值与?11B的关系表明,在新元古代时期SR和邻近地区为干燥的古气候条件且水体盐度较高。本研究对巴基斯坦盐矿首次进行了稳定B、Cl同位素地球化学特征研究,研究结果大大提高了对区域盐湖和盐矿形成条件及其演化过程的认识,为进一步研究该区古气候、地质构造和盆地沉积条件奠定了基础。
Fahu CHEN,Bojie FU,Jun XIA,Duo WU,Shaohong WU,Yili ZHANG,Hang SUN,Yu LIU,Xiaomin FANG,Boqiang QIN,Xin LI,Tingjun ZHANG,Baoyuan LIU,Zhibao DONG,Shugui HOU,Lide TIAN,Baiqing XU,Guanghui DONG,Jingyun ZHENG,Wei YANG,Xin WANG,Zaijun LI,Fei Wang,Zhenbo HU,Jie WANG,Jianbao LIU,Jianhui CHEN,Wei HUANG,Juzhi HOU,Qiufang CAI,Hao LONG,Ming JIANG,Yaxian HU,Xiaoming FENG,Xingguo MO,Xiaoyan YANG,Dongju ZHANG,Xiuhong WANG,Yunhe YIN,Xiaochen LIU[7](2019)在《Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects》文中提出The natural environment provides material essentials for human survival and development. The characteristics,processes, regional differentiation and forcing mechanisms of the elements of the natural environment(e.g. geomorphology,climate, hydrology, soil, etc.) are the main objects of research in physical geography. China has a complex natural environment and huge regional differentiation and therefore it provides outstanding reserach opportunities in physical geography. This review summarizes the most important developments and the main contributions of research in the physical geography and human living environment in China during the past 70 years. The major topics addressed are the uplift of the Tibetan Plateau and the evolution of its cryosphere, the development of fluvial systems, the acidification of the vast arid region of the Asian interior, variations in the monsoon and westerly climate systems on multiple timescales, the development of lakes and wetlands, the watershed system model, soil erosion, past human-environment interactions, biogeography, and physical geographic zonality. After briefly introducing international research developments, we review the history of research in physical geography in China, focusing on the major achievements and major academic debates, and finally we summarize the status of current research and the future prospects. We propose that in the context of the national demand for the construction of an ecological civilization, we should make full use of the research findings of physical geography, and determine the patterns and mechanisms of natural environmental processes in order to continue to promote the continued contribution of physical geography to national development strategies, and to further contribute to the theory of physical geography from a global perspective.
Lisaia Daria(达丽娅)[8](2019)在《俄罗斯城市可持续发展及其对中国城市的启示研究》文中认为城市可持续发展是我们地球繁荣未来的一个重要方面。根据2005年联合国世界峰会的成果,可持续发展的概念包含三个基本要素:社会、经济和环境。社会经济发展问题是国家政策的核心。从方法和途径到解决(具体)问题的方案取决于国家的繁荣和国民的经济生活水平。面对严峻的全球竞争,城市居住模式的管理以及寻求组织和管理人力、国土和生产资源的最佳解决方案是社会经济发展的途径之一。目前国家最高一级的国土开发规划和管理流程的演变正在进行,并与其他各级政府的规划系统进行协调。根据在2017年5月8日至12日举行的联合国人类住区规划署理事会第二十六届会议的报告,这是在城市(市政)层面提高国家政策执行效率和改善城市环境质量的关键要求之一。国家政策发展的另一个重要要求是将传统经济转变为知识经济,并带领该国走向世界技术领先,这是最可持续的经济发展方式。建立国家的创新基础设施是实现这些任务的必要条件之一。在此背景下,对世界上最大的两个国家(俄罗斯和中国)的城市发展经验的研究正在成为城市规划、设计和建筑广阔领域专家的宝贵知识来源。本文的研究目标是明确俄罗斯和中国社会经济政策的优先事项并对其在国土和城市规划层面的实施机制进行比较分析,这两者是国家可持续发展的重要条件。全文分为五个部分,共八章。其中第一部分(第1章)对课题相关的文献进行综述和分析,并制定研究目标、研究对象、研究假设和研究方法。第二部分(第2-3章)介绍第一项研究成果,即俄罗斯和中国城市可持续发展的比较分析,并对可持续城市规划和城市化进程两个主题进行详细描述与对第一项研究的结果进行讨论。第三部分(第4-7章)介绍第二项研究成果,即俄罗斯的案例研究,相关主题包括:俄罗斯城市可持续发展的社会经济问题;俄罗斯的创新基础设施;从科学定居点到斯科尔科沃创新中心的苏联科学城市发展历史回顾;斯科尔科沃创新中心的城市规划理念。第四部分(第8章)对第二项研究的结果进行讨论,探讨城市发展在国家可持续发展过程中的作用。第五部分介绍结论并对后续的科研工作提出建议。论文作者对俄罗斯和中国的历史,以及两国在20世纪和当下建设现代国家的过程中所经历的困难道路深表敬意和理解。尽管在经济、社会、文化和地缘上存在差异,两个国家都是在现在和未来为和平与稳定做出巨大努力的强大的现代国家。
黄旭栋[9](2018)在《南岭中—晚侏罗世含铜铅锌与含钨花岗岩及其矽卡岩成矿作用 ——以铜山岭和魏家矿床为例》文中研究表明花岗岩及其相关成矿作用一直是全球地质学家高度关注的热点科学问题。过去十年,大量高水平研究工作的开展大大加深了对花岗岩及其相关成矿作用的认识。这些工作主要集中于如下几个方面:花岗岩起源与演化、花岗岩与矿床的时空和成因联系、岩浆-热液演化过程中成矿元素的地球化学行为、描述性矿床地质研究和构造分析、成矿物质和流体来源、成矿过程物理化学演化、热液流体动力学、数值模拟和成矿机制等。毋庸置疑,花岗岩相关的成矿作用是花岗岩源区、部分熔融、岩浆-热液演化、外来物质影响、成矿流体迁移、水岩反应和构造控制等多种因素综合作用的结果。南岭地区是全球最着名的多金属成矿带之一,尤其以大规模的钨锡成矿作用闻名于世。中-晚侏罗世是南岭地区最重要的花岗质岩浆活动和成矿作用时期。尽管前人对南岭地区中-晚侏罗世含矿花岗岩及其相关成矿作用已做了大量研究,但尚有许多争议和问题仍未解决,尤其是含铜铅锌与含钨花岗岩的起源及其矽卡岩成矿作用。根据暗色包体的存在和地球化学研究,前人普遍认为含铜铅锌花岗岩为壳幔混合起源的I型花岗岩。然而,这些暗色包体并不存在可靠的岩浆混合证据,其锆石Hf同位素组成与寄主花岗岩一致,都具有典型的壳源特征。虽然含钨花岗岩一般被认为是高分异S型花岗岩,但也有部分学者认为它们是高分异I型花岗岩。这两类含矿花岗岩之间是否存在成因联系尚不清楚。尽管大量年代学和地球化学研究都证明南岭地区中-晚侏罗世矽卡岩矿床在成因上和花岗岩有关,但它们之间的构造联系过程却鲜有问津,值得进一步研究。南岭地区中-晚侏罗世矽卡岩铜铅锌矿床常呈现出成矿元素(例如Cu、Mo、Pb、Zn、Ag等)和不同成矿类型(例如矽卡岩型、碳酸盐交代型和硫化物-石英脉型等)的复杂分带,其形成机制尚未明确。全球范围内的矽卡岩钨矿绝大多数都是钙质矽卡岩钨矿,赋存在镁质矽卡岩中的钨矿鲜有报道。然而,南岭地区晚侏罗世魏家超大型镁质矽卡岩钨矿的发现揭示和突出了镁质矽卡岩对钨成矿作用的重要性。镁质矽卡岩钨矿的形成过程和控制因素尚不清楚,亟待研究。基于前人研究工作,关于南岭地区中-晚侏罗世含铜铅锌与含钨花岗岩及其矽卡岩成矿作用方面,提出以下科学问题:(1)南岭地区中-晚侏罗世含铜铅锌与含钨花岗岩的成因差异和联系。(2)南岭地区中-晚侏罗世含矿花岗岩与相关矽卡岩矿床的构造联系。(3)南岭地区中-晚侏罗世矽卡岩铜铅锌矿床中不同成矿类型之间的成因联系和复杂分带的形成机制。(4)控制南岭地区晚侏罗世镁质矽卡岩钨矿形成的关键因素。本文选取南岭西段湘南铜山岭-魏家地区为研究区域,以该区域内中-晚侏罗世的铜山岭矽卡岩铜铅锌矿床和魏家矽卡岩钨矿床为主要研究对象,对两类含矿花岗岩及其矽卡岩成矿作用开展了详细研究。主要研究内容和相关研究方法包括:(1)铜山岭含铜铅锌花岗闪长岩与魏家含钨花岗岩的成因,南岭中-晚侏罗世含铜铅锌与含钨花岗岩的对比:锆石U-Pb定年和Hf同位素分析、全岩主微量元素和Sr-Nd同位素分析、前人已发表数据的统计分析;(2)铜山岭花岗闪长岩中暗色微粒包体的成因和形成过程:岩相学观察、EMP(电子探针)矿物主量元素分析、LA-ICP-MS(激光剥蚀电感耦合等离子体质谱)矿物微量元素分析、矿物温压计;(3)铜山岭-魏家地区的区域构造特征,铜山岭铜铅锌矿床中由岩浆侵位引起的对矽卡岩化的构造控制:构造和变形解析、碳酸盐岩RSCM(含碳物质拉曼光谱)温度计、方解石EBSD(电子背散射衍射)面扫;(4)铜山岭铜钼铅锌银矽卡岩矿田的分带和成因:矿床地质研究、岩相学观察、石榴子石和榍石U-Pb定年、辉钼矿Re-Os定年、硫化物S和Pb同位素分析、石英H-O同位素分析;(5)魏家矽卡岩钨矿床的成矿过程,控制魏家镁质矽卡岩钨成矿作用的关键因素:矿床地质研究、岩相学观察、碳酸盐岩RSCM温度计、全岩主微量元素分析、SEM(扫描电镜)能谱面扫、EMP矿物主量元素分析、LA-ICP-MS矿物微量元素分析。作为东亚大陆的主要构成组分,华南板块经历了复杂的构造演化历史。普遍认为,华南板块通过扬子板块和华夏板块的拼贴作用形成于新元古代(1.0-0.8 Ga),江南造山带作为两者的缝合带介于其间。扬子和华夏板块拼贴之后,华南板块在800-690Ma经历了一次区域尺度的伸展作用,导致裂谷盆地、硅质碎屑沉积物和双峰式火山岩的形成。之后,华夏板块在震旦纪到早古生代(690-460 Ma)经历了一个稳定的板内浅海-半深海沉积阶段,导致巨厚硅质碎屑沉积物的形成。早古生代(460-390Ma),华南板块经历了一期强烈的陆内造山事件,具体表现为志留系地层的缺失或中泥盆统和志留系地层之间的角度不整合、普遍的挤压变形和高级变质作用。此后,华南板块在晚古生代(390-240 Ma)处于一个稳定的板内滨浅海沉积环境,形成了一系列碳酸盐岩。早中生代(240-200 Ma),华南板块经历了一期陆内挤压变形事件,具体表现为晚三叠纪角度不整合、褶皱、逆冲断层、韧性剪切和变质作用。晚中生代华南板块的构造体制主要受控于古太平洋板块的俯冲作用。对应于上述多期构造事件,华南地区广泛发育有新元古代、早古生代、三叠纪、侏罗纪和白垩纪的多时代花岗岩和相关多金属矿床。其中,晚中生代的花岗岩和相关矿床占绝对主导地位。一般认为,古太平洋板块俯冲引起软流圈上涌和玄武质岩浆底侵,促使地壳发生部分熔融,从而导致晚中生代的大规模花岗质岩浆活动和成矿大爆发。在南岭地区,中-晚侏罗世(165-150 Ma)是最重要的花岗质岩浆活动和成矿作用时期。根据成矿元素组合、岩相学和地球化学特征,南岭地区中-晚侏罗世含矿花岗岩可以分为含钨、含锡、含铌钽和含铜铅锌花岗岩四类。含钨花岗岩主要为壳源S型二云母、白云母和黑云母花岗岩,而锡矿化主要和铝质A型(A2型)黑云母花岗岩有关。含铌钽花岗岩多为高度分异演化的钠长石花岗岩。铜铅锌矿化主要和含角闪石的I型准铝质钙碱性花岗闪长岩有关。不同花岗岩具有明显不同的成矿专属性。湘南铜山岭-魏家地区位于桂林向东120 km处,地处道县、江永和江华三县交界带。除了志留系和上二叠统到下三叠统地层缺失以外,奥陶系到三叠系地层在本区域都有出露。其中,泥盆系和石炭系地层占主导地位。中泥盆统棋梓桥组、上泥盆统佘田桥组和锡矿山组和上石炭统大塘阶石蹬子段是铜山岭-魏家地区的主要含矿层位。区域构造格架总体上呈南-北到南西-北东向。褶皱变质的奥陶系地层和下泥盆统与上奥陶统地层之间的角度不整合记录了华南地区早古生代的陆内造山事件。三叠纪的陆内挤压变形导致该区域内泥盆系和石炭系地层褶皱和逆冲断层以及上三叠统和下伏地层之间角度不整合的形成。中-晚侏罗世,铜山岭花岗闪长岩和魏家花岗岩分别呈岩株状和岩瘤、岩滴岩脉和岩枝状侵入于泥盆系和石炭系地层中,并导致了铜铅锌和钨成矿作用。围绕铜山岭岩体分布的铜山岭铜铅锌矿床、江永铅锌银矿床和玉龙钼矿床共同构成了铜山岭铜钼铅锌银矿田。魏家钨矿床位于铜山岭多金属矿田东北15 km处。尽管前人对南岭地区中-晚侏罗世含铜铅锌与含钨花岗岩已做了大量研究,但产生这两类含矿花岗岩差异的机制尚不清楚。一般认为含钨花岗岩主要来自古老变质沉积基底的部分熔融,但含铜铅锌花岗岩的成因尚有很大争议。对于含铜铅锌花岗岩的起源,主要存在以下三种观点:(1)源岩主要为亏损地幔部分熔融形成的玄武岩,并混入了古老的地壳物质;(2)主要源自变质沉积基底的部分熔融,并混入了幔源玄武质岩浆;(3)主要源自下地壳镁铁质岩石的部分熔融。南岭地区这两类含矿花岗岩虽然都集中形成于中-晚侏罗世,但含钨花岗岩的形成稍晚于含铜铅锌花岗岩,时差的存在该如何解释。两类含矿花岗岩是否同一母岩浆在不同演化阶段先后结晶的产物。这些问题有待进一步研究。铜山岭花岗闪长岩为含角闪石的准铝质钙碱性花岗岩,形成于160-164 Ma,分异演化程度较低。其Sr-Nd-Hf同位素组成具有典型的壳源特征,(87Sr/86Sr)i比值为0.708955-0.710682,εNd(t)值为-6.9--4.2,锆石εHf(t)值为-11.6--6.3。Ⅰ型花岗岩的特征指示铜山岭花岗闪长岩源自镁铁质下地壳的部分熔融。魏家花岗岩属于高硅过铝质的碱性系列花岗岩,形成于158 Ma左右,为高分异花岗岩。其Nd-Hf同位素组成具有壳源特征,εNd(t)值为-4.6--1.7,锆石εHf(t)值为-5.4--4.5。S型花岗岩的特征指示魏家花岗岩源自中-上地壳变质沉积物的部分熔融。南岭地区中-晚侏罗世含铜铅锌与含钨花岗岩的矿物学和地球化学特征截然不同。含铜铅锌花岗岩主要为准铝质含角闪石的花岗闪长岩,具有较高的CaO/(Na2O+K2O)比值、LREE/HREE(轻/重稀土)比值和δEu(Eu异常指数)值,较低的Rb/Sr比值,Ba、Sr、P、Ti轻微亏损,分异演化程度较低,显示出I型花岗岩的特征。而含钨花岗岩为高分异演化的过铝质S型花岗岩,其CaO/(Na2O+K2O)比值、LREE/HREE 比值和δEu值较低,Rb/Sr比值较高,Ba、Sr、P、Ti强烈亏损。含铜铅锌与含钨花岗岩的(87Sr/86Sr)i 比值分别为0.708-0.712和0.712以上,εNd(t)值分别为-10--2(峰值-7--6)和-14--7(峰值-10--9),锆石 εHf(t)值分别为-13--7(峰值-11--10)和-14--8(峰值-13--12),都具有典型的壳源特征,说明两类含矿花岗岩都是地壳物质部分熔融的产物。两类含矿花岗岩的年龄统计表明,含铜铅锌花岗岩主要形成于155.2-167.0 Ma,峰值为160.6 Ma,而含钨花岗岩主要形成于151.1-161.8 Ma,峰值为155.5 Ma,两者存在约5 Ma的时差。在湘南铜山岭含铜铅锌和魏家含钨花岗岩系统研究的基础上,结合南岭地区中-晚侏罗世含铜铅锌与含钨花岗岩的对比,提出了两类含矿花岗岩的成因模式。古太平洋板块俯冲导致软流圈上涌和玄武质岩浆底侵。底侵玄武质岩浆加热促使下地壳的镁铁质角闪岩相基底首先发生部分熔融,形成与铜铅锌矿化有关的花岗闪长质岩浆。随着玄武质岩浆底侵,中-上地壳的富白云母变质沉积基底随后发生部分熔融,形成与钨矿化有关的花岗质岩浆。花岗岩源区成分的差异导致花岗岩成矿专属性不同。含铜铅锌与含钨花岗岩之间5 Ma左右的侵位时差是由于源区深度不同,由玄武质岩浆底侵引发的部分熔融时间先后所致。暗色包体因其对寄主花岗岩具有重要的成因指示意义而受到广泛关注。南岭地区中-晚侏罗世含铜铅锌花岗闪长岩中暗色包体普遍存在。前人认为此类暗色包体及其寄主花岗闪长岩是幔源镁铁质岩浆和壳源长英质岩浆混合的产物。然而,最近的研究表明南岭地区中-晚侏罗世含铜铅锌花岗闪长岩主要源自镁铁质下地壳的部分熔融。以上两种观点主要基于地球化学和年代学证据。本文对铜山岭花岗闪长岩及其暗色包体开展了详细的岩相学和矿物学研究,为岩石成因机制提供了全新的结构和成分制约。铜山岭花岗闪长岩中的暗色包体具有闪长质成分,主要由他形至半自形的斜长石、角闪石和黑云母组成。暗色包体的Sr-Nd和锆石Hf同位素成分与寄主花岗闪长岩一致。淬冷边、岩浆流动构造、石英眼斑和钾长石环斑结构等支持岩浆起源和岩浆混合的现象在暗色包体中并不存在。然而,镁铁质矿物团块、继承锆石、变质锆石和富钙斜长石核等残留物质在暗色包体中大量存在,指示其为残留包体。铜山岭花岗闪长岩及其暗色包体中存在三类不同的角闪石:岩浆角闪石、变质角闪石和岩浆改造的变质角闪石。岩浆角闪石呈包裹体状和自形孤立状,仅出现于花岗闪长岩中。其Al和Si含量分别为1.34-2.12 apfu(单位化学式中的原子数)和6.25-6.88 apfu,∑REE(总稀土)含量为307-764 ppm。变质角闪石呈聚集状,以花岗变晶三联点结构相接,主要分布于暗色包体内,少量出现于花岗闪长岩中。此类角闪石具有阳起石质成分,其Al和Si含量分别为0.31-0.81 apfu和7.33-7.72 apfu,不相容元素含量明显较低(ΣREE:99-146 ppm)。岩浆改造的变质角闪石具有介于岩浆角闪石和变质角闪石之间的过渡成分。其Al和Si含量分别为0.81-1.59 apfu和6.71-7.35 apfu,ΣREE含量为317-549 ppm。暗色包体内的角闪石大部分是岩浆改造的变质角闪石。暗色包体中环带状富角闪石团块的内部颜色较浅,并具有花岗变晶结构,而外部颜色较深,具有他形粒状结构。从团块内部到外部以及其中角闪石颗粒的核部到边部,角闪石成分上都显示出A1含量增高和Si含量降低的变化规律。富角闪石团块为源区部分熔融后的富辉石残留物经岩浆改造而形成。暗色包体中锆石的岩浆边由低ThO2+UO2含量和高Zr/Hf比值的内部和高ThO2+UO2含量和低Zr/Hf 比值的外部组成,分别由残留包体中的初始熔体和演化的寄主岩浆结晶形成,记录了寄主岩浆改造残留包体的过程。暗色包体中岩浆斜长石边与花岗闪长岩中斜长石一致的成分,包体中斜长石斑晶的反应边结构以及嵌晶状钾长石和石英的存在都反映了寄主岩浆对残留包体的改造。因此,铜山岭花岗闪长岩中的暗色包体为岩浆改造的残留包体。这一结论得到矿物温压计计算结果的进一步支持。基于改造残留包体和寄主花岗闪长岩的特征以及前人的部分熔融实验结果认为铜山岭花岗闪长岩源自镁铁质下地壳中角闪岩的脱水熔融。华夏地块古元古代角闪岩的出露进一步证明了这一成因机制的合理性。南岭地区中-晚侏罗世含铜铅锌花岗闪长岩具有一致的矿物学和地球化学特征,典型的壳源同位素组成指示其更可能源自镁铁质下地壳的角闪岩脱水熔融而非壳幔混合。南岭地区角闪岩相源区中丰富的成矿元素有利于含铜铅锌花岗闪长岩的形成。作为许多金属元素的主要成矿类型之一,矽卡岩矿床一直受到地质学家的广泛关注。前人对矽卡岩矿床的研究主要集中于交代蚀变、分带性、矽卡岩矿物学、地球化学和岩石成因等方面。然而,构造对矽卡岩化的控制很少涉及,尤其是岩浆侵位引起的构造控制。岩浆侵位引起的构造控制对理解矽卡岩矿床的形成过程和进一步找矿勘探具有重要意义。本文以铜山岭铜铅锌矿床为例,利用构造分析、RSCM温度计和EBSD面扫等手段,对岩浆侵位引起的对矽卡岩化的构造控制开展了详细研究。铜山岭地区泥盆系和石炭系地层中发育的断层总体上呈南-北到南西-北东走向,大部分是向东到南东逆冲的断层和走滑断层,只有少数是正断层。无论是位于铜山岭岩体东部还是西部的正断层,其走向都和逆冲断层一致,倾向都一致向西到北西。正断层附近的碳酸盐岩除了脆性破裂以外没有任何变形。正断层面上分布有两期不同的方解石:早期方解石粒度较小,硬度较大,可包含围岩角砾;晚期方解石呈自形,粒度较大,硬度较小,相对比较纯净。铜山岭地区的逆冲断层和走滑断层形成于三叠纪陆内挤压变形时期,正断层很可能形成于晚三叠世到早侏罗世的减压作用,而与中-晚侏罗世铜山岭花岗闪长岩的侵位无关。在铜山岭岩体和围岩的接触带上,碳酸盐岩发生了强烈的大理岩化和变形。重结晶的方解石晶体大部分呈现出拉长的形态。在北东部接触带上,变形围岩的面理以更陡的倾角切穿层理,倾向北到北东,表现为正向移动。从接触带向外,大理岩化的强度和面理的密度逐渐降低,过渡到未变质变形的碳酸盐岩。相对于北东部接触带,南部接触带的围岩具有更强的大理岩化和变形程度以及更高的面理密度。在南部接触带上,靠近岩体处的围岩层理不可见,面理发生揉皱。值得注意的是,南部接触带上变形围岩的面理随着岩体边界旋转并始终与接触带保持平行。相对于北东部接触带,南部接触带上变形围岩的面理具有更大的倾角。RSCM测温结果显示,从接触带向外,变质温度由620℃左右逐渐降低到约300℃。EBSD面扫结果表明,接触带上的变形方解石呈现出强烈的SPO(形态择优取向)和CPO(晶体择优取向)。根据上述地质现象和RSCM测温与EBSD面扫结果得出,铜山岭花岗闪长岩的侵位始于南部并引起了接触带上围岩的强烈大理岩化和变形。铜山岭铜铅锌矿床中的外矽卡岩脉和硫化物-石英脉具有和接触带上变形围岩的面理一致的产状,同样以更陡的倾角切穿层理。外矽卡岩脉附近的变形大理岩具有和地表接触带上的变形大理岩类似的RSCM测温(595-619℃)与EBSD面扫结果。外围的硫化物-石英脉为矽卡岩体系演化到晚期的产物,其围岩的大理岩化温度相对较低(500-547℃),围岩中方解石的CPO较弱,无SPO。大理岩化过程中方解石的重结晶会显着降低围岩的渗透性。铜山岭花岗闪长岩的侵位深度为10 km左右(根据角闪石A1压力计计算)。如此深度下,未破裂的大理岩几乎是不可渗透的。然而,裂隙的产生可以极大增加围岩的渗透性。因此,岩浆侵位引起的围岩变形显着增加了围岩的渗透性,促进岩浆流体沿着变形裂隙渗透,从而在构造上控制了外矽卡岩脉和硫化物-石英脉的形成。不同成矿元素和成矿类型的空间组合与分带在自然界的岩浆-热液体系中常见。南岭地区中-晚侏罗世的铜铅锌矿床,比如铜山岭、宝山、水口山、黄沙坪和大宝山矿床,都以多种成矿元素和成矿类型的空间组合与分带为特征。这些成矿类型主要包括矽卡岩型、硫化物-石英脉型、碳酸盐交代型和斑岩型等,其间是否具有成因联系尚不清楚。铜山岭多金属矿田发现于1958年,自1977年开始被开采,总共蕴含金属量铜5.3万吨(平均品位1.23 wt.%)、钼0.6万吨(平均品位0.30 wt.%)、铅12.6万吨(平均品位2.58 wt.%)、锌13.8万吨(平均品位3.95 wt.%)和银780吨(平均品位144克/吨)。此外,还有伴生的铋0.6万吨(平均品位0.16 wt.%)、镉1900吨(平均品位0.016 wt.%)、硒195吨(平均品位0.001 wt.%)和碲95吨(平均品位0.003 wt.%)。铜山岭多金属矿田由铜山岭岩体北东部的铜山岭铜铅锌矿、北西部的江永铅锌银矿和南部的玉龙钼矿组成。铜山岭铜铅锌矿床显示出复杂的蚀变和成矿分带,从岩体向外依次为近端的团块状内矽卡岩铜矿体、近端的脉状外矽卡岩铜铅锌矿体、外围灰岩中的硫化物-石英脉铜铅锌矿体和远端的层状矽卡岩铜铅锌矿体。此外,在近端还分布有少量晚期的铅锌硫化物-石英脉和碳酸盐交代型铅锌硫化物脉。江永铅锌银矿床和玉龙钼矿床分别以碳酸盐交代型和脉状矽卡岩型成矿为主。对铜山岭铜铅锌矿床中近端外矽卡岩内的石榴子石进行LA-ICP-MS U-Pb定年得出162.0±3.7 Ma 的 207Pb/235U-206Pb/238U谐和年龄,其加权平均 206Pb/238U 年龄为 162.4±4.2 Ma。铜山岭铜铅锌矿床近端内矽卡岩、近端外矽卡岩和远端矽卡岩中的辉钼矿具有一致的Re-O模式年龄,其加权平均值为161.9±1.1 Ma,由这些不同成矿类型的辉钼矿共同构成的187Re-187Os等时线年龄为161.8±1.7 Ma。玉龙钼矿矽卡岩中辉钼矿的187Re-187Os等时线年龄为160.0±5.8 Ma,其加权平均模式年龄为160.1±0.8 Ma。蚀变花岗闪长岩中热液榍石的LA-ICP-MS U-Pb定年分别在Wetherill和Tera-Wasserburg谐和图解中得出155.5±3.1 Ma和155.6±3.1 Ma的下交点年龄,其206Pb/238U年龄的加权平均值为154.4±1.9 Ma。结合前人的定年结果得出铜山岭矿田的三个矿床几乎同时形成于160-162 Ma,和铜山岭花岗闪长岩(160-164 Ma)一致。较年轻的热液榍石U-Pb年龄指示了一期较晚的热液事件,可能与铜山岭矿区晚期的碳酸盐交代成矿作用有关。S,Pb和H-O同位素研究表明铜山岭矿区的成矿物质和成矿流体都来源于铜山岭岩体。Cu和Zn很可能通过部分熔融来自镁铁质角闪岩相下地壳,然而,Pb为上升的花岗闪长质岩浆对上地壳萃取所得。基于矿床地质、年代学和同位素地球化学研究认为,铜山岭矿区的不同成矿类型和矿床在成因上相互关联,是同一个和铜山岭花岗闪长质岩体有关的矽卡岩系统演化和分带的产物。南岭地区中-晚侏罗世铜铅锌矿床与钨矿床的对比显示花岗质岩浆是铜铅锌与钨成矿作用中重要的成矿物质和成矿流体来源。两类矿床中的硫化物具有一致的上地壳铅同位素成分。钨矿床的上地壳铅同位素特征可能继承自含钨花岗岩的中-上地壳源区,而铜铅锌矿床的上地壳铅同位素特征可能指示了下地壳来源的含矿岩浆对上地壳铅的萃取。值得注意的是,铜铅锌矿床的辉钼矿Re-Os年龄集中于153.8-166.0 Ma,峰值为159.9 Ma,而钨矿床的辉钼矿Re-Os年龄集中于146.9-160.0 Ma,峰值为154.5 Ma。两者存在约5 Ma的时差,与含铜铅锌与含钨花岗岩之间约5 Ma的时差一致,进一步证明了两类含矿花岗岩分别形成于镁铁质角闪岩相下地壳和由富白云母变质沉积物组成的中-上地壳的依次部分熔融。钨矿床中辉钼矿的低Re含量(0.003-14.6 ppm)与含钨花岗岩的中-上地壳起源吻合,而铜铅锌矿床中辉钼矿的高Re含量(16.3-1841 ppm)与含铜铅锌花岗岩的镁铁质下地壳起源有关,不一定通过壳幔混合形成。世界上镁质矽卡岩钨矿的例子极少。相对于钙质矽卡岩钨矿,镁质矽卡岩钨矿的规模一般较小,通常不具有重要的经济价值。前人普遍认为,白云岩虽然有利于铁、锡、金的矽卡岩成矿作用,却趋向于阻碍含钨矽卡岩的形成。然而,以镁质矽卡岩为主的超大型魏家钨矿的发现颠覆了前人的认识,揭示了镁质矽卡岩对钨成矿作用的重要性。魏家钨矿的WO3资源量为30万吨(边界品位0.12 wt.%),其中镁质矽卡岩钨矿占24万吨,平均品位为0.18 wt.%,钙质矽卡岩钨矿占6万吨,平均品位为0.24 wt.%。另外,魏家钨矿还含有大量的萤石资源。一般矽卡岩钨矿的含矿花岗岩为深部侵位的粗粒花岗岩,而魏家钨矿和高分异花岗斑岩有关,该花岗斑岩显示出和次火山岩相花岗岩类似的岩相学特征。如此特殊的矽卡岩钨矿为进一步理解钨成矿作用提供了绝佳的机会。魏家花岗斑岩的基质具有霏细-细粒结构,六方双锥状石英斑晶常具有港湾状结构,微文象结构在钾长石中常见,一些钾长石斑晶的边缘可见特殊的“珠边”结构。矽卡岩矿体附近的花岗岩普遍被蚀变,镁质矽卡岩附近的花岗岩比钙质矽卡岩附近的花岗岩具有更强的蚀变程度。岩体顶部发育大量长英质网脉,主要包括第一期钾长石-石英伟晶岩脉、第二期(钾长石)-石英脉或细脉和第三期网状石英细脉。镁质矽卡岩矿体呈顺层状产于棋梓桥组中段白云岩中,埋深200-900 m。镁质矽卡岩呈网状细脉产于白云岩的裂隙中,主要由蛇纹石和金云母构成。钙质矽卡岩矿体呈团块状或层状产于棋梓桥组上段灰岩中,埋深小于300 m。硅灰石、石榴子石和辉石是主要的钙质矽卡岩矿物。白钨矿呈浸染状分布于镁质和钙质矽卡岩中。矽卡岩矿石的WO3和CaF2品位呈明显的正相关。根据详细的矿床地质观察、RSCM测温学、全岩地球化学和矿物学研究得出以下主要认识:魏家花岗岩由富氟岩浆结晶形成。花岗质熔体的高氟活度导致低岩浆粘度,从而促进花岗质岩浆的分离结晶和钨富集。随着温度逐渐降低,最终魏家花岗斑岩在水饱和条件下形成。岩浆到热液演化过程中,首先富氟水盐熔体通过液态不混溶作用分离,之后是贫氟热液流体的分离。富氟水盐熔体和贫氟热液流体都可以把钨从岩浆搬运到围岩中。镁质矽卡岩的形成温度明显低于钙质矽卡岩的形成温度。镁质矽卡岩化过程中相对较低的温度和较高的氟活度不利于无水进变质矽卡岩矿物(镁橄榄石和尖晶石等)的形成,却可以导致特殊的富氟石榴子石的形成。矽卡岩矿石中WO3和CaF2品位的正相关性主要受控于钙对氟和钨的同时沉淀。钙质矽卡岩矿石比镁质矽卡岩矿石具有更高的WO3品位是由于灰岩矽卡岩化过程比白云岩矽卡岩化过程具有更高的钙活度。控制南岭地区晚侏罗世镁质矽卡岩钨矿形成的关键因素主要包括:富集源区的存在、富氟岩浆的形成、高度结晶分异和富氟水盐熔体的分离。本文主要结论总结如下:(1)南岭地区中-晚侏罗世含铜铅锌与含钨花岗岩分别以分异程度较低的准铝质I型含角闪石花岗闪长岩和高分异过铝质的S型花岗岩为主。这两类含矿花岗岩分别源自下地壳镁铁质角闪岩相基底和中-上地壳富白云母变质沉积基底的非同时部分熔融。花岗岩源区成分的差异导致花岗岩成矿专属性不同,源区部分熔融的时间先后导致了含铜铅锌与含钨花岗岩之间存在5 Ma左右的时差。(2)南岭地区中-晚侏罗世含铜铅锌花岗闪长岩中暗色包体普遍存在。铜山岭花岗闪长岩中的暗色包体含有大量的镁铁质矿物团块、继承锆石、变质锆石和富钙斜长石核等残留物质,为残留体和寄主岩浆反应形成的改造残留包体。富角闪石团块为源区部分熔融后的富辉石残留物经岩浆改造而形成。铜山岭花岗闪长岩源自镁铁质下地壳中角闪岩的脱水熔融。南岭地区角闪岩相源区中丰富的成矿元素有利于含铜铅锌花岗闪长岩的形成。(3)铜山岭地区的正断层很可能形成于晚三叠世到早侏罗世的减压作用,而与中-晚侏罗世铜山岭花岗闪长岩的侵位无关。根据构造分析、RSCM温度计和EBSD面扫研究得出铜山岭花岗闪长岩的侵位始于南部并引起了接触带上围岩的强烈大理岩化和变形。岩浆侵位引起的围岩变形显着增加了围岩的渗透性,促进岩浆流体沿着变形裂隙渗透,从而在构造上控制了外矽卡岩脉和硫化物-石英脉的形成。(4)地质年代学研究揭示铜山岭多金属矿区的三个矿床几乎同时形成于160-162 Ma,和铜山岭花岗闪长岩(160-164Ma)一致。S,Pb和H-O同位素研究表明铜山岭矿区的成矿物质和成矿流体都来源于铜山岭岩体。Cu和Zn很可能通过部分熔融来自镁铁质角闪岩相下地壳,然而,Pb为上升的花岗闪长质岩浆对上地壳萃取所得。铜山岭矿区的不同成矿类型和矿床在成因上相互关联,是同一个和铜山岭花岗闪长质岩体有关的矽卡岩系统演化和分带的产物。(5)魏家花岗岩由经历了长期结晶分异和钨富集的富氟低粘度岩浆结晶形成。岩浆到热液演化过程中富氟水盐熔体通过液态不混溶作用的分离对钨的搬运起到重要作用。镁质矽卡岩化过程中相对较低的温度和较高的氟活度不利于无水进变质矽卡岩矿物的形成。钙作为氟和钨共同的沉淀剂导致了矽卡岩矿石的WO3和CaF2品位呈现明显的正相关。灰岩矽卡岩化过程比白云岩矽卡岩化过程具有更高的钙活度,导致钙质矽卡岩矿石比镁质矽卡岩矿石具有更高的WO3品位。
CHEN Baoguo,ZHANG Jiuchen,YANG Mengmeng[10](2016)在《The Present Research and Prospect of Chinese Geosciences History》文中提出It has been over a hundred years since the birth of research on Chinese geosciences history, which was accompanied by the continuous progress of Chinese geosciences. For hundreds of years, it has grown out of nothing to brilliant performance by several generations of Chinese geologists committing their hearts and minds with the spirit of exert and strive without stop to promote the process of China’s industrialization and to produce the significant impact on serving the society. The study of Chinese geosciences history reflects objectively and historically the history of geosciences in China, which has recorded, analyzed and evaluated the dynamic process sitting in the background and clue of the history of Chinese geosciences development. The study of the history of geological science has roughly experienced two stages in China. The first stage is the study of individual researchers. It spanned approximately 70 years from the early 20th century to the end of the 1970s. The research contents were mainly based on the evolution of geological organizations, the development and utilization of individual mineral species, the history of deposit discovery and the research of geological characters. The main representatives are Zhang Hongzhao, Ding Wenjiang, Weng Wenhao and Li Siguang, Ye Liangfu, Huang Jiqing, Yang Zhongjian, Xie Jiarong, Gao Zhenxi, Wang Bingzhang and etc. The most prominent feature of this period is the accumulation of a very valuable document for the study of the history of China’s geological history and lays a foundation for the exchange of geological science between China and foreign countries. The second stage is organized group study. It took around 60 years from the 1920s to 1980s. It includes the history of Chinese geology, the history of geological organizations, the history of geological disciplines, the history of geological education, the history of geological philosophy, the history of Chinese and foreign geological science communication, the history of geologists and etc. The most chief feature of this stage is the birth of academic research institute―the establishment of the Commission on the History of Geology of the Geological Society of China.
二、SURVEY OF THE CHINESE ACADEMY OF GEOLOGICAL SCIENCES——Ⅱ. MAJOR ACTIVITIES OF SCIENCE AND TECHNOLOGY(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、SURVEY OF THE CHINESE ACADEMY OF GEOLOGICAL SCIENCES——Ⅱ. MAJOR ACTIVITIES OF SCIENCE AND TECHNOLOGY(论文提纲范文)
(1)Geological and surfacial processes and major disaster effects in the Yellow River Basin(论文提纲范文)
1. Strategic significance of research on the ef-fects of major disasters in the Yellow River Basin |
2. Literature review of research on geologicaland surface processes and major disaster effects in the YRB |
2.1 Geological and surface processes in the YRB |
2.2 Giant landslides in the upper reach of the YRB |
2.3 Water-soil disasters in the middle reach of the YRB |
2.4 Giant floods in the lower reach of the YRB |
2.5 Risk mitigations of giant disasters in the YRB |
3. Developing trends of and challenges faced byresearch on geological and surface processes and major disaster effects in the YRB |
3.1 Revealing the complex and interlinked geological and surface processes in the YRB |
3.2 Inspecting the mutual feedback between major disaster chain occurrences and ecology in the YRB |
3.3 Establishing an integrated mitigation system for giant disaster risks in the YRB |
4. Key scientific problems of research on geo-logical and surface processes and major disaster effects in the YRB |
4.1 Geological-surface-climatic processes coupled andinterlinked giant disaster gestation mechanisms in the YRB |
4.2 Mutual feedback effects between major disasterchains and ecology under effects of earth dynamic systems at multiple scales |
4.3 Integrated mitigation system for major disasterrisks in the YRB based on human-environment harmony |
5. Prospects of research on geological and surface processes and major disaster effects in the YRB |
5.1 Suggested themes of research on major disaster effects in the YRB |
5.2 Suggested design of research on major disaster ef-fects in the YRB |
5.3 Demonstratable application pattern of integrated risk mitigations of major disasters in the YRB |
(2)Mercury isotope constraints on the genesis of late Mesozoic Sb deposits in South China(论文提纲范文)
1. Introduction |
2. Geological setting |
2.1 Regional geology |
2.2 Ore deposit geology |
2.2.1 Banpo Sb deposit |
2.2.2 Woxi Sb-Au-W deposit |
3. Sampling and analytical methods |
4. Results |
4.1 Stibnite |
4.2 Whole-rock samples |
5. Discussion |
5.1 Enrichment of heavy Hg isotopes in the South China Sb mineralization belt |
5.2 Mercury isotopic MIF constraints on the source of the South China Sb mineralization belt |
5.3 Model for the formation of the Sb deposits in South China |
6. Conclusions |
(3)获取真实领导力与组织学习和创新对CPEC项目管理成功的中介效应(论文提纲范文)
摘要 |
ABSTRACT |
List of Abbreviations |
Chapter 1 Commencement and Study Context |
1.1 Study Perspective and Introduction |
1.2 Background of the Study |
1.2.1 Project Management |
1.2.2 Contemporary studies of Project Management |
1.2.3 Project Success |
1.2.4 Authentic Leadership |
1.2.5 Organizational Innovation |
1.2.6 Organizational Learning |
1.3 Aim and Objectives |
1.4 Research Questions |
1.5 Significance of the Research |
1.6 Research Methodology |
1.7 Dissertation Layout |
1.8 Summary |
Chapter 2 Targeted Study |
2.1 Introduction |
2.2 China Pakistan Economic Corridor (CPEC) |
2.3 Energy Power Projects |
2.3.1“Port Qasim Coal-Fired Power Plant” |
2.3.2 Hydropower Station (Suki Kinari) |
2.3.3“Coal Power Plant (Sahiwal)” |
2.3.4 Wind Farm Hydro China (Dawood) |
2.3.5 Coal Power Project Gwadar |
2.3.6 Quaid-E-Azam Power Project Bahawalpur (Solar Park) |
2.3.7“UEP Wind Farm”(Jhimpir, Thatta) |
2.3.8 Sachal Farm (Thatta) |
2.3.9 Hydropower Station (Karot) |
2.3.10 Three Gorges Third Wind Power Project |
2.3.11 Coal Power Plant (HUB) |
2.3.12 Kohala Hydel Project AJK |
2.3.13 Fuel Power Plant (Rahimyar Khan) |
2.3.14 Cacho Project Wind Energy |
2.3.15 Wind Power Project (Western Energy) |
2.4 Mining Projects |
2.4.1 (Thar) Engro Coal Field Block II Surface Mine |
2.4.2 Coal Field Surface Mine Thar II |
2.4.3 Mine Mouth Power Phase Coal Block-I &Sec (Ssrl Thar) |
2.4.4 Surface Mine & Mouth Oracle Plant Thar |
2.5 Project under Consideration |
2.6 Infrastructure Projects |
2.6.1“(Multan-Sukkur Section) Peshawar-Karachi Motorway” |
2.6.2 (Thakot -Havelian Section) KKH PHASE II |
2.6.3 Basima - Khuzdar Road |
2.6.4 D.I.Khan - Zhob Upgradation |
2.6.5 N35 KKH Thakot-Raikot |
2.6.6 Surab-Hoshab (N-85) |
2.6.7 Gwadar – Turbat – Hoshab (M-8) |
2.6.8 Zhob Quetta (N-50) |
2.6.9 D.I Khan (Yarik) –Zhob (N-50) |
2.6.10 D.I Khan Motorway Hakla |
2.6.11 Chitral to Chakdara, Link Road from Gilgit, Shandor |
2.6.12 Expansion and Reconstruction of ML1 |
2.7 Economic Zones |
2.7.1 Nowshera, Rashakai Economic Zone |
2.7.2 Special Economic Zone Dhabeji |
2.7.3 Development Free Zone |
2.8 Gwadar Projects |
2.8.1 Expressway (Gwadar East-Bay) |
2.8.2 International Airport (New Gwadar) |
2.8.3 Breakwaters Construction |
2.8.4 Berthing Areas & Channels Dredging |
2.8.5 Fresh Water Treatment Indispensable Facilities |
2.8.6 Pak-China Friendship Hospital |
2.8.7 Technical and Vocational Institution (Gwadar) |
2.8.8 Smart Master City Plan Gwadar |
2.8.9 Project Livelihood (Gwadar) |
2.9 Different Sector Projects |
2.9.1 Havelian Dry Port |
2.9.2 Optical Fiber (Cable Cross Border) |
2.9.3 Digital Terrestrial Multimedia Broadcast (DTMB) Project |
2.9.4 Early Warning System (EWS), Pakistan Meteorological Department |
2.9.5 Karachi Circular Railway |
2.9.6 Orange Line – Lahore |
2.9.7 Transfer of Knowledge in Different Sectors |
2.9.8 Transfer of Knowledge in the Education Sector |
2.9.9 HVDC Transmission Line Project, Matiari to Lahore |
2.10 Summary |
Chapter 3 Literature Review |
3.1 Introduction |
3.2 China Pakistan Economic Corridor |
3.2.1 Pak-China Brotherhood |
3.2.2 China’s Dream |
3.2.3 Management of CPEC |
3.2.4 Structural Body |
3.2.5 Financial Assistance |
3.3 Project Management |
3.3.1 Ancient History of Project Management |
3.3.2 Project Management Four Period |
3.3.3 Post Project Management Fourth Eras |
3.3.4 Project Management Future |
3.3.5 The Current Project Management State |
3.3.6 Project Management Practice |
3.3.7 Project Management Objectives |
3.4 Project success |
3.4.1 Definition of Project |
3.4.2 Studies of Project Success Criteria |
3.4.3 Project Categorization |
3.4.4 Project Success and Different Stakeholders |
3.4.5 Project Manager Traits Related to Project Success |
3.4.6 Criteria to Measure Project Success |
3.4.7 Causatives of Project Success |
3.4.8 Belassi and Tukel’s Determined Critical Success Factors (CSPs) |
3.4.9 Critical Success Factors by Van der Merwe Hauptfleisch’s and Els |
3.4.10 Critical Success Factors by Ivanova’s and Alexandrova |
3.4.11 Critical Success Factors Nistor’s Belieu and Crisan |
3.5 Authentic Leadership |
3.5.1 What is Authentic? |
3.5.2 Defining Authenticity |
3.5.3 Ethics and Authentic Leadership |
3.5.4 Perception of Authentic Leadership Style |
3.5.5 Development of Authentic Leadership and Authentic Leaders |
3.5.6 Authentic Leadership Constituents |
3.5.7 Leadership Theories based AL differentiation |
3.5.8 Differentiating authentic and transformational leadership (TL) |
3.5.9 Charismatic Leadership Theories and Authentic Leadership |
3.5.10 Spiritual Leadership (SL), Servant Leadership and (AL) AuthenticLeadership |
3.6 Organizational Learning |
3.6.1 Experiential Theory of Learning |
3.6.2 Adaptive and Generative Theory of Learning |
3.6.3 Types of Organizational Learning |
3.6.4 Learning Dimensions by NEEF |
3.6.5 Organizational Learning and Organizational Innovation |
3.7 Organizational Innovation |
3.7.1 Previous Research Supports Innovation |
3.7.2 Conceptual Review |
3.7.3 Duality Management and Organizational Innovation |
3.7.4 Supported Theories to Organizational Innovation |
3.7.5 Ambidextrous Theory of Innovation |
3.7.6 Management Change and Self-Organization |
3.8 Summary |
Chapter 4 Theoretical Framework |
4.1 Introduction |
4.2 The Significance of Planning a Research Design Framework |
4.3 Developing the Research Design Framework |
4.3.1 Theoretical Framework Significance |
4.3.2 Theoretical Framework of the Study |
4.3.3 Project Management |
4.3.4 Authentic Leadership |
4.3.5 Organizational Learning and Conceptual Framework |
4.3.6 Organizational Innovation |
4.3.7 Project Success (Ps) |
4.4 Philosophy and Research Assumptions |
4.4.1 Ontology |
4.4.2 Epistemology |
4.4.3 Linking Ontology, Epistemology and Methodology |
4.5 Development of Hypothesis |
4.5.1 Appraising the Authentic Leadership on OL |
4.5.2 Appraising the A.L. on Success of Project |
4.5.3 Appraising the Organizational Learning on Organization Innovation |
4.5.4 Appraisal of Organizational Innovation on Project Success |
4.5.5 Appraising the Organizational Learning on Project Success |
4.5.6 Appraising the Mediating Character of O.L. amid Authentic Leadership andCPEC Project Success |
4.5.7 Appraising the Connecting Function of O.I., O.L. and Project Success |
4.5.8 Appraising the Connecting Function of O.I. and O.L. amid AL and ProjectSuccess |
4.6 Summary |
Chapter 5 Research Methodology |
5.1 Introduction |
5.2 Philosophy of Research |
5.2.1 Nature of Social Science and Related Assumptions |
5.2.2 Nature of Society in Assumptions |
5.2.3 Research Paradigms |
5.3 Research Approach |
5.4 Methodology of Research |
5.5 Research Strategy |
5.5.1 Survey Research: The Preferred Approach |
5.6 The Design of Research |
5.7 Sampling and Research Population |
5.8 Methods of Data Collection |
5.8.1 Questionnaire Development |
5.8.2 Design of Questionnaire |
5.8.3 Types of Questions |
5.8.4 Measurement Scales |
5.9 Test Pilot |
5.10 Main Questionnaire Survey |
5.10.1 Response Rate |
5.11 Semi-Structured Interviews |
5.12 Techniques of Data Analysis |
5.12.1 Structural Equation Modelling |
5.12.2 The Underlying Principle for Using AMOS |
5.12.3 Expending AMOS for Testing of Hypotheses |
5.12.4 Reliability analysis |
5.13 Ethical Considerations |
5.14 Summary |
Chapter 6 Survey & Hypothesis Results |
6.1 Introduction |
6.2 Characteristics of Study Sample |
6.2.1 Characteristics of Surveyed Organizations |
6.3 Policies and Planning for Project Management |
6.3.1 Project Management Development |
6.3.2 Project Management vs. General Management |
6.3.3 Nature of Policies |
6.3.4 Responsibility for Developing Plans and Policies |
6.3.5 Expectation Level of Plan Implementation |
6.4 Implementation of Project Relating Innovation and Learning Programme |
6.4.1 Analysis Regarding Project Need |
6.4.2 Methods for Need Analysis |
6.4.3 Circumstances for Need in P.M.D |
6.4.4 Approaches to Innovation and Learning |
6.4.5 Methods Used for Development and Learning |
6.5 Summary of Quantitative Analysis |
6.6 Hypotheses Testing Introduction |
6.7 Descriptive Statistics |
6.8 Empirical Analysis |
6.9 Bivariate Analysis (Correlations) |
6.10 Multiple Regression Analysis |
6.11 Data Screening |
6.11.1 Missing Data |
6.11.2 Outliers Detection |
6.11.3 Multi-collinearity |
6.12 Data Exploration |
6.12.1 Communality Scores |
6.13 Confirmatory Factor Analysis (C.F.A.) |
6.13.1 Authentic Leadership |
6.13.2 Organizational Innovation |
6.13.3 Organizational Learning |
6.13.4 Project Success |
6.13.5 Measurement Model |
6.14 SEM (Structural Equation Modeling) |
6.14.1 Indirect Effects |
6.15 Testing of Hypotheses |
6.15.1 AL and OL |
6.15.2 AL and PMS |
6.15.3 OL and OI |
6.15.4 OI and PMS |
6.15.5 OL and PMS |
6.16 Summary |
Chapter 7 Qualitative Findings |
7.1 Introduction |
7.2 Semi-structured Interviews |
7.3 Background Information |
7.4 Usage of Project Management Practices |
7.5 Feature Influencing the Project Management |
7.6 Apparent Advantages of PMP |
7.7 Complications in Assessing AL, OI, OL and Project Success |
7.8 Summary |
Chapter 8 Discussion, Contribution and Recommendation |
8.1 Introduction |
8.2 Leading Research Outcomes |
8.3 Research Question and Hypothesis Testing Assessment |
8.3.1 Impact of Authentic Leadership on Organizational Learning |
8.3.2 Impact of Authentic Leadership on CPEC Project Success |
8.3.3 Impact of Organizational Learning on Organization Innovation |
8.3.4 Impact of Organizational Innovation on CPEC Project Success |
8.3.5 Impact of Organizational Learning on CPEC Project Success |
8.3.6 Mediating Role of Organizational Learning between Authentic Leadershipand CPEC Project Success |
8.3.7 Mediating Role of Organizational Innovation between Organization Learningand CPEC Project Success |
8.3.8 Mediating Role of Organizational Innovation and Organizational Learningbetween Authentic Leadership and CPEC Project Success |
8.4 Authentic Leadership and Project Success |
8.5 Authentic Leadership and Organizational Learning |
8.6 Organizational Learning and Organizational Innovation |
8.7 Organizational learning and Project Success |
8.8 Organizational Innovation and Project Success |
8.9 Summary |
Chapter 9 Final Conclusion |
9.1 Introduction |
9.2 Summarized Version of Research Outcomes |
9.3 Research Contribution |
9.4 Implementations of the Study |
9.4.1 Theoretical, Methodological and Contextual Implications |
9.4.2 Validation of the Discussed Variables |
9.4.3 Managerial Level Policy Implications |
9.4.4 Government Level Policy Implications |
9.5 Limitations of the Study |
9.6 Future Directions and Recommendations |
9.7 Epilogue |
Reference |
Appendix |
Acknowledgement |
Dedication |
(5)尼泊尔山区耕地撂荒的社会与生态环境风险研究(论文提纲范文)
摘要 |
abstract |
Chapter 1 Introduction |
1.1 Background and significance |
1.1.1 Mountain eco-environment- global perspectives |
1.1.2 Statement of problems |
1.2 Singnificance of the study |
1.3 Objectives of the study |
1.4 Research contents and organisation of the study |
Chapter 2 Review on farmland abondonment and its driving factors |
2.1 Global studies on farmland abondonment |
2.2 Global persepective on driving factors of farmland abondonment |
Chapter 3 Research methodology;materials and methods |
3.1 Introduction |
3.2 Key terms-definition |
3.2.1 Farmland abandonment |
3.2.2 Hazard |
3.2.3 Vulnerability |
3.2.4 Exposure |
3.2.5 Risk |
3.2.6 Social and eco-environmental risk |
3.2.7 Eco-environmental risk assessment(ERA) |
3.3 Conceptualizing and theorizing farmland abandonment landscape and assessment of social/eco-environmental risks |
3.4 Study framework |
3.5 Research activities |
3.5.1 Pre field |
3.5.2 Field activities |
3.5.3 Post field activities |
3.6 Conclusions |
Chapter 4 Charecteristics of the case study area |
4.1 Introduction |
4.2 Overview of Nepal |
4.2.1 Mountain context and social vulnerability in Nepal |
4.2.2 Mountainous farmland and farming system in Nepal |
4.3 Dordi river basin |
4.3.1 Administrative and bio-physical setting |
4.3.2 Socio-economic attributes |
4.4 Status of farmland degradation in Nepal |
4.5 Conclusions |
Chapter 5 Farmland abondonment driving factors and its socio-ecoenvironmental consequences in Nepal |
5.1 Introduction |
5.2 Materials and methods |
5.2.1 Sources of data |
5.2.2 Methods for data analysis |
5.3 Results |
5.3.1 The spatiotemporal distribution of abondoned farmland in Nepal |
5.3.2 Driving factors of farmland abandonment |
5.3.3 Eco-environmental and social consequences of farmland abondonment |
5.4 Discussions |
5.5 Conclusions |
Chapter 6 Social risks of farmland abondonment |
6.1 Introduction |
6.2 Materials and methods |
6.2.1 Household data and sampling |
6.2.2 Focus group discussion(FGD)and key informants interview(KII) |
6.2.3 Selection of site specific driving factors and multivariate regression analysis |
6.2.4 Framing of social risk and analysis through hazards of place-model of vulnerability |
6.3 Results and discussion |
6.3.1 Determining site specific driving factors of farmland abandonment |
6.3.2 Risks on social system |
6.4 Conclusions |
Chapter 7 Eco-environmental vulnerability and associated risks |
7.1 Introduction |
7.2 Materials and methods |
7.2.1 Data acquisition and processing |
7.2.2 Delineation and characterization of abandoned farmland |
7.2.3 Assessment of spatiotemporal degradation of farmland |
7.2.4 Selection of causes of farmland degradation |
7.2.5 Analysis of hazard/risk |
7.3 Results |
7.3.1 Assessment of abandoned farmland spatiotemporal degradation |
7.3.2 Identification of major causes of degradation and statistical analysis |
7.3.3 Eco-environmental vulnerability associated with abondoned farmlands |
7.3.4 Eco-environmental risks associated with the abandoned farmlands |
7.4 Discussions |
7.5 Conclusions |
Chapter 8 Development of evluation index and risk assessment |
8.1 Introduction |
8.2 Materials and methods |
8.2.1 Data collection and processing |
8.2.2 Selection of criteria and construction of assessment indicator system |
8.2.4 Determine relative importance of different criteria |
8.2.5 Risk calculation and classification of results |
8.2.6 Development of a framework for landuse planning |
8.3 Result and discussions |
8.3.1 Spatial Distribution of Eco-environmental Risk |
8.3.2 Landuse planning framework |
8.4 Conclusions |
Chapter 9 Summary, conclusion,recommendations, challenges and policy messages |
9.1 Summary and conclusion |
9.2 Recommendations |
9.2.1 Introduction of abandoned farmland for low cost practices and eco-friendly farming |
9.2.2 Adoptation for cash crops or as sources of medicinal herbs |
9.3 Challenges |
9.3.1 Technical challenges |
9.3.2 Environmental challenges |
9.3.3 Socio-economic challenges |
9.4 Policy messages |
9.4.1 Institutional arrangement,integration and mainstreaming |
9.4.2 Finance |
9.4.3 Capacity building |
References |
Appendix 1 中文简本 |
Appendix 2 Survey Questionaire Form |
Appendix 3–PUBLISHED PAPER/CONTRIBUTION |
Acknowledgements |
CV of author and Research Contribution |
(6)The Use of Elemental and B & Cl Stable Isotope Geochemistry to Unravel the Formation of Salt Rocks,Saline Lakes and Thermal Springs in Pakistan(论文提纲范文)
ABSTRACT |
摘要 |
CHAPTER 1.INTRODUCTION |
1.1.General |
1.2.Study area and work progress |
1.2.1.Literature review |
1.2.2.Research gap |
1.2.3.Research question(s) |
1.2.4.The logical relationship among the studied regions |
1.3.Implications and aims |
CHAPTER 2.REGIONAL GEOLOGY AND TECTONIC SETTINGS |
2.1.The Himalayan Tectonic System |
2.2.Indo-Pak Plate(IPP) |
2.3.Governing and controlling features of the Himalaya |
2.4.The Himalayan Divisions |
2.5.Division of the Himalaya in Pakistan(Himalyian Collision Zone) |
2.6.Major Himalayan Tectonic Units in the Himalayan Collision zone |
2.7.Important Himalayan Structures |
2.8.Local Geology |
2.8.1.Stratigraphy and structural geology of the Kohat-Potwar Plateau |
2.8.2.Stratigraphy of Potwar Basin |
2.8.3.Division and structure of the Salt Range |
2.8.4.Major Structural features |
2.8.5.Geology of the salt deposits in the Salt Range |
2.9.The Kohat Basin |
2.9.1.Geology |
2.9.2.Stratigraphy of Kohat Basin |
CHAPTER 3.MATERIALS AND METHODS |
3.1.Field investigation and sample collection |
3.1.1.Field trip |
3.2.Sampling |
3.3.Chlorine and Boron in nature |
3.3.1.Distribution,Physical and Chemical Properties of Chlorine and Boron |
3.3.2.Chlorine isotopes |
3.3.3.Boron isotopes |
3.4.Processing procedure |
3.4.1.Sample preparations |
3.4.2.Cl isotope determination |
3.4.3.Sample Preparation(δ37Cl) |
3.4.4.TIMS Analysis |
3.4.5.Boron isotope determination |
3.4.6.Boron Isotope Measurement |
3.4.7.Water stable isotopes |
CHAPTER 4.AN OVERVIEW OF PAKISTAN ROCK SALT RESOURCES AND THEIR CHEMICAL CHARACTERISATION |
4.1.Results and discussion |
4.1.1.The Salt Range Deposits |
4.1.1.1.Khwera Deposit |
4.1.1.2.Reserves and production |
4.1.1.3.Chemical characterization |
4.1.2.Warcha Deposit |
4.1.2.1.Reserves and production |
4.1.2.2.Chemical Characterization |
4.1.3.Kalabagh Salt Deposit |
4.1.3.1.Reserves and annual production |
4.1.3.2.Chemical Characterization |
4.1.4.Salt Deposits of the Kohat-Basin |
4.1.4.1.Reserves and annual production |
4.1.4.2 Chemical Characterisations |
4.2.Conclusions |
CHAPTER 5. THERMAL SYSTEMS IN THE HIMALAYAN COLLISION ZONE, PAKISTAN: CONSTRAIN ON ORIGIN AND EVOLUTION FROM GEOCHEMISTRY AND MULTIPLE ISOTOPES |
5.1.Results and discussion |
5.1.1.Geothermal fluid chemistry and temperatures |
5.1.2 Water stable (d18O and dD) isotope signatures and local meteoric water line (LMWL) |
5.1.3.Boron concentration and Boron isotope compositions of the thermal springs |
5.1.4.Origin of Boron |
5.2.Conclusion |
CHAPTER 6. CLIMATE CHANGE IMPACT ON THE EVOLUTION OF THE SALINE LAKES OF THE SOAN-SAKASER VALLEY (CENTRAL SALT RANGE; PAKISTAN): EVIDENCES FROM HYDROCHEMISTRY AND WATER (?D, ?18O) AND CHLORINE (?37Cl) STABLE ISOTOPES |
6.1.Results and discussion |
6.1.1.Hydrogeology and climate conditions |
6.1.2.Salinity and hydrofacies |
6.1.3.Sources and processes controlling ion compositions of the lakes |
6.1.4.Dissolution and deposition |
6.1.5.Chlorine isotope compositions |
6.1.6.Water stable isotope compositions |
6.2.Conclusions |
CHAPTER 7.ORIGIN AND EVOLUTION OF EOCENE ROCK SALTS IN PAKISTAN AND IMPLICATIONS FOR PALEOCLIMATE STUDIES:INSIGHTS FROM CHEMISTRY AND STABLE Cl ISOTOPES |
7.1.Results and discussion |
7.1.1.Halite mineralogical characteristics |
7.1.2.Halite geochemistry |
7.1.3.Cl Isotopes in halite:implication for paleoclimate |
7.1.4.Origin of the Eocene halite in the Kohat Basin |
7.2.Conclusions |
CHAPTER 8.CHLORINE ISOTOPES UNRAVEL CONDITIONS OF FORMATION OF THE NEOPROTEROZOIC ROCK SALTS FROM THE SALT RANGE FORMATION,PAKISTAN |
8.1.Results and discussion |
8.1.1.Origin of the halite |
8.1.2.Chlorine isotopes and Cl/Br ratios in the halite |
8.1.3.Inputs of non-Marine Chloride |
8.1.4.Economical deposits andδ37C1 |
8.1.5.Comparison of the Cl isotope compositions of the Salt Range with other basins |
8.2.Conclusions |
CHAPTER 9. UNRAVELING SOURCES AND CLIMATE CONDITIONS PREVAILING DURING THE DEPOSITION OF NEOPROTEROZOIC EVAPORITES USING COUPLED CHEMISTRY AND BORON ISOTOPE COMPOSITIONS (?11B): THE EXAMPLE OF THE SALT RANGE, PUNJAB, PAKISTAN |
9.1.Results and discussion |
9.1.1.B isotope compositions and ion concentrations |
9.1.2.Boron sources |
9.1.3.B isotope fractionation between halite and brines in the SR area |
9.1.4. δ11B and Paleoclimate:geological implications |
9.1.5.Boron isotopes:a global Comparison |
9.2.Conclusions |
CHAPTER 10.SUMMARY AND FUTURE WORK |
10.1.Summary |
10.2.Problems solved |
10.3.Future work(s)and recommendations |
APPENDIX Ⅰ(SAMPLING AREA) |
APPENDIX Ⅱ(ABBREVIATIONS) |
REFERENCES |
ACKNOWLEDGEMENTS |
CURRICULUM VITAE(with PUBLICATIONS) |
(7)Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects(论文提纲范文)
1. Introduction |
2. Progress in physical geography and studies of the living environment of China |
2.1 Evolution of arid and desert environments |
2.1.1 Evolution of arid environments |
2.1.2 Evolution of deserts |
2.1.3 Aeolian geomorphology |
2.2 Evolution of landforms and fluvial systems in the Tibetan Plateau |
2.2.1 Tibetan Plateau uplift and the Cenozoic environment |
2.2.2 Fluvial evolution across the margin of the Tibetan Plateau |
2.3 The cryosphere:glaciers and permafrost |
2.3.1 Controversy and progress in understanding Qua-ternary glaciations |
2.3.2 Ice core records from the Tibetan Plateau |
2.3.3 Recent changes in glacier activity in the Tibetan Plateau |
2.3.4 Permafrost |
2.4 Climates and climate change in China |
2.4.1 Monsoon climate and its variations |
2.4.2 Westerlies climate and its variations |
2.4.3 Holocene temperature variations in China |
2.4.4 Tree rings and climate change in China during the last two millennia |
2.5 Lakes and wetlands |
2.5.1 Paleolimnology and the controversial“Mega-pa-leolake”period |
2.5.2 Lake pollution and eutrophication |
2.5.3 Progress in the study of China’s wetlands |
2.6 Watershed system modeling and soil erosion |
2.6.1 The watershed system model |
2.6.2 Soil erosion |
2.6.3 Hydrological processes and ecosystem services in the Loess Plateau |
2.6.4 Nonlinear mechanism of watershed runoff formation and transformation |
2.7 Past human-environment interactions |
2.7.1 Agriculture development in Neolithic China |
2.7.2 The history of peopling the Tibetan Plateau |
2.7.3 Transcontinental cultural exchange in prehistoric Eurasia |
2.8 Biogeography |
2.9 Physical geographic zonality |
3. Conclusions and prospects |
3.1 Progress in research on China’s physical geography and living environment towards a leading position in international research |
3.2 Accordance with international standards and modernization in order to further advance physical geography reseach in China |
3.3 Promotion of physical geography research with Chinese characteristics and leading the international research frontier under a global perspective |
(8)俄罗斯城市可持续发展及其对中国城市的启示研究(论文提纲范文)
摘要 |
ABSTRACT |
CHAPTER Ⅰ Introduction |
1.1 Research background |
1.2 Research goal and objectives |
1.3 Literature review |
1.3.1 Concept of sustainable development |
1.3.2 Social-Economic aspects of regional planning and urban development in Russia |
1.4 Materials and methods |
1.4.1 Research framework |
1.4.2 Materials and methods |
CHAPTER Ⅱ Concept of Sustainable Development |
2.1 Sustainable development |
2.1.1 Phenomenon 'climate change' |
2.1.2 Urbanization |
2.1.3 Relationship between climate change and urbanization |
2.1.4 International level commitments |
2.1.5 Conclusion |
2.2 Sustainable urban planning in Russian Federation |
2.2.1 Introduction |
2.2.2 Sustainable development in Russia |
2.2.3 Russian town-planning legislative base |
2.2.4 Russian national green building technical legislative base |
2.2.5 GIS Technology into the Russian town-planning practice |
2.2.6 Conclusion |
2.3 Sustainable urban planning in People's Republic of China |
2.3.1 Introduction |
2.3.2 Sustainable development in China |
2.3.3 Chinese urban planning legislative base National Garden City |
2.3.4 Chinese national green building technical legislative base |
2.3.5 Conclusion |
References |
CHAPTER Ⅲ Transformation of the Scientific Views on the Process of Urbanization |
3.1 Process of urbanization in Russian Federation |
3.1.1 Introduction |
3.1.2 Three waves of Russian urbanization |
3.1.3 First wave of urbanization1860s- |
3.1.4 Second wave of urbanization1926- |
3.1.5 Third wave of urbanization in1950s |
3.1.6 Conclusion |
3.2 Process of urbanization in People's Republic of China |
3.2.1 Introduction |
3.2.2 Three great historical transformations of China |
3.2.3 First historical transformation(1911) |
3.2.4 Second historical transformation(1949) |
3.2.5 Third historical transformation(1978) |
3.2.6 Conclusion |
References |
3.3 Results of the comparative analysis of sustainable urban development in Russian Federation and People's Republic of China |
3.3.1 Introduction |
3.3.2 Has comparative analysis value? |
3.3.3 What is the valuable experience of both countries in the modern urban development? |
3.3.4 Conclusion |
CHAPTER Ⅳ Socio-economic aspects of regional planning and urban development in Russian Federation |
4.1 Introduction |
4.2 Literature review |
4.3 Historical background |
4.4 All-Russia forum‘Strategic Planning in the Regions and Cities of Russia’ |
4.5 Inquire into the relationship between priorities of sustainable development,strategic planning and Russian socio-economic policy |
4.5.1 Strategic planning system of the Russian Federation |
4.5.2 Spatial Development Strategy of the Russian Federation to 2025 |
4.5.3 Interrelation of the documents of strategic and territorial planning of Russian Federation |
4.5.4 Russian state policy of innovation development |
4.6 Conclusion |
References |
CHAPTER Ⅴ Historical overview of the Soviet science cities development |
5.1 Introduction |
5.2 Historical overview of the science cities development1917-1980s |
5.2.1 Urban design trends in the science settlements creation,1930s |
5.2.2 Urban design trends in science cities establishment after the Great Patriotic War.The beginning period of the Cold War |
5.2.3 Urban design trends in the science cities establishment in1960-1970.The period of the formulation of a standard approach to design and construction |
5.2.4 Summing up the results of the Soviet period of the construction of the science cities of1930s-1980s |
5.3 Urban design trends in the science cities establishment in1990s |
5.4 Urban design trends in the science cities establishment after2010s |
5.5 Conclusion |
References |
CHAPTER Ⅵ Russian innovation infrastructure |
6.1 Introduction |
6.2 National innovation system of the Russian Federation |
6.3 Innovation Infrastructure:territorial level |
6.3.1 Innovation special economic zones |
6.3.2 Innovation and industrial clusters' |
6.4 Innovation infrastructure physical level:technoparks and business incubators |
6.4.1 Technoparks |
6.4.2 Technopark-leaders of the II National Russian Technoparks Ranking-2016 |
6.5 Conclusion |
References |
CHAPTER Ⅶ CASE OF STUDY:Skolkovo Innovation Center |
7.1 Introduction |
7.1.1 Skolkovo Innovation Center |
7.2 Aim of creating Skolkovo Innovation Center |
7.3 Types of infrastructure of the Skolkovo Innovation Center |
7.4 Results of international competition for Skolkovo IC master plan concept |
7.4.1 Finalist of international competition for Skolkovo IC Masterplan OMA |
7.4.2 Winner of international competition for Skolkovo IC master plan- AREP |
7.5 Structure of Skolkovo IC Town Planning Board |
7.6 Development strategy and documents of Skolkovo IC master plan |
7.7 Skolkovo IC infrastructure construction financial program |
7.8 Transport accessibility to Skolkovo IC |
7.9 Key institutions facilities of the Skolkovo IC |
7.9.1 Skoltech- Skolkovo Institute of Science and Technology |
7.9.2 Research and development centres of the Skolkovo IC District D |
7.9.3 Skolkovo Technopark building |
7.9.4 Business Center Amaltea(BC Gallery) |
7.9.5 IT-Cluster Business Park of the Skolkovo IC |
7.9.6 Transmashholding Corporate Research Center |
7.9.7 Hypercube the First Building of Skolkovo IC |
7.9.8 Skolkovo Business Center(MatRex) |
7.9.9 Sberbank Technopark |
7.10 Social infrastructure facilities of Skolkovo IC |
7.11 Housing facilities of Skolkovo IC |
7.11.1 Central Zone Z |
7.11.2 South District D |
7.11.3 Technopark District D |
7.12 Skolkovo IC landscape design |
7.13 Conclusion |
CHAPTER Ⅷ Russian town-planning science in the context of socio-economic transformations |
8.1 Introduction |
8.2 Definition of the term"gradostroitelstvo" |
8.3 Historical overview of the town-planning science in Russia |
8.3.1 Socialist town-planning1917- |
8.3.2 Socialist town-planning1933- |
8.3.3 Socialist town-planning1941- |
8.3.4 Socialist town-planning1941- |
8.4 Theoretical foundations and unique traditions of town-planning science in Russia |
8.5 Russian fundamental research in the field of town-planning |
8.6 Course of town-planning in the Russian education system |
8.6.1 The town-planning faculty of the Moscow Architectural Institute(State Academy)MARHI |
8.6.2 Vysokovsky Graduate School of Urbanism |
8.6.3 Strelka Institute for Media,Architecture and Design |
8.6.4 MARCH Architecture School |
8.6.5 Summarizing the analysis of four urban planning schools in Russia |
8.7 Applied town-planning science |
8.7.1 Methods of town-planning analysis |
8.7.2 Interdisciplinary methods of town-planning analysis |
8.8 Conclusion |
References |
CONCLUSION |
SUMMARY AND RECOMMENDATIONS FOR FURTHER STUDY AND PRACTICE |
APPENDIX Ⅰ |
APPENDIX Ⅱ |
APPENDIX Ⅲ |
APPENDIX Ⅳ |
APPENDIX Ⅴ |
APPENDIX Ⅵ |
APPENDIX Ⅶ |
APPENDIX Ⅷ |
APPENDIX Ⅸ |
APPENDIX Ⅹ |
APPENDIX ⅩⅠ |
APPENDIX ⅩⅡ |
ACKNOWLEDGEMENTS |
SCIENTIFIC ACHIVEMENTS |
Appreciate |
(9)南岭中—晚侏罗世含铜铅锌与含钨花岗岩及其矽卡岩成矿作用 ——以铜山岭和魏家矿床为例(论文提纲范文)
摘要 |
Abstract |
Chapter 1. Introduction |
1.1 Research background and scientific problems |
1.1.1. Research background |
1.1.2. Scientific problems |
1.2. Topic selection and research contents |
1.2.1. Topic selection |
1.2.2. Research contents |
1.3. Resemch methodology and technical route |
1.3.1. Research methodology |
1.3.2. Technical route |
1.4. Workload and research achievements |
1.4.1. Workload |
1.4.2. Main findings and innovations |
Chapter 2. Geological setting - |
2.1. South China |
2.1.1. Geodynamic evolution |
2.1.2. Multiple-aged granitoids and volcanic rocks |
2.1.3. Polymetallic mineralization |
2.2. Nanling Range |
2.2.1. Middle-Late Jurassic ore-bearing granitoids |
2.2.2. Middle-Late Jurassic skam deposits |
Chapter 3. Geology of the Tongshanling-Weijia area |
3.1. Stratigraphy |
3.2. Structures |
3.3. Magmatism |
3.4. Mineralization |
Chapter 4. Different origins of the Cu-Pb-Zn-bearing and W-bearing granitoids |
4.1. Introduction |
4.2. Petrography of granitoids |
4.2.1. Tongshanling granodiorite porphyry |
4.2.2. Dioritic dark enclaves |
4.2.3. Tongshanling granite porphyry |
4.2.4. Weijia granite porphyry |
4.3. Sampling and analytical methods |
4.4. Results |
4.4.1. Zircon U-Pb age |
4.4.2. Zircon Hf isotope |
4.4.3. Whole-rock major elements |
4.4.4. Whoie-rock trace and rare earth elements |
4.4.5. Whole-rock Sr-Nd isotopes |
4.5. Discussion |
4.5.1. Timing of granitoids |
4.5.2. Degree of fractionation |
4.5.3. Petrogenesis |
4.5.4. Sources of the Cu-Pb-Zn-bearing and W-bearing granitoids |
4.5.5. Genetic model of the Cu-Pb-Zn-bearing and W-bearing granitoids |
4.6. Summary |
Chapter 5. Reworked restite enclave |
5.1. Introduction |
5.2. Tongshanling granodiorite and its microgramilar enclaves |
5.3. Petrography |
5.3.1. Tongshanling granodiorite |
5.3.2. Microgranular enclaves |
5.4. Analytical methods |
5.5. Analytical results |
5.5.1. Plagioclase |
5.5.2. Amphibole |
5.5.3. Biotite |
5.5.4. Zircon |
5.6. Discussion |
5.6.1. Textural evidence |
5.6.1.1. Residual materials |
5.6.1.2. Vestiges of magma reworking |
5.6.2. Compositional evidence |
5.6.2.1. Magmatic amphibole |
5.6.2.2. Metamorphic amphibole |
5.6.2.3. Magma reworked metamorphic amphibole |
5.6.2.4. Zircon and plagioclase |
5.6.2.5. Biotite |
5.6.2.6. Residual materials in the granodiorite |
5.6.2.7. Geochemical signatures |
5.6.3. Geothermobarometry |
5.6.3.1. Temperature |
5.6.3.2. Pressure |
5.6.4. The model for reworked restite enclave |
5.7. Petrogenetic implications |
Chapter 6. Magma emplacement-induced structural control on skarn formation |
6.1. Introduction |
6.2. Regional structural analysis |
6.2.1. Normal fault |
6.2.2. Contact zone |
6.3. Deposit geology |
6.3.1. Endoskarn |
6.3.2. Exoskarn |
6.3.3. Sulfide-quartz vein |
6.4. Sampling and analytical methods |
6.5. Results |
6.5.1. RSCM thermometry |
6.5.2. EBSD mapping |
6.5.3. Garnet composition |
6.6. Discussion |
6.7. Summary |
Chapter 7. Zonation and genesis of the Tongshanling Cu-Mo-Pb-Zn-Ag skarn system |
7.1. Introduction |
7.2. Deposit geology |
7.2.1. Tongshanling Cu-Pb-Zn deposit |
7.2.1.1. Proximal endoskam |
7.2.1.2. Proximal exoskam |
7.2.1.3. Distal skam |
7.2.1.4. Sulfide-quartz vein |
7.2.1.5. Carbonate replacement |
7.2.1.6. Ore types |
7.2.1.7. Paragenesis |
7.2.2.Jiangj ong Pb-Zn-Ag deposit |
7.2.3. Yulong Mo deposit |
7.3. Sampling and analytical methods |
7.4. Results |
7.4.1. Garnet U-Pb dating |
7.4.2. Molybdenite Re-Os dating |
7.4.3. Titanite U-Pb dating |
7.4.4. S isotope |
7.4.5. Pb isotope |
7.4.6. H-O isotopes |
7.5. Discussion |
7.5.1. Timing of mineralization |
7.5.2. Sources of ore-forming materials |
7.5.3. Nature of ore-forming fluids |
7.5.4. Genetic links between different mineralization types and ore deposits |
7.5.5. Ore-forming process |
7.5.6. Comparison with the Late Jurassic W deposits in the Nanling Range |
7.6. Summary |
Chapter 8. Ore-forming process of the Weijia scheelite skarn deposit |
8.1 Introduction |
8.2. Deposit geology |
8.2.1. Stratigraphy |
8.2.2. Weijia granite |
8.2.3. Stockwork veins |
8.2.4. Magnesian skarn |
8.2.5. Calcic skarn |
8.2.6. Relationship between WO_3 and CaF_2 grades |
8.3. Sampling and analytical methods |
8.4. Results |
8.4.1. RSCM thermometry |
8.4.2. Altered granite |
8.4.3. Biotite |
8.4.4. White mica |
8.4.5. Serpentine |
8.4.6. Phlogopite |
8.4.7. Garnet |
8.4.8. Pyroxene |
8.4.9. Wollastonite |
8.4.10. Vesuvianite |
8.4.11. Scheelite |
8.5. Estimation of fluorine activity |
8.6. Discussion |
8.6.1. Fluorine promoting magmatic fractionation and tungsten enrichment |
8.6.2. Magmatic to hydrothermal evolution |
8.6.3. Magnesian and calcic skarn formation |
8.6.4. Calcium as the precipitant of fluorine and tungsten |
8.6.5. Ore-forming process |
8.6.6. Metallogenic model |
8.7. Summary |
Chapter 9. Conclusions and perspectives |
9.1. Conclusions |
9.2. Perspectives |
Acknowledgements |
References |
Appendices |
Publications and participated academic activities |
(10)The Present Research and Prospect of Chinese Geosciences History(论文提纲范文)
1 The History and Present Situation of the Research on the History of International Geological Science |
1.1 The change of the content of the study |
1.2 Organizations and research institutes |
1.3 Publications and authors |
2 The Present Situation and Progress of the Study of the Chinese Geological Science History |
2.1 A brief account of the development of the Chinese geological science history |
2.2 Research institutes and research groups |
2.3 The guiding ideology of the research on the history of geological science |
2.4 Major progress in recent years |
2.4.1 Promote interaction between Chinese geological science and social development in China |
2.4.2 A study on the history of geological disciplines of China |
2.4.3 A study of geological characters |
Kwong Yung Kong(1863-1965) |
Woo Yang Tsang(1861-1939) |
Gu Lang(1880-1939) |
Lu Xun(1881-1936) |
Wang Chongyou(1879-1985) |
Zhang Hongzhao(1877-1951) |
Ding Wenjiang(1887-1936) |
Weng Wenhao(1889-1971) |
Li Siguang(1889-1971) |
R.Pumpelly(1837-1923) |
Richthofen,Ferdinand von(1833-1905) |
Amadeus Willian Grabau(1870-1946) |
Johann Gunnay Andersson(1874-1960) |
Prerre Teilhaya de Chardin(1881-1955) |
2.4.4 The study of history of ancient geological thoughts |
2.4.5 The study of the geological cause |
2.4.6 Research of the history of the communication of Chinese and foreign geological science |
3 Development Prospect |
4 Conclusion |
四、SURVEY OF THE CHINESE ACADEMY OF GEOLOGICAL SCIENCES——Ⅱ. MAJOR ACTIVITIES OF SCIENCE AND TECHNOLOGY(论文参考文献)
- [1]Geological and surfacial processes and major disaster effects in the Yellow River Basin[J]. Hengxing LAN,Jianbing PENG,Yanbo ZHU,Langping LI,Baotian PAN,Qiangbing HUANG,Junhua LI,Qiang ZHANG. Science China(Earth Sciences), 2022
- [2]Mercury isotope constraints on the genesis of late Mesozoic Sb deposits in South China[J]. Changzhou DENG,Jiawei ZHANG,Ruizhong HU,Kai LUO,Yanan ZHU,Runsheng YIN. Science China(Earth Sciences), 2022
- [3]获取真实领导力与组织学习和创新对CPEC项目管理成功的中介效应[D]. Ahsan Nawaz. 河北大学, 2021(11)
- [4]Progress and prospects of applied research on physical geography and the living environment in China over the past 70 years (1949–2019)[J]. CHEN Fahu,WU Shaohong,CUI Peng,CAI Yunlong,ZHANG Yili,YIN Yunhe,LIU Guobin,OUYANG Zhu,MA Wei,YANG Linsheng,WU Duo,LEI Jiaqiang,ZHANG Guoyou,ZOU Xueyong,CHEN Xiaoqing,TAN Minghong,WANG Xunming,BAO Anming,CHENG Weixin,DANG Xiaohu,WEI Binggan,WANG Guoliang,WANG Wuyi,ZHANG Xingquan,LIU Xiaochen,LI Shengyu. Journal of Geographical Sciences, 2021(01)
- [5]尼泊尔山区耕地撂荒的社会与生态环境风险研究[D]. Suresh Chaudhary. 中国科学院大学(中国科学院水利部成都山地灾害与环境研究所), 2020(01)
- [6]The Use of Elemental and B & Cl Stable Isotope Geochemistry to Unravel the Formation of Salt Rocks,Saline Lakes and Thermal Springs in Pakistan[D]. SYED ASIM HUSSAIN. 中国科学院大学(中国科学院青海盐湖研究所), 2020(04)
- [7]Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects[J]. Fahu CHEN,Bojie FU,Jun XIA,Duo WU,Shaohong WU,Yili ZHANG,Hang SUN,Yu LIU,Xiaomin FANG,Boqiang QIN,Xin LI,Tingjun ZHANG,Baoyuan LIU,Zhibao DONG,Shugui HOU,Lide TIAN,Baiqing XU,Guanghui DONG,Jingyun ZHENG,Wei YANG,Xin WANG,Zaijun LI,Fei Wang,Zhenbo HU,Jie WANG,Jianbao LIU,Jianhui CHEN,Wei HUANG,Juzhi HOU,Qiufang CAI,Hao LONG,Ming JIANG,Yaxian HU,Xiaoming FENG,Xingguo MO,Xiaoyan YANG,Dongju ZHANG,Xiuhong WANG,Yunhe YIN,Xiaochen LIU. Science China(Earth Sciences), 2019(11)
- [8]俄罗斯城市可持续发展及其对中国城市的启示研究[D]. Lisaia Daria(达丽娅). 华南理工大学, 2019(01)
- [9]南岭中—晚侏罗世含铜铅锌与含钨花岗岩及其矽卡岩成矿作用 ——以铜山岭和魏家矿床为例[D]. 黄旭栋. 南京大学, 2018
- [10]The Present Research and Prospect of Chinese Geosciences History[J]. CHEN Baoguo,ZHANG Jiuchen,YANG Mengmeng. Acta Geologica Sinica(English Edition), 2016(04)