一、国外离子选择电极的发展趋势(论文文献综述)
曹军文,张文强,李一枫,赵晨欢,郑云,于波[1](2021)在《中国制氢技术的发展现状》文中研究表明氢能是一种高效清洁的二次能源,在实现"碳中和"目标中起重要作用。随着制氢规模不断扩大、制氢成本不断降低,氢能将有望与电能共同成为二次能源主体,通过氢电互补推动我国能源结构转型、降低碳排放、保障我国能源安全。目前,我国已成为世界第一大产氢国,主要有三类工业制氢路线:化石燃料重整制氢、工业副产氢和清洁能源电解水制氢。依托清洁能源发展起来的其他制氢新技术,如太阳能光解水制氢、生物质制氢、核能制氢等也受到广泛研究和关注。此外,制氢系统组成复杂,建模和优化难度高,人工智能在制氢系统的预测、评估和优化方面表现出独特的优势,受到国际学者的关注。本文结合最新研究进展,对上述制氢路线的发展情况进行了综述,并通过技术成熟度、经济性和环保性比较,结合国情对我国未来氢气供应结构做出展望。同时,本文综述了人工智能在制氢系统中的最新应用进展,以期为我国制氢工艺发展提供新思路。
黄金领[2](2021)在《脉冲气流灭弧装置在500kV串补上的机制研究》文中认为500kV串联电容补偿技术可以提高输电线路的输送容量,提高电网的稳定性,但是在运行过程中,也出现MOV压力释放、爆炸以及保护间隙误触发问题,造成串补设备的停运。目前采取的提高MOV工艺、加强保护间隙维护等措施还有较大的局限性,未能从根本上解决串补MOV爆炸、间隙误触发这些行业性难题。为创新性探索串补MOV爆炸、间隙误触发的解决方案,提高串补运行的可靠性,本文首先研究了串联补偿装置、MOV、保护间隙的原理以及目前存在的问题及其控制措施,其次对保护间隙空气击穿形成电弧的机理进行研究,再次对高速高压脉冲气流熄灭电弧的原理进行研究,并根据原理建立数学模型,利用COMSOL软件进行仿真模拟,然后对脉冲气流灭弧装置进行工频大电流、500kV超高压灭弧试验,最后对220kV线路上试用的脉冲灭弧装置进行总结分析。研究表明串补保护间隙击穿形成的电弧与常规电弧特性一致,但短路电流更大、持续时间更长。仿真模拟结果表明接近喷射口的电弧受喷射气流影响最大,远离离喷射口的电弧受到的影响小,但最终都低于3000K,所需时间仅为2.24ms,灭弧速度非常快。工频大电流、500kV超高压试验试验表明,在大电流、超高压条件下情况下,脉冲灭弧装置能够正确动作,很好的扩散电弧热量,中和电弧带电粒子,在短时间内熄灭电弧。在实际的220kV线路上试用表明,脉冲灭弧装置能够在继电保护动作前熄灭雷电击穿空气间隙产生的续流工频短路电弧,未发生线路跳闸。采用带脉冲气流灭弧功能的间隙,即脉冲气流灭弧装置能够熄灭串补保护间隙误触发、自触发时的电弧,防止串补旁路,而且相对于线路上并联绝缘子串的使用方式,不需要进行绝缘配合,使用更加方便。
吕翔[3](2021)在《季冻区玄武岩纤维活性粉末混凝土耐久性能和力学性能研究》文中研究指明活性粉末混凝土(Reactive Powder Concrete,简称RPC)是一种具有超高强度、高耐久性及高温适应性等特点的超高性能混凝土。RPC可以有效地减小结构物的自重,增加跨越能力,在各种基础设施建设中具有广阔的应用前景。RPC材料在制备过程中通常掺入纤维以提高其性能。吉林省蕴藏着丰富的玄武岩矿石,玄武岩产物的推广和应用对我省经济转型和发展具有重要意义。由玄武岩矿石熔融拉丝生产的绿色环保型玄武岩纤维是一种具有天然相容性的新型高性能无机纤维。本文将这种抗拉强度高、耐酸碱腐蚀的玄武岩纤维作为掺合料改性RPC,对玄武岩纤维RPC复合材料的耐久性能和力学性能进行研究。主要研究工作和结果如下:(1)采用响应曲面法对玄武岩纤维RPC的配合比进行设计,提出一套适用于季冻区桥梁、道路工程,和易性、力学性能和耐久性能满足要求的玄武岩纤维RPC制备方案。试验结果得出玄武岩纤维RPC的最佳配合比:砂胶比为0.9、水胶比为0.18、玄武岩纤维掺量为8 kg/m3、硅灰水泥比为0.25;相对于不掺玄武岩纤维的试件,玄武岩纤维掺量为8 kg/m3的试件抗折强度能提高18%,抗压强度能提高32%。(2)针对季冻区冻融循环效应显着,桥梁、道路工程常用除冰盐等特点,考虑裂缝、冻融循环和氯盐侵蚀的影响,不但研究了玄武岩纤维RPC的基体耐久性,还研究了玄武岩纤维RPC内嵌钢筋耐久性。此外,从微观结构角度对玄武岩纤维RPC耐久性变化机理进行分析。研究结果表明:裂缝是玄武岩纤维RPC基体及其内嵌钢筋耐久性的显着性影响因素;玄武岩纤维RPC骨料石英砂与水泥基体之间的界面过渡区厚度可忽略;玄武岩纤维RPC的水化产物以密实的C-S-H基体为主;玄武岩纤维在RPC材料中呈乱向分布,没有聚集成团现象,并且与水泥基体连接紧密。(3)详细量化分析裂缝不同属性(裂缝深度、裂缝数量、裂缝宽度)和冻融循环对玄武岩纤维RPC耐久性的影响。并引入声发射技术和Weibull分布理论,利用声发射累计能量和幅值参数评价玄武岩纤维RPC的抗冻性,利用Weibull分布理论建立冻融损伤模型,实现对带裂缝玄武岩纤维RPC冻融损伤全过程的表征。研究结果表明:玄武岩纤维RPC抗冻融耐久性能优异,当冻融循环次数达到600次时,带裂缝玄武岩纤维RPC的质量损失率为2.52%,抗压强度损失率为18.62%,抗折强度损失率为29.89%。(4)量化分析裂缝、界面损伤和氯盐侵蚀对玄武岩纤维RPC内嵌钢筋耐久性的影响。运用电化学方法,以钢筋腐蚀电位、自腐蚀电流密度、极化电阻评价玄武岩纤维RPC中钢筋的锈蚀程度,进而评价氯盐侵蚀对玄武岩纤维RPC的影响,为制定RPC专用的抗氯盐侵蚀测试方法和评价标准提供参考。研究结果表明:运用电化学方法从钢筋锈蚀的角度评价玄武岩纤维RPC的抗氯盐侵蚀耐久性是可行的。玄武岩纤维自身耐腐蚀的特性可以增加RPC的基体电阻,使RPC各部分的连接更加紧密,进而抑制钢筋腐蚀的发生,延长钢筋的使用寿命。(5)考虑了钢筋粘结长度和混凝土保护层厚度两个粘结性能影响因素,通过梁式试验方法研究了变形钢筋与玄武岩纤维RPC之间的粘结性能,依据试验结果拟合了钢筋与玄武岩纤维RPC的粘结应力,建立了完整的玄武岩纤维RPC与变形钢筋的粘结应力-滑移本构关系。(6)通过四点弯曲试验测试了钢筋-玄武岩纤维RPC试验梁抗弯全过程的静力响应,通过位移、应力等试验数据拟合并推导了适用于钢筋-玄武岩纤维RPC简支梁的开裂弯矩、正截面抗弯承载力和裂缝宽度计算公式,并基于声发射参数断裂表征方法分析了钢筋-玄武岩纤维RPC梁的断裂性能。研究结果表明:玄武岩纤维在RPC中拉伸、扭转和变形作用导致试验梁产生的Ⅰ型裂缝减少,减小了Ⅰ型裂缝引起的低应力脆断,进而提高RPC简支梁的抗拉伸能力,增加RPC简支梁的承载能力。
孙晓飞[4](2021)在《基于专利信息分析的锂离子电池回收技术的发展研究》文中研究说明
吴九鹏[5](2021)在《碳化硅MPS二极管的设计、工艺与建模研究》文中研究说明电能是当今人类消耗能源的主要形式,并且所占比例逐年上升。因此,对电能进行处理和变换的电力电子技术就显得越来越重要。半导体功率器件是电力电子技术的核心元件。近年来,基于碳化硅(SiC)材料的新一代功率器件异军突起,以其击穿电压高、导通电阻小、开关速度快等特点,逐渐得到了学术界和产业界的青睐。在碳化硅器件进步的过程中,高效的器件设计方法、稳定而低成本的流片工艺、器件在异常工况下的行为特征和可靠性,都需要进行细致的研究。而碳化硅二极管就是研究这些问题的绝佳平台。目前最流行的碳化硅二极管包括结势垒肖特基二极管(Junction Barrier Schottky diode,JBS diode)以及混合PiN结势垒肖特基二极管(Merged PiN Schottky diode,MPS diode)。它们在正向导通、反向阻断性能和浪涌、雪崩可靠性之间取得了较好的平衡。众多研究者针对MPS/JBS二极管的元胞设计和器件性能之间的关系做了深入的研究,并且已有多家厂商开发出了成熟的商业产品。但是目前针对碳化硅二极管的研究仍然存在一些不足之处,包括SiC MPS二极管中稳定可靠的P区欧姆接触工艺、芯片外延层参数的设计和提取、器件在浪涌等大功率电热耦合过程中的电学和热学行为的表征和结温信息的获取等,都存在众多值得优化的地方。针对这些问题,本文设计、流片完成了多种SiC MPS/JBS二极管,并针对制备完成的器件开展了系统的表征测试和建模分析的工作,主要包括:(1)SiC MPS/JBS二极管结构参数的设计与工艺开发;(2)对制备完成的SiC MPS/JBS二极管的静态、动态、浪涌可靠性的测试;(3)建立针对带有场限环终端的垂直型功率器件的外延参数提取方法;(4)建立针对浪涌过程的电热耦合结温计算模型。本文具有以下创新点:(1)通过设计、流片、测试具有两种元胞排布和多组尺寸参数的SiC MPS二极管,本文充分理解并掌握了SiC MPS二极管研发技术。本文同时从仿真和实际层面揭示了器件元胞设计、静态特性与浪涌可靠性之间的联系。根据电流和温度的不同,本文将SiC MPS二极管在浪涌过程中的电学行为简化为三个模态,并详细分析了各个模态的形成和转化机理,加深了对器件浪涌特性的理解。本文同时开发了一套基于注入型P+区的SiC MPS二极管流片工艺,最大限度地兼容了SiC JBS二极管的工艺流程。根据此工艺流程制备完成的器件具有稳定的电学特性,并在浪涌电流冲击等极端工况下展现出了媲美商业器件的高可靠性。(2)本文改进了芯片外延层参数的传统设计和提取方法。通过引入辅助函数并结合数值方法,本文提出了无需电子和空穴的碰撞电离系数相等的假设、直接处理二重积分形式的雪崩击穿判据并计算击穿电压的算法。基于该算法,本文给出了适用于4H-SiC材料、根据耐压设计目标确定最佳外延参数的拟合公式,方便了外延层设计。本文同时改进了提取芯片外延参数的传统C-V法。通过考虑场限环终端(Field limited rings,FLRs)对耗尽区几何形状和器件C-V特性的影响,优化后的外延参数反推算法相比于传统C-V法能计算出更准确的外延掺杂浓度和厚度,有助于对器件进行逆向工程分析。(3)本文基于传统RC热路模型,提出了适用于浪涌过程的分布式热源电热耦合结温计算模型。本模型通过改变热学支路的拓扑结构来模拟分布式热源,通过令电学支路和热学支路的参数先后发生改变来实现电学和热学过程的解耦。本模型可从器件的静态正向电学特性和热阻抗测试结果出发,无需实际进行浪涌测试,即可准确而快速地预测其在浪涌过程中的电学行为和内部各部分的结温变化。本模型考虑了热源分散在芯片各处而非集中在主结这一事实,也考虑了各层材料的热阻和热容参数随温度的变化,相对于传统方法更接近实际情况,具有更高的精度。本文提出的器件设计、工艺流片、建模分析等研究手段,为器件研究者提供了一套完整的方法论。这些手段能加快器件的设计和分析过程,加深器件研究者对器件工作机理的理解。可以预见,本文及其后续研究,将提供越来越多的针对功率器件的研究手段和机理模型,有助于提升功率器件研究工作的效率。
余涛[6](2021)在《高气压等离子放电特性实验及模拟研究》文中进行了进一步梳理
张献伟[7](2021)在《基于有限元数值模拟的地铁杂散电流分布及腐蚀研究》文中研究指明随着我国城市轨道交通行业的蓬勃发展,地铁作为城市立体交通网络的重要组成部分,为广大城市居民日常出行带来了极大便利。然而城市轨道交通带给人们舒适乘车体验的同时也带来了一些潜在的问题,比如杂散电流泄漏引起的金属结构腐蚀对乘客安行具有巨大的安全隐患,所以探究城市轨道交通杂散电流的分布规律以及预测其腐蚀危害具有重要的现实意义。本文基于国内外杂散电流研究现状,分别从杂散电流分布规律、杂散电流腐蚀实验以及杂散电流腐蚀预测三个方面进行了综述分析。针对地铁区间杂散电流的动态泄漏以及对埋地金属管线金属的腐蚀威胁,提出了有限元数值模拟与实验相结合的研究方法,并基于仿真数据建立了以地表电位预测埋地管线腐蚀电流密度的偏最小二乘法(PLS)腐蚀预测模型。针对地铁区间,建立了地铁车辆运动工况条件下的三维有限元杂散电流分布模型,对比分析了单、双边供电条件下土壤电势、土壤电流密度、钢轨电位、埋地管线电流密度的变化规律。研究发现杂散电流分布受地铁车辆运动工况的直接影响,地铁区间双边供电较单边供电在一定程度上降低了杂散电流带来的干扰。开展了多组管地电压测量试验,并通过搭建有限元模型对测量过程和结果进行验证。管地电压测量试验和有限元数值模拟仿真结论表明,地铁杂散电流干扰作用下,土壤电阻率、外加电压以及试件埋深是管地电压偏移的三个主要因素。在杂散电流有限元分布模型的基础上,文章设计了一种模拟地铁杂散电流干扰下埋地管线腐蚀的实验方案,分别开展了动、静态杂散电流干扰的管线试件腐蚀研究。建立了模拟腐蚀实验的有限元腐蚀数值仿真模型,通过多物理场耦合技术实现了杂散电流干扰作用下埋地管线腐蚀区域的精准定位,以及金属腐蚀大小的定量计算。基于有限元数值计算数据,建立了地表电位与管线试件腐蚀电流密度之间的偏最小二乘法(PLS)腐蚀预测模型,实现了由地表电位预测埋地管线腐蚀的目标。所建PLS预测模型在保证预测精度的前提下,降低了对输入数据量的依赖,为地铁杂散电流腐蚀预测提供了新思路,建立了由地表电位预测杂散电流腐蚀的系统性方案。
朱明原,刘文博,刘杨,齐财,李瑛,李文献,张久俊[8](2021)在《氢能与燃料电池关键科学技术:挑战与前景》文中研究说明氢能是可持续的二次清洁能源,产业链主要包括氢气的制取、储存、运输和应用等环节.燃料电池是氢能利用的主要方式,处于产业链的核心地位.以氢能产业链为主线,围绕氢能燃料电池产业化进展,对制氢、储氢、加氢站、氢能燃料电池电堆及关键材料,以及车用燃料电池系统关键部件的技术特征、产业化进展、发展现状及存在的挑战进行了概述,尤其对中国燃料电池产业链的发展现状进行了重点介绍.为了加速氢能与燃料电池真正意义上的产业化,还提出了几点需要克服挑战的研发方向.
李佳雯[9](2021)在《基于学习进阶的高二学生原电池迷思概念转变的实践研究》文中研究指明
李家佳[10](2021)在《基于培养“证据推理与模型认知”素养的教学策略研究 ——以化学反应原理教学为例》文中认为
二、国外离子选择电极的发展趋势(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、国外离子选择电极的发展趋势(论文提纲范文)
(1)中国制氢技术的发展现状(论文提纲范文)
Contents |
1 引言 |
2 传统化石燃料重整制氢 |
2.1 煤制氢 |
2.1.1 煤气化制氢 |
2.1.2 煤超临界水气化制氢 |
2.2 天然气制氢 |
2.2.1 SMR的基本原理 |
2.2.2 SMR的催化剂 |
3 工业副产氢 |
3.1 变压吸附法 |
3.2 低温分离法 |
3.3 膜分离法 |
3.4 金属氢化物分离法 |
4 清洁能源电解水制氢 |
4.1 碱性电解池 |
4.1.1 关键电极材料 |
4.1.2 电解池结构设计 |
4.1.3 AEC堆的发展现状 |
4.2 质子交换膜电解池 |
4.2.1 关键电极材料 |
4.2.2 电解池关键结构 |
4.2.3 PEMEC堆的发展现状 |
4.3 固体氧化物电解池 |
4.3.1 关键材料 |
4.3.2 电解池结构优化设计 |
4.3.3 SOEC堆发展现状 |
5 其他制氢新技术 |
5.1 太阳能光解制氢 |
5.2 生物质发酵制氢 |
5.3 生物质热化学转化制氢 |
5.4 热化学循环制氢 |
6 不同制氢方式比较 |
7 人工智能在制氢系统中的应用 |
8 结论及展望 |
(2)脉冲气流灭弧装置在500kV串补上的机制研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 研究背景及意义 |
1.2 串补技术国内外应用情况 |
1.2.1 串补在国外的应用 |
1.2.2 国内串补应用情况 |
1.2.3 串补在南网超高压公司的使用和运行情况 |
1.2.4 近年来串补运行的突出问题 |
1.2.5 脉冲气流灭弧装置的提出 |
1.3 本文研究内容 |
第二章 串补原理和MOV、保护间隙典型故障 |
2.1 串补装置工作原理和相关参数 |
2.1.1 串联补偿的原理及作用 |
2.1.2 500kV平果串补站 |
2.1.3 平果串补设备参数 |
2.2 串补MOV工作原理、故障原因分析及对策 |
2.2.1 串补MOV工作原理、特性和参数 |
2.2.2 串补MOV常见故障及原因 |
2.2.3 MOV压力释放现有防范措施 |
2.3 串补放电间隙工作原理、故障原因和对策 |
2.3.1 放电间隙工作原理、结构和参数 |
2.3.2 串补放电间隙常见故障及原因 |
2.3.3 放电间隙误触发的现有防范措施 |
2.4 串补MOV压力释放、放电间隙故障改进思路 |
2.5 本章小结 |
第三章 500kV交流电弧形成机理及相关特性分析 |
3.1 电弧的形成机理 |
3.2 电弧物理特性 |
3.2.1 电弧温度 |
3.2.2 电弧的等离子流 |
3.2.3 电弧的电压电流关系 |
3.3 空气间隙击穿放电物理过程 |
3.4 电弧游离和去游离 |
3.4.1 电弧游离 |
3.4.2 电弧去游离及能量置换 |
3.5 本章小结 |
第四章 脉冲气流灭弧原理、气流耦合电弧数学模型及仿真 |
4.1 脉冲气流及其灭弧原理 |
4.1.1 工作的内在机理 |
4.1.2 脉冲气流的产生 |
4.2 脉冲气流耦合电弧数学模型建立 |
4.3 脉冲气流耦合电弧过程仿真分析 |
4.3.1 仿真简介 |
4.3.2 仿真结果分析 |
4.4 本章小结 |
第五章 灭弧试验与应用 |
5.1 工频电流灭弧试验 |
5.1.1 灭弧试验原理 |
5.1.2 灭弧试验结果 |
5.2 500kV电压等级下的脉冲气流灭弧装置试验 |
5.2.1 试验目的 |
5.2.2 试验流程 |
5.2.3 试验结果分析 |
5.3 现场应用 |
5.3.1 220kV电压等级线路上的使用情况 |
5.4 与串补保护间隙的对比分析 |
5.5 本章小结 |
第六章 结论与展望 |
6.1 结论 |
6.2 主要创新点 |
6.3 展望 |
参考文献 |
致谢 |
攻读学位期间发表论文情况 |
附录 |
(3)季冻区玄武岩纤维活性粉末混凝土耐久性能和力学性能研究(论文提纲范文)
摘要 |
abstract |
第1章 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 RPC配合比设计 |
1.2.2 RPC耐久性研究现状 |
1.2.3 RPC力学性能研究现状 |
1.3 本文的研究内容 |
第2章 基于响应曲面法的玄武岩纤维RPC配合比设计 |
2.1 引言 |
2.2 试验概况 |
2.2.1 试验材料与试件制备 |
2.2.2 试验设计 |
2.2.3 试验指标测试方法 |
2.3 试验结果与响应面模型 |
2.3.1 试验结果 |
2.3.2 响应面模型 |
2.3.3 响应面模型检验 |
2.4 各因素影响分析 |
2.4.1 各因素对流动度影响分析 |
2.4.2 各因素对抗折强度影响分析 |
2.4.3 各因素对抗压强度影响分析 |
2.5 本章小结 |
第3章 玄武岩纤维RPC耐久性影响因素分析 |
3.1 引言 |
3.2 试验概况 |
3.2.1 试验材料与试件制备 |
3.2.2 试验设计与试验流程 |
3.2.3 试验方法 |
3.3 多因素对玄武岩纤维RPC耐久性影响分析 |
3.3.1 极差分析 |
3.3.2 方差分析 |
3.3.3 Spearman秩相关性分析 |
3.4 玄武岩纤维RPC与普通混凝土耐久性的异同 |
3.5 微观结构机理研究 |
3.5.1 微观结构定性分析 |
3.5.2 微观结构定量分析 |
3.6 本章小结 |
第4章 玄武岩纤维RPC抗冻耐久性量化分析 |
4.1 引言 |
4.2 试件概况 |
4.2.1 试验材料及试件制备 |
4.2.2 试验设计 |
4.2.3 试验流程及试验指标测试 |
4.3 试验结果与分析 |
4.3.1 冻融质量损失率 |
4.3.2 抗压强度及抗压强度损失率 |
4.3.3 抗折强度及抗折强度损失率 |
4.4 声发射试验结果与分析 |
4.4.1 冻融质量影响 |
4.4.2 裂缝不同属性影响 |
4.5 带裂缝玄武岩纤维RPC冻融损伤模型 |
4.5.1 基于Weibull分布的RPC冻融损伤模型 |
4.5.2 冻融损伤度Weibull分布的拟合优度检验 |
4.6 本章小结 |
第5章 玄武岩纤维RPC钢筋锈蚀量化分析 |
5.1 引言 |
5.2 试验概况 |
5.2.1 试验材料及试件制备 |
5.2.2 试验设计及试验流程 |
5.2.3 电化学试验方法 |
5.3 试验结果与分析 |
5.3.1 TPP试验结果 |
5.3.2 EIS试验结果 |
5.4 玄武岩纤维RPC内嵌钢筋耐久性特点分析 |
5.5 本章小结 |
第6章 变形钢筋与玄武岩纤维RPC粘结性能研究 |
6.1 引言 |
6.2 试验设计 |
6.2.1 试验方法 |
6.2.2 试验材料及试件制备 |
6.2.3 试验流程 |
6.3 试验结果 |
6.3.1 粘结应力-滑移曲线 |
6.3.2 不同因素对粘结应力-滑移曲线的影响 |
6.4 粘结应力-滑移本构关系模型 |
6.4.1 粘结应力特征值回归分析 |
6.4.2 滑移特征值回归分析 |
6.4.3 粘结应力-滑移本构关系模型 |
6.5 本章小结 |
第7章 钢筋-玄武岩纤维RPC简支梁力学性能研究 |
7.1 引言 |
7.2 试验概况 |
7.2.1 试验梁设计 |
7.2.2 试验流程 |
7.2.3 试验梁四点弯曲测试 |
7.3 试验结果 |
7.3.1 荷载-位移曲线 |
7.3.2 裂缝扩展 |
7.4 钢筋-玄武岩纤维RPC简支梁设计 |
7.4.1 开裂弯矩计算 |
7.4.2 正截面抗弯承载力计算 |
7.4.3 裂缝宽度计算 |
7.5 断裂性能分析 |
7.5.1 b值分析 |
7.5.2 基于FCM聚类方法的RA-AF联合值分析 |
7.6 本章小结 |
第8章 结论与展望 |
8.1 结论 |
8.2 展望 |
参考文献 |
作者简介及科研成果 |
致谢 |
(5)碳化硅MPS二极管的设计、工艺与建模研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
第1章 绪论 |
1.1 .碳化硅材料 |
1.1.1 .碳化硅材料的晶体结构 |
1.1.2 .碳化硅材料的特性参数 |
1.2 .碳化硅功率二极管的发展历程 |
1.2.1 .SiC JBS二极管 |
1.2.2 .SiC MPS二极管 |
1.3 .碳化硅功率二极管浪涌过程结温估算 |
1.4 .本文研究的重要意义和主要内容 |
1.4.1 .本文研究的重要意义 |
1.4.2 .本文研究的主要内容 |
第2章 SiC MPS二极管的仿真设计与工艺开发 |
2.1 .SiC MPS/JBS二极管的元胞结构 |
2.2 .外延层掺杂浓度和厚度的设计 |
2.2.1 .基于雪崩击穿判据计算外延层击穿电压 |
2.2.2 .击穿电压固定下的允许外延厚度 |
2.2.3 .外延层耐压固定下的最佳外延层参数 |
2.3 .SiC MPS二极管的仿真设计 |
2.3.1 .器件数值仿真技术和模型简介 |
2.3.2 .仿真设计优化 |
2.4 .SiC MPS二极管的工艺开发 |
2.4.1 .SiC MPS二极管的工艺步骤 |
2.4.2 .P型欧姆接触工艺研究 |
2.5 .本章小结 |
第3章 SiC MPS二极管的特性测试 |
3.1 .静态测试结果 |
3.1.1 .自制器件之间的静态特性对比 |
3.1.2 .自制器件与商业器件的静态性能对比 |
3.2 .动态特性测试结果 |
3.3 .浪涌可靠性测试结果 |
3.3.1 .单次浪涌可靠性测试 |
3.3.2 .器件的高温静态Ⅰ-Ⅴ特性分析 |
3.3.3 .二极管浪涌过程电学行为模式 |
3.3.4 .自制器件与商业器件的浪涌可靠性对比 |
3.3.5 .二极管抗浪涌电流冲击能力比较 |
3.3.6 .重复性浪涌可靠性测试 |
3.4 .本章小结 |
第4章 带场限环终端的功率器件外延参数提取算法 |
4.1 .传统反推算法及其局限性 |
4.2 .场限环下方耗尽区的扩展规律 |
4.3 .耗尽区纵向扩展深度和横向扩展宽度之间的关系 |
4.4 .反推算法的建立 |
4.5 .本章小结 |
第5章 电热耦合浪涌结温计算模型 |
5.1 .热阻、热容和RC热路模型 |
5.1.1 .基本概念 |
5.1.2 .热阻抗的测量与结构函数 |
5.2 .浪涌结温的直接计算法 |
5.2.1 .商业器件的热阻抗测试 |
5.2.2 .浪涌过程的计算 |
5.3 .电热耦合结温计算模型的理论基础 |
5.4 .电热耦合结温计算模型的具体实现步骤 |
5.4.1 .RC网络传递函数的计算 |
5.4.2 .结温计算的具体步骤 |
5.5 .计算实例 |
5.5.1 .器件的热学特性的建模 |
5.5.2 .器件的电学特性的建模 |
5.5.3 .浪涌过程的结温计算 |
5.5.4 .衬底减薄技术对浪涌能力的提升 |
5.6 .本章小结 |
第6章 总结与展望 |
6.1 .本文总结 |
6.2 .未来展望 |
参考文献 |
作者在学期间所取得的科研成果 |
发表和录用的文章 |
授权和受理的专利 |
(7)基于有限元数值模拟的地铁杂散电流分布及腐蚀研究(论文提纲范文)
摘要 |
abstract |
主要符号说明 |
第一章 绪论 |
1.1 研究背景与意义 |
1.2 国内外研究现状 |
1.2.1 杂散电流分布模型研究 |
1.2.2 杂散电流腐蚀实验研究 |
1.2.3 杂散电流腐蚀评价及预测研究 |
1.3 主要研究内容及创新点 |
1.3.1 本文主要研究内容 |
1.3.2 本文技术路线图及主要创新点 |
第二章 地铁杂散电流分布三维有限元建模及仿真 |
2.1 城市轨道交通牵引规律及供电方式 |
2.1.1 城市轨道交通车辆动态牵引工况分析 |
2.1.2 城市轨道交通接触网供电方式 |
2.2 地铁杂散电流三维有限元建模及仿真分析 |
2.2.1 地铁杂散电流泄漏及腐蚀机理 |
2.2.2 杂散电流分布有限元建模理论基础分析 |
2.3 杂散电流分布三维有限元建模 |
2.3.1 双边供电三维几何模型 |
2.3.2 单边供电三维几何模型 |
2.3.3 模型网格划分及方程约束 |
2.4 杂散电流有限元数值模拟结果分析 |
2.4.1 杂散电流泄漏对土壤电势的影响 |
2.4.2 杂散电流泄漏对钢轨电位的影响 |
2.4.3 杂散电流泄漏对埋地管线电流密度分布的影响 |
2.5 本章小结 |
第三章 杂散电流干扰下的管地电压测量试验及仿真分析 |
3.1 杂散电流干扰下的管地电压测量试验 |
3.1.1 埋地管线试件备置 |
3.1.2 试验土壤备置及电阻率测量 |
3.1.3 试验用仪器及辅助材料 |
3.2 试验方案设计及原理 |
3.2.1 测量试验方案 |
3.2.2 管地电压测量方法 |
3.2.3 不同电阻率土壤备置 |
3.3 管地电压测量试验的有限元数值模拟 |
3.3.1 有限元建模及网格划分 |
3.3.2 有限元数值模拟结果分析 |
3.4 管地电压影响因素试验与仿真对比分析 |
3.4.1 土壤电阻率对管地电压的影响 |
3.4.2 外加电压对管地电压的影响 |
3.4.3 管线埋深对管地电压的影响 |
3.5 本章小结 |
第四章 杂散电流干扰下的埋地管线腐蚀实验及仿真 |
4.1 杂散电流干扰下的埋地管线腐蚀 |
4.1.1 埋地管线腐蚀区域分布 |
4.1.2 杂散电流干扰下的埋地管线腐蚀原理 |
4.1.3 杂散电流腐蚀的定量计算 |
4.2 动态杂散电流干扰下的埋地管线腐蚀实验 |
4.2.1 杂散电流数据采集 |
4.2.2 埋地管线腐蚀实验设计 |
4.3 基于动态腐蚀实验的有限元仿真 |
4.3.1 腐蚀几何建模和材料属性定义 |
4.3.2 溶液电流密度及管线腐蚀电流密度分布 |
4.3.3 腐蚀实验与仿真结果对别分析 |
4.4 静态杂散电流腐蚀实验与仿真 |
4.4.1 静态腐蚀仿真与实验设计 |
4.4.2 静态腐蚀仿真结果分析 |
4.4.3 静态腐蚀实验和仿真结果对比分析 |
4.5 本章小结 |
第五章 基于偏最小二乘法回归模型的杂散电流腐蚀预测 |
5.1 偏最小二乘法原理与算法 |
5.1.1 偏最小二乘法(PLS)的建模思路 |
5.1.2 偏最小二乘法(PLS)建模步骤 |
5.1.3 交叉有效性验证 |
5.2 基于管线腐蚀实验数据的预测建模 |
5.2.1 预测结果分析 |
5.2.2 减少输入变量的埋地管线腐蚀预测 |
5.3 本章小结 |
第六章 总结和展望 |
6.1 本文工作总结 |
6.2 展望 |
参考文献 |
附录1:偏最小二乘法模型主程序 |
个人简历 在读期间发表的论着及科研成果 |
致谢 |
(8)氢能与燃料电池关键科学技术:挑战与前景(论文提纲范文)
1氢能与燃料电池应用的意义 |
2氢能与燃料电池产业链现状 |
2.1 上游:氢气制备、储运及供给使用 |
2.1.1 氢气制备 |
(1)化石能源重整制氢. |
(2)工业副产氢气的回收提纯利用. |
(3)电解水制氢. |
(4)太阳能制氢(包括光催化和光热解制氢). |
2.1.2 氢气储运 |
(1)高压气态储氢. |
(2)低温液态储氢. |
(3)固态储氢. |
(4)有机液体储氢. |
2.1.3 加氢站 |
2.2 中游:氢能燃料电池系统(以质子交换膜燃料电池为例) |
2.2.1 电堆 |
(1)膜电极(MEA). |
(2)催化剂. |
(3)质子交换膜(PEM). |
(4)气体扩散层. |
(5)双极板. |
2.2.2 辅助系统 |
(1)空气压缩机. |
(2)燃料供给系统. |
2.3 下游:氢能燃料电池的应用 |
2.3.1 固定式领域 |
2.3.2 运输式领域 |
2.3.3 便携式领域 |
3中国氢能燃料电池技术及政策扶持 |
3.1自主知识产权的核心技术 |
3.2 电池系统的可靠性、功率密度及寿命 |
3.3 加氢站的核心技术 |
3.4 政策引导、技术标准及检测体系 |
4结束语 |
四、国外离子选择电极的发展趋势(论文参考文献)
- [1]中国制氢技术的发展现状[J]. 曹军文,张文强,李一枫,赵晨欢,郑云,于波. 化学进展, 2021
- [2]脉冲气流灭弧装置在500kV串补上的机制研究[D]. 黄金领. 广西大学, 2021(12)
- [3]季冻区玄武岩纤维活性粉末混凝土耐久性能和力学性能研究[D]. 吕翔. 吉林大学, 2021(01)
- [4]基于专利信息分析的锂离子电池回收技术的发展研究[D]. 孙晓飞. 昆明理工大学, 2021
- [5]碳化硅MPS二极管的设计、工艺与建模研究[D]. 吴九鹏. 浙江大学, 2021(09)
- [6]高气压等离子放电特性实验及模拟研究[D]. 余涛. 哈尔滨工程大学, 2021
- [7]基于有限元数值模拟的地铁杂散电流分布及腐蚀研究[D]. 张献伟. 华东交通大学, 2021(01)
- [8]氢能与燃料电池关键科学技术:挑战与前景[J]. 朱明原,刘文博,刘杨,齐财,李瑛,李文献,张久俊. 上海大学学报(自然科学版), 2021(03)
- [9]基于学习进阶的高二学生原电池迷思概念转变的实践研究[D]. 李佳雯. 贵州师范大学, 2021
- [10]基于培养“证据推理与模型认知”素养的教学策略研究 ——以化学反应原理教学为例[D]. 李家佳. 贵州师范大学, 2021