一、一道IMO预选题的推广(论文文献综述)
朱华伟[1](2005)在《高师奥林匹克数学课程研究》文中提出自世界上第一次真正有组织的数学竞赛——匈牙利数学竞赛(1894年)以来,已有一百多年的历史.国际数学奥林匹克已举办了45届,也有四十多年的历史.如今,世界上中学数学教育水平较高的国家大多数举办了数学竞赛,并参加国际数学奥林匹克(IMO).国内大多数高等师范院校数学教育专业开设了奥林匹克数学选修课.数学奥林匹克的实践,为深入进行数学奥林匹克研究准备了丰富的素材.把高师奥林匹克数学课程作为研究对象,不仅是对奥林匹克数学理论研究范围的深化与拓展,对奥林匹克数学学科发展具有重要意义,同时也符合我国高师数学教育专业课程建设与改革的现实需要. 奥林匹克数学在其发展的历史上,对于发现和培养青少年数学人才,提高学生学习数学的兴趣和能力,改善学生的思维品质等方面,发挥了积极的作用.但另一方面,理性主义的教育思想使奥林匹克数学课程的研究与教学走向狭隘的理性化、实证化道路; 科学心理学实证化的方法体系、惟理性的价值取向使奥林匹克数学课程成了机械的逻辑演绎知识体系.从教育的角度反思,这种纯粹的认知训练,忽视了人的情感、意志、精神等因素,不利于人的全面发展.为了发展学生全面的创造性,在奥林匹克数学教学中必须超越纯粹认知取向的传统观念,充分挖掘数学创造中的文化资源,把数学探索、创造与人类的精神超越潜能结合起来,把对外部世界的探索超越与自身的更新提升结合起来.通过数学上的创造活动,激发学生的超越意识和探索精神,培养学生敢于探索未知、敢于挑战的创新精神和挑战意识,在数学思维的创新中实现创造性人格的培养,使数学教学中的创造活动成为人性完善和全面创造性发展的实践活动. 奥林匹克数学不具备完整的知识体系和严密的逻辑结构,但又具有相对稳定的内容,围绕着命题与解题,充分体现出奥林匹克数学开放性、趣味性、新颖性、创造性、研究性等特征.坚持命题的科学性、新颖性、选拔性、界定性等原则,善于运用多种命题方法,对于组织奥林匹克数学的教学和竞赛活动,具有重要的作用.面对高师数学专业学生开设的奥林匹克数学课程,必须涵盖上述重要内容,让学习者不仅了解奥林匹克数学本身的特点,而且把握奥林匹克数学的教育目标、教学特点和教学方法. 由于奥林匹克数学的题型和解题方法极具多样性,历史上的各种学习理论对于启
王素彦[2](2020)在《中学数学名师专业发展个案研究 ——以蔡玉书老师为例》文中研究指明中学数学名师专业发展研究作为构成教师专业发展研究的重要部分,对我国的教育改革有着重要的促进作用,在推进青年教师的发展方面也有着重要意义.本研究选择了中学数学正高级教师蔡玉书老师作为数学名师研究对象,进行数学名师专业发展个案研究,旨在探索影响蔡玉书老师名师专业发展的主要因素,分析总结可以借鉴的经验,为青年教师专业发展提供参考或启示.本文主要采用定性研究方法,包涵了文献研究法、访谈法、观察法和案例研究法.首先基于研究问题进行相关的文献检索,梳理已有研究结果.其次笔者利用见习之便,通过近距离观察,了解蔡老师的教育理念、教学、科研和竞赛等工作.然后围绕研究问题制定访谈提纲,通过对蔡老师的访谈深入了解蔡老师名师专业发展之路.最后对以上所有研究结果进行整理分析,总结蔡老师的名师专业发展影响因素和可借鉴的经验.本研究的结论如下:(1)影响数学名师蔡玉书老师专业发展主要有四个因素:①具有崇高的教育理念;②具有扎实的专业基础、高超的教学能力和独特的教学特色;③具有坚定的科研信念;④坚持对“第二课堂”的积极引导.(2)对青年教师有三点启示:①树立正确的数学观和教学观;②学会科研、合理科研;③利用和肯定数学竞赛的教育价值.
邱际春[3](2018)在《竞赛数学中的差分算子问题研究》文中指出世界各国数学竞赛发展至今已逐渐趋于成熟,数学竞赛试题更是浩如烟海,而这些数学竞赛试题在一定程度上代表的是一种特殊的数学——竞赛数学,其内容大致稳定在代数、平面几何、数论、组合等四个方面.差分算子是算子理论中的一种较为具体化、初等化的线性算子,它在代数学、分析学、组合数学以及特殊函数等方面有着重要的应用.同时,在各类数学竞赛的命题和解题中时有涉及高等数学中的差分算子,而有限差分方法也是解数学竞赛题的一种重要方法.本文旨在通过将高等数学中的差分算子“下放”到初等数学中,尤其是应用到竞赛数学试题的命制和解题之中.本文的研究工作主要包括以下几个方面:1.通过引入差分算子的定义、有关的定理与性质,系统阐述差分算子方法在数学竞赛中的数列、概率、多项式、组合恒等式及组合序列中的应用;2.对两道经典的数学竞赛试题的命题背景做了较为深入的分析,介绍了三种常见的数学竞赛试题的命题方法,并依此尝试编拟了一些数学竞赛试题,提供了相应的算子方法;3.以案例研究的形式对一道代数几何题、若干组合恒等式、两道与数论有关的奥林匹克试题进行推广,得到了一些新的结论,从而为数学竞赛的命题与解题工作提供一定的参考,对于促进竞赛数学的学术研究具有理论和现实的意义.
陈德青[4](2020)在《数学竞赛中平面几何解题的模式识别研究》文中研究表明数学竞赛是发现、选拔和培养数学人才的重要举措之一,而平面几何一直是数学竞赛的重要组成部分.因此,对数学竞赛中平面几何的解题过程进行系统地研究是丰富数学竞赛理论的一个重要途径.我国对数学解题的模式识别理论已有深入研究,鉴于此,本文采用文献分析法和访谈法,结合国内外数学竞赛中的平面几何试题,根据模式识别理论对数学竞赛中平面几何的解题过程进行研究和探讨.本研究主要包含以下方面:首先,对相关理论进行概述.梳理了国内外学者对数学竞赛中的平面几何和模式识别方面的研究成果.另外,基于本研究的角度整理了与本研究相关的理论,界定了数学竞赛中平面几何解题的模式与模式识别的概念.其次,对数学竞赛中平面几何解题的模式识别进行了理论研究.给出了数学竞赛中平面几何解题的模式分类和其模式识别的操作过程,并得出了掌握平面几何解题模式识别的方法,即学会辨认模式与积累模式.积累模式主要有三个基本途径:一是竞赛教学中模式的构建;二是解题过程的分析提炼;三是把图形、方法、类型、定理作为整体来记忆.对于第二个基本途径,笔者整理分析了近几年国内外数学竞赛中的平面几何竞赛试题,在解题过程中分析提炼出三种经验性图形模式,利用几何画板深入挖掘这三个经验性图形模式的性质,并发现了一些结论,并将它们取名为极点构型、萨蒙构型和泰博构型.最后,通过访谈考察学生在数学竞赛中对平面几何解题不同层次模式识别的具体认知过程,也就是学生对直接识别、转化识别、整合识别的认知过程进行研究.
蔡玉婷[5](2020)在《对数学竞赛中染色问题的研究》文中进行了进一步梳理染色问题是国内外数学竞赛中出现的比较多的一类问题,又与中学数学密切相关.解决这类问题常常不需要很高深的理论知识,但是需要较强的思考能力、分析能力与观察能力.染色作为分类的一种方式,又具分类的直观性.在数学竞赛中有许多与染色有关的问题.因此,研究染色问题对于数学竞赛的发展有重要意义.本文第1章先叙述了染色问题的研究背景、意义和国内外在染色问题方面的研究现状.第2章对图论、集合、几何等理论知识进行了叙述.第3章详述了竞赛中常见的染色问题类型,并给出一些例题的分析思路.第4章在第3章的基础上参照国内外近几年与染色问题有关的竞赛题,对染色问题的常见类型进行不同角度的推广,并得出11个新的结论.本文的创新点:(1)对不同的染色问题进行了不同角度的推广,并得出新的结论.(2)将很多看似不是染色问题的题型用染色的思想进行解读.(3)对一些问题改动的力度较大,与原问题相比,命题的难度提高不少,所用到的解题方法与原问题也不相同.本文主要通过文献分析法整理归纳出常见的染色问题,并通过对原问题进行推广改编,得到新的结论.
马子奇[6](2019)在《三角法在平面几何的应用研究》文中研究指明自“重建三角”提出以来,受到许多一线教师的关注,他们把它应用到教学的实践中,并取得了丰硕的成果.本文通过文献和实证对平面几何定理和竞赛试题进行研究,进一步验证三角新体系的实用性.本文主要内容如下:第一章,介绍“重建三角”的背景,对张景中三角新体系以及三角法研究平面几何的现状进行文献综述,从而为本文提供参考.第二章,介绍三角新体系,内容包括共高命题、共角命题、共边命题、正弦的定义、正弦定理、正弦和角公式、余弦定理等.第三章,主要研究三角法在几何定理的证明,并证明四个定理的等价性.第四章,通过例子,归类了运用三角法证明线段相等、线段比例式、三点共线、不等式、几何计算等试题,且对其中几个题目进行背景分析,并推广命制了几道竞赛题.第五章,总结本文的结论,同时指出本文的某些不足之处并给出改进方法.
舒畅[7](2020)在《数学竞赛中几何问题的探究》文中提出近年来,数学竞赛蓬勃发展,越来越多的高中生参与到各类数学竞赛中.在国内外的各类数学竞赛中,其内容基本稳定在代数、几何、数论和组合四个方面.一方面来说,几何具有严谨的逻辑结构.另一方面,几何又具有直观清晰的图像.几何问题的解法丰富巧妙,深受学生们的喜爱.本文主要通过近几年国内外的数学竞赛题目,研究了同一平面内的圆幂与根轴、调和点列以及几何变换中的反演变换和位似变换等内容.第1章第1节介绍了数学竞赛的发展和现状.从第一届国际数学奥林匹克至今已经60余年了,各类数学竞赛作为发现、培养数学资优生的一条重要途径,备受人们的关注.虽然如今的数学竞赛面临着一些否定的声音,但其仍具有蓬勃的生命力.第2节介绍了竞赛几何在数学竞赛中的地位和意义.第2章在对关于圆幂与根轴的例题进行分析的基础上,给出了6个有关圆幂与根轴的新命题.第3章在对关于调和点列的例题进行分析的基础上,给出了5个有关调和点列的新命题.第4章研究了几何变换中的反演变换和位似变换,着重探究了反演变换的应用,并给出了3个有关几何变换的新命题.本文采用了文献分析的方法.几何的方法和代数的、数论的、组合的方法相辅相成,几何问题在数学竞赛中具有重要的位置.因此,几何的探究具有十分重要的意义.
吴利[8](2016)在《高中数学竞赛中最(极)值问题的研究》文中进行了进一步梳理目前,对高中数学最(极)值问题的研究,主要建立在高中数学课程的基础上,而建立在数学竞赛基础之上的研究,相对而言较少。21世纪以来,随着数学的不断发展,最(极)值问题已经成为各类数学竞赛中较为常见的题型之一,因此,研究竞赛数学中的最(极)值问题,还是很有必要的。本文主要结合国内外关于最(极)值问题的竞赛题,较为详细探究了数学竞赛中的最(极)值问题。在对现有的相关研究成果进行梳理的基础之上,本文主要运用了文献分析的方法。首先,对数学竞赛中的最(极)值问题的概念进行了界定;同时,对国内外数学竞赛中的最(极)值问题试题进行了汇编、整理和统计,进一步说明了最(极)值问题在现有的数学竞赛中地位和作用。其次,从解题方法和数学思想方法两方面对最(极)值问题进行解题研究,通过研究最(极)值问题试题的解法,笔者对一些题目进行了延伸拓展或改编,但由于数学竞赛试题的拔高性以及自身水平有限,能延伸拓展的题目较少。最后,尝试从教学的角度,来研究数学竞赛中的最(极)值问题。探讨了最(极)值问题的教学策略,依据此教学策略,设计了一个教学案例:一类绝对值函数的最小值问题。
朱华伟[9](1996)在《推广陈题 生成新题》文中研究说明推广陈题生成新题430014武汉市江岸区教委朱华伟作者简介:朱华伟,男,1962年10月24日生于河南省汝南县,教育学硕士,数学特级教师,中国数学奥林匹克高级教练.1992年曾参加第33届国际数学奥林匹克中国集训队的圳练工作,1993年被聘为全国中师...
朱华伟,张景中[10](2005)在《论推广》文中认为
二、一道IMO预选题的推广(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、一道IMO预选题的推广(论文提纲范文)
(1)高师奥林匹克数学课程研究(论文提纲范文)
摘要 |
ABSTRACT |
1 引论 |
1.1 问题的提出——奥林匹克数学的形成背景 |
1.2 研究的意义 |
1.3 奥林匹克数学的文献分析 |
1.4 研究思路与方法 |
2 奥林匹克数学课程的教育价值及教育学反思 |
2.1 有利于发现和培养青少年数学人才 |
2.2 有利于激发学生学习数学的兴趣,形成锲而不舍的钻研精神和科学态度 |
2.3 有利于促进学生人性的完善 |
2.4 有利于促进学生全面创造性的发展 |
2.5 有利于学生数学能力的提高 |
2.6 有利于中学数学教育的改革和发展 |
2.7 有利于高师培养合格的中学数学教师 |
2.8 奥林匹克数学课程的教育学反思 |
3 奥林匹克数学课程的基本特征 |
3.1 开放性 |
3.2 趣味性 |
3.3 新颖性 |
3.4 创造性 |
3.5 研究性 |
4 奥林匹克数学命题研究 |
4.1 奥林匹克数学的命题原则 |
4.2 奥林匹克数学的命题方法 |
4.3 案例:1992CMO 试题的评价 |
5 学习理论与奥林匹克数学 |
5.1 行为主义学习理论与奥林匹克数学 |
5.2 认知主义学习理论与奥林匹克数学 |
5.3 吉尔福特的创造力理论与奥林匹克数学 |
6 高师奥林匹克数学课程的设计 |
6.1 课程与课程设计 |
6.2 课程观与奥林匹克数学课程设计 |
6.3 奥林匹克数学课程内容的选择 |
6.4 奥林匹克数学课程的教育目标与总体框架 |
7 创造性与奥林匹克数学课程的教学 |
7.1 创造观的历史演进:传统创造观的意义与局限 |
7.2 创造观的现代转型:构建“人性”与“人力”相统一的全面的创造观 |
7.3 全面创造性视野下的创造性教学:达成知、情、意的整合 |
7.4 奥林匹克数学课程的教学方式:创造性教学 |
致谢 |
参考文献 |
附录1 攻读博士学位期间发表论文目录 |
附录2 攻读博士学位期间出版译着、着作、教材目录 |
(2)中学数学名师专业发展个案研究 ——以蔡玉书老师为例(论文提纲范文)
中文摘要 |
Abstract |
第1章 绪论 |
1.1 课题提出背景 |
1.2 课题的意义 |
1.2.1 理论意义 |
1.2.2 现实意义 |
1.3 研究对象 |
第2章 文献综述 |
2.1 概念界定 |
2.1.1 教师专业发展 |
2.1.2 名师教师 |
2.1.3 正高级教师 |
2.1.4 特级教师 |
2.1.5 数学名师——蔡玉书 |
2.2 相关研究现状 |
2.2.1 教师专业发展影响因素研究现状 |
2.2.2 名师相关研究现状 |
2.3 小结 |
第3章 研究内容和方法 |
3.1 研究内容 |
3.2 研究方法和研究框架 |
3.2.1 研究方法 |
3.2.2 研究框架 |
3.3 研究问题 |
3.4 研究重点和难点 |
3.4.1 研究重点 |
3.4.2 研究难点 |
第4章 影响蔡老师专业发展的主要因素 |
4.1 数学教育理念 |
4.1.1 数学观 |
4.1.2 数学教学观 |
4.2 数学教学工作 |
4.2.1 专业基础 |
4.2.2 教学能力 |
4.2.3 教学设计 |
4.2.4 教学特色 |
4.3 科研工作 |
4.3.1 论文与专着 |
4.3.2 课题与项目 |
4.3.3 名师工作室 |
4.4 竞赛工作 |
4.4.1 教练工作 |
4.4.2 学生成绩 |
4.5 小结 |
4.5.1 影响蔡老师专业发展的外在因素 |
4.5.2 影响蔡老师专业发展的内在因素 |
第5章 访谈结果及分析 |
5.1 访谈目的及提纲 |
5.2 访谈结果及分析 |
5.2.1 访谈结果 |
5.2.2 归纳与分析 |
5.3 小结 |
第6章 结论和建议 |
6.1 结论 |
6.1.1 崇高的教育理念 |
6.1.2 扎实的专业基础、高超的教学能力和独特的教学特色 |
6.1.3 坚定的科研信念 |
6.1.4 对“第二课堂”的积极引导 |
6.2 对青年教师的启示 |
6.2.1 树立正确的数学观和教学观 |
6.2.2 学会科研,合理科研 |
6.2.3 利用和肯定数学竞赛的教育价值 |
第7章 结语 |
参考文献 |
附录A 蔡玉书老师大事记 |
附录B 蔡玉书老师的科研论着汇总 |
致谢 |
(3)竞赛数学中的差分算子问题研究(论文提纲范文)
中文摘要 |
Abstract |
1 引言 |
1.1 研究背景与现状 |
1.2 研究目的与意义 |
1.3 预备知识 |
1.3.1 相关的记号 |
1.3.2 相关的定义、定理 |
2 高阶等差数列的通项与求和 |
2.1 高阶等差数列的定义与通项 |
2.2 高阶等差数列的前n项和 |
3 利用差分算子求概率问题 |
3.1 利用差分算子求分布列、期望与方差 |
3.2 利用差分算子求r阶原点矩 |
4 利用差分算子解多项式问题 |
4.1 差分算子公式的应用 |
4.2 差分多项式的性质及应用 |
4.3 Lagrange插值与差分插值的几点注记 |
4.3.1 Lagrange插值多项式及其几何内涵 |
4.3.2 Lagrange插值与差分插值的比较分析 |
5 利用差分算子推演组合恒等式 |
5.1 运用零的差分推演组合恒等式 |
5.2 利用差分公式推演组合恒等式 |
5.3 借助组合变换推演组合恒等式 |
5.4 有关Abel恒等式及其衍生恒等式 |
6 利用差分算子证明组合序列的性质 |
6.1 Stirling数的性质及算子证明 |
6.2 Bell数及其算子恒等式 |
7 数学竞赛试题的分析与编拟 |
7.1 数学竞赛试题的背景分析 |
7.1.1 一道全国高中数学联赛试题的背景分析 |
7.1.2 一道罗马尼亚国家队选拔考试题的背景分析 |
7.2 数学竞赛试题的命制与编拟 |
7.2.1 直接移用算子定义命制新赛题 |
7.2.2 演绎深化命题条件编拟新赛题 |
7.2.3 引申拓展已知结论生成新赛题 |
8 数学竞赛试题的推广 |
8.1 案例1代数几何题的推广 |
8.2 案例2组合恒等式的推广 |
8.2.1 一道中国国家队选拔考试题的推广 |
8.2.2 对本文第五章中组合恒等式的推广 |
8.2.3 利用组合变换进一步推导恒等式 |
8.3 案例3与数论有关的竞赛试题的推广 |
8.3.1 一道罗马尼亚国家队选拔考试题的推广 |
8.3.2 一道中国数学奥林匹克题的推广 |
9 总结与展望 |
参考文献 |
攻读硕士学位期间完成的学术论文及获奖情况 |
致谢 |
(4)数学竞赛中平面几何解题的模式识别研究(论文提纲范文)
中文摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 研究问题 |
1.3 研究意义 |
1.4 研究方法 |
1.5 本章小结 |
第二章 国内外文献研究综述 |
2.1 平面几何研究综述 |
2.1.1 国内平面几何研究综述 |
2.1.2 国外平面几何研究综述 |
2.2 数学解题的模式识别研究综述 |
2.2.1 基于数学解题认知过程角度 |
2.2.2 基于数学解题策略角度 |
2.3 本章小结 |
第三章 概念界定与理论基础 |
3.1 概念界定 |
3.1.1 模式与模式识别 |
3.1.2 数学解题中的模式与模式识别 |
3.1.3 数学竞赛中平面几何解题的模式与模式识别 |
3.2 理论基础 |
3.2.1 波利亚解题理论 |
3.2.2 现代认知心理学 |
3.3 本章小结 |
第四章 数学竞赛中平面几何解题的模式识别 |
4.1 数学竞赛中平面几何解题的模式分类 |
4.1.1 图形模式 |
4.1.2 方法模式 |
4.1.3 类型模式 |
4.1.4 定理模式 |
4.2 数学竞赛中平面几何解题的模式识别的操作过程 |
4.3 数学竞赛中平面几何解题的模式识别的掌握方法 |
4.3.1 学会辨认模式 |
4.3.2 学会积累模式 |
4.4 本章小结 |
第五章 访谈考察学生在数学竞赛中对平面几何解题模式识别的认知过程 |
5.1 研究一直接识别的认知过程分析 |
5.1.1 访谈设计 |
5.1.2 访谈结果 |
5.1.3 访谈分析与结论 |
5.2 研究二转化识别的认知过程分析 |
5.2.1 访谈设计 |
5.2.2 访谈结果 |
5.2.3 访谈分析与结论 |
5.3 研究三整合识别的认知过程分析 |
5.3.1 访谈设计 |
5.3.2 访谈结果 |
5.3.3 访谈分析与结论 |
5.4 本章小结 |
第六章 结论 |
6.1 研究结论 |
6.2 研究创新 |
6.3 研究不足 |
附录 |
参考文献 |
攻读学位期间承担的科研任务和主要成果 |
致谢 |
个人简历 |
(5)对数学竞赛中染色问题的研究(论文提纲范文)
摘要 |
abstract |
第1章 绪论 |
1.1 染色问题的研究背景和意义 |
1.2 国内外在染色问题方面的研究现状 |
第2章 预备知识 |
2.1 抽屉原理 |
2.2 图论 |
2.3 同余 |
2.4 拉姆塞定理 |
第3章 常见的染色问题 |
3.1 与集合相关的染色问题 |
3.2 与平面点线集相关的染色问题 |
3.3 与方格表相关的染色问题 |
3.4 与操作相关的染色问题 |
3.5 与数论相关的染色问题 |
3.6 与平面几何相关的染色问题 |
3.7 可化为用染色方法解决的问题 |
第4章 与染色相关的命题 |
4.1 与集合相关的染色问题 |
4.2 与平面几何相关的染色问题 |
4.3 与平面点线集相关的染色问题 |
4.4 与方格表相关的染色问题 |
4.5 与操作相关的染色问题 |
4.6 可化为用染色方法解决的问题 |
结语 |
参考文献 |
致谢 |
攻读学位期间发表的学术论文 |
(6)三角法在平面几何的应用研究(论文提纲范文)
摘要 |
Abstract |
第一章 引言 |
1.1 研究意义和目的 |
1.2 研究问题 |
1.3 研究方法 |
1.4 文献综述 |
1.4.1 三角新体系的研究状况 |
1.4.2 三角法在平面几何中的应用的研究状况 |
第二章 张景中的三角新体系 |
2.1 正弦与正弦定理 |
2.2 正弦和角公式 |
2.3 余弦与余弦定理 |
第三章 几个有名的几何定理的证明 |
3.1 梅涅劳斯定理和塞瓦定理 |
3.2 西姆松定理 |
3.3 托勒密定理 |
3.4 斯特瓦尔特定理 |
3.5 斯坦纳-雷米欧司定理 |
3.6 四个相互等价定理 |
第四章 三角法在数学竞赛中的应用 |
4.1 证明线段相等 |
4.2 证明线段比例式 |
4.3 证明三点共线 |
4.4 证明不等式 |
4.5 几何计算 |
4.6 命制几道竞赛题 |
第五章 结语 |
参考文献 |
攻读硕士学位期间所发表的论文 |
致谢 |
(7)数学竞赛中几何问题的探究(论文提纲范文)
摘要 |
abstract |
第1章 绪论 |
1.1 数学竞赛的发展和现状 |
1.2 竞赛几何的地位和意义 |
第2章 圆幂与根轴 |
2.1 基础知识 |
2.2 例题分析 |
2.3 新命题 |
第3章 调和点列 |
3.1 基础知识 |
3.2 例题分析 |
3.3 新命题 |
第4章 几何变换 |
4.1 反演变换 |
4.1.1 基础知识 |
4.1.2 例题分析 |
4.1.3 新命题 |
4.1.4 阿波罗尼斯问题 |
4.2 位似变换 |
4.2.1 基础知识 |
4.2.2 例题分析 |
4.2.3 新命题 |
结语 |
参考文献 |
致谢 |
攻读学位期间发表的学术论文 |
(8)高中数学竞赛中最(极)值问题的研究(论文提纲范文)
摘要 |
Abstract |
第一章 引言 |
1.1 研究背景及意义 |
1.1.1 研究背景 |
1.1.2 研究意义 |
1.2 最(极)值问题的界定 |
1.3 文献综述 |
1.4 研究方法 |
第二章 高中数学竞赛中的最(极)值问题的试题汇编与分析 |
2.1 本研究试题汇编选择依据 |
2.2 高中数学竞赛中的最(极)值问题试题汇编 |
2.2.1 “希望杯”数学邀请赛中最(极)值问题试题汇编 |
2.2.2 全国高中数学联赛最(极)值问题试题汇编 |
2.2.3 加拿大数学奥林匹克最(极)值问题试题汇编 |
2.2.4 国际数学奥林匹克(IMO)中最(极)值问题试题汇编 |
2.2.5 其他数学竞赛中的最(极)值问题试题汇编 |
2.3 数学竞赛中的最(极)值问题试题分析 |
第三章 数学竞赛中最(极)值问题解题研究 |
3.1 最(极)值问题常用的解题方法 |
3.1.1 不等式法 |
3.1.2 构造法 |
3.1.3 数形结合法 |
3.1.4 向量法 |
3.1.5 局部调整法 |
3.1.6 反证法 |
3.2 解决竞赛中最(极)值问题所蕴含的数学思想 |
3.2.1 化归 |
3.2.2 构造 |
3.2.3 对应 |
3.2.4 极端原理 |
3.3 “解题方法”与“数学思想”的内涵与外延及其异同 |
第四章 数学竞赛中的最(极)值问题实践教学研究 |
4.1 最(极)值问题的教学策略 |
4.1.1 掌握学生实际水平,由易到难呈现教学内容 |
4.1.2 结合生活实例,精心创设问题情境 |
4.1.3 挖掘本质内容,注重解题方法的多样性 |
4.1.4 倡导学生有效自主学习,引导学生主动发现 |
4.2 最(极)值问题的教学实施案例 |
4.2.1 教学案例 |
4.2.2 案例分析 |
第五章 结语 |
5.1 研究总结 |
5.2 研究不足与展望 |
参考文献 |
在读期间发表的学术论文及研究成果 |
致谢 |
(10)论推广(论文提纲范文)
1 从低维到高维的推广 |
2 从特殊向一般的推广 |
2.1 概念型 |
2.2 状态型 |
2.3 数值型 |
四、一道IMO预选题的推广(论文参考文献)
- [1]高师奥林匹克数学课程研究[D]. 朱华伟. 华中科技大学, 2005(05)
- [2]中学数学名师专业发展个案研究 ——以蔡玉书老师为例[D]. 王素彦. 苏州大学, 2020(02)
- [3]竞赛数学中的差分算子问题研究[D]. 邱际春. 广州大学, 2018(01)
- [4]数学竞赛中平面几何解题的模式识别研究[D]. 陈德青. 福建师范大学, 2020(12)
- [5]对数学竞赛中染色问题的研究[D]. 蔡玉婷. 天津师范大学, 2020(08)
- [6]三角法在平面几何的应用研究[D]. 马子奇. 广州大学, 2019(01)
- [7]数学竞赛中几何问题的探究[D]. 舒畅. 天津师范大学, 2020(08)
- [8]高中数学竞赛中最(极)值问题的研究[D]. 吴利. 南京师范大学, 2016(02)
- [9]推广陈题 生成新题[J]. 朱华伟. 中学数学, 1996(01)
- [10]论推广[J]. 朱华伟,张景中. 数学通报, 2005(04)