一、談談中学数学教学中的函数和函数概念的教学(论文文献综述)
李雪梅[1](2019)在《高中函数定义教学研究》文中认为函数是贯穿高中数学的一条主线,函数定义是高中数学的核心概念之一,高中函数定义的教学是公认的教学难点问题,对高中函数定义的教学进行研究具有重要意义。从“四个理解”即“理解数学”“理解教材”“理解教学”“理解学生”等角度对高中函数定义的国内外相关文献作了综述。研究文献发现,高中函数定义教学存在“三难”,即函数定义本身难、函数定义教学难、函数定义学习难。一些教师对高中函数定义的教学设计作了研究,这些文献对进一步研究高中函数定义的教学设计有一定的启发性和指导作用,但也存在一些不足:一是教学设计对函数定义的数学化过程比较简略;二是初中函数定义和高中函数定义的衔接不够紧密;三是教学过程中出现“打批发”现象。从非认知因素和认知水平两个角度出发,编制了《高中生数学学习非认知因素调查问卷》和《高中函数定义测试卷》,并对四川省资阳市、内江市、南充市三个班的理科高中一年级学生分别进行了问卷调查和测试卷调查,将收集到的数据用SPSS 22.0软件进行分析。问卷调查结果显示:非认知因素的五个维度即动机、情绪情感、态度、意志和性格对高中函数定义的学习成绩都有一定的影响,其中关于五个维度的相关因子,如外部动机、情绪稳定性、学习责任感、坚持性、好胜心等因素影响最大。测试卷调查结果显示:高一学生函数定义理解不到位;学生知识基础的不同会导致学生对函数定义理解存在差异;学生性别在函数定义理解的操作阶段、过程阶段、对象阶段和图式阶段存在差异。对几位教师和学生进行了访谈,访谈结果显示:这几位教师认为对函数定义本质以及对抽象符号的理解是教学的重点更是难点,并且学生对高中函数定义的理解不够深刻,他们在教学中很少将函数定义与数学史相结合,并且对初高中函数定义的衔接不够紧密。针对文献研究和调查研究得到的结论,以问题驱动理论、HPM理论、数学核心素养理论、数学三个世界理论为理论依据,给出了四个教学设计案例,即基于问题驱动理论的高中函数定义教学设计、HPM视角下的高中函数定义教学设计、数学核心素养视角下的高中函数定义教学设计、基于韬尔“数学三个世界”的高中函数定义教学设计。
胡晋宾[2](2015)在《基于数学课程知识观的高中数学教科书编写策略研究》文中指出对于学校教育来说,知识毫无疑问是课程和教学的核心。而从历史上来看,知识观决定着课程观和教学观,有什么样的知识观,就会有什么样的课程设计和教学实施。每一次课程改革都是在特定的知识观影响下展开的,知识观是历次课程改革的分歧焦点。对于课程物化载体的教科书来说,它的编写也是知识观指导下的创作活动。基于当下的高中数学课改现实,研究教科书编写策略既有理论意义也有实践意义。从数学哲学、心理学和教育学这样3个视角来透视知识观发现:数学哲学视角的知识观强调对宏观的数学知识发生、确证、发展、结构、属性、应用等方面的反思和追问,心理学视角的知识观强调对微观的认知过程与机制、知识分类与传递等方面的解析和实证,教育学视角的知识观强调对学校中的数学知识的价值、筛选、组织、传递、教授、习得等方面的关切和侧重。数学知识观是隐藏在数学课程观和数学教学观背后的前提性根源,有什么样的数学知识观,就有什么样的数学课程观、数学教学观和数学学习观。在数学教育领域,数学观和数学知识观不是一个概念,但是经常被混淆着使用。本文认为,前者是有关数学发展的“世界观”,使用场合主要是数学研究,隶属于“数学哲学”;后者是关照数学教育的“知识观”,使用场合主要是数学教育,隶属于“数学教育哲学”。如果把数学教育当作基于数学知识的教育,并从知识的角度来考察和反思数学教育的话,那么形成的关于数学知识的看法就是数学知识观。而数学课程知识观是数学知识观的一个子集,就是指关于数学课程知识的观念,它是立足数学课程、关照数学课程、服务数学课程的一种数学知识观。数学教科书中体现的数学课程知识不同于数学科学知识,不同于生活数学知识,而是学校教育中的数学知识。同时,它是以客观的、共同的数学科学知识为基础,整合了同龄人中的生活情境、个人知识中的共性成分以及其他学科知识(如物理、化学等)等知识形态,揉进了教学法加工和编辑技术等元素,预设教学方式并以纸质文本呈现出来的整合知识。数学教科书知识的特点是,它假借以静态陈述的数学知识为躯壳,负载了教育理念的课程价值,预设有知识获得的教学方式。借鉴有关知识观的理论框架研究,我们赋予数学学科含义,认为数学课程知识观有3个维度,即数学知识本质观、数学知识价值观和数学知识获得观。理想的数学课程知识观理论图景是:数学知识本质是一种模式化的思维创造,数学知识价值是一种辩证性的复杂谱系,数学知识获得是一种参与式的社会建构。特别地,我们指出,应该强调借助数学教科书的编写去引导师生形成全面的、辩证的、现代的数学知识观。基于上述三维框架,对历史上数学教科书中隐匿的数学知识观进行了考察,对现实中教科书作者和数学教师的数学课程知识观以及数学教科书编写策略认同进行了问卷调查和相关分析。无论是从历史上6个版本教科书的文本考察来看,还是从现实中26名中学数学教科书作者和515名数学教师的问卷调查来看,知识观都影响了教科书编写策略;反过来,教科书编写策略中预设了不同的知识本质、知识价值和知识获得观念,从而又导致教学中不同数学知识观的形成。它们之间的关系,是统一的、辩证的。对于教科书作者来说,不同知识观导致了编写策略的不同认同,这种认同直接影响了编写策略,从而导致不同的教科书编写方式,间接影响了使用教科书的广大师生的数学知识观。正因为编写策略导致不同的教科书编写方案,因此优质的教科书编写应该寻求或者采用先进的数学课程知识观来做为指导。数学教科书编写是教科书作者在数学课程知识观显性或者隐性影响下的创造性活动,有什么样的数学课程知识观,就有什么样的高中数学教科书编写策略认同——持有传统的、机械的、静态的数学课程知识观,认同传统的、机械的、静态的高中数学教科书编写策略(大致强调知识、结果、显性、学科、传授、内部等);持有现代的、辩证的、动态的数学课程知识观,认同现代的、辩证的、动态的高中数学教科书编写策略(大致强调文化、过程、隐性、活动、建构、外部等)。基于数学课程知识观理论图景,对高中数学教科书编写策略进行了理论建构,并以3个课时的内容进行了微型实证和验证反思。首先,本文认为基于数学课程知识观视角的高中数学教科书编写策略的指导思想有3个,即:数学教科书应该具有学科性,数学教科书应该具有教学性,数学教科书应该具有人文性。其次,在此基础上我们提出如下6条具体的编写设想。第一条,经历数学化:衔接知识的过程与结果样态。第二条,揭示潜隐性.:兼顾知识的外显和内敛价值。第三条,渗透心理化:整合知识的逻辑和心理顺序。第四条,创设关联性:搭建知识的内部和外部链接。第五条,彰显主体性.:协调知识的科学和人文特质。第六条,体现交互性:铺设知识的传授和建构渠道。对于我国实际来说,数学教科书编写以前主要是国家行为,受到传统的教育理念的深刻影响;现在教科书多元化以后,编写策略是教科书建设的一个重要研究课题。因此,我们主张高中数学教科书在编写的时候,立足于数学知识的结果、显性、逻辑、内部、传授维度的基础上,尤其要注意数学知识的过程、隐性、心理、外部和建构维度,把它们辩证地平衡起来,防止矫枉过正的简单化和一分为二的片面性,从而实现数学知识的最大教育价值和最佳育人效果。
刘功成[3](2020)在《HPM视角下的高中函数概念教学设计研究》文中研究说明函数是贯穿高中数学课程的主线。函数概念是被广泛应用的数学概念之一,其重要意义远远超出了数学范围。《普通高中数学课程标准(2017年版)》指出:函数是现代数学最基本的概念,是描述客观世界中变量关系和规律的最为基本的数学语言和工具,在解决实际问题中发挥着重要作用。高中函数的概念是初中函数概念的拓展,同时为接下来函数的性质、指对函数、三角函数以及导数和极限的学习打下了坚实的基础。研究者在研究文献和实际调查中发现,函数概念在高中的教与学中存在着多种多样的问题,学生对函数概念的理解水平有待提高。近年来,数学史的教育价值被众多数学家和一线教师广泛认同,数学史的学习有助于学生对抽象概念等数学知识的理解。本研究以函数的概念相关知识和已有的HPM理论研究框架为基础,开发设计出基于HPM视角下函数概念的教学设计,希望可以为一线教师提供一些参考,改善函数的教学现状,加深学生对函数概念的理解。在已有的研究基础上,本文从数学史的视角,结合已有的HPM研究案例,与在职教师进行访谈和交流,结合教学实际对高中函数的概念进行教学设计,并实践于课堂教学中。在此基础上运用多种研究方法收集数据进行定性和定量分析,旨在探讨HPM视角下的教学对教师讲授、学生学习函数概念知识的影响。本文的研究问题如下:问题一:学生对函数的理解是否具有历史相似性?问题二:与传统的函数概念教学相比,HPM视角下的高中函数概念教学是否能促进学生对知识的理解?对学生的情感、态度与价值观有何影响?问题三:HPM视角下的高中函数概念教学是否转变了教师的教育教学信念?数学史能否有利于教师教学技能的提高?本研究得到的主要结论:(1)学生对函数概念的理解与历史上不同时空的数学家们的理解呈现出高度的相似性;(2)HPM视角下的函数概念教学提升了学生的数学素养,不同程度加深了学生对函数概念的理解,培养了学生的情感态度与价值观;(3)HPM视角下的函数概念教学转变了教师的教育教学信念和促进了教师专业能力的发展。
刘伟[4](2020)在《初中生数学建模能力培养研究》文中进行了进一步梳理新课程改革以来,随着数学建模进入数学课程标准和初中数学教材,数学建模能力成为初中生必须掌握的关键能力,数学建模能力培养成为数学教育的重要目标和改革方向。然而,调查研究表明,当前初中生数学建模能力培养存在着一些亟待改进的问题,数学建模“教什么”“怎么教”“如何培养初中生数学建模能力”仍然困扰着一线教师。究其原因,归根结底是因为当前初中数学建模教学缺乏行之有效的理论指导,也缺乏可供参考的教学策略,初中生的数学建模学习也缺少行之有效的学习方法。因此,创建一种具有通用性和统摄性的数学建模能力培养理论,提出具体可行的初中生数学建模能力培养策略,帮助和指导一线教师有效地进行初中数学建模教学成为当务之急。基于此认识,本研究以初中生数学建模能力培养研究为切入点,希望通过全面系统地分析初中数学建模教学内容,探查初中数学建模教学内容的局限性;又希望通过详细的课堂考察和教师深度访谈,全面调查初中生数学建模的过程,总结初中生数学建模的方式及规律,以期研究并得到初中生数学建模的一般过程及初中生数学建模能力结构;然后在调查研究的基础上,通过对初中生数学建模能力培养现状进行详细分析和梳理,分析和研判初中生数学建模能力培养中的困境,透视和了解初中生数学建模学习的障碍;最后,为了有针对性地探查和寻找初中生数学建模能力培养策略,本研究从提升初中生数学建模能力和为初中生数学建模学习提供系统性支持的视角,提出了初中数学建模教学内容选择策略、初中生数学建模能力培养的教学策略和初中生数学建模学习策略。由此可见,初中生数学建模能力培养研究,通过探究初中生数学建模能力培养的规律,解答了初中生数学建模能力培养究竟“教什么”“怎么教”和“怎么学”的问题,构建了初中生数学建模能力培养的教学理论雏形,可以有效改善初中数学建模教学,为培养初中生数学建模能力提供一种新的可供选择的教学模式,此项研究不仅具有较强的理论意义,而且具有较高的实践价值。本文共分为六大部分,各部分的理路分别是:第一部分是导论,简要介绍本文研究的缘起与意义、核心概念、研究思路、研究方法,并对已有的研究文献做了研究综述;第二部分梳理了数学建模教育的背景、发展历程及理论基础,为制定初中生数学建模能力培养的策略奠定理论基础;第三部分重点对初中数学建模教学内容做了文本分析,讨论了初中数学教材与课程标准的一致性,初步分析了教材中数学建模内容的不足;第四部分通过课堂考察和教师深度访谈,详细调查了初中生数学建模的过程,构建了初中生数学建模能力结构,透视了初中生数学建模能力培养的现状;第五部分分析了初中数学建模教学内容存在的局限性、初中数学建模教学的困境以及初中生数学建模学习的障碍,意在为探寻初中生数学建模能力培养的策略奠定基础;第六部分主要探讨怎样培养初中生的数学建模能力,从数学建模教学内容选择、初中数学建模教学和初中生数学建模学习三个方面提出了初中生数学建模能力培养的策略。
殷烁[5](2020)在《核心素养背景下的高一函数学习现状的调查研究》文中指出《普通高中数学课程标准》(2017版)已经颁布,首次提出了数学核心素养的概念,要在教学过程中培养学生数学抽象、逻辑推理、数学建模、直观想象、数学运算以及数据分析素养。2018级的高中生马上要面对2021年新模式的高考,但是学生使用的教材还是2003版的课标教材。在这段新旧教材交替的时期,学生核心素养的养成情况怎么样,教师在课堂教学中落实核心素养的意识情况怎么样,怎样培养学生数学核心素养,怎样将核心素养培养落实到课堂教学,都是一线数学教师非常关注的问题。由于高一函数部分是整个高中数学的核心内容,体现数学核心素养非常的集中,所以在数学核心素养的观点下对高一函数进行教学研究是有现实意义和价值的。本文通过查阅文献资料了解有关2017版新课标数学核心素养、有关函数概念、函数思想以及高一函数教学的最新发展,为笔者的研究提供理论支持;在此基础上,通过对高一学生进行函数内容测试卷调查和学生学习函数的非智力因素问卷调查,调查分析高一学生函数学习的基本情况,数学核心素养的落实情况,分析学生在函数学习中的现状以及函数学习的方法、习惯等等;对本校数学教师的访谈调查,研究从老师的视角看数学核心素养,看学生学习函数中的问题,研究教师在课堂教学中对学生数学核心素养培养的落实情况。通过各项调查研究得到学生学习函数现状的结论是:(1)数学核心素养的养成情况不容乐观,数学运算、数学抽象、逻辑推理、直观想象等各有欠缺;(2)解题能力不足,表现为审题能力不高,读不懂题、不能将题目信息转化为有效的数学信息;综合能力水平不高,函数题目复杂,需要用到的知识点繁多,不能灵活应用所学知识;(3)未养成良好的学习习惯,还停留在初中阶段的被动的学习的状态。由调查所得的结论,针对学生学习函数的现状问题,提出以下解决策略:(1)为函数解题做好计算铺垫;(2)将抽象的函数问题具体化;(3)注重学生数形结合方法解决函数问题;(4)充分利用教材培养逻辑思维能力;(5)构建适合学生认知的函数课堂教学;(6)提高学习函数兴趣,增强学习函数信息,培养学习方法。依据本文的理论基础,结合提出的教学建议,参考教师访谈研究,对教师一致反映核心素养集中的三个章节做出教学案例研究。
李坤[6](2020)在《初中函数的教学研究》文中研究说明函数概念的产生,不仅是数学史上的一项重大突破,同时对我们生活实践也产生了很大的影响,可见函数的出现对人类社会的影响也是重大的。函数思想贯穿于数学学习始终,函数知识贯穿于初中到大学,可见函数在数学的学习中是十分重要的。就初中数学而言,函数是数学知识的主线,同时也是学生最难克服和理解的知识之一。目前对于初中函数的研究主要集中在教学策略上,而对于整个初中函数教学的研究比较匮乏。基于此,本文采取多种研究方法对初中函数教学进行研究。首先,本文对相关概念进行界定,对相应的基础理论进行阐述;其次,从函数的内涵、外延、表示方法、图象、性质、函数模型以及函数与方程、不等式这七个维度对函数内容进行分析;再次,对学生进行问卷调查了解学生学习函数时的困难和障碍,从调查问卷中得知学生学习函数时的困难主要有:1.学生对函数知识的掌握重记忆轻理解;2.学生对于三种数学语言之间的转化能力较弱;3.学生对函数图象的掌握与应用不足。通过教师的访谈得知在函数教学中教师存在的问题主要有:1.教师对于课程标准中对函数的要求并不熟悉;2.对于学生学习函数前的准备仍是不足的;3.教师在函数教学过程中重结果轻过程;4.教师在函数教学中对于信息技术的应用并不熟知。根据调查的结果提出相应的教学原则和教学策略,教学原则主要有:1.注重知识的生成,引发学生的思考;2.遵循学生的认知规律,引导学生自己构建知识;3.注重数学思想方法的渗透,引发学生探索创新。教学策略主要有:1.以课程标准与教学理论为教学导向;2.以函数思想与方法为目标引领;3.以函数教学内容为载体;4.以教学技术为演示手段。最后,本文对函数的五个部分的内容进行了具体的教学设计,分别是变量与函数概念的教学设计与实施、一次函数教学设计与实施、二次函数的教学设计与实施、函数模型与应用的教学设计与实施、反比例函数的教学设计与实施,以期对函数教学提供借鉴。经过以上内容的分析和研究,提出了以下的教学建议:1.教师在函数教学中要注重知识的理解和生成过程;2.教师应该以《课标》要求为依据;3.教师应该加强信息技术软件的学习,比如多媒体课件、几何画板等;4.在函数教学中应该以数学核心素养为落脚点。综上所述,本文既从宏观角度出发,对初中函数教学的相关研究进行了解,又从微观角度出发,从教学的不同层次进行研究初中函数。本文不仅使初中数学教师对函数内容有清晰的认识,而且提出的教学策略与建议对初中函数教学有一定的借鉴意义。
濮安山[7](2011)在《初中生函数概念发展研究》文中进行了进一步梳理在现代中学数学教育中,函数的地位已经非常重要。它是中学数学的核心知识,是学习其它数学知识的基础,其思想和方法在解决数学和实际问题中有重要的应用。函数概念也是中学数学中最为重要的概念之一,是函数性质、函数建模等知识的认知基础,同时,也是学习高等数学的基础。了解初中生对函数概念的认知规律是函数课程设计、函数教学等方面的理论基础和实践依据。本文试图对初中生函数概念的认知水平和规律、认知错误及成因等做初步的探讨。该研究对全面系统了解我国初中生函数概念发展规律、函数课程与教学的设计以及新课程数学课堂教学实践具有重要的意义。本研究主要运用文献法、问卷调查法和访谈法等方法。以史宁中教授关于数量与数量关系的抽象与斯法德关于数学概念学习等理论为基础,将初中生对函数概念的认知划分为三个水平。层次1:运算阶段,层次2:符号阶段,层次3:综合阶段。选择了初中学生363人作为被试对象,利用测试卷为工具。对初中生函数概念的认知进行了研究,初步得到:1.初中生函数概念的发展水平和规律(1)从总体上说,随着年级的增长,初中生对函数概念的认识水平在逐渐提高。(2)初中生对函数概念的认识呈现一定的阶段性,7、8年级为一个阶段,9年级为一个阶段。表现为7、8年级的学生对函数概念的认识没有显著差异,但与9年级学生有显著差异。9年级的学生对函数概念的认识水平明显高于7、8年级。(3)初中生对不同方式表示函数的认识有显著差异。对表格表示的函数认识水平最高,对解析表示的函数认识水平最低,对表格表示函数、图像表示函数的认识水平高于解析表示的函数。(4)大部分初中生对函数的认识在运算阶段和符号阶段,部分同学达到综合认识阶段有一定的困难。(5)在解析表示函数层次3上,7、8年级的学生对xy =5等方程中的变量是否具有函数关系的判断有一定的困难,9年级的学生认识水平高于7、8年级。(6)初中生运用函数概念判断给出的图像是否表示函数关系的能力在逐渐提高。9年级与7、8年级有显著的差异。从图像上来看,与x轴垂直的直线、离散的点、分段图像、曲线等的判断7、8年级的学生有一定的困难,9年级的学生运用函数的本质属性解释的较好。(7)大部分初中生还不能用运动、变化、联系的辩证观点来理解函数概念,说明他们的辩证思维能力还比较差。2.初中生对函数概念的错误认识及成因初中生对函数概念的错误认识主要表现有(1)对特殊函数认识上的困难;(2)不能区分函数的本质特征和非本质特征(3)对变量的错误理解(4)对函数定义本身的错误理解(5)过度依赖学生过去的经验和回忆(6)过于依赖基本初等函数(7)对方程与函数认识的混淆(8)函数图像理解与绘制上的困难。初中生对函数概念认知困难与错误的主要原因有(1)函数概念本身的复杂性(2)函数表示方式的多样性(3)函数符号的抽象性(4)初中生处在辩证逻辑思维形成的初期(5)函数课程的不连续(6)教师函数概念教学中缺少有效的策略。本研究的创新之处是:运用数学概念学习理论评估了初中生函数概念的认知水平,探讨了学生在函数概念认知过程中的困难与错误,进而对函数课程设计、教材编写、教学实践给出了切实的建议。
张蜀青[8](2019)在《问题驱动的高中数学课堂教学设计理论与实践》文中研究说明近几十年来,我国中学数学教育改革进行了若干轮,从教学大纲改为课程标准,到2017年的新课标,除了对教学知识版块进行了增减,还产生了各种教育理念.在教师群体中,则主要是基于教学形式的课堂教学改革.教育届有识之士提出数学教育应该是数学的再创造过程,我们也看到很多论文言必称弗莱登塔尔和“再创造”,但是什么是真正的数学再创造?并没有一个明确的内涵解释和操作行为准则.本研究所提出的“问题驱动”是对弗莱登塔尔数学教育观的发展和丰富,是其“再创造”思想的具体化.它倡导教师借助数学史等深入了解知识内部,通过挖掘知识产生的背景,了解数学思想形成的过程,剖析其文化价值.具体实施过程则是结合教育学和心理学的原则,根据学生的认知水平创设合理的问题情境,将引发概念被创建或定理被发现的问题嵌入到情境中,实现问题驱动教学.本研究主要做了以下几方面的工作:1.文献综述新中国建国以来的中学数学教育改革,及美国和日本为代表的世界数学教育改革情况.根据当前高中数学教学存在的问题,提出问题驱动的数学课堂教学理论.2.从数学教育的本质、数学教育的价值来详细阐述问题驱动的高中数学教学设计的理念和指导思想,强调我们的数学课堂教学应该重视思辨和直觉培养,从而培养学生的创造力,数学教育除了体现学科价值还应该体现人文价值.3.深入阐述了“问题驱动”的内涵与外延,指出何为“真问题”和“真情境”,如何通过问题驱动实现数学的再创造.给出问题驱动的高中数学课堂教学评价标准及解读.4.本研究在积累了近百篇教学设计基础上,通过三种课型的5个典型案例的教学设计进行对比评价,从多个角度用实际案例示范引领如何创设问题情境,实现问题驱动.5.总结了近四年的研究成果与不足,明确下一步研究的方向.本研究的创新之处:1.和导师一起建立了问题驱动的数学课堂教学理论并进行了实践.2.和导师一起建立了反映数学本质的简单易操作的数学课堂教学评价标准.3.提出了数学教育是数学的有限再创造的观点,丰富发展了弗莱登塔尔的再创造理论.4.大、中学教师以及教研员长期扎根一线教学,通过教学研讨形式实现理论与实践相结合的崭新合作模式,使理论研究落到实处,也使课堂教学有章法可循,在实践中提升教师的教育研究水平.本研究通过行动研究形成一套有效可行的实现数学再创造的理论,一方面落实“四基”和“四能”,一方面探索出一条在应试教育与素质教育之间寻找平衡点的道路.本研究已在高中教学取得了很好的效果,在国内有一定的影响。
刘银琼[9](2019)在《人教版与上教版教材函数内容的比较 ——以《函数的基本性质》、《基本初等函数(Ⅰ)》为例》文中认为在整个高中数学,函数及其思想贯穿着整个高中阶段的数学内容.函数在实际生活中也有着广泛的应用,它的重要性不言而喻.高中课标明确指出数学教材的编写要体现数学内容的逻辑体系,注重整体结构.教材作为最重要的学习资料,它的编排方式是否体现知识的系统性与逻辑性就尤为重要了.人教A版是目前我国高中数学使用最广泛的教材,而上教版是一套极具发达地区特色的优秀教材,这两套教材各有特定的历史渊源,是中国近二十年高中数学的重要代表性教材,在内容体系上有着各自的特点与优势.本论文以横向比较为主,纵向比较为辅.从教材的历史沿革进行纵向比较分析.横向比较上,对比了教材相对应的课程标准、知识的的逻辑结构特征和教材中4个专题的概念体系构建.在以往对教材的横向比较中,多是以对比教材难度、例习题难度为主要的研究,无触及教材的学科性等本质问题,没有太大的实际意义.所以本文主要从教材的概念体系进行深入比较.为了更加全面地对教材进行对比分析,还对比了两套教材的学习训练体系.本文的研究方法有文献研究法、内容分析法和比较研究法.在两版教材概念体系的对比上,通过相关文献的研究,建立了“函数的概念”和“对数函数的概念”两个教材评价标准,并在此基础上分析两版教材的概念体系构建.通过“函数的概念”、“对数函数的概念”、“幂函数”和“函数的基本性质”这四个专题的对比分析,得出上教版在继承旧教材概念体系系统性强、逻辑性强的基础上,注重概念之间联系的紧密性与呈现的逻辑性,在具体概念构建过程中过渡平稳、符合高一学生的认知水平这一结论.数学课程改革是一个漫长的、不断完善的过程,需要很多代人呕心沥血地不断付出.由于条件的限制,无法对两种版本教材具体使用情况做全面的实证调查.通过对这两版教材的对比分析,力争所得结论能为今后的教学研究提供参考.
顾思敏[10](2020)在《高中函数概念的教学重构》文中研究说明《普通高中数学课程标准(2017年版)》突出了贯穿高中数学课程的四条主线,即函数、几何与代数、统计与概率,以及强调应用的数学建模活动与数学探究活动。函数作为四条主线之一,这是史无前例的。函数概念是函数的核心内容,也是高中数学课程中的核心概念。特别地,《标准(2017年版)》在“附录2”中增设“案例2函数的概念”来促进人们理解高中为什么要强调函数是实数集之间的对应关系。一直以来,高中函数定义由于其抽象程度高,不易于被学生理解被,被教师和学生公认为难教和难学的概念之一。本文从现行高中数学教材入手,发现现行教材函数定义中的“对应关系f”一词没有明确的定义,也鲜少有学者对其进行定义。并且,由于对“对应关系f”理解不同,既有人认为函数y=x,xε{0,1}与函数y=x2019,xε{0,1}的对应关系相同,也有人认为两函数的对应关系不同。那么如何正确理解函数概念,特别是对应关系f,才能避免出现诸如此类由于对“对应关系f”理解不同而产生的教学乱象,这就是本文的研究问题。基于上述问题,本文主要采取文献资料法、调查法和统计分析法等方法,以“高中函数概念”为对象展开研究。从“函数定义”出发,通过对文献和教材的整理,分析学者及教材编写者对“高中函数定义”的理解,发现如今高中函数定义没有统一的定义,对函数的本质也没有统一的说法,并且函数定义中“对应关系”一词容易使人产生歧义,而函数关系定义避开了容易令人产生歧义的“对应关系完全一致”,而且更能突出函数的本质。因此,基于现行高中数学教材“函数的概念”存在的问题,从两个角度来探究高中函数概念的教学重构:第一,基于现行教材对函数概念进行教学重构;第二,基于“关系”定义对函数概念进行教学重构。研究发现:(1)现行人教A版教材中的函数概念存在的主要问题是:将“函数f:A→B”与“对应关系f”混淆,使得人们对“两函数相等”或“同一个函数”定义中的“对应关系完全一致”有不同的理解。为了区分“函数f:A→B”与“对应关系f”之间的区别,有如下建议:1)将《标准(2017年版)》中“对应关系强调的是对应的结果,而不是对应的过程”中的“对应关系”改为“函数”;2)删除现行课本“对应关系完全一致”的说法,将“两函数相等”定义修改“如果两个函数的定义域相同,且相同的自变量对应的函数值也相同,那么两个函数相等”;3)对于解析式不同的两个函数,它们的对应关系f不相同;4)“两个函数相等”比“同一个函数”更为恰当。(2)本文从高中引入函数关系定义的必要性和可行性出发,从理论和实践两个角度去阐述函数关系定义引入高中教学的必要性和可行性,并从实证角度说明:有72.69%的学生是能够理解函数关系定义的,有96.77%的职前教师是能够把握好函数关系定义的内容,能够教好函数关系定义的。因此,在不取消现行高中函数定义的基础上,在高中的教学中可以适当增加函数关系定义的内容。基于上述内容,有如下建议:1)适当减少现行高中“函数的概念”教材篇幅,增加一节“函数关系定义”的内容;2)渗透“函数关系定义”的内容,不出现笛卡尔积,即增加函数的集合表示法;3)增加“函数关系定义”的阅读材料。
二、談談中学数学教学中的函数和函数概念的教学(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、談談中学数学教学中的函数和函数概念的教学(论文提纲范文)
(1)高中函数定义教学研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景 |
1.2 提出问题 |
1.3 研究内容 |
1.4 研究方法 |
1.5 研究意义 |
1.6 研究思路及框架 |
2 文献综述 |
2.1 国外研究现状 |
2.2 国内研究现状 |
2.2.1“四个理解”视角下高中函数定义研究综述 |
2.2.2 高中函数定义教学设计的研究综述 |
2.3 文献综述小结 |
3 概念界定与数学教学理论依据 |
3.1 教学设计概念界定 |
3.2 数学教学理论依据 |
3.2.1 APOS理论 |
3.2.2 问题驱动理论 |
3.2.3 HPM理论 |
3.2.4 数学三个世界理论 |
3.2.5 数学核心素养理论 |
4 高中函数定义教学情况的调查与分析 |
4.1 函数定义学习情况非认知因素的调查与分析 |
4.1.1 调查目的 |
4.1.2 调查问卷编制 |
4.1.3 问卷信度、效度分析 |
4.1.4 调查对象 |
4.1.5 问卷调查结果分析 |
4.1.6 问卷调查结论 |
4.2 函数定义学习情况认知水平的测试与分析 |
4.2.1 调查目的 |
4.2.2 测试卷编制 |
4.2.3 测试卷信度、效度分析 |
4.2.4 调查对象 |
4.2.5 测试卷调查结果分析 |
4.2.6 测试卷调查结论 |
4.3 访谈调查 |
4.3.1 访谈目的 |
4.3.2 访谈提纲设计 |
4.3.3 访谈对象 |
4.3.4 访谈结果分析 |
4.3.5 访谈结论 |
4.4 调查结论与反思 |
5 高中函数定义教学设计案例 |
5.1 案例 1:基于问题驱动理论的高中函数定义教学设计 |
5.1.1 教学目标分析 |
5.1.2 教学策略分析 |
5.1.3 基于问题驱动理论的高中函数定义教学设计 |
5.1.4 教学设计反思 |
5.2 案例 2:HPM视角下的高中函数定义教学设计 |
5.2.1 教学目标分析 |
5.2.2 数学家对函数概念的认识及教学策略分析 |
5.2.3 HPM视角下的高中函数定义教学设计 |
5.2.4 教学设计反思 |
5.3 案例 3:数学核心素养视角下的高中函数定义教学设计 |
5.3.1 教学目标分析 |
5.3.2 高中函数定义“七环节”教学流程分析 |
5.3.3 数学核心素养视角下的高中函数定义教学设计 |
5.3.4 教学设计反思 |
5.4 案例 4:基于韬尔“数学三个世界”的高中函数定义教学设计 |
5.4.1 教学目标分析 |
5.4.2 教学策略分析 |
5.4.3 基于数学三个世界的高中函数定义教学设计 |
5.4.4 教学设计反思 |
5.5 对高中函数定义教学设计案例的反思 |
6 研究不足与研究展望 |
参考文献 |
附录 1 |
附录 2 |
附录 3 |
附录 4 |
附录 5 |
致谢 |
在校期间的科研成果 |
(2)基于数学课程知识观的高中数学教科书编写策略研究(论文提纲范文)
摘要 |
Abstract |
第1章 缘起和目标:绪论 |
1.1 研究缘起及问题 |
1.1.1 研究缘起 |
1.1.2 问题提出 |
1.2 研究价值 |
1.2.1 理论价值 |
1.2.2 实践价值 |
1.3 概念界定 |
1.3.1 数学课程知识观 |
1.3.2 高中数学教科书 |
1.3.3 编写策略 |
1.4 研究路径及方法 |
1.4.1 研究路径 |
1.4.2 研究方法 |
第2章 综述和评论:相关研究及其进展 |
2.1 关于知识观及数学(知识)观的研究 |
2.1.1 关于知识观的研究 |
2.1.2 关于数学(知识)观的研究 |
2.2 关于高中数学教科书编写策略的相关研究 |
2.2.1 关于功能目标和编写原则的研究 |
2.2.2 关于内容素材和组织呈现的研究 |
2.2.3 关于语言图表和教材评价的研究 |
2.2.4 关于编辑技术和其他学科的研究 |
2.3 关于知识观、数学(知识)观和课程教材关系的研究 |
2.3.1 课程和教材对数学(知识)观形成的影响 |
2.3.2 课程和教材中的数学(知识)观前提及其体现 |
2.3.3 利用课程和教材去培养数学(知识)观的建议 |
2.4 本章小结 |
第3章 梳理和考察:多维视角的知识观审视及其对数学课程和教科书的影响 |
3.1 知识与知识观 |
3.1.1 知识 |
3.1.2 知识观与认识论、知识论 |
3.2 多维视角下的知识观审视 |
3.2.1 数学哲学视角下的知识观 |
3.2.2 心理学视角下的知识观 |
3.2.3 教育学视角下的知识观 |
3.3 知识观对数学课程和教科书编写的影响 |
3.3.1 从数学哲学视角来看 |
3.3.2 从心理学视角来看 |
3.3.3 从教育学视角来看 |
3.4 本章小结 |
第4章 厘清和界定:数学课程知识观涵义、图景及其观照下的高中数学教科书 |
4.1 数学观与数学知识观辨析 |
4.1.1 数学观是有关数学发展的“世界观” |
4.1.2 数学知识观是面向数学教育的知识观 |
4.2 数学课程知识观的提出及其图景 |
4.2.1 数学课程知识观的概念及其特点 |
4.2.2 数学课程知识观是知识教育立场的价值综合 |
4.2.3 数学课程知识观的理论图景概述 |
4.3 数学课程知识观下的高中数学教科书编写透视 |
4.3.1 基于数学课程知识观精选的学科知识 |
4.3.2 作为编写策略加工过的课程知识 |
4.3.3 借助教科书编写引导数学(知识)观发展 |
4.4 本章小结 |
第5章 检视和辩驳:数学课程知识观及教科书编写策略的历史存在和现实认同 |
5.1 中外教科书里隐匿的数学课程知识观 |
5.1.1 以《几何原本》和《九章算术》为例:1949年以前的典型 |
5.1.2 以SMP版和人教大纲版为例:1970年前后的典型 |
5.1.3 以CPMP版和苏教课标版为例:2000年以来的典型 |
5.2 数学课程知识观及高中数学教科书编写策略问卷设计 |
5.2.1 理论维度设计 |
5.2.2 项目鉴别度、信度和效度 |
5.3 对中学数学教科书作者的调查 |
5.3.1 教科书作者的数学课程知识观 |
5.3.2 教科书作者的编写策略认同 |
5.3.3 教科书作者的数学课程知识观和编写策略认同的相关研究 |
5.4 对高中数学教师的调查 |
5.4.1 高中数学教师的数学课程知识观 |
5.4.2 高中数学教师的编写策略认同 |
5.4.3 高中数学教师的数学课程知识观和编写策略认同的相关研究 |
5.5 本章小结 |
第6章 反思和建构:数学课程知识观下的高中数学教科书编写策略设想 |
6.1 数学课程知识观下高中数学教科书编写策略的指导思想 |
6.1.1 数学教科书应该具有学科性 |
6.1.2 数学教科书应该具有教学性 |
6.1.3 数学教科书应该具有人文性 |
6.2 数学课程知识观下高中数学教科书编写策略的具体设想 |
6.2.1 经历数学化:衔接知识的结果与过程样态 |
6.2.2 揭示潜隐性:兼顾知识的外显与内敛价值 |
6.2.3 渗透心理化:整合知识的逻辑和心理顺序 |
6.2.4 创设关联性:搭建知识的内部和外部链接 |
6.2.5 彰显主体性:协调知识的科学和人文特质 |
6.2.6 体现交互性:铺设知识的传授和建构渠道 |
6.3 本章小结 |
第7章 尝试和探索:基于策略设想编写的3个微型实证研究案例 |
7.1 微型实验1:棱柱、棱锥和棱台(课时) |
7.1.1 实验设计 |
7.1.2 信息处理 |
7.1.3 研究启示 |
7.2 微型实验2:两个基本计数原理(课时) |
7.2.1 实验设计 |
7.2.2 信息处理 |
7.2.3 研究启示 |
7.3 微型实验3:基本不等式(课时) |
7.3.1 调查设计 |
7.3.2 信息处理 |
7.3.3 研究启示 |
7.4 本章小结 |
第8章 总结和展望:结论、不足及前景 |
8.1 研究结论 |
8.2 研究不足 |
8.3 研究展望 |
附录 |
附录1 数学课程知识观调查问卷 |
附录2 高中数学教科书编写策略认同调查问卷 |
附录3 棱柱、棱锥和棱台(静态陈述式) |
附录4 棱柱、棱锥和棱台(动态发生式) |
附录5 棱柱、棱锥和棱台(测试问卷) |
附录6 两个基本计数原理(旁观式) |
附录7 两个基本计数原理(参与式) |
附录8 两个基本计数原理(测试问卷) |
附录9 基本不等式(孤立式) |
附录10 基本不等式(关联式) |
附录11 基本不等式(访谈问卷) |
参考文献 |
在读期间发表的学术论文及研究成果 |
致谢 |
(3)HPM视角下的高中函数概念教学设计研究(论文提纲范文)
摘要 |
Abstract |
第1章 前言 |
1.1 研究背景 |
1.1.1 高中函数的重要性 |
1.1.2 高中函数的教学现状 |
1.2 研究目的和问题 |
1.3 研究意义 |
1.3.1 研究的理论意义 |
1.3.2 研究的实践意义 |
第2章 文献综述 |
2.1 HPM简述 |
2.2 HPM国内外研究综述 |
2.2.1 HPM国外研究综述 |
2.2.2 HPM国内研究综述 |
2.3 函数概念的历史演进 |
2.4 “函数概念”一般的教学研究综述 |
第3章 研究思路与设计 |
3.1 研究思路 |
3.2 研究方法 |
3.2.1 文献研究法 |
3.2.2 问卷调查法 |
3.2.3 课堂观察法 |
3.2.4 访谈法 |
3.3 研究对象 |
3.4 函数测试卷的设计 |
3.4.1 函数测试卷的设计 |
3.4.2 测试卷的信度、效度分析 |
3.5 研究实施计划 |
第4章 研究实施与研究结果分析 |
4.1 研究实施 |
4.1.1 历史相似性研究 |
4.1.2 教学实施 |
4.1.3 教学设计 |
4.2 研究结果分析 |
4.2.1 函数测试卷结果分析 |
4.2.2 学生访谈结果分析 |
4.2.3 教师访谈结果分析 |
第5章 研究结论与展望 |
5.1 研究结论 |
5.2 研究不足 |
5.3 研究展望 |
参考文献 |
附录一 函数概念测试卷 |
附录二 学生访谈提纲 |
附录三 教师访谈提纲 |
致谢 |
(4)初中生数学建模能力培养研究(论文提纲范文)
摘要 |
Abstract |
导论 |
一、研究的缘起和意义 |
二、研究综述 |
三、核心概念及论题说明 |
四、研究思路 |
五、研究方法 |
第一章 数学建模教育的背景、发展历程及理论基础 |
第一节 数学建模教育的背景 |
一、数学建模的兴起 |
二、数学建模教育的育人价值 |
第二节 数学建模教育的发展历程 |
一、数学建模教育的萌芽起步阶段 |
二、数学建模教育的初步发展阶段 |
三、数学建模教育的稳步发展阶段 |
第三节 数学建模教育的理论基础 |
一、问题解决理论 |
二、知识迁移理论 |
三、深度学习理论 |
第二章 初中数学建模教学内容的文本分析 |
第一节 数学课程标准对数学建模能力培养的要求 |
一、对课程设计思路的要求 |
二、对课程目标的要求 |
三、对课程实施的建议 |
四、对教材编写的建议 |
第二节 初中数学教材中数学建模内容的呈现与编排 |
一、初中数学教材中数学建模内容的呈现 |
二、初中数学教材中数学建模内容的编排 |
第三节 初中数学教材与课程标准的一致性 |
一、初中数学教材与课程标准的一致性分析 |
二、初中数学教材与课程标准的一致性总结 |
第三章 初中生数学建模能力培养的现状调查 |
第一节 初中生数学建模能力培养的课堂考察 |
一、课堂考察与分析 |
二、教师访谈与分析 |
第二节 初中生数学建模的方式及规律 |
一、七年级学生数学建模的方式及规律 |
二、八年级学生数学建模的方式及规律 |
三、九年级学生数学建模的方式及规律 |
第三节 初中生数学建模的过程及数学建模能力结构 |
一、初中生数学建模的一般过程 |
二、初中生数学建模能力结构 |
第四章 初中生数学建模能力培养的困境分析 |
第一节 初中数学建模教学内容的局限性分析 |
一、数学建模教学内容与学生现实脱节 |
二、教学内容缺少真正意义的数学建模问题 |
三、教学内容与初中生数学建模能力培养不适切 |
四、教学内容局限于教材,忽视了对教学资源的开发 |
第二节 初中数学建模教学的困境分析 |
一、学校和教师对数学建模教学不够重视 |
二、数学建模教学方式有待改进 |
三、数学建模教育理念不适应数学建模能力培养 |
四、数学建模教学缺乏培训和理论指导 |
第三节 初中生数学建模学习困难分析 |
一、数学建模学习方式需要转变 |
二、尚未掌握数学建模的学习路径 |
三、学习进阶过渡中遇到障碍 |
第五章 初中生数学建模能力培养策略 |
第一节 制定初中生数学建模能力培养策略的依据 |
一、依据对初中数学建模教学内容的分析 |
二、依据初中数学建模教学现状 |
三、依据初中生数学建模学习现状 |
第二节 初中数学建模教学内容选择策略 |
一、反映数学本质,突出数学学科核心素养 |
二、贴近学生现实,体现数学建模的真实性 |
三、注重数学建模过程性,体现数学建模能力培养的阶段性 |
四、注重选择变式问题,促进问题解决能力的迁移 |
五、增加开放性和探究性的问题,全面提升数学建模能力 |
六、面向学生的长远发展选择数学建模内容 |
第三节 初中生数学建模能力培养的教学策略 |
一、由平铺直叙转变为创建有利于数学建模的真实问题情境 |
二、由教碎片化知识转变为教完整的建模知识 |
三、由教会做题转变为教会解决问题 |
四、由强调记忆转变为致力于知识迁移 |
五、由重结果性评价转向过程性评价与结果性评价并重 |
六、由单项能力训练转变为数学建模能力综合提升 |
第四节 初中生数学建模学习策略 |
一、学习完整的数学建模知识 |
二、学会条件化地储存知识 |
三、学会深度加工知识 |
四、掌握提取知识的路径 |
五、改善数学建模的程序与方法 |
六、学会类比与联想 |
七、学会知识迁移 |
结语 |
附录一 七年级数学教师访谈提纲 |
附录二 八年级数学教师访谈提纲 |
附录三 九年级数学建模教师访谈提纲 |
参考文献 |
在读期间相关成果发表情况 |
致谢 |
(5)核心素养背景下的高一函数学习现状的调查研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 研究背景 |
1.2 研究目的 |
1.3 研究内容 |
1.4 研究方法 |
1.4.1 文献研究法 |
1.4.2 问卷调查法 |
1.4.3 访谈法 |
1.5 研究流程 |
第2章 文献综述与理论基础 |
2.1 概念界定 |
2.1.1 函数 |
2.1.2 高一函数 |
2.2 研究现状 |
2.2.1 有关数学核心素养的文献分析 |
2.2.2 有关函数概念理解的文献分析 |
2.2.3 有关函数思想的文献分析 |
2.2.4 有关高一函数教学的文献分析 |
2.2.5 文献综述 |
2.3 理论基础 |
2.3.1 建构主义理论 |
2.3.2 皮亚杰的认知发展理论 |
第3章 研究设计 |
3.1 函数测试卷的研究设计 |
3.1.1 研究对象 |
3.1.2 测试卷的编制 |
3.1.3 测试目的 |
3.1.4 评价标准 |
3.1.5 测试卷的信度和效度 |
3.2 适应性及函数学习调查问卷的设计 |
3.2.1 调查目的 |
3.2.2 调查问卷的编制 |
3.3 教师访谈提纲的设计 |
3.3.1 访谈对象 |
3.3.2 访谈目的 |
3.3.3 访谈提纲的编制 |
第4章 现状调查研究与分析 |
4.1 函数学习情况的调查研究 |
4.1.1 调查结果及分析 |
4.1.2 问卷调查小结 |
4.2 非智力因素调查及分析 |
4.2.1 调查结果统计 |
4.2.2 学生问卷调查结果分析 |
4.3 教师访谈及分析 |
4.3.1 高中教师访谈记录 |
4.3.2 高一数学教师访谈分析 |
第5章 研究结论、教学建议与案例分析 |
5.1 研究结论 |
5.1.1 数学核心素养养成方面 |
5.1.2 解题能力方面 |
5.1.3 学生非智力因素方面 |
5.2 教学建议 |
5.2.1 为函数解题做好计算铺垫 |
5.2.2 将抽象的函数问题具体化 |
5.2.3 注重学生数形结合方法解决函数问题 |
5.2.4 充分利用教材培养逻辑推理能力 |
5.2.5 构建适合学生认知的函数课堂教学 |
5.2.6 提高学习函数兴趣,增强学习函数信心,培养学习方法 |
5.3 教学案例研究与实施 |
5.3.1 函数相关课题的研究 |
5.3.2 教学目标的分析研究 |
5.3.3 案例1:《函数的概念》教学案例 |
5.3.4 案例2:《指数函数及其性质》教学案例 |
5.3.5 案例3:《函数的图象》教学案例 |
第6章 不足与展望 |
6.1 不足 |
6.2 展望 |
参考文献 |
附录 |
附录1 |
附录2 |
附录3 |
致谢 |
攻读学位期间取得的科研成果清单 |
(6)初中函数的教学研究(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 问题提出 |
1.2 研究目的及意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 国内外研究现状 |
1.3.1 国外研究现状 |
1.3.2 国内研究现状 |
1.4 研究方法与研究思路 |
1.4.1 研究方法 |
1.4.2 研究思路 |
1.5 创新之处 |
第2章 初中函数教学研究的理论概述 |
2.1 相关概念的界定 |
2.1.1 函数概念的发展 |
2.1.2 教学 |
2.2 研究的理论基础 |
2.2.1 弗赖登塔尔的数学教育思想 |
2.2.2 皮亚杰认知发展理论 |
2.2.3 数形结合思想 |
第3章 初中函数教学内容分析 |
3.1 函数内涵理解与分析 |
3.1.1 函数的内涵 |
3.1.2 函数的特征 |
3.2 函数的外延与分类标准 |
3.2.1 函数知识的分布及目标要求 |
3.2.2 正比例函数与一次函数 |
3.2.3 二次函数 |
3.2.4 反比例函数 |
3.3 函数的表示方法及其特征 |
3.3.1 图象法 |
3.3.2 解析式 |
3.3.3 列表法 |
3.4 函数图象的变换与作用 |
3.4.1 初中函数图象的变换 |
3.4.2 函数图象的作用 |
3.5 函数性质与应用方法 |
3.5.1 单调性 |
3.5.2 对称性 |
3.5.3 最值 |
3.5.4 定义域与值域 |
3.6 函数与方程、不等式 |
3.7 函数模型与应用 |
3.7.1 几种常见的函数模型 |
3.7.2 函数模型的应用 |
第4章 初中函数教学之中存在的问题及其调查分析 |
4.1 问卷调查 |
4.1.1 调查对象 |
4.1.2 调查目的 |
4.1.3 调查方法 |
4.1.4 问卷的编制 |
4.1.5 数据分析 |
4.1.6 调查结论 |
4.2 访谈调查 |
4.2.1 访谈设计 |
4.2.2 访谈过程 |
4.2.3 访谈结果 |
第5章 初中函数的教学原则与策略 |
5.1 函数的教学原则与实施 |
5.1.1 注重知识的生成,引发学生的思考 |
5.1.2 关注学生的认知规律,引导学生自己构建知识 |
5.1.3 注重数学思想方法的渗透,促进学生探索创新 |
5.2 函数的教学策略与实施 |
5.2.1 以课程标准与教学理论为教学导向 |
5.2.2 以函数思想与方法为目标引领 |
5.2.3 以函数教学内容为载体 |
5.2.4 以教学技术为演示手段 |
第6章 初中函数的教学设计与实施 |
6.1 变量与函数的教学设计与实施 |
6.2 一次函数的教学设计与实施 |
6.3 二次函数的教学设计与实施 |
6.4 函数模型与应用的教学设计与实施 |
6.5 反比例函数的教学设计与实施 |
6.6 函数教学的反思与评价 |
第7章 研究结论与教学建议 |
7.1 研究结论 |
7.2 教学建议 |
7.3 研究的不足之处 |
7.4 后续研究问题 |
参考文献 |
附录1 初中生函数学习情况问卷调查 |
附录2 教师访谈提纲 |
致谢 |
(7)初中生函数概念发展研究(论文提纲范文)
中文摘要 |
英文摘要 |
目录 |
第1章 引言 |
1.1 问题提出的背景 |
1.2 问题的陈述 |
1.3 研究的意义 |
第2章 文献述评 |
2.1 函数概念的发展 |
2.2 函数概念的教与学 |
2.3 中学函数课程的历史与现状 |
2.4 函数概念发展的主要理论 |
第3章 研究设计与方法 |
3.1 研究的基本框架与步骤 |
3.2 被试的选择 |
3.3 研究的工具 |
3.4 数据的收集、处理和分析 |
第4章 初中生函数概念发展的定量研究 |
4.1 定量数据的收集 |
4.2 结果 |
4.3 初步结论 |
第5章 初中生函数概念发展的质性研究 |
5.1 质性数据的收集 |
5.2 访谈结果 |
5.3 初步结论 |
第6章 初中生对函数概念的错误认识及成因 |
6.1 问卷中关于学生函数概念的错误类型 |
6.2 函数概念的错误类型分析 |
6.3 函数概念错误认识成因分析 |
第7章 总结、启示与建议 |
7.1 对本研究的总结 |
7.2 对中学数学课程与教学的启示 |
7.3 继续研究的课题 |
参考文献 |
附录 1 |
附录 2 |
附录 3 |
附录 4 |
后记 |
在学期间公开发表论文及著作情况 |
(8)问题驱动的高中数学课堂教学设计理论与实践(论文提纲范文)
摘要 |
Abstract |
第一章 引言 |
1.1 问题的提出 |
1.2 相关文献研究综述 |
1.2.1 新中国中学数学教育研究发展概述 |
1.2.2 国外当代中学数学教育改革历程 |
1.2.3 我国目前高中数学课堂教学存在的问题 |
1.3 研究的目的与意义 |
1.3.1 与问题驱动教学设计相关的研究综述 |
1.3.2 研究的理论基础 |
1.3.3 研究的意义 |
1.3.4 研究的目的 |
1.3.5 研究的创新之处 |
1.4 研究思路与方法 |
1.4.1 研究思路 |
1.4.2 研究方法 |
第二章 问题驱动的高中数学课堂教学理论 |
2.1 何为数学的再创造? |
2.2 何为问题驱动的数学教学? |
2.3 如何实现问题驱动的数学教学 |
2.4 我们应该教什么样的数学 |
2.4.1 思辨、演绎、算法并重的数学课堂教学 |
2.4.2 培养直觉能力的数学教学 |
第三章 从数学教育的本质看高中数学课堂教学核心要素 |
3.1 数学教育的本质 |
3.1.1 数学的本质 |
3.1.2 数学教育的本质 |
3.2 问题驱动的高中数学课堂教学核心要素 |
3.3 案例分析 |
3.4 体现学科特点和教学要求的教学评价量表 |
第四章 问题驱动的高中数学课堂教学实践 |
4.1 问题驱动的高中数学概念课教学 |
4.1.1 概念课案例1 |
4.1.2 概念课案例2 |
4.1.3 概念课案例3 |
4.2 问题驱动的高中数学原理课教学 |
4.2.1 原理课案例1 |
4.2.2 原理课案例2 |
4.3 问题驱动的高中数学解题课教学 |
4.3.1 问题驱动的习题课教学设计 |
4.3.2 教学评析 |
第五章 反思与展望 |
5.1 研究成果 |
5.1.1 问题驱动的数学教学对学生数学价值观念的改变 |
5.1.2 问题驱动的数学教学对学生数学学习成绩的影响 |
5.1.3 问题驱动的数学教学对教师教育观念的改变 |
5.1.4 开创了一线教学实践者和理论研究工作者的合作新模式 |
5.1.5 研究的不足 |
5.2 展望 |
参考文献 |
附录 |
致谢 |
攻读学位期间的学术成果 |
(9)人教版与上教版教材函数内容的比较 ——以《函数的基本性质》、《基本初等函数(Ⅰ)》为例(论文提纲范文)
摘要 |
ABSTRACT |
1 绪论 |
1.1 研究背景及问题提出 |
1.2 相关概念的界定 |
1.2.1 教材 |
1.2.2 教材结构体系及学科逻辑 |
1.2.3 数学学习训练体系和课程难度模型 |
1.3 研究方法及研究框架 |
1.4 研究的意义 |
2 研究综述 |
2.1 我国中学数学课程历史沿革 |
2.2 教材研究现状及综述 |
2.2.1 关于函数内容体系的中外教材对比研究 |
2.2.2 关于函数内容的不同版本教材对比研究 |
2.3 研究现状的分析与总结 |
3 两典型版本教材演变的历史沿革 |
3.1 人教A版新旧教材函数章节内容的历史沿革 |
3.1.1 新旧教材函数章节内容沿革的整体分析 |
3.1.2 新旧教材函数章节知识体系的沿革 |
3.2 上教版新旧教材函数章节内容的改良 |
3.2.1 上海两期课改下函数章节内容的调整 |
3.2.2 两期课改函数章节内容编排的特点 |
3.3 分析与总结 |
4 两版教材对应课程标准的比较 |
4.1 上教版与人教A版相应课标的分析 |
4.1.1 两版课标的基本信息 |
4.1.2 两版课标课程理念的比较 |
4.2 两版教材对应课标与2017 版课标“函数”内容的对比 |
4.2.1 三版课标“函数”部分课程目标的比较研究 |
4.2.2 三版课标“函数思想”渗透阶段的比较研究 |
4.2.3 小结 |
5 函数章节内容逻辑结构的特征分析 |
5.1 两版教材函数章节内容模块的编排分析 |
5.2 两版教材函数章节知识点的编排分析 |
6 两版教材概念建构的比较 |
6.1 数学概念的习得及课本素材支持 |
6.2 两版教材函数概念建构的对比分析 |
6.2.1 “概念的同化”特征的函数概念学习素材体系 |
6.2.2 “概念的形成”特征的函数概念学习素材体系 |
6.2.3 两版教材函数概念建构对比分析 |
6.2.4 “函数概念”的教学内容及其教材评价模型 |
6.3 两版教材“对数函数”概念建构的对比分析 |
6.3.1 “基于对应的抽象”特征的对数函数概念学习素材体系 |
6.3.2 “基于内涵的抽象”特征的对数函数概念学习素材体系 |
6.3.3 两版教材对数函数概念对比分析 |
6.3.4 “对数函数概念”的教学内容及其教材评价模型 |
6.4 两版教材幂函数概念建构的对比分析 |
6.4.1 两版教材幂函数课标对比分析 |
6.4.2 “概念的形成”特征的幂函数概念学习素材体系 |
6.4.3 “概念的同化”特征的幂函数概念学习素材体系 |
6.5 两版教材函数的基本性质学习的对比分析 |
6.5.1 两版教材函数的基本性质课标对比分析 |
6.5.2 两版教材函数的基本性质对比分析 |
7 上教版与人教A版函数学习训练体系分析 |
7.1 关于函数学习训练体系的整体设计与改进任务 |
7.1.1 关于函数学习训练的整体设计 |
7.1.2 关于改进函数学习训练体系的任务 |
7.2 关于函数学习训练的习题案例评述 |
7.2.1 关于函数学习训练的内容 |
7.2.2 关于函数学习训练的方式 |
7.2.3 关于现代信技在函数学习训练中的应用 |
7.3 关于函数学习训练体系分析小结与建议 |
7.4 量化分析两版教材函数章节内容的难度 |
7.4.1 高中数学教材难度定量模型 |
7.4.2 两版教材函数章节内容深度、广度比较 |
7.4.3 两版教材习题综合难度的比较分析 |
8 结论与建议 |
8.1 研究结论 |
8.1.1 两种版本教材的共同特点 |
8.1.2 两种版本教材的编写特色 |
8.1.3 两版教材四个专题的比较结论 |
8.1.4 高中数学课程改革的反思 |
8.2 研究不足及展望 |
参考文献 |
附录 |
致谢 |
(10)高中函数概念的教学重构(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 问题的提出 |
1.2 研究意义 |
1.3 研究方法 |
第二章 函数概念历史及其传播 |
2.1 函数概念的历史 |
2.2 函数概念在中国的传播 |
第三章 函数概念教学研究 |
3.1 函数集合对应说的相关研究 |
3.2 函数集合关系说的相关研究 |
第四章 基于现行教材的函数概念教学重构 |
4.1 课程标准和教材中的函数概念 |
4.2 函数概念的定义方式 |
4.3 “函数f:A→B”与“对应关系f”的区别 |
4.4 函数概念的教学重构 |
第五章 高中函数关系定义教学实践的国际视角 |
5.1 概念界定 |
5.2 高中引入函数关系定义的必要性 |
5.3 外国教材中的函数概念 |
5.4 国内课程标准和教材中的函数关系定义 |
第六章 高中函数关系定义教学的可行性实验 |
6.1 被试 |
6.2 研究工具 |
6.3 数据的收集与处理 |
6.4 测试成绩及分析 |
6.5 测试成绩差异性分析 |
6.6 认知差异分析 |
6.7 小结 |
第七章 基于函数关系定义的函数概念教学重构 |
7.1 理论可行性分析 |
7.2 函数关系定义的教材设计 |
第八章 研究结论与展望 |
8.1 研究结论 |
8.2 研究展望 |
参考文献 |
附录:函数关系定义测试题 |
致谢 |
四、談談中学数学教学中的函数和函数概念的教学(论文参考文献)
- [1]高中函数定义教学研究[D]. 李雪梅. 四川师范大学, 2019(02)
- [2]基于数学课程知识观的高中数学教科书编写策略研究[D]. 胡晋宾. 南京师范大学, 2015(05)
- [3]HPM视角下的高中函数概念教学设计研究[D]. 刘功成. 曲阜师范大学, 2020(02)
- [4]初中生数学建模能力培养研究[D]. 刘伟. 曲阜师范大学, 2020(01)
- [5]核心素养背景下的高一函数学习现状的调查研究[D]. 殷烁. 河北师范大学, 2020(07)
- [6]初中函数的教学研究[D]. 李坤. 内蒙古师范大学, 2020(08)
- [7]初中生函数概念发展研究[D]. 濮安山. 东北师范大学, 2011(06)
- [8]问题驱动的高中数学课堂教学设计理论与实践[D]. 张蜀青. 广州大学, 2019(01)
- [9]人教版与上教版教材函数内容的比较 ——以《函数的基本性质》、《基本初等函数(Ⅰ)》为例[D]. 刘银琼. 广州大学, 2019(01)
- [10]高中函数概念的教学重构[D]. 顾思敏. 广州大学, 2020(02)