一、外微分形式与积分学(论文文献综述)
周凤树,孙长春,杜文思[1](1993)在《外微分形式与积分学》文中研究指明 多元函数的积分是一元函数积分定积分的推广。由于内容较多,一般高等数学教材把它划分为重积分、曲线积分和曲面积分几个部分,学习完这些内容以后,学生往往只注意到这些积分的个性,而忽略了它们的共性。本文用外微分来处理积分元的求法,并进而剖析积分学中几个基本公式牛顿一莱布尼兹公式,格林公式、高
龚怠[2](1999)在《对微积分中主要矛盾的认识》文中进行了进一步梳理1前言1958年,我从中国科学院数学研究所调到中国科学技术大学教书。在科大,我大多时间是在教微积分。教了8年之后,于1966年对微积分的教学产生了一些想法,于是写了一篇关于微积分教学改革的想法的短文,题为“对高等数学课程改革的一些尝试”,刊登在《自然...
王自华,桂起权[3](2002)在《对微积分中辩证法的认识》文中研究表明本文通过对话形式 ,以微分三角形的弦弧同一或曲直等同 ,曲边梯形与“诸矩形元素之总和”及回转体体积与“诸元圆柱之总和”如何达到极限同一 ,δ -ε语言如何把握潜无穷的逻辑确定性 ,数学中包括微分与积分在内的各种对立运算如何辩证地相互转化 ,以及关于微分方程的否定之否定等丰富案例 ,并且借助于数学与逻辑之间的巧妙类比 ,试图多视角多层次地阐明微积分的辩证法内涵
桂起权,姜小慧[4](2010)在《从辩证逻辑视角看微积分》文中进行了进一步梳理在当今科学哲学界,虽然辩证法派属于少数派,但作者却愿意加入这一行列。作者立足于数学上公认的事实材料,用辩证逻辑的流动范畴的眼光来分析微积分主要的基本概念的辩证本性,并且对微积分与代数、代数与算术之间的关系,和辩证逻辑与形式逻辑之间的关系,进行对应与类比,从而在辩证思维的语境中揭示了数学中所隐含的辩证逻辑内涵。
刁光成[5](2011)在《外积与外微分运算及其应用》文中提出简要介绍了微分几何的发展和外微分在微分流形中的重要性,着重讨论向量代数与外积运算的相关性,探讨向量分析与外微分的关系,并得到了多种常用运算公式的外微分表示,最后从外微分角度,对数学分析中四大基本公式(莱布尼兹公式、斯托克斯公式、格林公式、高斯公式)作了统一表述.
刘启明,王寰[6](2019)在《高等数学内容的统一性分析》文中进行了进一步梳理数学的两个基本特征是统一性和简洁性.本文从高等数学基本内容出发,分析了高等数学内容中距离、极限、积分计算与表达式等方面的统一性,对高等数学的学习给予启示.
陈强顺[7](1988)在《麦克斯韦电磁场方程组的外微分形式》文中指出本文以三维欧几里得空间R3为限,简明扼要地阐述微分形式和外微分数学形式和数学理论的要点,并应用它表达电磁场方程,得麦克斯韦电磁场方程组的外微分形式.它与麦克斯韦电磁场方程组的微分形式与积分形式以及依张量分析为基础在闵可夫斯基四维空间中表达的麦克斯韦电磁场方程组的张量形式相比,有着自己的特点.列举了应用实例,得出:应用微分形式和外微分的数学工具是行之有效的,它简洁、紧凑,便于运算和处理。
王永钤,庞碧君,彭卫民[8](2001)在《三维空间场可引入几个“度”》文中进行了进一步梳理对微分的外乘积、外微分形式做了初步的介绍 ,运用它同三维空间的梯度、旋度、散度相对应。指出在三维空间中只可引入梯度、旋度、散度 ,除此之外不可能再引入其它与之相对应的“度”。
龚昇[9](2000)在《对微积分中主要矛盾的粗浅认识(续二)》文中研究指明
龚升[10](1997)在《微积分教学的几点浅见 1996年11月2日在国家教委数学教学与课程体系改革座谈会上的发言》文中认为
二、外微分形式与积分学(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、外微分形式与积分学(论文提纲范文)
(3)对微积分中辩证法的认识(论文提纲范文)
1 |
2 |
3 |
4 |
5 |
(4)从辩证逻辑视角看微积分(论文提纲范文)
一 |
二 |
三 |
四 |
五 |
(6)高等数学内容的统一性分析(论文提纲范文)
一、距离概念的统一性 |
二、微积分学中概念的统一性 |
三、微分中值定理的统一性 |
四、函数值近似计算的统一性 |
五、多元函数无条件极值判定的统一性 |
六、微分学与积分学的计算理论统一性 |
七、函数积分转化公式的统一性 |
八、梯度、散度与旋度的形式统一性 |
(8)三维空间场可引入几个“度”(论文提纲范文)
1 微分形式[3-5] |
1.1 线积分 |
1.2 面积分 |
1.3 体积分 |
2 梯度、旋度、散度的外微分形式 |
四、外微分形式与积分学(论文参考文献)
- [1]外微分形式与积分学[J]. 周凤树,孙长春,杜文思. 工科数学, 1993(04)
- [2]对微积分中主要矛盾的认识[J]. 龚怠. 自然辩证法研究, 1999(03)
- [3]对微积分中辩证法的认识[J]. 王自华,桂起权. 自然辩证法研究, 2002(05)
- [4]从辩证逻辑视角看微积分[J]. 桂起权,姜小慧. 吉林师范大学学报(人文社会科学版), 2010(03)
- [5]外积与外微分运算及其应用[J]. 刁光成. 甘肃联合大学学报(自然科学版), 2011(03)
- [6]高等数学内容的统一性分析[J]. 刘启明,王寰. 数学学习与研究, 2019(22)
- [7]麦克斯韦电磁场方程组的外微分形式[J]. 陈强顺. 物理, 1988(08)
- [8]三维空间场可引入几个“度”[J]. 王永钤,庞碧君,彭卫民. 宝鸡文理学院学报(自然科学版), 2001(04)
- [9]对微积分中主要矛盾的粗浅认识(续二)[J]. 龚昇. 高等数学研究, 2000(01)
- [10]微积分教学的几点浅见 1996年11月2日在国家教委数学教学与课程体系改革座谈会上的发言[J]. 龚升. 数学学习, 1997(04)